1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.mask_dim_sizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.mask() && !read.mask() &&
144          defWrite.indices() == read.indices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.permutation_map() == read.permutation_map();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.indices() == write.indices() &&
152          priorWrite.mask() == write.mask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.permutation_map() == write.permutation_map();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(kind.getValue(), parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   result.addOperands(source);
340   auto sourceVectorType = source.getType().cast<VectorType>();
341   auto targetType = MultiDimReductionOp::inferDestType(
342       sourceVectorType.getShape(), reductionMask,
343       sourceVectorType.getElementType());
344   result.addTypes(targetType);
345 
346   SmallVector<int64_t> reductionDims;
347   for (const auto &en : llvm::enumerate(reductionMask))
348     if (en.value())
349       reductionDims.push_back(en.index());
350   result.addAttribute(getReductionDimsAttrName(),
351                       builder.getI64ArrayAttr(reductionDims));
352   result.addAttribute(getKindAttrName(),
353                       CombiningKindAttr::get(kind, builder.getContext()));
354 }
355 
356 LogicalResult MultiDimReductionOp::verify() {
357   auto reductionMask = getReductionMask();
358   auto targetType = MultiDimReductionOp::inferDestType(
359       getSourceVectorType().getShape(), reductionMask,
360       getSourceVectorType().getElementType());
361   // TODO: update to support 0-d vectors when available.
362   if (targetType != getDestType())
363     return emitError("invalid output vector type: ")
364            << getDestType() << " (expected: " << targetType << ")";
365   return success();
366 }
367 
368 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
369   // Single parallel dim, this is a noop.
370   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
371     return source();
372   return {};
373 }
374 
375 //===----------------------------------------------------------------------===//
376 // ReductionOp
377 //===----------------------------------------------------------------------===//
378 
379 LogicalResult ReductionOp::verify() {
380   // Verify for 1-D vector.
381   int64_t rank = getVectorType().getRank();
382   if (rank != 1)
383     return emitOpError("unsupported reduction rank: ") << rank;
384 
385   // Verify supported reduction kind.
386   StringRef strKind = kind();
387   auto maybeKind = symbolizeCombiningKind(strKind);
388   if (!maybeKind)
389     return emitOpError("unknown reduction kind: ") << strKind;
390 
391   Type eltType = dest().getType();
392   if (!isSupportedCombiningKind(*maybeKind, eltType))
393     return emitOpError("unsupported reduction type '")
394            << eltType << "' for kind '" << strKind << "'";
395 
396   // Verify optional accumulator.
397   if (!acc().empty()) {
398     if (strKind != "add" && strKind != "mul")
399       return emitOpError("no accumulator for reduction kind: ") << strKind;
400     if (!eltType.isa<FloatType>())
401       return emitOpError("no accumulator for type: ") << eltType;
402   }
403 
404   return success();
405 }
406 
407 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
408   SmallVector<OpAsmParser::OperandType, 2> operandsInfo;
409   Type redType;
410   Type resType;
411   Attribute attr;
412   if (parser.parseAttribute(attr, "kind", result.attributes) ||
413       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
414       parser.parseColonType(redType) ||
415       parser.parseKeywordType("into", resType) ||
416       (!operandsInfo.empty() &&
417        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
418       (operandsInfo.size() > 1 &&
419        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
420       parser.addTypeToList(resType, result.types))
421     return failure();
422   if (operandsInfo.empty() || operandsInfo.size() > 2)
423     return parser.emitError(parser.getNameLoc(),
424                             "unsupported number of operands");
425   return success();
426 }
427 
428 void ReductionOp::print(OpAsmPrinter &p) {
429   p << " \"" << kind() << "\", " << vector();
430   if (!acc().empty())
431     p << ", " << acc();
432   p << " : " << vector().getType() << " into " << dest().getType();
433 }
434 
435 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
436                                          OpBuilder &builder, Location loc,
437                                          Value vector) {
438   Type scalarType = vector.getType().cast<ShapedType>().getElementType();
439   switch (op) {
440   case arith::AtomicRMWKind::addf:
441   case arith::AtomicRMWKind::addi:
442     return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType,
443                                                builder.getStringAttr("add"),
444                                                vector, ValueRange{});
445   case arith::AtomicRMWKind::mulf:
446   case arith::AtomicRMWKind::muli:
447     return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType,
448                                                builder.getStringAttr("mul"),
449                                                vector, ValueRange{});
450   case arith::AtomicRMWKind::minf:
451     return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType,
452                                                builder.getStringAttr("minf"),
453                                                vector, ValueRange{});
454   case arith::AtomicRMWKind::mins:
455     return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType,
456                                                builder.getStringAttr("minsi"),
457                                                vector, ValueRange{});
458   case arith::AtomicRMWKind::minu:
459     return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType,
460                                                builder.getStringAttr("minui"),
461                                                vector, ValueRange{});
462   case arith::AtomicRMWKind::maxf:
463     return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType,
464                                                builder.getStringAttr("maxf"),
465                                                vector, ValueRange{});
466   case arith::AtomicRMWKind::maxs:
467     return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType,
468                                                builder.getStringAttr("maxsi"),
469                                                vector, ValueRange{});
470   case arith::AtomicRMWKind::maxu:
471     return builder.create<vector::ReductionOp>(vector.getLoc(), scalarType,
472                                                builder.getStringAttr("maxui"),
473                                                vector, ValueRange{});
474   // TODO: Add remaining reduction operations.
