1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.mask_dim_sizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.mask() && !read.mask() && 144 defWrite.indices() == read.indices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.permutation_map() == read.permutation_map(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.indices() == write.indices() && 152 priorWrite.mask() == write.mask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.permutation_map() == write.permutation_map(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(kind.getValue(), parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.source().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.reduction_dims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return source(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = dest().getType(); 401 if (!isSupportedCombiningKind(kind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(kind()) 404 << "'"; 405 406 // Verify optional accumulator. 407 if (acc()) { 408 if (kind() != CombiningKind::ADD && kind() != CombiningKind::MUL) 409 return emitOpError("no accumulator for reduction kind: ") 410 << stringifyCombiningKind(kind()); 411 if (!eltType.isa<FloatType>()) 412 return emitOpError("no accumulator for type: ") << eltType; 413 } 414 415 return success(); 416 } 417 418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 419 SmallVector<OpAsmParser::OperandType, 2> operandsInfo; 420 Type redType; 421 Type resType; 422 CombiningKindAttr kindAttr; 423 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 424 result.attributes) || 425 parser.parseComma() || parser.parseOperandList(operandsInfo) || 426 parser.parseColonType(redType) || 427 parser.parseKeywordType("into", resType) || 428 (!operandsInfo.empty() && 429 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 430 (operandsInfo.size() > 1 && 431 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 432 parser.addTypeToList(resType, result.types)) 433 return failure(); 434 if (operandsInfo.empty() || operandsInfo.size() > 2) 435 return parser.emitError(parser.getNameLoc(), 436 "unsupported number of operands"); 437 return success(); 438 } 439 440 void ReductionOp::print(OpAsmPrinter &p) { 441 p << " "; 442 kindAttr().print(p); 443 p << ", " << vector(); 444 if (acc()) 445 p << ", " << acc(); 446 p << " : " << vector().getType() << " into " << dest().getType(); 447 } 448 449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 450 OpBuilder &builder, Location loc, 451 Value vector) { 452 switch (op) { 453 case arith::AtomicRMWKind::addf: 454 case arith::AtomicRMWKind::addi: 455 return builder.create<vector::ReductionOp>(vector.getLoc(), 456 CombiningKind::ADD, vector); 457 case arith::AtomicRMWKind::mulf: 458 case arith::AtomicRMWKind::muli: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MUL, vector); 461 case arith::AtomicRMWKind::minf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MINF, vector); 464 case arith::AtomicRMWKind::mins: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MINSI, vector); 467 case arith::AtomicRMWKind::minu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MINUI, vector); 470 case arith::AtomicRMWKind::maxf: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::MAXF, vector); 473 case arith::AtomicRMWKind::maxs: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::MAXSI, vector); 476 case arith::AtomicRMWKind::maxu: 477 return builder.create<vector::ReductionOp>(vector.getLoc(), 478 CombiningKind::MAXUI, vector); 479 // TODO: Add remaining reduction operations. 480 default: 481 (void)emitOptionalError(loc, "Reduction operation type not supported"); 482 break; 483 } 484 return nullptr; 485 } 486 487 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 488 return llvm::to_vector<4>(getVectorType().getShape()); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // ContractionOp 493 //===----------------------------------------------------------------------===// 494 495 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 496 Value lhs, Value rhs, Value acc, 497 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 498 ArrayRef<StringRef> iteratorTypes) { 499 result.addOperands({lhs, rhs, acc}); 500 result.addTypes(acc.getType()); 501 result.addAttribute(::mlir::getIndexingMapsAttrName(), 502 builder.getAffineMapArrayAttr( 503 AffineMap::inferFromExprList(indexingExprs))); 504 result.addAttribute(::mlir::getIteratorTypesAttrName(), 505 builder.getStrArrayAttr(iteratorTypes)); 506 } 507 508 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 509 Value lhs, Value rhs, Value acc, 510 ArrayAttr indexingMaps, 511 ArrayAttr iteratorTypes) { 512 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 513 ContractionOp::getDefaultKind()); 514 } 515 516 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 517 Value lhs, Value rhs, Value acc, 518 ArrayAttr indexingMaps, 519 ArrayAttr iteratorTypes, CombiningKind kind) { 520 result.addOperands({lhs, rhs, acc}); 521 result.addTypes(acc.getType()); 522 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 523 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 524 result.addAttribute(ContractionOp::getKindAttrStrName(), 525 CombiningKindAttr::get(kind, builder.getContext())); 526 } 527 528 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 529 OpAsmParser::OperandType lhsInfo; 530 OpAsmParser::OperandType rhsInfo; 531 OpAsmParser::OperandType accInfo; 532 SmallVector<OpAsmParser::OperandType, 2> masksInfo; 533 SmallVector<Type, 2> types; 534 Type resultType; 535 auto loc = parser.getCurrentLocation(); 536 DictionaryAttr dictAttr; 537 // TODO: Unify linalg op attribute parsing. 538 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 539 parser.parseOperand(lhsInfo) || parser.parseComma() || 540 parser.parseOperand(rhsInfo) || parser.parseComma() || 541 parser.parseOperand(accInfo) || 542 parser.parseTrailingOperandList(masksInfo) || 543 parser.parseOptionalAttrDict(result.attributes) || 544 parser.parseColonTypeList(types) || 545 parser.parseKeywordType("into", resultType) || 546 parser.resolveOperand(lhsInfo, types[0], result.operands) || 547 parser.resolveOperand(rhsInfo, types[1], result.operands) || 548 parser.resolveOperand(accInfo, resultType, result.operands) || 549 parser.addTypeToList(resultType, result.types)) 550 return failure(); 551 result.attributes.assign(dictAttr.getValue().begin(), 552 dictAttr.getValue().end()); 553 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 554 result.addAttribute(ContractionOp::getKindAttrStrName(), 555 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 556 result.getContext())); 557 } 558 if (masksInfo.empty()) 559 return success(); 560 if (masksInfo.size() != 2) 561 return parser.emitError(parser.getNameLoc(), 562 "expected zero or exactly 2 vector mask operands"); 563 auto lhsType = types[0].cast<VectorType>(); 564 auto rhsType = types[1].cast<VectorType>(); 565 auto maskElementType = parser.getBuilder().getI1Type(); 566 std::array<Type, 2> maskTypes = { 567 VectorType::Builder(lhsType).setElementType(maskElementType), 568 VectorType::Builder(rhsType).setElementType(maskElementType)}; 569 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 570 return failure(); 571 return success(); 572 } 573 574 void ContractionOp::print(OpAsmPrinter &p) { 575 // TODO: Unify printing code with linalg ops. 576 auto attrNames = getTraitAttrNames(); 577 llvm::StringSet<> traitAttrsSet; 578 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 579 SmallVector<NamedAttribute, 8> attrs; 580 for (auto attr : (*this)->getAttrs()) 581 if (traitAttrsSet.count(attr.getName().strref()) > 0) 582 attrs.push_back(attr); 583 584 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 585 p << " " << dictAttr << " " << lhs() << ", "; 586 p << rhs() << ", " << acc(); 587 if (masks().size() == 2) 588 p << ", " << masks(); 589 590 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 591 p << " : " << lhs().getType() << ", " << rhs().getType() << " into " 592 << getResultType(); 593 } 594 595 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 596 const std::vector<std::pair<int64_t, int64_t>> &map) { 597 for (auto &dimPair : map) { 598 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 599 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 600 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 601 return false; 602 } 603 return true; 604 } 605 606 static LogicalResult verifyOutputShape( 607 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 608 Type resType, 609 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 610 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 611 DenseSet<int64_t> lhsContractingDimSet; 612 DenseSet<int64_t> rhsContractingDimSet; 613 for (auto &dimPair : contractingDimMap) { 614 lhsContractingDimSet.insert(dimPair.first); 615 rhsContractingDimSet.insert(dimPair.second); 616 } 617 DenseSet<int64_t> rhsBatchDimSet; 618 for (auto &dimPair : batchDimMap) 619 rhsBatchDimSet.insert(dimPair.second); 620 621 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 622 SmallVector<int64_t, 4> expectedResultDims; 623 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 624 if (lhsContractingDimSet.count(i) > 0) 625 continue; 626 expectedResultDims.push_back(lhsType.getDimSize(i)); 627 } 628 629 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 630 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 631 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 632 continue; 633 expectedResultDims.push_back(rhsType.getDimSize(i)); 634 } 635 636 // Verify 'expectedResultDims'. 637 if (expectedResultDims.empty()) { 638 // No batch or free dimension implies a scalar result. 639 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 640 return op.emitOpError("invalid accumulator/result vector shape"); 641 } else { 642 // At least one batch or free dimension implies a vector result. 643 auto resVectorType = resType.dyn_cast<VectorType>(); 644 auto accVectorType = accType.dyn_cast<VectorType>(); 645 if (!resVectorType || !accVectorType) 646 return op.emitOpError("invalid accumulator/result vector shape"); 647 648 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 649 // types fully define the result vector type. This assumes the affine maps 650 // are well-formed, which must have been verified already. 651 MLIRContext *ctx = op.getContext(); 652 AffineMap lhsMap = op.getIndexingMaps()[0]; 653 AffineMap rhsMap = op.getIndexingMaps()[1]; 654 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 655 for (auto pair : 656 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 657 VectorType v = pair.first; 658 auto map = pair.second; 659 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 660 unsigned pos = map.getDimPosition(idx); 661 if (!extents[pos]) 662 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 663 } 664 } 665 assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) && 666 "expected extent along all dimensions."); 667 668 AffineMap resMap = op.getIndexingMaps()[2]; 669 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 670 /*symCount=*/0, extents, ctx); 671 // Compose the resMap with the extentsMap, which is a constant map. 672 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 673 assert(llvm::all_of( 674 expectedMap.getResults(), 675 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 676 "expected constant extent along all dimensions."); 677 // Extract the expected shape and build the type. 678 auto expectedShape = llvm::to_vector<4>( 679 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 680 return e.cast<AffineConstantExpr>().getValue(); 681 })); 682 auto expected = 683 VectorType::get(expectedShape, resVectorType.getElementType()); 684 if (resVectorType != expected || accVectorType != expected) 685 return op.emitOpError( 686 "invalid accumulator/result vector shape, expected: ") 687 << expected; 688 } 689 return success(); 690 } 691 692 LogicalResult ContractionOp::verify() { 693 auto lhsType = getLhsType(); 694 auto rhsType = getRhsType(); 695 auto accType = getAccType(); 696 auto resType = getResultType(); 697 698 // Verify that an indexing map was specified for each vector operand. 699 if (indexing_maps().size() != 3) 700 return emitOpError("expected an indexing map for each vector operand"); 701 702 // Verify that each index map has 'numIterators' inputs, no symbols, and 703 // that the number of map outputs equals the rank of its associated 704 // vector operand. 705 unsigned numIterators = iterator_types().getValue().size(); 706 for (const auto &it : llvm::enumerate(indexing_maps())) { 707 auto index = it.index(); 708 auto map = it.value(); 709 if (map.getNumSymbols() != 0) 710 return emitOpError("expected indexing map ") 711 << index << " to have no symbols"; 712 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 713 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 714 // Verify that the map has the right number of inputs, outputs, and indices. 715 // This also correctly accounts for (..) -> () for rank-0 results. 716 if (map.getNumDims() != numIterators) 717 return emitOpError("expected indexing map ") 718 << index << " to have " << numIterators << " number of inputs"; 719 if (map.getNumResults() != rank) 720 return emitOpError("expected indexing map ") 721 << index << " to have " << rank << " number of outputs"; 722 if (!map.isProjectedPermutation()) 723 return emitOpError("expected indexing map ") 724 << index << " to be a projected permutation of its inputs"; 725 } 726 727 auto contractingDimMap = getContractingDimMap(); 728 auto batchDimMap = getBatchDimMap(); 729 730 // Verify at least one contracting dimension pair was specified. 731 if (contractingDimMap.empty()) 732 return emitOpError("expected at least one contracting dimension pair"); 733 734 // Verify contracting dimension map was properly constructed. 735 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 736 return emitOpError("invalid contracting dimension map"); 737 738 // Verify batch dimension map was properly constructed. 739 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 740 return emitOpError("invalid batch dimension map"); 741 742 // Verify 'accType' and 'resType' shape. 743 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 744 contractingDimMap, batchDimMap))) 745 return failure(); 746 747 // Verify that either two vector masks are set or none are set. 748 auto lhsMaskType = getLHSVectorMaskType(); 749 auto rhsMaskType = getRHSVectorMaskType(); 750 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 751 return emitOpError("invalid number of vector masks specified"); 752 if (lhsMaskType && rhsMaskType) { 753 // Verify mask rank == argument rank. 754 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 755 rhsMaskType.getShape().size() != rhsType.getShape().size()) 756 return emitOpError("invalid vector mask rank"); 757 } 758 759 // Verify supported combining kind. 760 auto vectorType = resType.dyn_cast<VectorType>(); 761 auto elementType = vectorType ? vectorType.getElementType() : resType; 762 if (!isSupportedCombiningKind(kind(), elementType)) 763 return emitOpError("unsupported contraction type"); 764 765 return success(); 766 } 767 768 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 769 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 770 ::mlir::getIteratorTypesAttrName(), 771 ContractionOp::getKindAttrStrName()}; 772 return llvm::makeArrayRef(names); 773 } 774 775 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 776 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 777 if (targetExpr == map.getResult(i)) 778 return i; 779 return -1; 780 } 781 782 static std::vector<std::pair<int64_t, int64_t>> 783 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 784 StringRef targetIteratorTypeName, MLIRContext *context) { 785 std::vector<std::pair<int64_t, int64_t>> dimMap; 786 for (const auto &it : llvm::enumerate(iteratorTypes)) { 787 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 788 if (iteratorTypeName != targetIteratorTypeName) 789 continue; 790 // Search lhs/rhs map results for 'targetExpr'. 791 auto targetExpr = getAffineDimExpr(it.index(), context); 792 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 793 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 794 if (lhsDim >= 0 && rhsDim >= 0) 795 dimMap.emplace_back(lhsDim, rhsDim); 796 } 797 return dimMap; 798 } 799 800 void ContractionOp::getIterationBounds( 801 SmallVectorImpl<int64_t> &iterationBounds) { 802 auto lhsShape = getLhsType().getShape(); 803 auto resVectorType = getResultType().dyn_cast<VectorType>(); 804 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 805 SmallVector<int64_t, 2> iterationShape; 806 for (const auto &it : llvm::enumerate(iterator_types())) { 807 // Search lhs/rhs map results for 'targetExpr'. 808 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 809 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 810 if (iteratorTypeName == getReductionIteratorTypeName()) { 811 // Get reduction dim size from lhs shape (same size in rhsShape). 812 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 813 assert(lhsDimIndex >= 0); 814 iterationBounds.push_back(lhsShape[lhsDimIndex]); 815 continue; 816 } 817 // Get parallel dimension size from result shape. 818 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 819 assert(resDimIndex >= 0); 820 assert(resVectorType != nullptr); 821 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 822 } 823 } 824 825 void ContractionOp::getIterationIndexMap( 826 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 827 unsigned numMaps = indexing_maps().size(); 828 iterationIndexMap.resize(numMaps); 829 for (const auto &it : llvm::enumerate(indexing_maps())) { 830 auto index = it.index(); 831 auto map = it.value(); 832 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 833 auto dim = map.getResult(i).cast<AffineDimExpr>(); 834 iterationIndexMap[index][dim.getPosition()] = i; 835 } 836 } 837 } 838 839 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 840 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 841 return getDimMap(indexingMaps, iterator_types(), 842 getReductionIteratorTypeName(), getContext()); 843 } 844 845 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 846 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 847 return getDimMap(indexingMaps, iterator_types(), 848 getParallelIteratorTypeName(), getContext()); 849 } 850 851 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 852 SmallVector<int64_t, 4> shape; 853 getIterationBounds(shape); 854 return shape; 855 } 856 857 /// Return a fused vector::ContractionOp which represents a patterns such as: 858 /// 859 /// ```mlir 860 /// %c0 = vector.constant 0: ... 861 /// %c = vector.contract %a, %b, %c0: ... 862 /// %e = add %c, %d: ... 863 /// ``` 864 /// 865 /// by: 866 /// 867 /// ```mlir 868 /// %e = vector.contract %a, %b, %d: ... 869 /// ``` 870 /// 871 /// Return null if the canonicalization does not apply. 872 // TODO: This should be a folding of Add into Contract in core but while they 873 // live in different dialects, it is not possible without unnatural 874 // dependencies. 