475   default:
476     (void)emitOptionalError(loc, "Reduction operation type not supported");
477     break;
478   }
479   return nullptr;
480 }
481 
482 //===----------------------------------------------------------------------===//
483 // ContractionOp
484 //===----------------------------------------------------------------------===//
485 
486 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
487                                   Value lhs, Value rhs, Value acc,
488                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
489                                   ArrayRef<StringRef> iteratorTypes) {
490   result.addOperands({lhs, rhs, acc});
491   result.addTypes(acc.getType());
492   result.addAttribute(getIndexingMapsAttrName(),
493                       builder.getAffineMapArrayAttr(
494                           AffineMap::inferFromExprList(indexingExprs)));
495   result.addAttribute(getIteratorTypesAttrName(),
496                       builder.getStrArrayAttr(iteratorTypes));
497 }
498 
499 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
500                                   Value lhs, Value rhs, Value acc,
501                                   ArrayAttr indexingMaps,
502                                   ArrayAttr iteratorTypes) {
503   result.addOperands({lhs, rhs, acc});
504   result.addTypes(acc.getType());
505   result.addAttribute(getIndexingMapsAttrName(), indexingMaps);
506   result.addAttribute(getIteratorTypesAttrName(), iteratorTypes);
507   result.addAttribute(ContractionOp::getKindAttrName(),
508                       CombiningKindAttr::get(ContractionOp::getDefaultKind(),
509                                              builder.getContext()));
510 }
511 
512 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
513   OpAsmParser::OperandType lhsInfo;
514   OpAsmParser::OperandType rhsInfo;
515   OpAsmParser::OperandType accInfo;
516   SmallVector<OpAsmParser::OperandType, 2> masksInfo;
517   SmallVector<Type, 2> types;
518   Type resultType;
519   auto loc = parser.getCurrentLocation();
520   DictionaryAttr dictAttr;
521   // TODO: Unify linalg op attribute parsing.
522   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
523       parser.parseOperand(lhsInfo) || parser.parseComma() ||
524       parser.parseOperand(rhsInfo) || parser.parseComma() ||
525       parser.parseOperand(accInfo) ||
526       parser.parseTrailingOperandList(masksInfo) ||
527       parser.parseOptionalAttrDict(result.attributes) ||
528       parser.parseColonTypeList(types) ||
529       parser.parseKeywordType("into", resultType) ||
530       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
531       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
532       parser.resolveOperand(accInfo, resultType, result.operands) ||
533       parser.addTypeToList(resultType, result.types))
534     return failure();
535   result.attributes.assign(dictAttr.getValue().begin(),
536                            dictAttr.getValue().end());
537   if (!result.attributes.get(ContractionOp::getKindAttrName())) {
538     result.addAttribute(ContractionOp::getKindAttrName(),
539                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
540                                                result.getContext()));
541   }
542   if (masksInfo.empty())
543     return success();
544   if (masksInfo.size() != 2)
545     return parser.emitError(parser.getNameLoc(),
546                             "expected zero or exactly 2 vector mask operands");
547   auto lhsType = types[0].cast<VectorType>();
548   auto rhsType = types[1].cast<VectorType>();
549   auto maskElementType = parser.getBuilder().getI1Type();
550   std::array<Type, 2> maskTypes = {
551       VectorType::Builder(lhsType).setElementType(maskElementType),
552       VectorType::Builder(rhsType).setElementType(maskElementType)};
553   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
554     return failure();
555   return success();
556 }
557 
558 void ContractionOp::print(OpAsmPrinter &p) {
559   // TODO: Unify printing code with linalg ops.
560   auto attrNames = getTraitAttrNames();
561   llvm::StringSet<> traitAttrsSet;
562   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
563   SmallVector<NamedAttribute, 8> attrs;
564   for (auto attr : (*this)->getAttrs())
565     if (traitAttrsSet.count(attr.getName().strref()) > 0)
566       attrs.push_back(attr);
567 
568   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
569   p << " " << dictAttr << " " << lhs() << ", ";
570   p << rhs() << ", " << acc();
571   if (masks().size() == 2)
572     p << ", " << masks();
573 
574   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
575   p << " : " << lhs().getType() << ", " << rhs().getType() << " into "
576     << getResultType();
577 }
578 
579 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
580                          const std::vector<std::pair<int64_t, int64_t>> &map) {
581   for (auto &dimPair : map) {
582     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
583         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
584         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
585       return false;
586   }
587   return true;
588 }
589 
590 static LogicalResult verifyOutputShape(
591     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
592     Type resType,
593     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
594     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
595   DenseSet<int64_t> lhsContractingDimSet;
596   DenseSet<int64_t> rhsContractingDimSet;
597   for (auto &dimPair : contractingDimMap) {
598     lhsContractingDimSet.insert(dimPair.first);
599     rhsContractingDimSet.insert(dimPair.second);
600   }
601   DenseSet<int64_t> rhsBatchDimSet;
602   for (auto &dimPair : batchDimMap)
603     rhsBatchDimSet.insert(dimPair.second);
604 
605   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
606   SmallVector<int64_t, 4> expectedResultDims;
607   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
608     if (lhsContractingDimSet.count(i) > 0)
609       continue;
610     expectedResultDims.push_back(lhsType.getDimSize(i));
611   }
612 
613   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
614   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
615     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
616       continue;
617     expectedResultDims.push_back(rhsType.getDimSize(i));
618   }
619 
620   // Verify 'expectedResultDims'.
621   if (expectedResultDims.empty()) {
622     // No batch or free dimension implies a scalar result.
623     if (resType.isa<VectorType>() || accType.isa<VectorType>())
624       return op.emitOpError("invalid accumulator/result vector shape");
625   } else {
626     // At least one batch or free dimension implies a vector result.
627     auto resVectorType = resType.dyn_cast<VectorType>();
628     auto accVectorType = accType.dyn_cast<VectorType>();
629     if (!resVectorType || !accVectorType)
630       return op.emitOpError("invalid accumulator/result vector shape");
631 
632     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
633     // types fully define the result vector type. This assumes the affine maps
634     // are well-formed, which must have been verified already.
635     MLIRContext *ctx = op.getContext();
636     AffineMap lhsMap = op.getIndexingMaps()[0];
637     AffineMap rhsMap = op.getIndexingMaps()[1];
638     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
639     for (auto pair :
640          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
641       VectorType v = pair.first;
642       auto map = pair.second;
643       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
644         unsigned pos = map.getDimPosition(idx);
645         if (!extents[pos])
646           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
647       }
648     }
649     assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) &&
650            "expected extent along all dimensions.");
651 
652     AffineMap resMap = op.getIndexingMaps()[2];
653     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
654                                      /*symCount=*/0, extents, ctx);
655     // Compose the resMap with the extentsMap, which is a constant map.
656     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
657     assert(llvm::all_of(
658                expectedMap.getResults(),
659                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
660            "expected constant extent along all dimensions.");
661     // Extract the expected shape and build the type.
662     auto expectedShape = llvm::to_vector<4>(
663         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
664           return e.cast<AffineConstantExpr>().getValue();
665         }));
666     auto expected =
667         VectorType::get(expectedShape, resVectorType.getElementType());
668     if (resVectorType != expected || accVectorType != expected)
669       return op.emitOpError(
670                  "invalid accumulator/result vector shape, expected: ")
671              << expected;
672   }
673   return success();
674 }
675 
676 LogicalResult ContractionOp::verify() {
677   auto lhsType = getLhsType();
678   auto rhsType = getRhsType();
679   auto accType = getAccType();
680   auto resType = getResultType();
681 
682   // Verify that an indexing map was specified for each vector operand.
683   if (indexing_maps().size() != 3)
684     return emitOpError("expected an indexing map for each vector operand");
685 
686   // Verify that each index map has 'numIterators' inputs, no symbols, and
687   // that the number of map outputs equals the rank of its associated
688   // vector operand.
689   unsigned numIterators = iterator_types().getValue().size();
690   for (const auto &it : llvm::enumerate(indexing_maps())) {
691     auto index = it.index();
692     auto map = it.value().cast<AffineMapAttr>().getValue();
693     if (map.getNumSymbols() != 0)
694       return emitOpError("expected indexing map ")
695              << index << " to have no symbols";
696     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
697     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
698     // Verify that the map has the right number of inputs, outputs, and indices.
699     // This also correctly accounts for (..) -> () for rank-0 results.
700     if (map.getNumDims() != numIterators)
701       return emitOpError("expected indexing map ")
702              << index << " to have " << numIterators << " number of inputs";
703     if (map.getNumResults() != rank)
704       return emitOpError("expected indexing map ")
705              << index << " to have " << rank << " number of outputs";
706     if (!map.isProjectedPermutation())
707       return emitOpError("expected indexing map ")
708              << index << " to be a projected permutation of its inputs";
709   }
710 
711   auto contractingDimMap = getContractingDimMap();
712   auto batchDimMap = getBatchDimMap();
713 
714   // Verify at least one contracting dimension pair was specified.
715   if (contractingDimMap.empty())
716     return emitOpError("expected at least one contracting dimension pair");
717 
718   // Verify contracting dimension map was properly constructed.
719   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
720     return emitOpError("invalid contracting dimension map");
721 
722   // Verify batch dimension map was properly constructed.
723   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
724     return emitOpError("invalid batch dimension map");
725 
726   // Verify 'accType' and 'resType' shape.
727   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
728                                contractingDimMap, batchDimMap)))
729     return failure();
730 
731   // Verify that either two vector masks are set or none are set.
732   auto lhsMaskType = getLHSVectorMaskType();
733   auto rhsMaskType = getRHSVectorMaskType();
734   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
735     return emitOpError("invalid number of vector masks specified");
736   if (lhsMaskType && rhsMaskType) {
737     // Verify mask rank == argument rank.
738     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
739         rhsMaskType.getShape().size() != rhsType.getShape().size())
740       return emitOpError("invalid vector mask rank");
741   }
742 
743   // Verify supported combining kind.
744   auto vectorType = resType.dyn_cast<VectorType>();
745   auto elementType = vectorType ? vectorType.getElementType() : resType;
746   if (!isSupportedCombiningKind(kind(), elementType))
747     return emitOpError("unsupported contraction type");
748 
749   return success();
750 }
751 
752 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
753   static constexpr StringRef names[3] = {getIndexingMapsAttrName(),
754                                          getIteratorTypesAttrName(),
755                                          ContractionOp::getKindAttrName()};
756   return llvm::makeArrayRef(names);
757 }
758 
759 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
760   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
761     if (targetExpr == map.getResult(i))
762       return i;
763   return -1;
764 }
765 
766 static std::vector<std::pair<int64_t, int64_t>>
767 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
768           StringRef targetIteratorTypeName, MLIRContext *context) {
769   std::vector<std::pair<int64_t, int64_t>> dimMap;
770   for (const auto &it : llvm::enumerate(iteratorTypes)) {
771     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
772     if (iteratorTypeName != targetIteratorTypeName)
773       continue;
774     // Search lhs/rhs map results for 'targetExpr'.
775     auto targetExpr = getAffineDimExpr(it.index(), context);
776     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
777     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
778     if (lhsDim >= 0 && rhsDim >= 0)
779       dimMap.emplace_back(lhsDim, rhsDim);
780   }
781   return dimMap;
782 }
783 
784 void ContractionOp::getIterationBounds(
785     SmallVectorImpl<int64_t> &iterationBounds) {
786   auto lhsShape = getLhsType().getShape();
787   auto resVectorType = getResultType().dyn_cast<VectorType>();
788   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
789   SmallVector<int64_t, 2> iterationShape;
790   for (const auto &it : llvm::enumerate(iterator_types())) {
791     // Search lhs/rhs map results for 'targetExpr'.
792     auto targetExpr = getAffineDimExpr(it.index(), getContext());
793     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
794     if (iteratorTypeName == getReductionIteratorTypeName()) {
795       // Get reduction dim size from lhs shape (same size in rhsShape).