875 template <typename AddOpType> 876 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 877 using OpRewritePattern<AddOpType>::OpRewritePattern; 878 879 LogicalResult matchAndRewrite(AddOpType addOp, 880 PatternRewriter &rewriter) const override { 881 auto canonicalize = [&](Value maybeContraction, 882 Value otherOperand) -> vector::ContractionOp { 883 vector::ContractionOp contractionOp = 884 dyn_cast_or_null<vector::ContractionOp>( 885 maybeContraction.getDefiningOp()); 886 if (!contractionOp) 887 return vector::ContractionOp(); 888 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 889 contractionOp.acc().getDefiningOp())) { 890 if (maybeZero.getValue() == 891 rewriter.getZeroAttr(contractionOp.acc().getType())) { 892 BlockAndValueMapping bvm; 893 bvm.map(contractionOp.acc(), otherOperand); 894 auto newContraction = 895 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 896 rewriter.replaceOp(addOp, newContraction.getResult()); 897 return newContraction; 898 } 899 } 900 return vector::ContractionOp(); 901 }; 902 903 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 904 vector::ContractionOp contract = canonicalize(a, b); 905 contract = contract ? contract : canonicalize(b, a); 906 return contract ? success() : failure(); 907 } 908 }; 909 910 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 911 MLIRContext *context) { 912 results.add<CanonicalizeContractAdd<arith::AddIOp>, 913 CanonicalizeContractAdd<arith::AddFOp>>(context); 914 } 915 916 //===----------------------------------------------------------------------===// 917 // ExtractElementOp 918 //===----------------------------------------------------------------------===// 919 920 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 921 Value source) { 922 result.addOperands({source}); 923 result.addTypes(source.getType().cast<VectorType>().getElementType()); 924 } 925 926 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 927 Value source, Value position) { 928 result.addOperands({source, position}); 929 result.addTypes(source.getType().cast<VectorType>().getElementType()); 930 } 931 932 LogicalResult vector::ExtractElementOp::verify() { 933 VectorType vectorType = getVectorType(); 934 if (vectorType.getRank() == 0) { 935 if (position()) 936 return emitOpError("expected position to be empty with 0-D vector"); 937 return success(); 938 } 939 if (vectorType.getRank() != 1) 940 return emitOpError("unexpected >1 vector rank"); 941 if (!position()) 942 return emitOpError("expected position for 1-D vector"); 943 return success(); 944 } 945 946 //===----------------------------------------------------------------------===// 947 // ExtractOp 948 //===----------------------------------------------------------------------===// 949 950 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 951 Value source, ArrayRef<int64_t> position) { 952 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 953 } 954 955 // Convenience builder which assumes the values are constant indices. 956 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 957 Value source, ValueRange position) { 958 SmallVector<int64_t, 4> positionConstants = 959 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 960 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 961 })); 962 build(builder, result, source, positionConstants); 963 } 964 965 LogicalResult 966 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 967 ValueRange operands, DictionaryAttr attributes, 968 RegionRange, 969 SmallVectorImpl<Type> &inferredReturnTypes) { 970 ExtractOp::Adaptor op(operands, attributes); 971 auto vectorType = op.vector().getType().cast<VectorType>(); 972 if (static_cast<int64_t>(op.position().size()) == vectorType.getRank()) { 973 inferredReturnTypes.push_back(vectorType.getElementType()); 974 } else { 975 auto n = std::min<size_t>(op.position().size(), vectorType.getRank() - 1); 976 inferredReturnTypes.push_back(VectorType::get( 977 vectorType.getShape().drop_front(n), vectorType.getElementType())); 978 } 979 return success(); 980 } 981 982 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 983 // Allow extracting 1-element vectors instead of scalars. 984 auto isCompatible = [](TypeRange l, TypeRange r) { 985 auto vectorType = l.front().dyn_cast<VectorType>(); 986 return vectorType && vectorType.getShape().equals({1}) && 987 vectorType.getElementType() == r.front(); 988 }; 989 if (l.size() == 1 && r.size() == 1 && 990 (isCompatible(l, r) || isCompatible(r, l))) 991 return true; 992 return l == r; 993 } 994 995 LogicalResult vector::ExtractOp::verify() { 996 auto positionAttr = position().getValue(); 997 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 998 return emitOpError( 999 "expected position attribute of rank smaller than vector rank"); 1000 for (const auto &en : llvm::enumerate(positionAttr)) { 1001 auto attr = en.value().dyn_cast<IntegerAttr>(); 1002 if (!attr || attr.getInt() < 0 || 1003 attr.getInt() >= getVectorType().getDimSize(en.index())) 1004 return emitOpError("expected position attribute #") 1005 << (en.index() + 1) 1006 << " to be a non-negative integer smaller than the corresponding " 1007 "vector dimension"; 1008 } 1009 return success(); 1010 } 1011 1012 template <typename IntType> 1013 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1014 return llvm::to_vector<4>(llvm::map_range( 1015 arrayAttr.getAsRange<IntegerAttr>(), 1016 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1017 } 1018 1019 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1020 /// positions. 1021 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1022 if (!extractOp.vector().getDefiningOp<ExtractOp>()) 1023 return failure(); 1024 1025 SmallVector<int64_t, 4> globalPosition; 1026 ExtractOp currentOp = extractOp; 1027 auto extrPos = extractVector<int64_t>(currentOp.position()); 1028 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1029 while (ExtractOp nextOp = currentOp.vector().getDefiningOp<ExtractOp>()) { 1030 currentOp = nextOp; 1031 auto extrPos = extractVector<int64_t>(currentOp.position()); 1032 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1033 } 1034 extractOp.setOperand(currentOp.vector()); 1035 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1036 OpBuilder b(extractOp.getContext()); 1037 std::reverse(globalPosition.begin(), globalPosition.end()); 1038 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1039 b.getI64ArrayAttr(globalPosition)); 1040 return success(); 1041 } 1042 1043 namespace { 1044 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1045 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1046 /// Compose TransposeOp permutations as we walk back. 1047 /// This helper class keeps an updated extraction position `extractPosition` 1048 /// with extra trailing sentinels. 1049 /// The sentinels encode the internal transposition status of the result vector. 1050 /// As we iterate, extractPosition is permuted and updated. 1051 class ExtractFromInsertTransposeChainState { 1052 public: 1053 ExtractFromInsertTransposeChainState(ExtractOp e); 1054 1055 /// Iterate over producing insert and transpose ops until we find a fold. 1056 Value fold(); 1057 1058 private: 1059 /// Return true if the vector at position `a` is contained within the vector 1060 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1061 /// is a prefix of `b`. 1062 template <typename ContainerA, typename ContainerB> 1063 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1064 return a.size() <= b.size() && 1065 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1066 } 1067 1068 /// Return true if the vector at position `a` intersects the vector at 1069 /// position `b`. Under insert/extract semantics, this is the same as equality 1070 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1071 /// Comparison is on the common prefix (i.e. zip). 1072 template <typename ContainerA, typename ContainerB> 1073 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1074 for (auto it : llvm::zip(a, b)) { 1075 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1076 continue; 1077 if (std::get<0>(it) != std::get<1>(it)) 1078 return false; 1079 } 1080 return true; 1081 } 1082 1083 /// Folding is only possible in the absence of an internal permutation in the 1084 /// result vector. 1085 bool canFold() { 1086 return (sentinels == 1087 makeArrayRef(extractPosition).drop_front(extractedRank)); 1088 } 1089 1090 // Helper to get the next defining op of interest. 1091 void updateStateForNextIteration(Value v) { 1092 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1093 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1094 }; 1095 1096 // Case 1. If we hit a transpose, just compose the map and iterate. 1097 // Invariant: insert + transpose do not change rank, we can always compose. 1098 LogicalResult handleTransposeOp(); 1099 1100 // Case 2: the insert position matches extractPosition exactly, early return. 1101 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1102 1103 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1104 /// portion of the source of the insert. 1105 /// Example: 1106 /// ``` 1107 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1108 /// // extractPosition == [1, 2, 3] 1109 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1110 /// // can fold to vector.extract %source[0, 3] 1111 /// %ext = vector.extract %source[3]: vector<5x6> 1112 /// ``` 1113 /// To traverse through %source, we need to set the leading dims to 0 and 1114 /// drop the extra leading dims. 1115 /// This method updates the internal state. 1116 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1117 1118 /// Try to fold in place to extract(source, extractPosition) and return the 1119 /// folded result. Return null if folding is not possible (e.g. due to an 1120 /// internal tranposition in the result). 1121 Value tryToFoldExtractOpInPlace(Value source); 1122 1123 ExtractOp extractOp; 1124 int64_t vectorRank; 1125 int64_t extractedRank; 1126 1127 InsertOp nextInsertOp; 1128 TransposeOp nextTransposeOp; 1129 1130 /// Sentinel values that encode the internal permutation status of the result. 1131 /// They are set to (-1, ... , -k) at the beginning and appended to 1132 /// `extractPosition`. 1133 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1134 /// ensure that there is no internal transposition. 1135 /// Internal transposition cannot be accounted for with a folding pattern. 1136 // TODO: We could relax the internal transposition with an extra transposition 1137 // operation in a future canonicalizer. 1138 SmallVector<int64_t> sentinels; 1139 SmallVector<int64_t> extractPosition; 1140 }; 1141 } // namespace 1142 1143 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1144 ExtractOp e) 1145 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1146 extractedRank(extractOp.position().size()) { 1147 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1148 sentinels.reserve(vectorRank - extractedRank); 1149 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1150 sentinels.push_back(-(i + 1)); 1151 extractPosition = extractVector<int64_t>(extractOp.position()); 1152 llvm::append_range(extractPosition, sentinels); 1153 } 1154 1155 // Case 1. If we hit a transpose, just compose the map and iterate. 1156 // Invariant: insert + transpose do not change rank, we can always compose. 1157 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1158 if (!nextTransposeOp) 1159 return failure(); 1160 auto permutation = extractVector<unsigned>(nextTransposeOp.transp()); 1161 AffineMap m = inversePermutation( 1162 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1163 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1164 return success(); 1165 } 1166 1167 // Case 2: the insert position matches extractPosition exactly, early return. 1168 LogicalResult 1169 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1170 Value &res) { 1171 auto insertedPos = extractVector<int64_t>(nextInsertOp.position()); 1172 if (makeArrayRef(insertedPos) != 1173 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1174 return failure(); 1175 // Case 2.a. early-exit fold. 1176 res = nextInsertOp.source(); 1177 // Case 2.b. if internal transposition is present, canFold will be false. 1178 return success(); 1179 } 1180 1181 /// Case 3: if inserted position is a prefix of extractPosition, 1182 /// extract a portion of the source of the insertion. 1183 /// This method updates the internal state. 1184 LogicalResult 1185 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1186 auto insertedPos = extractVector<int64_t>(nextInsertOp.position()); 1187 if (!isContainedWithin(insertedPos, extractPosition)) 1188 return failure(); 1189 // Set leading dims to zero. 1190 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1191 // Drop extra leading dims. 1192 extractPosition.erase(extractPosition.begin(), 1193 extractPosition.begin() + insertedPos.size()); 1194 extractedRank = extractPosition.size() - sentinels.size(); 1195 // Case 3.a. early-exit fold (break and delegate to post-while path). 1196 res = nextInsertOp.source(); 1197 // Case 3.b. if internal transposition is present, canFold will be false. 1198 return success(); 1199 } 1200 1201 /// Try to fold in place to extract(source, extractPosition) and return the 1202 /// folded result. Return null if folding is not possible (e.g. due to an 1203 /// internal tranposition in the result). 1204 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1205 Value source) { 1206 // If we can't fold (either internal transposition, or nothing to fold), bail. 1207 bool nothingToFold = (source == extractOp.vector()); 1208 if (nothingToFold || !canFold()) 1209 return Value(); 1210 // Otherwise, fold by updating the op inplace and return its result. 1211 OpBuilder b(extractOp.getContext()); 1212 extractOp->setAttr( 1213 extractOp.positionAttrName(), 1214 b.getI64ArrayAttr( 1215 makeArrayRef(extractPosition).take_front(extractedRank))); 1216 extractOp.vectorMutable().assign(source); 1217 return extractOp.getResult(); 1218 } 1219 1220 /// Iterate over producing insert and transpose ops until we find a fold. 1221 Value ExtractFromInsertTransposeChainState::fold() { 1222 Value valueToExtractFrom = extractOp.vector(); 1223 updateStateForNextIteration(valueToExtractFrom); 1224 while (nextInsertOp || nextTransposeOp) { 1225 // Case 1. If we hit a transpose, just compose the map and iterate. 1226 // Invariant: insert + transpose do not change rank, we can always compose. 1227 if (succeeded(handleTransposeOp())) { 1228 valueToExtractFrom = nextTransposeOp.vector(); 1229 updateStateForNextIteration(valueToExtractFrom); 1230 continue; 1231 } 1232 1233 Value result; 1234 // Case 2: the position match exactly. 1235 if (succeeded(handleInsertOpWithMatchingPos(result))) 1236 return result; 1237 1238 // Case 3: if the inserted position is a prefix of extractPosition, we can 1239 // just extract a portion of the source of the insert. 1240 if (succeeded(handleInsertOpWithPrefixPos(result))) 1241 return tryToFoldExtractOpInPlace(result); 1242 1243 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1244 // values. This is a more difficult case and we bail. 1245 auto insertedPos = extractVector<int64_t>(nextInsertOp.position()); 1246 if (isContainedWithin(extractPosition, insertedPos) || 1247 intersectsWhereNonNegative(extractPosition, insertedPos)) 1248 return Value(); 1249 1250 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1251 valueToExtractFrom = nextInsertOp.dest(); 1252 updateStateForNextIteration(valueToExtractFrom); 1253 } 1254 // If after all this we can fold, go for it. 1255 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1256 } 1257 1258 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1259 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1260 Operation *defOp = extractOp.vector().getDefiningOp(); 1261 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1262 return Value(); 1263 Value source = defOp->getOperand(0); 1264 if (extractOp.getType() == source.getType()) 1265 return source; 1266 auto getRank = [](Type type) { 1267 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1268 }; 1269 unsigned broadcastSrcRank = getRank(source.getType()); 1270 unsigned extractResultRank = getRank(extractOp.getType()); 1271 if (extractResultRank < broadcastSrcRank) { 1272 auto extractPos = extractVector<int64_t>(extractOp.position()); 1273 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1274 extractPos.erase( 1275 extractPos.begin(), 1276 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1277 extractOp.setOperand(source); 1278 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1279 OpBuilder b(extractOp.getContext()); 1280 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1281 b.getI64ArrayAttr(extractPos)); 1282 return extractOp.getResult(); 1283 } 1284 return Value(); 1285 } 1286 1287 // Fold extractOp with source coming from ShapeCast op. 1288 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1289 auto shapeCastOp = extractOp.vector().getDefiningOp<vector::ShapeCastOp>(); 1290 if (!shapeCastOp) 1291 return Value(); 1292 // Get the nth dimension size starting from lowest dimension. 1293 auto getDimReverse = [](VectorType type, int64_t n) { 1294 return type.getShape().take_back(n + 1).front(); 1295 }; 1296 int64_t destinationRank = 1297 extractOp.getType().isa<VectorType>() 1298 ? extractOp.getType().cast<VectorType>().getRank() 1299 : 0; 1300 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1301 return Value(); 1302 if (destinationRank > 0) { 1303 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1304 for (int64_t i = 0; i < destinationRank; i++) { 1305 // The lowest dimension of of the destination must match the lowest 1306 // dimension of the shapecast op source. 1307 // TODO: This case could be support in a canonicalization pattern. 1308 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1309 getDimReverse(destinationType, i)) 1310 return Value(); 1311 } 1312 } 1313 // Extract the strides associated with the extract op vector source. Then use 1314 // this to calculate a linearized position for the extract. 1315 auto extractedPos = extractVector<int64_t>(extractOp.position()); 1316 std::reverse(extractedPos.begin(), extractedPos.end()); 1317 SmallVector<int64_t, 4> strides; 1318 int64_t stride = 1; 1319 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1320 strides.push_back(stride); 1321 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1322 } 1323 1324 int64_t position = linearize(extractedPos, strides); 1325 // Then extract the strides associated to the shapeCast op vector source and 1326 // delinearize the position using those strides. 1327 SmallVector<int64_t, 4> newStrides; 1328 int64_t numDimension = 1329 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1330 stride = 1; 1331 for (int64_t i = 0; i < numDimension; i++) { 1332 newStrides.push_back(stride); 1333 stride *= 1334 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1335 } 1336 std::reverse(newStrides.begin(), newStrides.end()); 1337 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1338 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1339 OpBuilder b(extractOp.getContext()); 1340 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1341 b.getI64ArrayAttr(newPosition)); 1342 extractOp.setOperand(shapeCastOp.source()); 1343 return extractOp.getResult(); 1344 } 1345 1346 /// Fold an ExtractOp from ExtractStridedSliceOp. 1347 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1348 auto extractStridedSliceOp = 1349 extractOp.vector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1350 if (!extractStridedSliceOp) 1351 return Value(); 1352 // Return if 'extractStridedSliceOp' has non-unit strides. 