796       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
797       assert(lhsDimIndex >= 0);
798       iterationBounds.push_back(lhsShape[lhsDimIndex]);
799       continue;
800     }
801     // Get parallel dimension size from result shape.
802     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
803     assert(resDimIndex >= 0);
804     assert(resVectorType != nullptr);
805     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
806   }
807 }
808 
809 void ContractionOp::getIterationIndexMap(
810     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
811   unsigned numMaps = indexing_maps().getValue().size();
812   iterationIndexMap.resize(numMaps);
813   for (const auto &it : llvm::enumerate(indexing_maps())) {
814     auto index = it.index();
815     auto map = it.value().cast<AffineMapAttr>().getValue();
816     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
817       auto dim = map.getResult(i).cast<AffineDimExpr>();
818       iterationIndexMap[index][dim.getPosition()] = i;
819     }
820   }
821 }
822 
823 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
824   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
825   return getDimMap(indexingMaps, iterator_types(),
826                    getReductionIteratorTypeName(), getContext());
827 }
828 
829 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
830   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
831   return getDimMap(indexingMaps, iterator_types(),
832                    getParallelIteratorTypeName(), getContext());
833 }
834 
835 SmallVector<AffineMap, 4> ContractionOp::getIndexingMaps() {
836   return llvm::to_vector<4>(
837       llvm::map_range(indexing_maps().getValue(), [](Attribute mapAttr) {
838         return mapAttr.cast<AffineMapAttr>().getValue();
839       }));
840 }
841 
842 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
843   SmallVector<int64_t, 4> shape;
844   getIterationBounds(shape);
845   return shape;
846 }
847 
848 /// Return a fused vector::ContractionOp which represents a patterns such as:
849 ///
850 /// ```mlir
851 ///    %c0 = vector.constant 0: ...
852 ///    %c = vector.contract %a, %b, %c0: ...
853 ///    %e = add %c, %d: ...
854 /// ```
855 ///
856 /// by:
857 ///
858 /// ```mlir
859 ///    %e = vector.contract %a, %b, %d: ...
860 /// ```
861 ///
862 /// Return null if the canonicalization does not apply.
863 // TODO: This should be a folding of Add into Contract in core but while they
864 // live in different dialects, it is not possible without unnatural
865 // dependencies.
866 template <typename AddOpType>
867 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
868   using OpRewritePattern<AddOpType>::OpRewritePattern;
869 
870   LogicalResult matchAndRewrite(AddOpType addOp,
871                                 PatternRewriter &rewriter) const override {
872     auto canonicalize = [&](Value maybeContraction,
873                             Value otherOperand) -> vector::ContractionOp {
874       vector::ContractionOp contractionOp =
875           dyn_cast_or_null<vector::ContractionOp>(
876               maybeContraction.getDefiningOp());
877       if (!contractionOp)
878         return vector::ContractionOp();
879       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
880               contractionOp.acc().getDefiningOp())) {
881         if (maybeZero.getValue() ==
882             rewriter.getZeroAttr(contractionOp.acc().getType())) {
883           BlockAndValueMapping bvm;
884           bvm.map(contractionOp.acc(), otherOperand);
885           auto newContraction =
886               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
887           rewriter.replaceOp(addOp, newContraction.getResult());
888           return newContraction;
889         }
890       }
891       return vector::ContractionOp();
892     };
893 
894     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
895     vector::ContractionOp contract = canonicalize(a, b);
896     contract = contract ? contract : canonicalize(b, a);
897     return contract ? success() : failure();
898   }
899 };
900 
901 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
902                                                 MLIRContext *context) {
903   results.add<CanonicalizeContractAdd<arith::AddIOp>,
904               CanonicalizeContractAdd<arith::AddFOp>>(context);
905 }
906 
907 //===----------------------------------------------------------------------===//
908 // ExtractElementOp
909 //===----------------------------------------------------------------------===//
910 
911 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
912                                      Value source) {
913   result.addOperands({source});
914   result.addTypes(source.getType().cast<VectorType>().getElementType());
915 }
916 
917 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
918                                      Value source, Value position) {
919   result.addOperands({source, position});
920   result.addTypes(source.getType().cast<VectorType>().getElementType());
921 }
922 
923 LogicalResult vector::ExtractElementOp::verify() {
924   VectorType vectorType = getVectorType();
925   if (vectorType.getRank() == 0) {
926     if (position())
927       return emitOpError("expected position to be empty with 0-D vector");
928     return success();
929   }
930   if (vectorType.getRank() != 1)
931     return emitOpError("unexpected >1 vector rank");
932   if (!position())
933     return emitOpError("expected position for 1-D vector");
934   return success();
935 }
936 
937 //===----------------------------------------------------------------------===//
938 // ExtractOp
939 //===----------------------------------------------------------------------===//
940 
941 static Type inferExtractOpResultType(VectorType vectorType,
942                                      ArrayAttr position) {
943   if (static_cast<int64_t>(position.size()) == vectorType.getRank())
944     return vectorType.getElementType();
945   return VectorType::get(vectorType.getShape().drop_front(position.size()),
946                          vectorType.getElementType());
947 }
948 
949 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
950                               Value source, ArrayRef<int64_t> position) {
951   result.addOperands(source);
952   auto positionAttr = getVectorSubscriptAttr(builder, position);
953   result.addTypes(inferExtractOpResultType(source.getType().cast<VectorType>(),
954                                            positionAttr));
955   result.addAttribute(getPositionAttrName(), positionAttr);
956 }
957 
958 // Convenience builder which assumes the values are constant indices.