1353 if (extractStridedSliceOp.hasNonUnitStrides()) 1354 return Value(); 1355 1356 // Trim offsets for dimensions fully extracted. 1357 auto sliceOffsets = extractVector<int64_t>(extractStridedSliceOp.offsets()); 1358 while (!sliceOffsets.empty()) { 1359 size_t lastOffset = sliceOffsets.size() - 1; 1360 if (sliceOffsets.back() != 0 || 1361 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1362 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1363 break; 1364 sliceOffsets.pop_back(); 1365 } 1366 unsigned destinationRank = 0; 1367 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1368 destinationRank = vecType.getRank(); 1369 // The dimensions of the result need to be untouched by the 1370 // extractStridedSlice op. 1371 if (destinationRank > 1372 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1373 return Value(); 1374 auto extractedPos = extractVector<int64_t>(extractOp.position()); 1375 assert(extractedPos.size() >= sliceOffsets.size()); 1376 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1377 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1378 extractOp.vectorMutable().assign(extractStridedSliceOp.vector()); 1379 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1380 OpBuilder b(extractOp.getContext()); 1381 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1382 b.getI64ArrayAttr(extractedPos)); 1383 return extractOp.getResult(); 1384 } 1385 1386 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1387 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1388 int64_t destinationRank = op.getType().isa<VectorType>() 1389 ? op.getType().cast<VectorType>().getRank() 1390 : 0; 1391 auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>(); 1392 while (insertOp) { 1393 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1394 insertOp.getSourceVectorType().getRank(); 1395 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1396 return Value(); 1397 auto insertOffsets = extractVector<int64_t>(insertOp.offsets()); 1398 auto extractOffsets = extractVector<int64_t>(op.position()); 1399 1400 if (llvm::any_of(insertOp.strides(), [](Attribute attr) { 1401 return attr.cast<IntegerAttr>().getInt() != 1; 1402 })) 1403 return Value(); 1404 bool disjoint = false; 1405 SmallVector<int64_t, 4> offsetDiffs; 1406 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1407 int64_t start = insertOffsets[dim]; 1408 int64_t size = 1409 (dim < insertRankDiff) 1410 ? 1 1411 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1412 int64_t end = start + size; 1413 int64_t offset = extractOffsets[dim]; 1414 // Check if the start of the extract offset is in the interval inserted. 1415 if (start <= offset && offset < end) { 1416 if (dim >= insertRankDiff) 1417 offsetDiffs.push_back(offset - start); 1418 continue; 1419 } 1420 disjoint = true; 1421 break; 1422 } 1423 // The extract element chunk overlap with the vector inserted. 1424 if (!disjoint) { 1425 // If any of the inner dimensions are only partially inserted we have a 1426 // partial overlap. 1427 int64_t srcRankDiff = 1428 insertOp.getSourceVectorType().getRank() - destinationRank; 1429 for (int64_t i = 0; i < destinationRank; i++) { 1430 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1431 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1432 insertRankDiff)) 1433 return Value(); 1434 } 1435 op.vectorMutable().assign(insertOp.source()); 1436 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1437 OpBuilder b(op.getContext()); 1438 op->setAttr(ExtractOp::getPositionAttrStrName(), 1439 b.getI64ArrayAttr(offsetDiffs)); 1440 return op.getResult(); 1441 } 1442 // If the chunk extracted is disjoint from the chunk inserted, keep 1443 // looking in the insert chain. 1444 insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>(); 1445 } 1446 return Value(); 1447 } 1448 1449 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1450 if (position().empty()) 1451 return vector(); 1452 if (succeeded(foldExtractOpFromExtractChain(*this))) 1453 return getResult(); 1454 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1455 return res; 1456 if (auto res = foldExtractFromBroadcast(*this)) 1457 return res; 1458 if (auto res = foldExtractFromShapeCast(*this)) 1459 return res; 1460 if (auto val = foldExtractFromExtractStrided(*this)) 1461 return val; 1462 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1463 return val; 1464 return OpFoldResult(); 1465 } 1466 1467 namespace { 1468 1469 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1470 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1471 public: 1472 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1473 1474 LogicalResult matchAndRewrite(ExtractOp extractOp, 1475 PatternRewriter &rewriter) const override { 1476 Operation *defOp = extractOp.vector().getDefiningOp(); 1477 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1478 return failure(); 1479 Value source = defOp->getOperand(0); 1480 if (extractOp.getType() == source.getType()) 1481 return failure(); 1482 auto getRank = [](Type type) { 1483 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1484 }; 1485 unsigned broadcastSrcRank = getRank(source.getType()); 1486 unsigned extractResultRank = getRank(extractOp.getType()); 1487 // We only consider the case where the rank of the source is smaller than 1488 // the rank of the extract dst. The other cases are handled in the folding 1489 // patterns. 1490 if (extractResultRank <= broadcastSrcRank) 1491 return failure(); 1492 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1493 extractOp, extractOp.getType(), source); 1494 return success(); 1495 } 1496 }; 1497 1498 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1499 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1500 public: 1501 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1502 1503 LogicalResult matchAndRewrite(ExtractOp extractOp, 1504 PatternRewriter &rewriter) const override { 1505 // Return if 'extractStridedSliceOp' operand is not defined by a 1506 // ConstantOp. 1507 auto constantOp = extractOp.vector().getDefiningOp<arith::ConstantOp>(); 1508 if (!constantOp) 1509 return failure(); 1510 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1511 if (!dense) 1512 return failure(); 1513 Attribute newAttr = dense.getSplatValue<Attribute>(); 1514 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1515 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1516 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1517 return success(); 1518 } 1519 }; 1520 1521 } // namespace 1522 1523 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1524 MLIRContext *context) { 1525 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1526 } 1527 1528 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1529 SmallVectorImpl<int64_t> &results) { 1530 for (auto attr : arrayAttr) 1531 results.push_back(attr.cast<IntegerAttr>().getInt()); 1532 } 1533 1534 //===----------------------------------------------------------------------===// 1535 // ExtractMapOp 1536 //===----------------------------------------------------------------------===// 1537 1538 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1539 Value vector, ValueRange ids, 1540 ArrayRef<int64_t> multiplicity, 1541 AffineMap permutationMap) { 1542 assert(ids.size() == multiplicity.size() && 1543 ids.size() == permutationMap.getNumResults()); 1544 assert(permutationMap.isProjectedPermutation()); 1545 VectorType type = vector.getType().cast<VectorType>(); 1546 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1547 type.getShape().end()); 1548 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1549 AffineExpr expr = permutationMap.getResult(i); 1550 auto dim = expr.cast<AffineDimExpr>(); 1551 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1552 } 1553 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1554 ExtractMapOp::build(builder, result, resultType, vector, ids); 1555 } 1556 1557 LogicalResult ExtractMapOp::verify() { 1558 if (getSourceVectorType().getRank() != getResultType().getRank()) 1559 return emitOpError("expected source and destination vectors of same rank"); 1560 unsigned numId = 0; 1561 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1562 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1563 0) 1564 return emitOpError("source vector dimensions must be a multiple of " 1565 "destination vector dimensions"); 1566 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1567 numId++; 1568 } 1569 if (numId != ids().size()) 1570 return emitOpError("expected number of ids must match the number of " 1571 "dimensions distributed"); 1572 return success(); 1573 } 1574 1575 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1576 auto insert = vector().getDefiningOp<vector::InsertMapOp>(); 1577 if (insert == nullptr || getType() != insert.vector().getType() || 1578 ids() != insert.ids()) 1579 return {}; 1580 return insert.vector(); 1581 } 1582 1583 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1584 assert(multiplicity.empty()); 1585 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1586 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1587 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1588 getResultType().getDimSize(i)); 1589 } 1590 } 1591 1592 template <typename MapOp> 1593 AffineMap calculateImplicitMap(MapOp op) { 1594 SmallVector<AffineExpr, 4> perm; 1595 // Check which dimension have a multiplicity greater than 1 and associated 1596 // them to the IDs in order. 1597 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1598 if (op.getSourceVectorType().getDimSize(i) != 1599 op.getResultType().getDimSize(i)) 1600 perm.push_back(getAffineDimExpr(i, op.getContext())); 1601 } 1602 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1603 op.getContext()); 1604 return map; 1605 } 1606 1607 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1608 1609 //===----------------------------------------------------------------------===// 1610 // FmaOp 1611 //===----------------------------------------------------------------------===// 1612 1613 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1614 return llvm::to_vector<4>(getVectorType().getShape()); 1615 } 1616 1617 //===----------------------------------------------------------------------===// 1618 // BroadcastOp 1619 //===----------------------------------------------------------------------===// 1620 1621 BroadcastableToResult 1622 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1623 std::pair<int, int> *mismatchingDims) { 1624 // Broadcast scalar to vector of the same element type. 1625 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1626 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1627 return BroadcastableToResult::Success; 1628 // From now on, only vectors broadcast. 1629 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1630 if (!srcVectorType) 1631 return BroadcastableToResult::SourceTypeNotAVector; 1632 1633 int64_t srcRank = srcVectorType.getRank(); 1634 int64_t dstRank = dstVectorType.getRank(); 1635 if (srcRank > dstRank) 1636 return BroadcastableToResult::SourceRankHigher; 1637 // Source has an exact match or singleton value for all trailing dimensions 1638 // (all leading dimensions are simply duplicated). 1639 int64_t lead = dstRank - srcRank; 1640 for (int64_t r = 0; r < srcRank; ++r) { 1641 int64_t srcDim = srcVectorType.getDimSize(r); 1642 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1643 if (srcDim != 1 && srcDim != dstDim) { 1644 if (mismatchingDims) { 1645 mismatchingDims->first = srcDim; 1646 mismatchingDims->second = dstDim; 1647 } 1648 return BroadcastableToResult::DimensionMismatch; 1649 } 1650 } 1651 1652 return BroadcastableToResult::Success; 1653 } 1654 1655 LogicalResult BroadcastOp::verify() { 1656 std::pair<int, int> mismatchingDims; 1657 BroadcastableToResult res = 1658 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1659 if (res == BroadcastableToResult::Success) 1660 return success(); 1661 if (res == BroadcastableToResult::SourceRankHigher) 1662 return emitOpError("source rank higher than destination rank"); 1663 if (res == BroadcastableToResult::DimensionMismatch) 1664 return emitOpError("dimension mismatch (") 1665 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1666 if (res == BroadcastableToResult::SourceTypeNotAVector) 1667 return emitOpError("source type is not a vector"); 1668 llvm_unreachable("unexpected vector.broadcast op error"); 1669 } 1670 1671 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1672 if (getSourceType() == getVectorType()) 1673 return source(); 1674 if (!operands[0]) 1675 return {}; 1676 auto vectorType = getVectorType(); 1677 if (operands[0].getType().isIntOrIndexOrFloat()) 1678 return DenseElementsAttr::get(vectorType, operands[0]); 1679 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1680 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1681 return {}; 1682 } 1683 1684 namespace { 1685 1686 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1687 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1688 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1689 1690 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1691 PatternRewriter &rewriter) const override { 1692 auto srcBroadcast = broadcastOp.source().getDefiningOp<BroadcastOp>(); 1693 if (!srcBroadcast) 1694 return failure(); 1695 rewriter.replaceOpWithNewOp<BroadcastOp>( 1696 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.source()); 1697 return success(); 1698 } 1699 }; 1700 } // namespace 1701 1702 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1703 MLIRContext *context) { 1704 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1705 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1706 results.add<BroadcastFolder>(context); 1707 } 1708 1709 //===----------------------------------------------------------------------===// 1710 // ShuffleOp 1711 //===----------------------------------------------------------------------===// 1712 1713 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1714 Value v2, ArrayRef<int64_t> mask) { 1715 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1716 } 1717 1718 LogicalResult ShuffleOp::verify() { 1719 VectorType resultType = getVectorType(); 1720 VectorType v1Type = getV1VectorType(); 1721 VectorType v2Type = getV2VectorType(); 1722 // Verify ranks. 1723 int64_t resRank = resultType.getRank(); 1724 int64_t v1Rank = v1Type.getRank(); 1725 int64_t v2Rank = v2Type.getRank(); 1726 if (resRank != v1Rank || v1Rank != v2Rank) 1727 return emitOpError("rank mismatch"); 1728 // Verify all but leading dimension sizes. 1729 for (int64_t r = 1; r < v1Rank; ++r) { 1730 int64_t resDim = resultType.getDimSize(r); 1731 int64_t v1Dim = v1Type.getDimSize(r); 1732 int64_t v2Dim = v2Type.getDimSize(r); 1733 if (resDim != v1Dim || v1Dim != v2Dim) 1734 return emitOpError("dimension mismatch"); 1735 } 1736 // Verify mask length. 1737 auto maskAttr = mask().getValue(); 1738 int64_t maskLength = maskAttr.size(); 1739 if (maskLength <= 0) 1740 return emitOpError("invalid mask length"); 1741 if (maskLength != resultType.getDimSize(0)) 1742 return emitOpError("mask length mismatch"); 1743 // Verify all indices. 1744 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1745 for (const auto &en : llvm::enumerate(maskAttr)) { 1746 auto attr = en.value().dyn_cast<IntegerAttr>(); 1747 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1748 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1749 } 1750 return success(); 1751 } 1752 1753 LogicalResult 1754 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1755 ValueRange operands, DictionaryAttr attributes, 1756 RegionRange, 1757 SmallVectorImpl<Type> &inferredReturnTypes) { 1758 ShuffleOp::Adaptor op(operands, attributes); 1759 auto v1Type = op.v1().getType().cast<VectorType>(); 1760 // Construct resulting type: leading dimension matches mask length, 1761 // all trailing dimensions match the operands. 1762 SmallVector<int64_t, 4> shape; 1763 shape.reserve(v1Type.getRank()); 1764 shape.push_back(std::max<size_t>(1, op.mask().size())); 1765 llvm::append_range(shape, v1Type.getShape().drop_front()); 1766 inferredReturnTypes.push_back( 1767 VectorType::get(shape, v1Type.getElementType())); 1768 return success(); 1769 } 1770 1771 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1772 Attribute lhs = operands.front(), rhs = operands.back(); 1773 if (!lhs || !rhs) 1774 return {}; 1775 1776 auto lhsType = lhs.getType().cast<VectorType>(); 1777 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1778 // manipulation. 1779 if (lhsType.getRank() != 1) 1780 return {}; 1781 int64_t lhsSize = lhsType.getDimSize(0); 1782 1783 SmallVector<Attribute> results; 1784 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1785 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1786 for (const auto &index : this->mask().getAsValueRange<IntegerAttr>()) { 1787 int64_t i = index.getZExtValue(); 1788 if (i >= lhsSize) { 1789 results.push_back(rhsElements[i - lhsSize]); 1790 } else { 1791 results.push_back(lhsElements[i]); 1792 } 1793 } 1794 1795 return DenseElementsAttr::get(getVectorType(), results); 1796 } 1797 1798 //===----------------------------------------------------------------------===// 1799 // InsertElementOp 1800 //===----------------------------------------------------------------------===// 1801 1802 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1803 Value source, Value dest) { 1804 build(builder, result, source, dest, {}); 1805 } 1806 1807 LogicalResult InsertElementOp::verify() { 1808 auto dstVectorType = getDestVectorType(); 1809 if (dstVectorType.getRank() == 0) { 1810 if (position()) 1811 return emitOpError("expected position to be empty with 0-D vector"); 1812 return success(); 1813 } 1814 if (dstVectorType.getRank() != 1) 1815 return emitOpError("unexpected >1 vector rank"); 1816 if (!position()) 1817 return emitOpError("expected position for 1-D vector"); 1818 return success(); 1819 } 1820 1821 //===----------------------------------------------------------------------===// 1822 // InsertOp 1823 //===----------------------------------------------------------------------===// 1824 1825 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1826 Value dest, ArrayRef<int64_t> position) { 1827 result.addOperands({source, dest}); 1828 auto positionAttr = getVectorSubscriptAttr(builder, position); 1829 result.addTypes(dest.getType()); 1830 result.addAttribute(getPositionAttrStrName(), positionAttr); 1831 } 1832 1833 // Convenience builder which assumes the values are constant indices. 1834 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1835 Value dest, ValueRange position) { 1836 SmallVector<int64_t, 4> positionConstants = 1837 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1838 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1839 })); 1840 build(builder, result, source, dest, positionConstants); 1841 } 1842 1843 LogicalResult InsertOp::verify() { 1844 auto positionAttr = position().getValue(); 1845 auto destVectorType = getDestVectorType(); 1846 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1847 return emitOpError( 1848 "expected position attribute of rank smaller than dest vector rank"); 1849 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1850 if (srcVectorType && 1851 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1852 static_cast<unsigned>(destVectorType.getRank()))) 1853 return emitOpError("expected position attribute rank + source rank to " 1854 "match dest vector rank"); 1855 if (!srcVectorType && 1856 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1857 return emitOpError( 1858 "expected position attribute rank to match the dest vector rank"); 1859 for (const auto &en : llvm::enumerate(positionAttr)) { 1860 auto attr = en.value().dyn_cast<IntegerAttr>(); 1861 if (!attr || attr.getInt() < 0 || 1862 attr.getInt() >= destVectorType.getDimSize(en.index())) 1863 return emitOpError("expected position attribute #") 1864 << (en.index() + 1) 1865 << " to be a non-negative integer smaller than the corresponding " 1866 "dest vector dimension"; 1867 } 1868 return success(); 1869 } 1870 1871 namespace { 1872 1873 // If insertOp is only inserting unit dimensions it can be transformed to a 1874 // broadcast. 