959 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
960                               Value source, ValueRange position) {
961   SmallVector<int64_t, 4> positionConstants =
962       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
963         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
964       }));
965   build(builder, result, source, positionConstants);
966 }
967 
968 void vector::ExtractOp::print(OpAsmPrinter &p) {
969   p << " " << vector() << position();
970   p.printOptionalAttrDict((*this)->getAttrs(), {"position"});
971   p << " : " << vector().getType();
972 }
973 
974 ParseResult vector::ExtractOp::parse(OpAsmParser &parser,
975                                      OperationState &result) {
976   SMLoc attributeLoc, typeLoc;
977   NamedAttrList attrs;
978   OpAsmParser::OperandType vector;
979   Type type;
980   Attribute attr;
981   if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) ||
982       parser.parseAttribute(attr, "position", attrs) ||
983       parser.parseOptionalAttrDict(attrs) ||
984       parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type))
985     return failure();
986 
987   auto vectorType = type.dyn_cast<VectorType>();
988   if (!vectorType)
989     return parser.emitError(typeLoc, "expected vector type");
990 
991   auto positionAttr = attr.dyn_cast<ArrayAttr>();
992   if (!positionAttr ||
993       static_cast<int64_t>(positionAttr.size()) > vectorType.getRank())
994     return parser.emitError(
995         attributeLoc,
996         "expected position attribute of rank smaller than vector rank");
997 
998   Type resType = inferExtractOpResultType(vectorType, positionAttr);
999   result.attributes = attrs;
1000   return failure(parser.resolveOperand(vector, type, result.operands) ||
1001                  parser.addTypeToList(resType, result.types));
1002 }
1003 
1004 LogicalResult vector::ExtractOp::verify() {
1005   auto positionAttr = position().getValue();
1006   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
1007     return emitOpError(
1008         "expected position attribute of rank smaller than vector rank");
1009   for (const auto &en : llvm::enumerate(positionAttr)) {
1010     auto attr = en.value().dyn_cast<IntegerAttr>();
1011     if (!attr || attr.getInt() < 0 ||
1012         attr.getInt() >= getVectorType().getDimSize(en.index()))
1013       return emitOpError("expected position attribute #")
1014              << (en.index() + 1)
1015              << " to be a non-negative integer smaller than the corresponding "
1016                 "vector dimension";
1017   }
1018   return success();
1019 }
1020 
1021 template <typename IntType>
1022 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1023   return llvm::to_vector<4>(llvm::map_range(
1024       arrayAttr.getAsRange<IntegerAttr>(),
1025       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1026 }
1027 
1028 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1029 /// positions.
1030 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1031   if (!extractOp.vector().getDefiningOp<ExtractOp>())
1032     return failure();
1033 
1034   SmallVector<int64_t, 4> globalPosition;
1035   ExtractOp currentOp = extractOp;
1036   auto extrPos = extractVector<int64_t>(currentOp.position());
1037   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1038   while (ExtractOp nextOp = currentOp.vector().getDefiningOp<ExtractOp>()) {
1039     currentOp = nextOp;
1040     auto extrPos = extractVector<int64_t>(currentOp.position());
1041     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1042   }
1043   extractOp.setOperand(currentOp.vector());
1044   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1045   OpBuilder b(extractOp.getContext());
1046   std::reverse(globalPosition.begin(), globalPosition.end());
1047   extractOp->setAttr(ExtractOp::getPositionAttrName(),
1048                      b.getI64ArrayAttr(globalPosition));
1049   return success();
1050 }
1051 
1052 namespace {
1053 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1054 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1055 /// Compose TransposeOp permutations as we walk back.
1056 /// This helper class keeps an updated extraction position `extractPosition`
1057 /// with extra trailing sentinels.
1058 /// The sentinels encode the internal transposition status of the result vector.
1059 /// As we iterate, extractPosition is permuted and updated.
1060 class ExtractFromInsertTransposeChainState {
1061 public:
1062   ExtractFromInsertTransposeChainState(ExtractOp e);
1063 
1064   /// Iterate over producing insert and transpose ops until we find a fold.
1065   Value fold();
1066 
1067 private:
1068   /// Return true if the vector at position `a` is contained within the vector
1069   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1070   /// is a prefix of `b`.
1071   template <typename ContainerA, typename ContainerB>
1072   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1073     return a.size() <= b.size() &&
1074            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1075   }
1076 
1077   /// Return true if the vector at position `a` intersects the vector at
1078   /// position `b`. Under insert/extract semantics, this is the same as equality
1079   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1080   /// Comparison is on the common prefix (i.e. zip).
1081   template <typename ContainerA, typename ContainerB>
1082   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1083     for (auto it : llvm::zip(a, b)) {
1084       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1085         continue;
1086       if (std::get<0>(it) != std::get<1>(it))
1087         return false;
1088     }
1089     return true;
1090   }
1091 
1092   /// Folding is only possible in the absence of an internal permutation in the
1093   /// result vector.
1094   bool canFold() {
1095     return (sentinels ==
1096             makeArrayRef(extractPosition).drop_front(extractedRank));
1097   }
1098 
1099   // Helper to get the next defining op of interest.
1100   void updateStateForNextIteration(Value v) {
1101     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1102     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1103   };
1104 
1105   // Case 1. If we hit a transpose, just compose the map and iterate.
1106   // Invariant: insert + transpose do not change rank, we can always compose.
1107   LogicalResult handleTransposeOp();
1108 
1109   // Case 2: the insert position matches extractPosition exactly, early return.
1110   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1111 
1112   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1113   /// portion of the source of the insert.
1114   /// Example:
1115   /// ```
1116   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1117   /// // extractPosition == [1, 2, 3]
1118   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1119   /// // can fold to vector.extract %source[0, 3]
1120   /// %ext = vector.extract %source[3]: vector<5x6>
1121   /// ```
1122   /// To traverse through %source, we need to set the leading dims to 0 and
1123   /// drop the extra leading dims.
1124   /// This method updates the internal state.
1125   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1126 
1127   /// Try to fold in place to extract(source, extractPosition) and return the
1128   /// folded result. Return null if folding is not possible (e.g. due to an
1129   /// internal tranposition in the result).