1875 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1876 public: 1877 using OpRewritePattern<InsertOp>::OpRewritePattern; 1878 1879 LogicalResult matchAndRewrite(InsertOp insertOp, 1880 PatternRewriter &rewriter) const override { 1881 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1882 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1883 srcVecType.getNumElements()) 1884 return failure(); 1885 rewriter.replaceOpWithNewOp<BroadcastOp>( 1886 insertOp, insertOp.getDestVectorType(), insertOp.source()); 1887 return success(); 1888 } 1889 }; 1890 1891 } // namespace 1892 1893 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 1894 MLIRContext *context) { 1895 results.add<InsertToBroadcast, BroadcastFolder>(context); 1896 } 1897 1898 // Eliminates insert operations that produce values identical to their source 1899 // value. This happens when the source and destination vectors have identical 1900 // sizes. 1901 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 1902 if (position().empty()) 1903 return source(); 1904 return {}; 1905 } 1906 1907 //===----------------------------------------------------------------------===// 1908 // InsertMapOp 1909 //===----------------------------------------------------------------------===// 1910 1911 LogicalResult InsertMapOp::verify() { 1912 if (getSourceVectorType().getRank() != getResultType().getRank()) 1913 return emitOpError("expected source and destination vectors of same rank"); 1914 unsigned numId = 0; 1915 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 1916 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 1917 0) 1918 return emitOpError( 1919 "destination vector size must be a multiple of source vector size"); 1920 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 1921 numId++; 1922 } 1923 if (numId != ids().size()) 1924 return emitOpError("expected number of ids must match the number of " 1925 "dimensions distributed"); 1926 return success(); 1927 } 1928 1929 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 1930 1931 //===----------------------------------------------------------------------===// 1932 // InsertStridedSliceOp 1933 //===----------------------------------------------------------------------===// 1934 1935 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 1936 Value source, Value dest, 1937 ArrayRef<int64_t> offsets, 1938 ArrayRef<int64_t> strides) { 1939 result.addOperands({source, dest}); 1940 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 1941 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 1942 result.addTypes(dest.getType()); 1943 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 1944 result.addAttribute(getStridesAttrStrName(), stridesAttr); 1945 } 1946 1947 // TODO: Should be moved to Tablegen Confined attributes. 1948 template <typename OpType> 1949 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 1950 ArrayAttr arrayAttr, 1951 ArrayRef<int64_t> shape, 1952 StringRef attrName) { 1953 if (arrayAttr.size() > shape.size()) 1954 return op.emitOpError("expected ") 1955 << attrName << " attribute of rank smaller than vector rank"; 1956 return success(); 1957 } 1958 1959 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 1960 // interval. If `halfOpen` is true then the admissible interval is [min, max). 1961 // Otherwise, the admissible interval is [min, max]. 1962 template <typename OpType> 1963 static LogicalResult 1964 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 1965 int64_t max, StringRef attrName, 1966 bool halfOpen = true) { 1967 for (auto attr : arrayAttr) { 1968 auto val = attr.cast<IntegerAttr>().getInt(); 1969 auto upper = max; 1970 if (!halfOpen) 1971 upper += 1; 1972 if (val < min || val >= upper) 1973 return op.emitOpError("expected ") << attrName << " to be confined to [" 1974 << min << ", " << upper << ")"; 1975 } 1976 return success(); 1977 } 1978 1979 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 1980 // interval. If `halfOpen` is true then the admissible interval is [min, max). 1981 // Otherwise, the admissible interval is [min, max]. 1982 template <typename OpType> 1983 static LogicalResult 1984 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 1985 ArrayRef<int64_t> shape, StringRef attrName, 1986 bool halfOpen = true, int64_t min = 0) { 1987 assert(arrayAttr.size() <= shape.size()); 1988 unsigned index = 0; 1989 for (auto it : llvm::zip(arrayAttr, shape)) { 1990 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 1991 auto max = std::get<1>(it); 1992 if (!halfOpen) 1993 max += 1; 1994 if (val < min || val >= max) 1995 return op.emitOpError("expected ") 1996 << attrName << " dimension " << index << " to be confined to [" 1997 << min << ", " << max << ")"; 1998 ++index; 1999 } 2000 return success(); 2001 } 2002 2003 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2004 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2005 // Otherwise, the admissible interval is [min, max]. 2006 template <typename OpType> 2007 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2008 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2009 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2010 bool halfOpen = true, int64_t min = 1) { 2011 assert(arrayAttr1.size() <= shape.size()); 2012 assert(arrayAttr2.size() <= shape.size()); 2013 unsigned index = 0; 2014 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2015 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2016 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2017 auto max = std::get<2>(it); 2018 if (!halfOpen) 2019 max += 1; 2020 if (val1 + val2 < 0 || val1 + val2 >= max) 2021 return op.emitOpError("expected sum(") 2022 << attrName1 << ", " << attrName2 << ") dimension " << index 2023 << " to be confined to [" << min << ", " << max << ")"; 2024 ++index; 2025 } 2026 return success(); 2027 } 2028 2029 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2030 MLIRContext *context) { 2031 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2032 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2033 }); 2034 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2035 } 2036 2037 LogicalResult InsertStridedSliceOp::verify() { 2038 auto sourceVectorType = getSourceVectorType(); 2039 auto destVectorType = getDestVectorType(); 2040 auto offsets = offsetsAttr(); 2041 auto strides = stridesAttr(); 2042 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2043 return emitOpError( 2044 "expected offsets of same size as destination vector rank"); 2045 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2046 return emitOpError("expected strides of same size as source vector rank"); 2047 if (sourceVectorType.getRank() > destVectorType.getRank()) 2048 return emitOpError( 2049 "expected source rank to be smaller than destination rank"); 2050 2051 auto sourceShape = sourceVectorType.getShape(); 2052 auto destShape = destVectorType.getShape(); 2053 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2054 destShape.size() - sourceShape.size(), 0); 2055 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2056 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2057 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2058 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2059 offName)) || 2060 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2061 stridesName, 2062 /*halfOpen=*/false)) || 2063 failed(isSumOfIntegerArrayAttrConfinedToShape( 2064 *this, offsets, 2065 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2066 offName, "source vector shape", 2067 /*halfOpen=*/false, /*min=*/1))) 2068 return failure(); 2069 2070 return success(); 2071 } 2072 2073 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2074 if (getSourceVectorType() == getDestVectorType()) 2075 return source(); 2076 return {}; 2077 } 2078 2079 //===----------------------------------------------------------------------===// 2080 // OuterProductOp 2081 //===----------------------------------------------------------------------===// 2082 2083 /// Build an op without mask, use the type of `acc` as the return type. 2084 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2085 Value lhs, Value rhs, Value acc) { 2086 result.addOperands({lhs, rhs, acc}); 2087 result.addTypes(acc.getType()); 2088 } 2089 2090 void OuterProductOp::print(OpAsmPrinter &p) { 2091 p << " " << lhs() << ", " << rhs(); 2092 if (!acc().empty()) { 2093 p << ", " << acc(); 2094 p.printOptionalAttrDict((*this)->getAttrs()); 2095 } 2096 p << " : " << lhs().getType() << ", " << rhs().getType(); 2097 } 2098 2099 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2100 SmallVector<OpAsmParser::OperandType, 3> operandsInfo; 2101 Type tLHS, tRHS; 2102 if (parser.parseOperandList(operandsInfo) || 2103 parser.parseOptionalAttrDict(result.attributes) || 2104 parser.parseColonType(tLHS) || parser.parseComma() || 2105 parser.parseType(tRHS)) 2106 return failure(); 2107 if (operandsInfo.size() < 2) 2108 return parser.emitError(parser.getNameLoc(), 2109 "expected at least 2 operands"); 2110 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2111 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2112 if (!vLHS) 2113 return parser.emitError(parser.getNameLoc(), 2114 "expected vector type for operand #1"); 2115 VectorType resType = 2116 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2117 vLHS.getElementType()) 2118 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2119 2120 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2121 result.attributes.append( 2122 OuterProductOp::getKindAttrStrName(), 2123 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2124 result.getContext())); 2125 } 2126 2127 return failure( 2128 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2129 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2130 (operandsInfo.size() > 2 && 2131 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2132 parser.addTypeToList(resType, result.types)); 2133 } 2134 2135 LogicalResult OuterProductOp::verify() { 2136 Type tRHS = getOperandTypeRHS(); 2137 VectorType vLHS = getOperandVectorTypeLHS(), 2138 vRHS = tRHS.dyn_cast<VectorType>(), 2139 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2140 2141 if (vLHS.getRank() != 1) 2142 return emitOpError("expected 1-d vector for operand #1"); 2143 2144 if (vRHS) { 2145 // Proper OUTER operation. 2146 if (vRHS.getRank() != 1) 2147 return emitOpError("expected 1-d vector for operand #2"); 2148 if (vRES.getRank() != 2) 2149 return emitOpError("expected 2-d vector result"); 2150 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2151 return emitOpError("expected #1 operand dim to match result dim #1"); 2152 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2153 return emitOpError("expected #2 operand dim to match result dim #2"); 2154 } else { 2155 // An AXPY operation. 2156 if (vRES.getRank() != 1) 2157 return emitOpError("expected 1-d vector result"); 2158 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2159 return emitOpError("expected #1 operand dim to match result dim #1"); 2160 } 2161 2162 if (vACC && vACC != vRES) 2163 return emitOpError("expected operand #3 of same type as result type"); 2164 2165 // Verify supported combining kind. 2166 if (!isSupportedCombiningKind(kind(), vRES.getElementType())) 2167 return emitOpError("unsupported outerproduct type"); 2168 2169 return success(); 2170 } 2171 2172 //===----------------------------------------------------------------------===// 2173 // ReshapeOp 2174 //===----------------------------------------------------------------------===// 2175 2176 LogicalResult ReshapeOp::verify() { 2177 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2178 auto inputVectorType = getInputVectorType(); 2179 auto outputVectorType = getOutputVectorType(); 2180 int64_t inputShapeRank = getNumInputShapeSizes(); 2181 int64_t outputShapeRank = getNumOutputShapeSizes(); 2182 SmallVector<int64_t, 4> fixedVectorSizes; 2183 getFixedVectorSizes(fixedVectorSizes); 2184 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2185 2186 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2187 return emitError("invalid input shape for vector type ") 2188 << inputVectorType; 2189 2190 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2191 return emitError("invalid output shape for vector type ") 2192 << outputVectorType; 2193 2194 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2195 // suffix. 2196 unsigned inputVectorRank = inputVectorType.getRank(); 2197 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2198 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2199 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2200 return emitError("fixed vector size must match input vector for dim ") 2201 << i; 2202 } 2203 2204 unsigned outputVectorRank = outputVectorType.getRank(); 2205 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2206 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2207 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2208 return emitError("fixed vector size must match output vector for dim ") 2209 << i; 2210 } 2211 2212 // If all shape operands are produced by constant ops, verify that product 2213 // of dimensions for input/output shape match. 2214 auto isDefByConstant = [](Value operand) { 2215 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2216 }; 2217 if (llvm::all_of(input_shape(), isDefByConstant) && 2218 llvm::all_of(output_shape(), isDefByConstant)) { 2219 int64_t numInputElements = 1; 2220 for (auto operand : input_shape()) 2221 numInputElements *= 2222 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2223 int64_t numOutputElements = 1; 2224 for (auto operand : output_shape()) 2225 numOutputElements *= 2226 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2227 if (numInputElements != numOutputElements) 2228 return emitError("product of input and output shape sizes must match"); 2229 } 2230 return success(); 2231 } 2232 2233 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2234 populateFromInt64AttrArray(fixed_vector_sizes(), results); 2235 } 2236 2237 //===----------------------------------------------------------------------===// 2238 // ExtractStridedSliceOp 2239 //===----------------------------------------------------------------------===// 2240 2241 // Inference works as follows: 2242 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2243 // 2. Add sizes from 'vectorType' for remaining dims. 2244 static Type inferStridedSliceOpResultType(VectorType vectorType, 2245 ArrayAttr offsets, ArrayAttr sizes, 2246 ArrayAttr strides) { 2247 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2248 SmallVector<int64_t, 4> shape; 2249 shape.reserve(vectorType.getRank()); 2250 unsigned idx = 0; 2251 for (unsigned e = offsets.size(); idx < e; ++idx) 2252 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2253 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2254 shape.push_back(vectorType.getShape()[idx]); 2255 2256 return VectorType::get(shape, vectorType.getElementType()); 2257 } 2258 2259 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2260 Value source, ArrayRef<int64_t> offsets, 2261 ArrayRef<int64_t> sizes, 2262 ArrayRef<int64_t> strides) { 2263 result.addOperands(source); 2264 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2265 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2266 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2267 result.addTypes( 2268 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2269 offsetsAttr, sizesAttr, stridesAttr)); 2270 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2271 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2272 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2273 } 2274 2275 LogicalResult ExtractStridedSliceOp::verify() { 2276 auto type = getVectorType(); 2277 auto offsets = offsetsAttr(); 2278 auto sizes = sizesAttr(); 2279 auto strides = stridesAttr(); 2280 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2281 return emitOpError("expected offsets, sizes and strides attributes of same size"); 2282 2283 auto shape = type.getShape(); 2284 auto offName = getOffsetsAttrName(); 2285 auto sizesName = getSizesAttrName(); 2286 auto stridesName = getStridesAttrName(); 2287 if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2288 failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2289 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2290 stridesName)) || 2291 failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2292 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2293 /*halfOpen=*/false, 2294 /*min=*/1)) || 2295 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName, 2296 /*halfOpen=*/false)) || 2297 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape, 2298 offName, sizesName, 2299 /*halfOpen=*/false))) 2300 return failure(); 2301 2302 auto resultType = 2303 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2304 if (getResult().getType() != resultType) 2305 return emitOpError("expected result type to be ") << resultType; 2306 2307 return success(); 2308 } 2309 2310 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2311 // to use the source of the InsertStrided ops if we can detect that the 2312 // extracted vector is a subset of one of the vector inserted. 2313 static LogicalResult 2314 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2315 // Helper to extract integer out of ArrayAttr. 2316 auto getElement = [](ArrayAttr array, int idx) { 2317 return array[idx].cast<IntegerAttr>().getInt(); 2318 }; 2319 ArrayAttr extractOffsets = op.offsets(); 2320 ArrayAttr extractStrides = op.strides(); 2321 ArrayAttr extractSizes = op.sizes(); 2322 auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>(); 2323 while (insertOp) { 2324 if (op.getVectorType().getRank() != 2325 insertOp.getSourceVectorType().getRank()) 2326 return failure(); 2327 ArrayAttr insertOffsets = insertOp.offsets(); 2328 ArrayAttr insertStrides = insertOp.strides(); 2329 // If the rank of extract is greater than the rank of insert, we are likely 2330 // extracting a partial chunk of the vector inserted. 2331 if (extractOffsets.size() > insertOffsets.size()) 2332 return failure(); 2333 bool patialoverlap = false; 2334 bool disjoint = false; 2335 SmallVector<int64_t, 4> offsetDiffs; 2336 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2337 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2338 return failure(); 2339 int64_t start = getElement(insertOffsets, dim); 2340 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2341 int64_t offset = getElement(extractOffsets, dim); 2342 int64_t size = getElement(extractSizes, dim); 2343 // Check if the start of the extract offset is in the interval inserted. 2344 if (start <= offset && offset < end) { 2345 // If the extract interval overlaps but is not fully included we may 2346 // have a partial overlap that will prevent any folding. 2347 if (offset + size > end) 2348 patialoverlap = true; 2349 offsetDiffs.push_back(offset - start); 2350 continue; 2351 } 2352 disjoint = true; 2353 break; 2354 } 2355 // The extract element chunk is a subset of the insert element. 2356 if (!disjoint && !patialoverlap) { 2357 op.setOperand(insertOp.source()); 2358 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2359 OpBuilder b(op.getContext()); 2360 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2361 b.getI64ArrayAttr(offsetDiffs)); 2362 return success(); 2363 } 2364 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2365 // in the insert chain. 2366 if (disjoint) 2367 insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>(); 2368 else { 2369 // The extracted vector partially overlap the inserted vector, we cannot 2370 // fold. 2371 return failure(); 2372 } 2373 } 2374 return failure(); 2375 } 2376 2377 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2378 if (getVectorType() == getResult().getType()) 2379 return vector(); 2380 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2381 return getResult(); 2382 return {}; 2383 } 2384 2385 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2386 populateFromInt64AttrArray(offsets(), results); 2387 } 2388 2389 namespace { 2390 2391 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2392 // ConstantMaskOp. 2393 class StridedSliceConstantMaskFolder final 2394 : public OpRewritePattern<ExtractStridedSliceOp> { 2395 public: 2396 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2397 2398 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2399 PatternRewriter &rewriter) const override { 2400 // Return if 'extractStridedSliceOp' operand is not defined by a 2401 // ConstantMaskOp. 2402 auto *defOp = extractStridedSliceOp.vector().getDefiningOp(); 2403 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2404 if (!constantMaskOp) 2405 return failure(); 2406 // Return if 'extractStridedSliceOp' has non-unit strides. 2407 if (extractStridedSliceOp.hasNonUnitStrides()) 2408 return failure(); 2409 // Gather constant mask dimension sizes. 2410 SmallVector<int64_t, 4> maskDimSizes; 2411 populateFromInt64AttrArray(constantMaskOp.mask_dim_sizes(), maskDimSizes); 2412 // Gather strided slice offsets and sizes. 2413 SmallVector<int64_t, 4> sliceOffsets; 2414 populateFromInt64AttrArray(extractStridedSliceOp.offsets(), sliceOffsets); 2415 SmallVector<int64_t, 4> sliceSizes; 2416 populateFromInt64AttrArray(extractStridedSliceOp.sizes(), sliceSizes); 2417 2418 // Compute slice of vector mask region. 2419 SmallVector<int64_t, 4> sliceMaskDimSizes; 2420 assert(sliceOffsets.size() == maskDimSizes.size()); 2421 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2422 int64_t maskDimSize = std::get<0>(it); 2423 int64_t sliceOffset = std::get<1>(it); 2424 int64_t sliceSize = std::get<2>(it); 2425 int64_t sliceMaskDimSize = std::max( 2426 static_cast<int64_t>(0), 2427 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2428 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2429 } 2430 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2431 // region is a conjunction of mask dim intervals). 2432 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2433 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2434 2435 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2436 // region. 2437 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2438 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2439 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2440 return success(); 2441 } 2442 }; 2443 2444 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2445 class StridedSliceConstantFolder final 2446 : public OpRewritePattern<ExtractStridedSliceOp> { 2447 public: 2448 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2449 2450 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2451 PatternRewriter &rewriter) const override { 2452 // Return if 'extractStridedSliceOp' operand is not defined by a 2453 // ConstantOp. 2454 auto constantOp = 2455 extractStridedSliceOp.vector().getDefiningOp<arith::ConstantOp>(); 2456 if (!constantOp) 2457 return failure(); 2458 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2459 if (!dense) 2460 return failure(); 2461 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2462 dense.getSplatValue<Attribute>()); 2463 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2464 newAttr); 2465 return success(); 2466 } 2467 }; 2468 2469 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2470 // BroadcastOp(ExtractStrideSliceOp). 2471 class StridedSliceBroadcast final 2472 : public OpRewritePattern<ExtractStridedSliceOp> { 2473 public: 2474 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2475 2476 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2477 PatternRewriter &rewriter) const override { 2478 auto broadcast = op.vector().getDefiningOp<BroadcastOp>(); 2479 if (!broadcast) 2480 return failure(); 2481 auto srcVecType = broadcast.source().getType().dyn_cast<VectorType>(); 2482 unsigned srcRrank = srcVecType ? srcVecType.getRank() : 0; 2483 auto dstVecType = op.getType().cast<VectorType>(); 2484 unsigned dstRank = dstVecType.getRank(); 2485 unsigned rankDiff = dstRank - srcRrank; 2486 // Check if the most inner dimensions of the source of the broadcast are the 2487 // same as the destination of the extract. If this is the case we can just 2488 // use a broadcast as the original dimensions are untouched. 2489 bool lowerDimMatch = true; 2490 for (unsigned i = 0; i < srcRrank; i++) { 2491 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2492 lowerDimMatch = false; 2493 break; 2494 } 2495 } 2496 Value source = broadcast.source(); 2497 if (!lowerDimMatch) { 2498 // The inner dimensions don't match, it means we need to extract from the 2499 // source of the orignal broadcast and then broadcast the extracted value. 2500 source = rewriter.create<ExtractStridedSliceOp>( 2501 op->getLoc(), source, 2502 getI64SubArray(op.offsets(), /* dropFront=*/rankDiff), 2503 getI64SubArray(op.sizes(), /* dropFront=*/rankDiff), 2504 getI64SubArray(op.strides(), /* dropFront=*/rankDiff)); 2505 } 2506 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2507 return success(); 2508 } 2509 }; 2510 2511 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2512 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2513 public: 2514 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2515 2516 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2517 PatternRewriter &rewriter) const override { 2518 auto splat = op.vector().getDefiningOp<SplatOp>(); 2519 if (!splat) 2520 return failure(); 2521 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.input()); 2522 return success(); 2523 } 2524 }; 2525 2526 } // namespace 2527 2528 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2529 RewritePatternSet &results, MLIRContext *context) { 2530 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2531 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2532 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2533 StridedSliceBroadcast, StridedSliceSplat>(context); 2534 } 2535 2536 //===----------------------------------------------------------------------===// 2537 // TransferReadOp 2538 //===----------------------------------------------------------------------===// 2539 2540 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2541 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2542 VectorType vectorType, Value source, 2543 ValueRange indices, AffineMapAttr permutationMapAttr, 2544 /*optional*/ ArrayAttr inBoundsAttr) { 2545 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2546 Value padding = builder.create<arith::ConstantOp>( 2547 result.location, elemType, builder.getZeroAttr(elemType)); 2548 build(builder, result, vectorType, source, indices, permutationMapAttr, 2549 padding, /*mask=*/Value(), inBoundsAttr); 2550 } 2551 2552 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2553 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2554 VectorType vectorType, Value source, 2555 ValueRange indices, AffineMap permutationMap, 2556 Optional<ArrayRef<bool>> inBounds) { 2557 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2558 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2559 ? builder.getBoolArrayAttr(inBounds.getValue()) 2560 : ArrayAttr(); 2561 build(builder, result, vectorType, source, indices, permutationMapAttr, 2562 inBoundsAttr); 2563 } 2564 2565 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2566 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2567 VectorType vectorType, Value source, 2568 ValueRange indices, Value padding, 2569 Optional<ArrayRef<bool>> inBounds) { 2570 AffineMap permutationMap = getTransferMinorIdentityMap( 2571 source.getType().cast<ShapedType>(), vectorType); 2572 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2573 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2574 ? builder.getBoolArrayAttr(inBounds.getValue()) 2575 : ArrayAttr(); 2576 build(builder, result, vectorType, source, indices, permutationMapAttr, 2577 padding, 2578 /*mask=*/Value(), inBoundsAttr); 2579 } 2580 2581 /// 4. Builder that sets padding to zero and permutation map to 2582 /// 'getMinorIdentityMap'. 2583 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2584 VectorType vectorType, Value source, 2585 ValueRange indices, 2586 Optional<ArrayRef<bool>> inBounds) { 2587 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2588 Value padding = builder.create<arith::ConstantOp>( 2589 result.location, elemType, builder.getZeroAttr(elemType)); 2590 build(builder, result, vectorType, source, indices, padding, inBounds); 2591 } 2592 2593 template <typename EmitFun> 2594 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2595 EmitFun emitOpError) { 2596 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2597 for (auto expr : permutationMap.getResults()) { 2598 auto dim = expr.dyn_cast<AffineDimExpr>(); 2599 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2600 if (zero) { 2601 if (zero.getValue() != 0) { 2602 return emitOpError( 2603 "requires a projected permutation_map (at most one dim or the zero " 2604 "constant can appear in each result)"); 2605 } 2606 continue; 2607 } 2608 if (!dim) { 2609 return emitOpError("requires a projected permutation_map (at most one " 2610 "dim or the zero constant can appear in each result)"); 2611 } 2612 if (seen[dim.getPosition()]) { 2613 return emitOpError( 2614 "requires a permutation_map that is a permutation (found one dim " 2615 "used more than once)"); 2616 } 2617 seen[dim.getPosition()] = true; 2618 } 2619 return success(); 2620 } 2621 2622 static LogicalResult 2623 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2624 VectorType vectorType, VectorType maskType, 2625 AffineMap permutationMap, ArrayAttr inBounds) { 2626 if (op->hasAttr("masked")) { 2627 return op->emitOpError("masked attribute has been removed. " 2628 "Use in_bounds instead."); 2629 } 2630 2631 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2632 return op->emitOpError( 2633 "requires source to be a memref or ranked tensor type"); 2634 2635 auto elementType = shapedType.getElementType(); 2636 DataLayout dataLayout = DataLayout::closest(op); 2637 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2638 // Memref or tensor has vector element type. 2639 unsigned sourceVecSize = 2640 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2641 vectorElementType.getShape().back(); 2642 unsigned resultVecSize = 2643 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2644 vectorType.getShape().back(); 2645 if (resultVecSize % sourceVecSize != 0) 2646 return op->emitOpError( 2647 "requires the bitwidth of the minor 1-D vector to be an integral " 2648 "multiple of the bitwidth of the minor 1-D vector of the source"); 2649 2650 unsigned sourceVecEltRank = vectorElementType.getRank(); 2651 unsigned resultVecRank = vectorType.getRank(); 2652 if (sourceVecEltRank > resultVecRank) 2653 return op->emitOpError( 2654 "requires source vector element and vector result ranks to match."); 2655 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2656 // Check that permutation map results match 'rankOffset' of vector type. 2657 if (permutationMap.getNumResults() != rankOffset) 2658 return op->emitOpError("requires a permutation_map with result dims of " 2659 "the same rank as the vector type"); 2660 2661 if (maskType) 2662 return op->emitOpError("does not support masks with vector element type"); 2663 } else { 2664 // Memref or tensor has scalar element type. 2665 unsigned minorSize = 2666 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2667 unsigned resultVecSize = 2668 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2669 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2670 return op->emitOpError( 2671 "requires the bitwidth of the minor 1-D vector to be an integral " 2672 "multiple of the bitwidth of the source element type"); 2673 2674 // Check that permutation map results match rank of vector type. 2675 if (permutationMap.getNumResults() != vectorType.getRank()) 2676 return op->emitOpError("requires a permutation_map with result dims of " 2677 "the same rank as the vector type"); 2678 2679 VectorType expectedMaskType = 2680 vector::detail::transferMaskType(vectorType, permutationMap); 2681 if (maskType && expectedMaskType != maskType) 2682 return op->emitOpError("expects mask type consistent with permutation " 2683 "map: ") 2684 << maskType; 2685 } 2686 2687 if (permutationMap.getNumSymbols() != 0) 2688 return op->emitOpError("requires permutation_map without symbols"); 2689 2690 if (permutationMap.getNumInputs() != shapedType.getRank()) 2691 return op->emitOpError("requires a permutation_map with input dims of the " 2692 "same rank as the source type"); 2693 2694 if (inBounds) { 2695 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2696 return op->emitOpError("expects the optional in_bounds attr of same rank " 2697 "as permutation_map results: ") 2698 << AffineMapAttr::get(permutationMap) 2699 << " vs inBounds of size: " << inBounds.size(); 2700 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2701 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2702 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2703 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2704 } 2705 2706 return success(); 2707 } 2708 2709 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2710 SmallVector<StringRef, 3> elidedAttrs; 2711 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2712 if (op.permutation_map().isMinorIdentity()) 2713 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2714 bool elideInBounds = true; 2715 if (auto inBounds = op.in_bounds()) { 2716 for (auto attr : *inBounds) { 2717 if (attr.template cast<BoolAttr>().getValue()) { 2718 elideInBounds = false; 2719 break; 2720 } 2721 } 2722 } 2723 if (elideInBounds) 2724 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2725 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2726 } 2727 2728 void TransferReadOp::print(OpAsmPrinter &p) { 2729 p << " " << source() << "[" << indices() << "], " << padding(); 2730 if (mask()) 2731 p << ", " << mask(); 2732 printTransferAttrs(p, *this); 2733 p << " : " << getShapedType() << ", " << getVectorType(); 2734 } 2735 2736 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2737 auto &builder = parser.getBuilder(); 2738 SMLoc typesLoc; 2739 OpAsmParser::OperandType sourceInfo; 2740 SmallVector<OpAsmParser::OperandType, 8> indexInfo; 2741 OpAsmParser::OperandType paddingInfo; 2742 SmallVector<Type, 2> types; 2743 OpAsmParser::OperandType maskInfo; 2744 // Parsing with support for paddingValue. 2745 if (parser.parseOperand(sourceInfo) || 2746 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2747 parser.parseComma() || parser.parseOperand(paddingInfo)) 2748 return failure(); 2749 ParseResult hasMask = parser.parseOptionalComma(); 2750 if (hasMask.succeeded()) { 2751 parser.parseOperand(maskInfo); 2752 } 2753 if (parser.parseOptionalAttrDict(result.attributes) || 2754 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2755 return failure(); 2756 if (types.size() != 2) 2757 return parser.emitError(typesLoc, "requires two types"); 2758 auto indexType = builder.getIndexType(); 2759 auto shapedType = types[0].dyn_cast<ShapedType>(); 2760 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2761 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2762 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2763 if (!vectorType) 2764 return parser.emitError(typesLoc, "requires vector type"); 2765 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2766 Attribute mapAttr = result.attributes.get(permutationAttrName); 2767 if (!mapAttr) { 2768 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2769 // Update `mapAttr` that is used later to determine mask type. 2770 mapAttr = AffineMapAttr::get(permMap); 2771 result.attributes.set(permutationAttrName, mapAttr); 2772 } 2773 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2774 parser.resolveOperands(indexInfo, indexType, result.operands) || 2775 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2776 result.operands)) 2777 return failure(); 2778 if (hasMask.succeeded()) { 2779 if (shapedType.getElementType().dyn_cast<VectorType>()) 2780 return parser.emitError( 2781 maskInfo.location, "does not support masks with vector element type"); 2782 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2783 // Instead of adding the mask type as an op type, compute it based on the 2784 // vector type and the permutation map (to keep the type signature small). 2785 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2786 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2787 return failure(); 2788 } 2789 result.addAttribute( 2790 TransferReadOp::getOperandSegmentSizeAttr(), 2791 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2792 static_cast<int32_t>(hasMask.succeeded())})); 2793 return parser.addTypeToList(vectorType, result.types); 2794 } 2795 2796 LogicalResult TransferReadOp::verify() { 2797 // Consistency of elemental types in source and vector. 2798 ShapedType shapedType = getShapedType(); 2799 VectorType vectorType = getVectorType(); 2800 VectorType maskType = getMaskType(); 2801 auto paddingType = padding().getType(); 2802 auto permutationMap = permutation_map(); 2803 auto sourceElementType = shapedType.getElementType(); 2804 2805 if (static_cast<int64_t>(indices().size()) != shapedType.getRank()) 2806 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2807 2808 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2809 shapedType, vectorType, maskType, permutationMap, 2810 in_bounds() ? *in_bounds() : ArrayAttr()))) 2811 return failure(); 2812 2813 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2814 // Source has vector element type. 2815 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2816 if (sourceVectorElementType != paddingType) 2817 return emitOpError( 2818 "requires source element type and padding type to match."); 2819 2820 } else { 2821 // Check that 'paddingType' is valid to store in a vector type. 2822 if (!VectorType::isValidElementType(paddingType)) 2823 return emitOpError("requires valid padding vector elemental type"); 2824 2825 // Check that padding type and vector element types match. 