1130   Value tryToFoldExtractOpInPlace(Value source);
1131 
1132   ExtractOp extractOp;
1133   int64_t vectorRank;
1134   int64_t extractedRank;
1135 
1136   InsertOp nextInsertOp;
1137   TransposeOp nextTransposeOp;
1138 
1139   /// Sentinel values that encode the internal permutation status of the result.
1140   /// They are set to (-1, ... , -k) at the beginning and appended to
1141   /// `extractPosition`.
1142   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1143   /// ensure that there is no internal transposition.
1144   /// Internal transposition cannot be accounted for with a folding pattern.
1145   // TODO: We could relax the internal transposition with an extra transposition
1146   // operation in a future canonicalizer.
1147   SmallVector<int64_t> sentinels;
1148   SmallVector<int64_t> extractPosition;
1149 };
1150 } // namespace
1151 
1152 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1153     ExtractOp e)
1154     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1155       extractedRank(extractOp.position().size()) {
1156   assert(vectorRank >= extractedRank && "extracted pos overflow");
1157   sentinels.reserve(vectorRank - extractedRank);
1158   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1159     sentinels.push_back(-(i + 1));
1160   extractPosition = extractVector<int64_t>(extractOp.position());
1161   llvm::append_range(extractPosition, sentinels);
1162 }
1163 
1164 // Case 1. If we hit a transpose, just compose the map and iterate.
1165 // Invariant: insert + transpose do not change rank, we can always compose.
1166 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1167   if (!nextTransposeOp)
1168     return failure();
1169   auto permutation = extractVector<unsigned>(nextTransposeOp.transp());
1170   AffineMap m = inversePermutation(
1171       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1172   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1173   return success();
1174 }
1175 
1176 // Case 2: the insert position matches extractPosition exactly, early return.
1177 LogicalResult
1178 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1179     Value &res) {
1180   auto insertedPos = extractVector<int64_t>(nextInsertOp.position());
1181   if (makeArrayRef(insertedPos) !=
1182       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1183     return failure();
1184   // Case 2.a. early-exit fold.
1185   res = nextInsertOp.source();
1186   // Case 2.b. if internal transposition is present, canFold will be false.
1187   return success();
1188 }
1189 
1190 /// Case 3: if inserted position is a prefix of extractPosition,
1191 /// extract a portion of the source of the insertion.
1192 /// This method updates the internal state.
1193 LogicalResult
1194 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1195   auto insertedPos = extractVector<int64_t>(nextInsertOp.position());
1196   if (!isContainedWithin(insertedPos, extractPosition))
1197     return failure();
1198   // Set leading dims to zero.
1199   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1200   // Drop extra leading dims.
1201   extractPosition.erase(extractPosition.begin(),
1202                         extractPosition.begin() + insertedPos.size());
1203   extractedRank = extractPosition.size() - sentinels.size();
1204   // Case 3.a. early-exit fold (break and delegate to post-while path).
1205   res = nextInsertOp.source();
1206   // Case 3.b. if internal transposition is present, canFold will be false.
1207   return success();
1208 }
1209 
1210 /// Try to fold in place to extract(source, extractPosition) and return the
1211 /// folded result. Return null if folding is not possible (e.g. due to an
1212 /// internal tranposition in the result).
1213 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1214     Value source) {
1215   // If we can't fold (either internal transposition, or nothing to fold), bail.
1216   bool nothingToFold = (source == extractOp.vector());
1217   if (nothingToFold || !canFold())
1218     return Value();
1219   // Otherwise, fold by updating the op inplace and return its result.
1220   OpBuilder b(extractOp.getContext());
1221   extractOp->setAttr(
1222       extractOp.positionAttrName(),
1223       b.getI64ArrayAttr(
1224           makeArrayRef(extractPosition).take_front(extractedRank)));
1225   extractOp.vectorMutable().assign(source);
1226   return extractOp.getResult();
1227 }
1228 
1229 /// Iterate over producing insert and transpose ops until we find a fold.
1230 Value ExtractFromInsertTransposeChainState::fold() {
1231   Value valueToExtractFrom = extractOp.vector();
1232   updateStateForNextIteration(valueToExtractFrom);
1233   while (nextInsertOp || nextTransposeOp) {
1234     // Case 1. If we hit a transpose, just compose the map and iterate.
1235     // Invariant: insert + transpose do not change rank, we can always compose.
1236     if (succeeded(handleTransposeOp())) {
1237       valueToExtractFrom = nextTransposeOp.vector();
1238       updateStateForNextIteration(valueToExtractFrom);
1239       continue;
1240     }
1241 
1242     Value result;
1243     // Case 2: the position match exactly.
1244     if (succeeded(handleInsertOpWithMatchingPos(result)))
1245       return result;
1246 
1247     // Case 3: if the inserted position is a prefix of extractPosition, we can
1248     // just extract a portion of the source of the insert.
1249     if (succeeded(handleInsertOpWithPrefixPos(result)))
1250       return tryToFoldExtractOpInPlace(result);
1251 
1252     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1253     // values. This is a more difficult case and we bail.
1254     auto insertedPos = extractVector<int64_t>(nextInsertOp.position());
1255     if (isContainedWithin(extractPosition, insertedPos) ||
1256         intersectsWhereNonNegative(extractPosition, insertedPos))
1257       return Value();
1258 
1259     // Case 5: No intersection, we forward the extract to insertOp.dest().
1260     valueToExtractFrom = nextInsertOp.dest();
1261     updateStateForNextIteration(valueToExtractFrom);
1262   }
1263   // If after all this we can fold, go for it.