2826 if (paddingType != sourceElementType) 2827 return emitOpError( 2828 "requires formal padding and source of the same elemental type"); 2829 } 2830 2831 return verifyPermutationMap(permutationMap, 2832 [&](Twine t) { return emitOpError(t); }); 2833 } 2834 2835 /// This is a common class used for patterns of the form 2836 /// ``` 2837 /// someop(memrefcast) -> someop 2838 /// ``` 2839 /// It folds the source of the memref.cast into the root operation directly. 2840 static LogicalResult foldMemRefCast(Operation *op) { 2841 bool folded = false; 2842 for (OpOperand &operand : op->getOpOperands()) { 2843 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2844 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2845 operand.set(castOp.getOperand()); 2846 folded = true; 2847 } 2848 } 2849 return success(folded); 2850 } 2851 2852 static LogicalResult foldTensorCast(Operation *op) { 2853 bool folded = false; 2854 for (OpOperand &operand : op->getOpOperands()) { 2855 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2856 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2857 operand.set(castOp.getOperand()); 2858 folded = true; 2859 } 2860 } 2861 return success(folded); 2862 } 2863 2864 template <typename TransferOp> 2865 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2866 // TODO: support more aggressive createOrFold on: 2867 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2868 if (op.getShapedType().isDynamicDim(indicesIdx)) 2869 return false; 2870 Value index = op.indices()[indicesIdx]; 2871 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2872 if (!cstOp) 2873 return false; 2874 2875 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2876 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 2877 2878 return cstOp.value() + vectorSize <= sourceSize; 2879 } 2880 2881 template <typename TransferOp> 2882 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 2883 // TODO: support 0-d corner case. 2884 // TODO: Be less conservative. 2885 if (op.getTransferRank() == 0) 2886 return failure(); 2887 AffineMap permutationMap = op.permutation_map(); 2888 bool changed = false; 2889 SmallVector<bool, 4> newInBounds; 2890 newInBounds.reserve(op.getTransferRank()); 2891 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 2892 // Already marked as in-bounds, nothing to see here. 2893 if (op.isDimInBounds(i)) { 2894 newInBounds.push_back(true); 2895 continue; 2896 } 2897 // Currently out-of-bounds, check whether we can statically determine it is 2898 // inBounds. 2899 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 2900 assert(dimExpr && "Broadcast dims must be in-bounds"); 2901 auto inBounds = 2902 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 2903 newInBounds.push_back(inBounds); 2904 // We commit the pattern if it is "more inbounds". 2905 changed |= inBounds; 2906 } 2907 if (!changed) 2908 return failure(); 2909 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2910 OpBuilder b(op.getContext()); 2911 op->setAttr(TransferOp::getInBoundsAttrStrName(), 2912 b.getBoolArrayAttr(newInBounds)); 2913 return success(); 2914 } 2915 2916 /// ``` 2917 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 2918 /// : vector<1x4xf32>, tensor<4x4xf32> 2919 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 2920 /// : tensor<4x4xf32>, vector<1x4xf32> 2921 /// ``` 2922 /// -> Folds into 2923 /// ``` 2924 /// %v0 2925 /// ``` 2926 static Value foldRAW(TransferReadOp readOp) { 2927 if (!readOp.getShapedType().isa<RankedTensorType>()) 2928 return {}; 2929 auto defWrite = readOp.source().getDefiningOp<vector::TransferWriteOp>(); 2930 while (defWrite) { 2931 if (checkSameValueRAW(defWrite, readOp)) 2932 return defWrite.vector(); 2933 if (!isDisjointTransferIndices( 2934 cast<VectorTransferOpInterface>(defWrite.getOperation()), 2935 cast<VectorTransferOpInterface>(readOp.getOperation()))) 2936 break; 2937 defWrite = defWrite.source().getDefiningOp<vector::TransferWriteOp>(); 2938 } 2939 return {}; 2940 } 2941 2942 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 2943 if (Value vec = foldRAW(*this)) 2944 return vec; 2945 /// transfer_read(memrefcast) -> transfer_read 2946 if (succeeded(foldTransferInBoundsAttribute(*this))) 2947 return getResult(); 2948 if (succeeded(foldMemRefCast(*this))) 2949 return getResult(); 2950 if (succeeded(foldTensorCast(*this))) 2951 return getResult(); 2952 return OpFoldResult(); 2953 } 2954 2955 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 2956 return llvm::to_vector<4>(getVectorType().getShape()); 2957 } 2958 2959 void TransferReadOp::getEffects( 2960 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 2961 &effects) { 2962 if (getShapedType().isa<MemRefType>()) 2963 effects.emplace_back(MemoryEffects::Read::get(), source(), 2964 SideEffects::DefaultResource::get()); 2965 } 2966 2967 namespace { 2968 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 2969 /// 2970 /// ``` 2971 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 2972 /// : tensor<?x?xf32> to tensor<?x?xf32> 2973 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 2974 /// : tensor<?x?xf32>, vector<4x5xf32> 2975 /// ``` 2976 /// is rewritten to: 2977 /// ``` 2978 /// %p0 = arith.addi %a, %e : index 2979 /// %p1 = arith.addi %b, %f : index 2980 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 2981 /// : tensor<?x?xf32>, vector<4x5xf32> 2982 /// ``` 2983 struct FoldExtractSliceIntoTransferRead 2984 : public OpRewritePattern<TransferReadOp> { 2985 public: 2986 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 2987 2988 LogicalResult matchAndRewrite(TransferReadOp xferOp, 2989 PatternRewriter &rewriter) const override { 2990 // TODO: support 0-d corner case. 2991 if (xferOp.getTransferRank() == 0) 2992 return failure(); 2993 if (xferOp.hasOutOfBoundsDim()) 2994 return failure(); 2995 if (!xferOp.permutation_map().isIdentity()) 2996 return failure(); 2997 if (xferOp.mask()) 2998 return failure(); 2999 auto extractOp = xferOp.source().getDefiningOp<tensor::ExtractSliceOp>(); 3000 if (!extractOp) 3001 return failure(); 3002 if (!extractOp.hasUnitStride()) 3003 return failure(); 3004 3005 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3006 // dims are exactly the leading dims. I.e. the following is illegal: 3007 // ``` 3008 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3009 // tensor<2x1x4xf32> to tensor<2x4xf32> 3010 // %1 = vector.transfer_read %0[0,0], %cst : 3011 // tensor<2x4xf32>, vector<2x4xf32> 3012 // ``` 3013 // 3014 // Cannot fold into: 3015 // ``` 3016 // %0 = vector.transfer_read %t[0,0,0], %cst : 3017 // tensor<2x1x4xf32>, vector<2x4xf32> 3018 // ``` 3019 // For this, check the trailing `vectorRank` dims of the extract_slice 3020 // result tensor match the trailing dims of the inferred result tensor. 3021 int64_t rankReduced = 3022 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3023 int64_t vectorRank = xferOp.getVectorType().getRank(); 3024 RankedTensorType inferredDestTensorType = 3025 tensor::ExtractSliceOp::inferResultType( 3026 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3027 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3028 auto actualDestTensorShape = extractOp.getType().getShape(); 3029 if (rankReduced > 0 && 3030 actualDestTensorShape.take_back(vectorRank) != 3031 inferredDestTensorType.getShape().take_back(vectorRank)) 3032 return failure(); 3033 3034 SmallVector<Value> newIndices; 3035 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3036 // indices first. 3037 for (int64_t i = 0; i < rankReduced; ++i) { 3038 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3039 newIndices.push_back(getValueOrCreateConstantIndexOp( 3040 rewriter, extractOp.getLoc(), offset)); 3041 } 3042 for (const auto &it : llvm::enumerate(xferOp.indices())) { 3043 OpFoldResult offset = 3044 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3045 newIndices.push_back(rewriter.create<arith::AddIOp>( 3046 xferOp->getLoc(), it.value(), 3047 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3048 offset))); 3049 } 3050 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3051 rewriter.replaceOpWithNewOp<TransferReadOp>( 3052 xferOp, xferOp.getVectorType(), extractOp.source(), newIndices, 3053 xferOp.padding(), ArrayRef<bool>{inBounds}); 3054 3055 return success(); 3056 } 3057 }; 3058 } // namespace 3059 3060 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3061 MLIRContext *context) { 3062 results.add<FoldExtractSliceIntoTransferRead>(context); 3063 } 3064 3065 //===----------------------------------------------------------------------===// 3066 // TransferWriteOp 3067 //===----------------------------------------------------------------------===// 3068 3069 /// 1. Builder with type inference. 3070 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3071 Value vector, Value dest, ValueRange indices, 3072 AffineMapAttr permutationMapAttr, 3073 /*optional*/ Value mask, 3074 /*optional*/ ArrayAttr inBoundsAttr) { 3075 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3076 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3077 mask, inBoundsAttr); 3078 } 3079 3080 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3081 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3082 Value vector, Value dest, ValueRange indices, 3083 AffineMapAttr permutationMapAttr, 3084 /*optional*/ ArrayAttr inBoundsAttr) { 3085 build(builder, result, vector, dest, indices, permutationMapAttr, 3086 /*mask=*/Value(), inBoundsAttr); 3087 } 3088 3089 /// 3. Builder with type inference that sets an empty mask (variant without 3090 /// attrs) 3091 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3092 Value vector, Value dest, ValueRange indices, 3093 AffineMap permutationMap, 3094 Optional<ArrayRef<bool>> inBounds) { 3095 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3096 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3097 ? builder.getBoolArrayAttr(inBounds.getValue()) 3098 : ArrayAttr(); 3099 build(builder, result, vector, dest, indices, permutationMapAttr, 3100 /*mask=*/Value(), inBoundsAttr); 3101 } 3102 3103 /// 4. Builder with type inference that sets an empty mask and sets permutation 3104 /// map to 'getMinorIdentityMap'. 3105 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3106 Value vector, Value dest, ValueRange indices, 3107 Optional<ArrayRef<bool>> inBounds) { 3108 auto vectorType = vector.getType().cast<VectorType>(); 3109 AffineMap permutationMap = getTransferMinorIdentityMap( 3110 dest.getType().cast<ShapedType>(), vectorType); 3111 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3112 } 3113 3114 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3115 OperationState &result) { 3116 auto &builder = parser.getBuilder(); 3117 SMLoc typesLoc; 3118 OpAsmParser::OperandType vectorInfo, sourceInfo; 3119 SmallVector<OpAsmParser::OperandType, 8> indexInfo; 3120 SmallVector<Type, 2> types; 3121 OpAsmParser::OperandType maskInfo; 3122 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3123 parser.parseOperand(sourceInfo) || 3124 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3125 return failure(); 3126 ParseResult hasMask = parser.parseOptionalComma(); 3127 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3128 return failure(); 3129 if (parser.parseOptionalAttrDict(result.attributes) || 3130 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3131 return failure(); 3132 if (types.size() != 2) 3133 return parser.emitError(typesLoc, "requires two types"); 3134 auto indexType = builder.getIndexType(); 3135 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3136 if (!vectorType) 3137 return parser.emitError(typesLoc, "requires vector type"); 3138 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3139 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3140 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3141 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3142 auto attr = result.attributes.get(permutationAttrName); 3143 if (!attr) { 3144 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3145 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3146 } 3147 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3148 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3149 parser.resolveOperands(indexInfo, indexType, result.operands)) 3150 return failure(); 3151 if (hasMask.succeeded()) { 3152 if (shapedType.getElementType().dyn_cast<VectorType>()) 3153 return parser.emitError( 3154 maskInfo.location, "does not support masks with vector element type"); 3155 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3156 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3157 return failure(); 3158 } 3159 result.addAttribute( 3160 TransferWriteOp::getOperandSegmentSizeAttr(), 3161 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3162 static_cast<int32_t>(hasMask.succeeded())})); 3163 return failure(shapedType.isa<RankedTensorType>() && 3164 parser.addTypeToList(shapedType, result.types)); 3165 } 3166 3167 void TransferWriteOp::print(OpAsmPrinter &p) { 3168 p << " " << vector() << ", " << source() << "[" << indices() << "]"; 3169 if (mask()) 3170 p << ", " << mask(); 3171 printTransferAttrs(p, *this); 3172 p << " : " << getVectorType() << ", " << getShapedType(); 3173 } 3174 3175 LogicalResult TransferWriteOp::verify() { 3176 // Consistency of elemental types in shape and vector. 3177 ShapedType shapedType = getShapedType(); 3178 VectorType vectorType = getVectorType(); 3179 VectorType maskType = getMaskType(); 3180 auto permutationMap = permutation_map(); 3181 3182 if (llvm::size(indices()) != shapedType.getRank()) 3183 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3184 3185 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3186 // as the semantics is unclear. This can be revisited later if necessary. 3187 if (hasBroadcastDim()) 3188 return emitOpError("should not have broadcast dimensions"); 3189 3190 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3191 shapedType, vectorType, maskType, permutationMap, 3192 in_bounds() ? *in_bounds() : ArrayAttr()))) 3193 return failure(); 3194 3195 return verifyPermutationMap(permutationMap, 3196 [&](Twine t) { return emitOpError(t); }); 3197 } 3198 3199 /// Fold: 3200 /// ``` 3201 /// %t1 = ... 3202 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3203 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3204 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3205 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3206 /// ``` 3207 /// 3208 /// into: 3209 /// 3210 /// ``` 3211 /// %t0 3212 /// ``` 3213 /// 3214 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3215 /// block argument or has side effects. 3216 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3217 ArrayRef<Attribute>, 3218 SmallVectorImpl<OpFoldResult> &results) { 3219 // TODO: support 0-d corner case. 3220 if (write.getTransferRank() == 0) 3221 return failure(); 3222 auto rankedTensorType = write.source().getType().dyn_cast<RankedTensorType>(); 3223 // If not operating on tensors, bail. 3224 if (!rankedTensorType) 3225 return failure(); 3226 // If no read, bail. 3227 auto read = write.vector().getDefiningOp<vector::TransferReadOp>(); 3228 if (!read) 3229 return failure(); 3230 // TODO: support 0-d corner case. 3231 if (read.getTransferRank() == 0) 3232 return failure(); 3233 // For now, only accept minor identity. Future: composition is minor identity. 3234 if (!read.permutation_map().isMinorIdentity() || 3235 !write.permutation_map().isMinorIdentity()) 3236 return failure(); 3237 // Bail on mismatching ranks. 3238 if (read.getTransferRank() != write.getTransferRank()) 3239 return failure(); 3240 // Bail on potential out-of-bounds accesses. 3241 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3242 return failure(); 3243 // Tensor types must be the same. 3244 if (read.source().getType() != rankedTensorType) 3245 return failure(); 3246 // Vector types must be the same. 3247 if (read.getVectorType() != write.getVectorType()) 3248 return failure(); 3249 // Vector and Tensor shapes must match. 3250 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3251 return failure(); 3252 // If any index is nonzero. 3253 auto isNotConstantZero = [](Value v) { 3254 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3255 return !cstOp || cstOp.value() != 0; 3256 }; 3257 if (llvm::any_of(read.indices(), isNotConstantZero) || 3258 llvm::any_of(write.indices(), isNotConstantZero)) 3259 return failure(); 3260 // Success. 3261 results.push_back(read.source()); 3262 return success(); 3263 } 3264 3265 static bool checkSameValueWAR(vector::TransferReadOp read, 3266 vector::TransferWriteOp write) { 3267 return read.source() == write.source() && read.indices() == write.indices() && 3268 read.permutation_map() == write.permutation_map() && 3269 read.getVectorType() == write.getVectorType() && !read.mask() && 3270 !write.mask(); 3271 } 3272 /// Fold transfer_write write after read: 3273 /// ``` 3274 /// %t0 = ... 3275 /// %v = vector.transfer_read %t0[%c0...] : 3276 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3277 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3278 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3279 /// ``` 3280 /// 3281 /// into: 3282 /// 3283 /// ``` 3284 /// %t0 3285 /// ``` 3286 static LogicalResult foldWAR(TransferWriteOp write, 3287 SmallVectorImpl<OpFoldResult> &results) { 3288 if (!write.source().getType().isa<RankedTensorType>()) 3289 return failure(); 3290 auto read = write.vector().getDefiningOp<vector::TransferReadOp>(); 3291 if (!read) 3292 return failure(); 3293 3294 if (!checkSameValueWAR(read, write)) 3295 return failure(); 3296 results.push_back(read.source()); 3297 return success(); 3298 } 3299 3300 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3301 SmallVectorImpl<OpFoldResult> &results) { 3302 if (succeeded(foldReadInitWrite(*this, operands, results))) 3303 return success(); 3304 if (succeeded(foldWAR(*this, results))) 3305 return success(); 3306 if (succeeded(foldTransferInBoundsAttribute(*this))) 3307 return success(); 3308 return foldMemRefCast(*this); 3309 } 3310 3311 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3312 return llvm::to_vector<4>(getVectorType().getShape()); 3313 } 3314 3315 void TransferWriteOp::getEffects( 3316 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3317 &effects) { 3318 if (getShapedType().isa<MemRefType>()) 3319 effects.emplace_back(MemoryEffects::Write::get(), source(), 3320 SideEffects::DefaultResource::get()); 3321 } 3322 3323 namespace { 3324 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3325 /// DCE 3326 /// ``` 3327 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3328 /// : vector<1x4xf32>, tensor<4x4xf32> 3329 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3330 /// : vector<1x4xf32>, tensor<4x4xf32> 3331 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3332 /// : vector<1x4xf32>, tensor<4x4xf32> 3333 /// ``` 3334 /// 3335 /// into: 3336 /// 3337 /// ``` 3338 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3339 /// : vector<1x4xf32>, tensor<4x4xf32> 3340 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3341 /// : vector<1x4xf32>, tensor<4x4xf32> 3342 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3343 /// : vector<1x4xf32>, tensor<4x4xf32> 3344 /// ``` 3345 /// 3346 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3347 /// any other uses. 3348 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3349 public: 3350 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3351 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3352 PatternRewriter &rewriter) const override { 3353 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3354 return failure(); 3355 vector::TransferWriteOp writeToModify = writeOp; 3356 3357 auto defWrite = writeOp.source().getDefiningOp<vector::TransferWriteOp>(); 3358 while (defWrite) { 3359 if (checkSameValueWAW(writeOp, defWrite)) { 3360 writeToModify.sourceMutable().assign(defWrite.source()); 3361 return success(); 3362 } 3363 if (!isDisjointTransferIndices( 3364 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3365 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3366 break; 3367 // If the previous write op doesn't have any other use we an safely look 3368 // at the previous store to see if it can be removed. 