1264   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1265 }
1266 
1267 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1268 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1269   Operation *defOp = extractOp.vector().getDefiningOp();
1270   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1271     return Value();
1272   Value source = defOp->getOperand(0);
1273   if (extractOp.getType() == source.getType())
1274     return source;
1275   auto getRank = [](Type type) {
1276     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1277   };
1278   unsigned broadcastSrcRank = getRank(source.getType());
1279   unsigned extractResultRank = getRank(extractOp.getType());
1280   if (extractResultRank < broadcastSrcRank) {
1281     auto extractPos = extractVector<int64_t>(extractOp.position());
1282     unsigned rankDiff = broadcastSrcRank - extractResultRank;
1283     extractPos.erase(
1284         extractPos.begin(),
1285         std::next(extractPos.begin(), extractPos.size() - rankDiff));
1286     extractOp.setOperand(source);
1287     // OpBuilder is only used as a helper to build an I64ArrayAttr.
1288     OpBuilder b(extractOp.getContext());
1289     extractOp->setAttr(ExtractOp::getPositionAttrName(),
1290                        b.getI64ArrayAttr(extractPos));
1291     return extractOp.getResult();
1292   }
1293   return Value();
1294 }
1295 
1296 // Fold extractOp with source coming from ShapeCast op.
1297 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1298   auto shapeCastOp = extractOp.vector().getDefiningOp<vector::ShapeCastOp>();
1299   if (!shapeCastOp)
1300     return Value();
1301   // Get the nth dimension size starting from lowest dimension.
1302   auto getDimReverse = [](VectorType type, int64_t n) {
1303     return type.getShape().take_back(n + 1).front();
1304   };
1305   int64_t destinationRank =
1306       extractOp.getType().isa<VectorType>()
1307           ? extractOp.getType().cast<VectorType>().getRank()
1308           : 0;
1309   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1310     return Value();
1311   if (destinationRank > 0) {
1312     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1313     for (int64_t i = 0; i < destinationRank; i++) {
1314       // The lowest dimension of of the destination must match the lowest
1315       // dimension of the shapecast op source.
1316       // TODO: This case could be support in a canonicalization pattern.
1317       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1318           getDimReverse(destinationType, i))
1319         return Value();
1320     }
1321   }
1322   // Extract the strides associated with the extract op vector source. Then use
1323   // this to calculate a linearized position for the extract.
1324   auto extractedPos = extractVector<int64_t>(extractOp.position());
1325   std::reverse(extractedPos.begin(), extractedPos.end());
1326   SmallVector<int64_t, 4> strides;
1327   int64_t stride = 1;
1328   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1329     strides.push_back(stride);
1330     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1331   }
1332 
1333   int64_t position = linearize(extractedPos, strides);
1334   // Then extract the strides associated to the shapeCast op vector source and
1335   // delinearize the position using those strides.
1336   SmallVector<int64_t, 4> newStrides;
1337   int64_t numDimension =
1338       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1339   stride = 1;
1340   for (int64_t i = 0; i < numDimension; i++) {
1341     newStrides.push_back(stride);
1342     stride *=
1343         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1344   }
1345   std::reverse(newStrides.begin(), newStrides.end());
1346   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1347   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1348   OpBuilder b(extractOp.getContext());
1349   extractOp->setAttr(ExtractOp::getPositionAttrName(),
1350                      b.getI64ArrayAttr(newPosition));
1351   extractOp.setOperand(shapeCastOp.source());
1352   return extractOp.getResult();
1353 }
1354 
1355 /// Fold an ExtractOp from ExtractStridedSliceOp.
1356 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1357   auto extractStridedSliceOp =
1358       extractOp.vector().getDefiningOp<vector::ExtractStridedSliceOp>();
1359   if (!extractStridedSliceOp)
1360     return Value();
1361   // Return if 'extractStridedSliceOp' has non-unit strides.
1362   if (extractStridedSliceOp.hasNonUnitStrides())
1363     return Value();
1364 
1365   // Trim offsets for dimensions fully extracted.
1366   auto sliceOffsets = extractVector<int64_t>(extractStridedSliceOp.offsets());
1367   while (!sliceOffsets.empty()) {
1368     size_t lastOffset = sliceOffsets.size() - 1;
1369     if (sliceOffsets.back() != 0 ||
1370         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1371             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1372       break;
1373     sliceOffsets.pop_back();
1374   }
1375   unsigned destinationRank = 0;
1376   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1377     destinationRank = vecType.getRank();
1378   // The dimensions of the result need to be untouched by the
1379   // extractStridedSlice op.
1380   if (destinationRank >
1381       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1382     return Value();
1383   auto extractedPos = extractVector<int64_t>(extractOp.position());
1384   assert(extractedPos.size() >= sliceOffsets.size());
1385   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1386     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1387   extractOp.vectorMutable().assign(extractStridedSliceOp.vector());
1388   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1389   OpBuilder b(extractOp.getContext());
1390   extractOp->setAttr(ExtractOp::getPositionAttrName(),
1391                      b.getI64ArrayAttr(extractedPos));
1392   return extractOp.getResult();
1393 }
1394 
1395 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1396 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1397   int64_t destinationRank = op.getType().isa<VectorType>()
1398                                 ? op.getType().cast<VectorType>().getRank()
1399                                 : 0;
1400   auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>();
1401   while (insertOp) {
1402     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1403                              insertOp.getSourceVectorType().getRank();
1404     if (destinationRank > insertOp.getSourceVectorType().getRank())
1405       return Value();
1406     auto insertOffsets = extractVector<int64_t>(insertOp.offsets());
1407     auto extractOffsets = extractVector<int64_t>(op.position());
1408 
1409     if (llvm::any_of(insertOp.strides(), [](Attribute attr) {
1410           return attr.cast<IntegerAttr>().getInt() != 1;
1411         }))
1412       return Value();
1413     bool disjoint = false;
1414     SmallVector<int64_t, 4> offsetDiffs;
1415     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1416       int64_t start = insertOffsets[dim];
1417       int64_t size =
1418           (dim < insertRankDiff)
1419               ? 1
1420               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1421       int64_t end = start + size;
1422       int64_t offset = extractOffsets[dim];
1423       // Check if the start of the extract offset is in the interval inserted.