3369 if (!defWrite->hasOneUse()) 3370 break; 3371 writeToModify = defWrite; 3372 defWrite = defWrite.source().getDefiningOp<vector::TransferWriteOp>(); 3373 } 3374 return failure(); 3375 } 3376 }; 3377 3378 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3379 /// could directly write to the insert_slice's destination. E.g.: 3380 /// 3381 /// ``` 3382 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3383 /// : vector<4x5xf32>, tensor<4x5xf32> 3384 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3385 /// : tensor<4x5xf32> into tensor<?x?xf32> 3386 /// ``` 3387 /// is rewritten to: 3388 /// ``` 3389 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3390 /// : vector<4x5xf32>, tensor<?x?xf32> 3391 /// ``` 3392 struct FoldInsertSliceIntoTransferWrite 3393 : public OpRewritePattern<tensor::InsertSliceOp> { 3394 public: 3395 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3396 3397 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3398 PatternRewriter &rewriter) const override { 3399 if (!insertOp.hasUnitStride()) 3400 return failure(); 3401 3402 auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>(); 3403 if (!xferOp) 3404 return failure(); 3405 // TODO: support 0-d corner case. 3406 if (xferOp.getTransferRank() == 0) 3407 return failure(); 3408 3409 if (xferOp.hasOutOfBoundsDim()) 3410 return failure(); 3411 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3412 return failure(); 3413 if (xferOp.mask()) 3414 return failure(); 3415 // Fold only if the TransferWriteOp completely overwrites the `source` with 3416 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3417 // content is the data of the vector. 3418 if (!llvm::equal(xferOp.getVectorType().getShape(), 3419 xferOp.getShapedType().getShape())) 3420 return failure(); 3421 if (!xferOp.permutation_map().isIdentity()) 3422 return failure(); 3423 3424 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3425 // dims are exactly the leading dims. I.e. the following is illegal: 3426 // ``` 3427 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3428 // vector<2x4xf32>, tensor<2x4xf32> 3429 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3430 // tensor<2x4xf32> into tensor<2x1x4xf32> 3431 // ``` 3432 // 3433 // Cannot fold into: 3434 // ``` 3435 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3436 // vector<2x4xf32>, tensor<2x1x4xf32> 3437 // ``` 3438 // For this, check the trailing `vectorRank` dims of the insert_slice result 3439 // tensor match the trailing dims of the inferred result tensor. 3440 int64_t rankReduced = 3441 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3442 int64_t vectorRank = xferOp.getVectorType().getRank(); 3443 RankedTensorType inferredSourceTensorType = 3444 tensor::ExtractSliceOp::inferResultType( 3445 insertOp.getType(), insertOp.getMixedOffsets(), 3446 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3447 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3448 if (rankReduced > 0 && 3449 actualSourceTensorShape.take_back(vectorRank) != 3450 inferredSourceTensorType.getShape().take_back(vectorRank)) 3451 return failure(); 3452 3453 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3454 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3455 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3456 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.vector(), 3457 insertOp.dest(), indices, 3458 ArrayRef<bool>{inBounds}); 3459 return success(); 3460 } 3461 }; 3462 } // namespace 3463 3464 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3465 MLIRContext *context) { 3466 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite>(context); 3467 } 3468 3469 //===----------------------------------------------------------------------===// 3470 // LoadOp 3471 //===----------------------------------------------------------------------===// 3472 3473 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3474 MemRefType memRefTy) { 3475 if (!isLastMemrefDimUnitStride(memRefTy)) 3476 return op->emitOpError("most minor memref dim must have unit stride"); 3477 return success(); 3478 } 3479 3480 LogicalResult vector::LoadOp::verify() { 3481 VectorType resVecTy = getVectorType(); 3482 MemRefType memRefTy = getMemRefType(); 3483 3484 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3485 return failure(); 3486 3487 // Checks for vector memrefs. 3488 Type memElemTy = memRefTy.getElementType(); 3489 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3490 if (memVecTy != resVecTy) 3491 return emitOpError("base memref and result vector types should match"); 3492 memElemTy = memVecTy.getElementType(); 3493 } 3494 3495 if (resVecTy.getElementType() != memElemTy) 3496 return emitOpError("base and result element types should match"); 3497 if (llvm::size(indices()) != memRefTy.getRank()) 3498 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3499 return success(); 3500 } 3501 3502 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3503 if (succeeded(foldMemRefCast(*this))) 3504 return getResult(); 3505 return OpFoldResult(); 3506 } 3507 3508 //===----------------------------------------------------------------------===// 3509 // StoreOp 3510 //===----------------------------------------------------------------------===// 3511 3512 LogicalResult vector::StoreOp::verify() { 3513 VectorType valueVecTy = getVectorType(); 3514 MemRefType memRefTy = getMemRefType(); 3515 3516 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3517 return failure(); 3518 3519 // Checks for vector memrefs. 3520 Type memElemTy = memRefTy.getElementType(); 3521 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3522 if (memVecTy != valueVecTy) 3523 return emitOpError( 3524 "base memref and valueToStore vector types should match"); 3525 memElemTy = memVecTy.getElementType(); 3526 } 3527 3528 if (valueVecTy.getElementType() != memElemTy) 3529 return emitOpError("base and valueToStore element type should match"); 3530 if (llvm::size(indices()) != memRefTy.getRank()) 3531 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3532 return success(); 3533 } 3534 3535 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3536 SmallVectorImpl<OpFoldResult> &results) { 3537 return foldMemRefCast(*this); 3538 } 3539 3540 //===----------------------------------------------------------------------===// 3541 // MaskedLoadOp 3542 //===----------------------------------------------------------------------===// 3543 3544 LogicalResult MaskedLoadOp::verify() { 3545 VectorType maskVType = getMaskVectorType(); 3546 VectorType passVType = getPassThruVectorType(); 3547 VectorType resVType = getVectorType(); 3548 MemRefType memType = getMemRefType(); 3549 3550 if (resVType.getElementType() != memType.getElementType()) 3551 return emitOpError("base and result element type should match"); 3552 if (llvm::size(indices()) != memType.getRank()) 3553 return emitOpError("requires ") << memType.getRank() << " indices"; 3554 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3555 return emitOpError("expected result dim to match mask dim"); 3556 if (resVType != passVType) 3557 return emitOpError("expected pass_thru of same type as result type"); 3558 return success(); 3559 } 3560 3561 namespace { 3562 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3563 public: 3564 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3565 LogicalResult matchAndRewrite(MaskedLoadOp load, 3566 PatternRewriter &rewriter) const override { 3567 switch (get1DMaskFormat(load.mask())) { 3568 case MaskFormat::AllTrue: 3569 rewriter.replaceOpWithNewOp<vector::LoadOp>(load, load.getType(), 3570 load.base(), load.indices()); 3571 return success(); 3572 case MaskFormat::AllFalse: 3573 rewriter.replaceOp(load, load.pass_thru()); 3574 return success(); 3575 case MaskFormat::Unknown: 3576 return failure(); 3577 } 3578 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3579 } 3580 }; 3581 } // namespace 3582 3583 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3584 MLIRContext *context) { 3585 results.add<MaskedLoadFolder>(context); 3586 } 3587 3588 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3589 if (succeeded(foldMemRefCast(*this))) 3590 return getResult(); 3591 return OpFoldResult(); 3592 } 3593 3594 //===----------------------------------------------------------------------===// 3595 // MaskedStoreOp 3596 //===----------------------------------------------------------------------===// 3597 3598 LogicalResult MaskedStoreOp::verify() { 3599 VectorType maskVType = getMaskVectorType(); 3600 VectorType valueVType = getVectorType(); 3601 MemRefType memType = getMemRefType(); 3602 3603 if (valueVType.getElementType() != memType.getElementType()) 3604 return emitOpError("base and valueToStore element type should match"); 3605 if (llvm::size(indices()) != memType.getRank()) 3606 return emitOpError("requires ") << memType.getRank() << " indices"; 3607 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3608 return emitOpError("expected valueToStore dim to match mask dim"); 3609 return success(); 3610 } 3611 3612 namespace { 3613 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3614 public: 3615 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3616 LogicalResult matchAndRewrite(MaskedStoreOp store, 3617 PatternRewriter &rewriter) const override { 3618 switch (get1DMaskFormat(store.mask())) { 3619 case MaskFormat::AllTrue: 3620 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3621 store, store.valueToStore(), store.base(), store.indices()); 3622 return success(); 3623 case MaskFormat::AllFalse: 3624 rewriter.eraseOp(store); 3625 return success(); 3626 case MaskFormat::Unknown: 3627 return failure(); 3628 } 3629 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3630 } 3631 }; 3632 } // namespace 3633 3634 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3635 MLIRContext *context) { 3636 results.add<MaskedStoreFolder>(context); 3637 } 3638 3639 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3640 SmallVectorImpl<OpFoldResult> &results) { 3641 return foldMemRefCast(*this); 3642 } 3643 3644 //===----------------------------------------------------------------------===// 3645 // GatherOp 3646 //===----------------------------------------------------------------------===// 3647 3648 LogicalResult GatherOp::verify() { 3649 VectorType indVType = getIndexVectorType(); 3650 VectorType maskVType = getMaskVectorType(); 3651 VectorType resVType = getVectorType(); 3652 MemRefType memType = getMemRefType(); 3653 3654 if (resVType.getElementType() != memType.getElementType()) 3655 return emitOpError("base and result element type should match"); 3656 if (llvm::size(indices()) != memType.getRank()) 3657 return emitOpError("requires ") << memType.getRank() << " indices"; 3658 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3659 return emitOpError("expected result dim to match indices dim"); 3660 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3661 return emitOpError("expected result dim to match mask dim"); 3662 if (resVType != getPassThruVectorType()) 3663 return emitOpError("expected pass_thru of same type as result type"); 3664 return success(); 3665 } 3666 3667 namespace { 3668 class GatherFolder final : public OpRewritePattern<GatherOp> { 3669 public: 3670 using OpRewritePattern<GatherOp>::OpRewritePattern; 3671 LogicalResult matchAndRewrite(GatherOp gather, 3672 PatternRewriter &rewriter) const override { 3673 switch (get1DMaskFormat(gather.mask())) { 3674 case MaskFormat::AllTrue: 3675 return failure(); // no unmasked equivalent 3676 case MaskFormat::AllFalse: 3677 rewriter.replaceOp(gather, gather.pass_thru()); 3678 return success(); 3679 case MaskFormat::Unknown: 3680 return failure(); 3681 } 3682 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3683 } 3684 }; 3685 } // namespace 3686 3687 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3688 MLIRContext *context) { 3689 results.add<GatherFolder>(context); 3690 } 3691 3692 //===----------------------------------------------------------------------===// 3693 // ScatterOp 3694 //===----------------------------------------------------------------------===// 3695 3696 LogicalResult ScatterOp::verify() { 3697 VectorType indVType = getIndexVectorType(); 3698 VectorType maskVType = getMaskVectorType(); 3699 VectorType valueVType = getVectorType(); 3700 MemRefType memType = getMemRefType(); 3701 3702 if (valueVType.getElementType() != memType.getElementType()) 3703 return emitOpError("base and valueToStore element type should match"); 3704 if (llvm::size(indices()) != memType.getRank()) 3705 return emitOpError("requires ") << memType.getRank() << " indices"; 3706 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3707 return emitOpError("expected valueToStore dim to match indices dim"); 3708 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3709 return emitOpError("expected valueToStore dim to match mask dim"); 3710 return success(); 3711 } 3712 3713 namespace { 3714 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3715 public: 3716 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3717 LogicalResult matchAndRewrite(ScatterOp scatter, 3718 PatternRewriter &rewriter) const override { 3719 switch (get1DMaskFormat(scatter.mask())) { 3720 case MaskFormat::AllTrue: 3721 return failure(); // no unmasked equivalent 3722 case MaskFormat::AllFalse: 3723 rewriter.eraseOp(scatter); 3724 return success(); 3725 case MaskFormat::Unknown: 3726 return failure(); 3727 } 3728 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3729 } 3730 }; 3731 } // namespace 3732 3733 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3734 MLIRContext *context) { 3735 results.add<ScatterFolder>(context); 3736 } 3737 3738 //===----------------------------------------------------------------------===// 3739 // ExpandLoadOp 3740 //===----------------------------------------------------------------------===// 3741 3742 LogicalResult ExpandLoadOp::verify() { 3743 VectorType maskVType = getMaskVectorType(); 3744 VectorType passVType = getPassThruVectorType(); 3745 VectorType resVType = getVectorType(); 3746 MemRefType memType = getMemRefType(); 3747 3748 if (resVType.getElementType() != memType.getElementType()) 3749 return emitOpError("base and result element type should match"); 3750 if (llvm::size(indices()) != memType.getRank()) 3751 return emitOpError("requires ") << memType.getRank() << " indices"; 3752 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3753 return emitOpError("expected result dim to match mask dim"); 3754 if (resVType != passVType) 3755 return emitOpError("expected pass_thru of same type as result type"); 3756 return success(); 3757 } 3758 3759 namespace { 3760 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3761 public: 3762 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3763 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3764 PatternRewriter &rewriter) const override { 3765 switch (get1DMaskFormat(expand.mask())) { 3766 case MaskFormat::AllTrue: 3767 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3768 expand, expand.getType(), expand.base(), expand.indices()); 3769 return success(); 3770 case MaskFormat::AllFalse: 3771 rewriter.replaceOp(expand, expand.pass_thru()); 3772 return success(); 3773 case MaskFormat::Unknown: 3774 return failure(); 3775 } 3776 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 3777 } 3778 }; 3779 } // namespace 3780 3781 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3782 MLIRContext *context) { 3783 results.add<ExpandLoadFolder>(context); 3784 } 3785 3786 //===----------------------------------------------------------------------===// 3787 // CompressStoreOp 3788 //===----------------------------------------------------------------------===// 3789 3790 LogicalResult CompressStoreOp::verify() { 3791 VectorType maskVType = getMaskVectorType(); 3792 VectorType valueVType = getVectorType(); 3793 MemRefType memType = getMemRefType(); 3794 3795 if (valueVType.getElementType() != memType.getElementType()) 3796 return emitOpError("base and valueToStore element type should match"); 3797 if (llvm::size(indices()) != memType.getRank()) 3798 return emitOpError("requires ") << memType.getRank() << " indices"; 3799 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3800 return emitOpError("expected valueToStore dim to match mask dim"); 3801 return success(); 3802 } 3803 3804 namespace { 3805 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 3806 public: 3807 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 3808 LogicalResult matchAndRewrite(CompressStoreOp compress, 3809 PatternRewriter &rewriter) const override { 3810 switch (get1DMaskFormat(compress.mask())) { 3811 case MaskFormat::AllTrue: 3812 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3813 compress, compress.valueToStore(), compress.base(), 3814 compress.indices()); 3815 return success(); 3816 case MaskFormat::AllFalse: 3817 rewriter.eraseOp(compress); 3818 return success(); 3819 case MaskFormat::Unknown: 3820 return failure(); 3821 } 3822 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 3823 } 3824 }; 3825 } // namespace 3826 3827 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3828 MLIRContext *context) { 3829 results.add<CompressStoreFolder>(context); 3830 } 3831 3832 //===----------------------------------------------------------------------===// 3833 // ShapeCastOp 3834 //===----------------------------------------------------------------------===// 3835 3836 /// Returns true if each element of 'a' is equal to the product of a contiguous 3837 /// sequence of the elements of 'b'. Returns false otherwise. 3838 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 3839 unsigned rankA = a.size(); 3840 unsigned rankB = b.size(); 3841 assert(rankA < rankB); 3842 3843 unsigned i = 0; 3844 unsigned j = 0; 3845 while (i < rankA && j < rankB) { 3846 int64_t dimA = a[i]; 3847 int64_t dimB = 1; 3848 while (dimB < dimA && j < rankB) 3849 dimB *= b[j++]; 3850 if (dimA != dimB) 3851 break; 3852 ++i; 3853 3854 // Handle the case when trailing dimensions are of size 1. 3855 // Include them into the contiguous sequence. 3856 auto isOne = [](int64_t v) { return v == 1; }; 3857 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 3858 i = rankA; 3859 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 3860 j = rankB; 3861 } 3862 3863 return i == rankA && j == rankB; 3864 } 3865 3866 static LogicalResult verifyVectorShapeCast(Operation *op, 3867 VectorType sourceVectorType, 3868 VectorType resultVectorType) { 3869 // Check that element type is the same. 3870 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 3871 return op->emitOpError("source/result vectors must have same element type"); 3872 auto sourceShape = sourceVectorType.getShape(); 3873 auto resultShape = resultVectorType.getShape(); 3874 3875 // Check that product of source dim sizes matches product of result dim sizes. 3876 int64_t sourceDimProduct = std::accumulate( 3877 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 3878 int64_t resultDimProduct = std::accumulate( 3879 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 3880 if (sourceDimProduct != resultDimProduct) 3881 return op->emitOpError("source/result number of elements must match"); 3882 3883 // Check that expanding/contracting rank cases. 3884 unsigned sourceRank = sourceVectorType.getRank(); 3885 unsigned resultRank = resultVectorType.getRank(); 3886 if (sourceRank < resultRank) { 3887 if (!isValidShapeCast(sourceShape, resultShape)) 3888 return op->emitOpError("invalid shape cast"); 3889 } else if (sourceRank > resultRank) { 3890 if (!isValidShapeCast(resultShape, sourceShape)) 3891 return op->emitOpError("invalid shape cast"); 3892 } 3893 return success(); 3894 } 3895 3896 LogicalResult ShapeCastOp::verify() { 3897 auto sourceVectorType = source().getType().dyn_cast_or_null<VectorType>(); 3898 auto resultVectorType = result().getType().dyn_cast_or_null<VectorType>(); 3899 3900 // Check if source/result are of vector type. 3901 if (sourceVectorType && resultVectorType) 3902 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 3903 3904 return success(); 3905 } 3906 3907 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 3908 // Nop shape cast. 3909 if (source().getType() == result().getType()) 3910 return source(); 3911 3912 // Canceling shape casts. 3913 if (auto otherOp = source().getDefiningOp<ShapeCastOp>()) { 3914 if (result().getType() == otherOp.source().getType()) 3915 return otherOp.source(); 3916 3917 // Only allows valid transitive folding. 3918 VectorType srcType = otherOp.source().getType().cast<VectorType>(); 3919 VectorType resultType = getResult().getType().cast<VectorType>(); 3920 if (srcType.getRank() < resultType.getRank()) { 3921 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 3922 return {}; 3923 } else if (srcType.getRank() > resultType.getRank()) { 3924 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 3925 return {}; 3926 } else { 3927 return {}; 3928 } 3929 3930 setOperand(otherOp.source()); 3931 return getResult(); 3932 } 3933 return {}; 3934 } 3935 3936 namespace { 3937 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 3938 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 3939 public: 3940 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 3941 3942 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 3943 PatternRewriter &rewriter) const override { 3944 auto constantOp = shapeCastOp.source().getDefiningOp<arith::ConstantOp>(); 3945 if (!constantOp) 3946 return failure(); 3947 // Only handle splat for now. 3948 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 3949 if (!dense) 3950 return failure(); 3951 auto newAttr = 3952 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 3953 dense.getSplatValue<Attribute>()); 3954 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 3955 return success(); 3956 } 3957 }; 3958 3959 } // namespace 3960 3961 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 3962 MLIRContext *context) { 3963 // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp. 3964 results.add<ShapeCastConstantFolder>(context); 3965 } 3966 3967 //===----------------------------------------------------------------------===// 3968 // VectorBitCastOp 3969 //===----------------------------------------------------------------------===// 3970 3971 LogicalResult BitCastOp::verify() { 3972 auto sourceVectorType = getSourceVectorType(); 3973 auto resultVectorType = getResultVectorType(); 3974 3975 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 3976 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 3977 return emitOpError("dimension size mismatch at: ") << i; 3978 } 3979 3980 DataLayout dataLayout = DataLayout::closest(*this); 3981 auto sourceElementBits = 3982 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 3983 auto resultElementBits = 3984 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 3985 3986 if (sourceVectorType.getRank() == 0) { 3987 if (sourceElementBits != resultElementBits) 3988 return emitOpError("source/result bitwidth of the 0-D vector element " 3989 "types must be equal"); 3990 } else if (sourceElementBits * sourceVectorType.getShape().back() != 3991 resultElementBits * resultVectorType.getShape().back()) { 3992 return emitOpError( 3993 "source/result bitwidth of the minor 1-D vectors must be equal"); 3994 } 3995 3996 return success(); 3997 } 3998 3999 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4000 // Nop cast. 4001 if (source().getType() == result().getType()) 4002 return source(); 4003 4004 // Canceling bitcasts. 4005 if (auto otherOp = source().getDefiningOp<BitCastOp>()) 4006 if (result().getType() == otherOp.source().getType()) 4007 return otherOp.source(); 4008 4009 Attribute sourceConstant = operands.front(); 4010 if (!sourceConstant) 4011 return {}; 4012 4013 Type srcElemType = getSourceVectorType().getElementType(); 4014 Type dstElemType = getResultVectorType().getElementType(); 4015 4016 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4017 if (floatPack.isSplat()) { 4018 auto splat = floatPack.getSplatValue<FloatAttr>(); 4019 4020 // Casting fp16 into fp32. 4021 if (srcElemType.isF16() && dstElemType.isF32()) { 4022 uint32_t bits = static_cast<uint32_t>( 4023 splat.getValue().bitcastToAPInt().getZExtValue()); 4024 // Duplicate the 16-bit pattern. 4025 bits = (bits << 16) | (bits & 0xffff); 4026 APInt intBits(32, bits); 4027 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4028 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4029 } 4030 } 4031 } 4032 4033 return {}; 4034 } 4035 4036 //===----------------------------------------------------------------------===// 4037 // TypeCastOp 4038 //===----------------------------------------------------------------------===// 4039 4040 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4041 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4042 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4043 memRefType.getShape().end()); 4044 if (vectorType) 4045 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4046 return res; 4047 } 4048 4049 /// Build the canonical memRefType with a single vector. 4050 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4051 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4052 Value source) { 4053 result.addOperands(source); 4054 MemRefType memRefType = source.getType().cast<MemRefType>(); 4055 VectorType vectorType = 4056 VectorType::get(extractShape(memRefType), 4057 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4058 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4059 memRefType.getMemorySpace())); 4060 } 4061 4062 LogicalResult TypeCastOp::verify() { 4063 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4064 if (!canonicalType.getLayout().isIdentity()) 4065 return emitOpError("expects operand to be a memref with identity layout"); 4066 if (!getResultMemRefType().getLayout().isIdentity()) 4067 return emitOpError("expects result to be a memref with identity layout"); 4068 if (getResultMemRefType().getMemorySpace() != 4069 getMemRefType().getMemorySpace()) 4070 return emitOpError("expects result in same memory space"); 4071 4072 auto sourceType = getMemRefType(); 4073 auto resultType = getResultMemRefType(); 4074 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4075 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4076 return emitOpError( 4077 "expects result and operand with same underlying scalar type: ") 4078 << resultType; 4079 if (extractShape(sourceType) != extractShape(resultType)) 4080 return emitOpError( 4081 "expects concatenated result and operand shapes to be equal: ") 4082 << resultType; 4083 return success(); 4084 } 4085 4086 //===----------------------------------------------------------------------===// 4087 // TransposeOp 4088 //===----------------------------------------------------------------------===// 4089 4090 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4091 Value vector, ArrayRef<int64_t> transp) { 4092 VectorType vt = vector.getType().cast<VectorType>(); 4093 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4094 for (unsigned i = 0; i < transp.size(); ++i) 4095 transposedShape[i] = vt.getShape()[transp[i]]; 4096 4097 result.addOperands(vector); 4098 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4099 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4100 } 4101 4102 // Eliminates transpose operations, which produce values identical to their 4103 // input values. This happens when the dimensions of the input vector remain in 4104 // their original order after the transpose operation. 4105 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4106 SmallVector<int64_t, 4> transp; 4107 getTransp(transp); 4108 4109 // Check if the permutation of the dimensions contains sequential values: 4110 // {0, 1, 2, ...}. 4111 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4112 if (transp[i] != i) 4113 return {}; 4114 } 4115 4116 return vector(); 4117 } 4118 4119 LogicalResult vector::TransposeOp::verify() { 4120 VectorType vectorType = getVectorType(); 4121 VectorType resultType = getResultType(); 4122 int64_t rank = resultType.getRank(); 4123 if (vectorType.getRank() != rank) 4124 return emitOpError("vector result rank mismatch: ") << rank; 4125 // Verify transposition array. 4126 auto transpAttr = transp().getValue(); 4127 int64_t size = transpAttr.size(); 4128 if (rank != size) 4129 return emitOpError("transposition length mismatch: ") << size; 4130 SmallVector<bool, 8> seen(rank, false); 4131 for (const auto &ta : llvm::enumerate(transpAttr)) { 4132 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4133 if (i < 0 || i >= rank) 4134 return emitOpError("transposition index out of range: ") << i; 4135 if (seen[i]) 4136 return emitOpError("duplicate position index: ") << i; 4137 seen[i] = true; 4138 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4139 return emitOpError("dimension size mismatch at: ") << i; 4140 } 4141 return success(); 4142 } 4143 4144 namespace { 4145 4146 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4147 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4148 public: 4149 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4150 4151 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4152 PatternRewriter &rewriter) const override { 4153 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4154 auto getPermutation = [](vector::TransposeOp transpose) { 4155 SmallVector<int64_t, 4> permutation; 4156 transpose.getTransp(permutation); 4157 return permutation; 4158 }; 4159 4160 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4161 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4162 ArrayRef<int64_t> permutation2) { 4163 SmallVector<int64_t, 4> result; 4164 for (auto index : permutation2) 4165 result.push_back(permutation1[index]); 4166 return result; 4167 }; 4168 4169 // Return if the input of 'transposeOp' is not defined by another transpose. 4170 vector::TransposeOp parentTransposeOp = 4171 transposeOp.vector().getDefiningOp<vector::TransposeOp>(); 4172 if (!parentTransposeOp) 4173 return failure(); 4174 4175 SmallVector<int64_t, 4> permutation = composePermutations( 4176 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4177 // Replace 'transposeOp' with a new transpose operation. 4178 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4179 transposeOp, transposeOp.getResult().getType(), 4180 parentTransposeOp.vector(), 4181 vector::getVectorSubscriptAttr(rewriter, permutation)); 4182 return success(); 4183 } 4184 }; 4185 4186 } // namespace 4187 4188 void vector::TransposeOp::getCanonicalizationPatterns( 4189 RewritePatternSet &results, MLIRContext *context) { 4190 results.add<TransposeFolder>(context); 4191 } 4192 4193 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4194 populateFromInt64AttrArray(transp(), results); 4195 } 4196 4197 //===----------------------------------------------------------------------===// 4198 // ConstantMaskOp 4199 //===----------------------------------------------------------------------===// 4200 4201 LogicalResult ConstantMaskOp::verify() { 4202 auto resultType = getResult().getType().cast<VectorType>(); 4203 // Check the corner case of 0-D vectors first. 4204 if (resultType.getRank() == 0) { 4205 if (mask_dim_sizes().size() != 1) 4206 return emitError("array attr must have length 1 for 0-D vectors"); 4207 auto dim = mask_dim_sizes()[0].cast<IntegerAttr>().getInt(); 4208 if (dim != 0 && dim != 1) 4209 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4210 return success(); 4211 } 4212 4213 // Verify that array attr size matches the rank of the vector result. 4214 if (static_cast<int64_t>(mask_dim_sizes().size()) != resultType.getRank()) 4215 return emitOpError( 4216 "must specify array attr of size equal vector result rank"); 4217 // Verify that each array attr element is in bounds of corresponding vector 4218 // result dimension size. 4219 auto resultShape = resultType.getShape(); 4220 SmallVector<int64_t, 4> maskDimSizes; 4221 for (const auto &it : llvm::enumerate(mask_dim_sizes())) { 4222 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4223 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4224 return emitOpError( 4225 "array attr of size out of bounds of vector result dimension size"); 4226 maskDimSizes.push_back(attrValue); 4227 } 4228 // Verify that if one mask dim size is zero, they all should be zero (because 4229 // the mask region is a conjunction of each mask dimension interval). 4230 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4231 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4232 if (anyZeros && !allZeros) 4233 return emitOpError("expected all mask dim sizes to be zeros, " 4234 "as a result of conjunction with zero mask dim"); 4235 return success(); 4236 } 4237 4238 //===----------------------------------------------------------------------===// 4239 // CreateMaskOp 4240 //===----------------------------------------------------------------------===// 4241 4242 LogicalResult CreateMaskOp::verify() { 4243 auto vectorType = getResult().getType().cast<VectorType>(); 4244 // Verify that an operand was specified for each result vector each dimension. 4245 if (vectorType.getRank() == 0) { 4246 if (getNumOperands() != 1) 4247 return emitOpError( 4248 "must specify exactly one operand for 0-D create_mask"); 4249 } else if (getNumOperands() != 4250 getResult().getType().cast<VectorType>().getRank()) { 4251 return emitOpError( 4252 "must specify an operand for each result vector dimension"); 4253 } 4254 return success(); 4255 } 4256 4257 namespace { 4258 4259 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4260 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4261 public: 4262 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4263 4264 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4265 PatternRewriter &rewriter) const override { 4266 // Return if any of 'createMaskOp' operands are not defined by a constant. 4267 auto isNotDefByConstant = [](Value operand) { 4268 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4269 }; 4270 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4271 return failure(); 4272 // Gather constant mask dimension sizes. 4273 SmallVector<int64_t, 4> maskDimSizes; 4274 for (auto it : llvm::zip(createMaskOp.operands(), 4275 createMaskOp.getType().getShape())) { 4276 auto *defOp = std::get<0>(it).getDefiningOp(); 4277 int64_t maxDimSize = std::get<1>(it); 4278 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4279 dimSize = std::min(dimSize, maxDimSize); 4280 // If one of dim sizes is zero, set all dims to zero. 4281 if (dimSize <= 0) { 4282 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4283 break; 4284 } 4285 maskDimSizes.push_back(dimSize); 4286 } 4287 // Replace 'createMaskOp' with ConstantMaskOp. 4288 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4289 createMaskOp, createMaskOp.getResult().getType(), 4290 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4291 return success(); 4292 } 4293 }; 4294 4295 } // namespace 4296 4297 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4298 MLIRContext *context) { 4299 results.add<CreateMaskFolder>(context); 4300 } 4301 4302 //===----------------------------------------------------------------------===// 4303 // ScanOp 4304 //===----------------------------------------------------------------------===// 4305 4306 LogicalResult ScanOp::verify() { 4307 VectorType srcType = getSourceType(); 4308 VectorType initialType = getInitialValueType(); 4309 // Check reduction dimension < rank. 4310 int64_t srcRank = srcType.getRank(); 4311 int64_t reductionDim = reduction_dim(); 4312 if (reductionDim >= srcRank) 4313 return emitOpError("reduction dimension ") 4314 << reductionDim << " has to be less than " << srcRank; 4315 4316 // Check that rank(initial_value) = rank(src) - 1. 4317 int64_t initialValueRank = initialType.getRank(); 4318 if (initialValueRank != srcRank - 1) 4319 return emitOpError("initial value rank ") 4320 << initialValueRank << " has to be equal to " << srcRank - 1; 4321 4322 // Check shapes of initial value and src. 4323 ArrayRef<int64_t> srcShape = srcType.getShape(); 4324 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4325 SmallVector<int64_t> expectedShape; 4326 for (int i = 0; i < srcRank; i++) { 4327 if (i != reductionDim) 4328 expectedShape.push_back(srcShape[i]); 4329 } 4330 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4331 [](std::tuple<int64_t, int64_t> s) { 4332 return std::get<0>(s) != std::get<1>(s); 4333 })) { 4334 return emitOpError("incompatible input/initial value shapes"); 4335 } 4336 4337 return success(); 4338 } 4339 4340 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4341 RewritePatternSet &patterns) { 4342 patterns 4343 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4344 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4345 StridedSliceConstantMaskFolder, TransposeFolder>( 4346 patterns.getContext()); 4347 } 4348 4349 //===----------------------------------------------------------------------===// 4350 // SplatOp 4351 //===----------------------------------------------------------------------===// 4352 4353 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4354 auto constOperand = operands.front(); 4355 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4356 return {}; 4357 4358 // SplatElementsAttr::get treats single value for second arg as being a splat. 4359 return SplatElementsAttr::get(getType(), {constOperand}); 4360 } 4361 4362 //===----------------------------------------------------------------------===// 4363 // TableGen'd op method definitions 4364 //===----------------------------------------------------------------------===// 4365 4366 #define GET_OP_CLASSES 4367 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4368