1424       if (start <= offset && offset < end) {
1425         if (dim >= insertRankDiff)
1426           offsetDiffs.push_back(offset - start);
1427         continue;
1428       }
1429       disjoint = true;
1430       break;
1431     }
1432     // The extract element chunk overlap with the vector inserted.
1433     if (!disjoint) {
1434       // If any of the inner dimensions are only partially inserted we have a
1435       // partial overlap.
1436       int64_t srcRankDiff =
1437           insertOp.getSourceVectorType().getRank() - destinationRank;
1438       for (int64_t i = 0; i < destinationRank; i++) {
1439         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1440             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1441                                                     insertRankDiff))
1442           return Value();
1443       }
1444       op.vectorMutable().assign(insertOp.source());
1445       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1446       OpBuilder b(op.getContext());
1447       op->setAttr(ExtractOp::getPositionAttrName(),
1448                   b.getI64ArrayAttr(offsetDiffs));
1449       return op.getResult();
1450     }
1451     // If the chunk extracted is disjoint from the chunk inserted, keep
1452     // looking in the insert chain.
1453     insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>();
1454   }
1455   return Value();
1456 }
1457 
1458 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1459   if (position().empty())
1460     return vector();
1461   if (succeeded(foldExtractOpFromExtractChain(*this)))
1462     return getResult();
1463   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1464     return res;
1465   if (auto res = foldExtractFromBroadcast(*this))
1466     return res;
1467   if (auto res = foldExtractFromShapeCast(*this))
1468     return res;
1469   if (auto val = foldExtractFromExtractStrided(*this))
1470     return val;
1471   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1472     return val;
1473   return OpFoldResult();
1474 }
1475 
1476 namespace {
1477 
1478 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1479 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1480 public:
1481   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1482 
1483   LogicalResult matchAndRewrite(ExtractOp extractOp,
1484                                 PatternRewriter &rewriter) const override {
1485     Operation *defOp = extractOp.vector().getDefiningOp();
1486     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1487       return failure();
1488     Value source = defOp->getOperand(0);
1489     if (extractOp.getType() == source.getType())
1490       return failure();
1491     auto getRank = [](Type type) {
1492       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1493     };
1494     unsigned broadcastSrcRank = getRank(source.getType());
1495     unsigned extractResultRank = getRank(extractOp.getType());
1496     // We only consider the case where the rank of the source is smaller than
1497     // the rank of the extract dst. The other cases are handled in the folding
1498     // patterns.
1499     if (extractResultRank <= broadcastSrcRank)
1500       return failure();
1501     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1502         extractOp, extractOp.getType(), source);
1503     return success();
1504   }
1505 };
1506 
1507 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1508 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1509 public:
1510   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1511 
1512   LogicalResult matchAndRewrite(ExtractOp extractOp,
1513                                 PatternRewriter &rewriter) const override {
1514     // Return if 'extractStridedSliceOp' operand is not defined by a
1515     // ConstantOp.
1516     auto constantOp = extractOp.vector().getDefiningOp<arith::ConstantOp>();
1517     if (!constantOp)
1518       return failure();
1519     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1520     if (!dense)
1521       return failure();
1522     Attribute newAttr = dense.getSplatValue<Attribute>();
1523     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1524       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1525     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1526     return success();
1527   }
1528 };
1529 
1530 } // namespace
1531 
1532 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1533                                             MLIRContext *context) {
1534   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1535 }
1536 
1537 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1538                                        SmallVectorImpl<int64_t> &results) {
1539   for (auto attr : arrayAttr)
1540     results.push_back(attr.cast<IntegerAttr>().getInt());
1541 }
1542 
1543 //===----------------------------------------------------------------------===//
1544 // ExtractMapOp
1545 //===----------------------------------------------------------------------===//
1546 
1547 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1548                          Value vector, ValueRange ids,
1549                          ArrayRef<int64_t> multiplicity,
1550                          AffineMap permutationMap) {
1551   assert(ids.size() == multiplicity.size() &&
1552          ids.size() == permutationMap.getNumResults());
1553   assert(permutationMap.isProjectedPermutation());
1554   VectorType type = vector.getType().cast<VectorType>();
1555   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1556                                    type.getShape().end());
1557   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1558     AffineExpr expr = permutationMap.getResult(i);
1559     auto dim = expr.cast<AffineDimExpr>();
1560     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1561   }
1562   VectorType resultType = VectorType::get(newShape, type.getElementType());
1563   ExtractMapOp::build(builder, result, resultType, vector, ids);
1564 }
1565 
1566 LogicalResult ExtractMapOp::verify() {
1567   if (getSourceVectorType().getRank() != getResultType().getRank())
1568     return emitOpError("expected source and destination vectors of same rank");
1569   unsigned numId = 0;
1570   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1571     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1572         0)
1573       return emitOpError("source vector dimensions must be a multiple of "
1574                          "destination vector dimensions");
1575     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1576       numId++;
1577   }
1578   if (numId != ids().size())
1579     return emitOpError("expected number of ids must match the number of "
1580                        "dimensions distributed");
1581   return success();
1582 }
1583 
1584 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1585   auto insert = vector().getDefiningOp<vector::InsertMapOp>();
1586   if (insert == nullptr || getType() != insert.vector().getType() ||
1587       ids() != insert.ids())
1588     return {};
1589   return insert.vector();
1590 }
1591 
1592 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1593   assert(multiplicity.empty());
1594   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1595     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1596       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1597                              getResultType().getDimSize(i));
1598   }
1599 }
1600 
1601 template <typename MapOp>
1602 AffineMap calculateImplicitMap(MapOp op) {
1603   SmallVector<AffineExpr, 4> perm;
1604   // Check which dimension have a multiplicity greater than 1 and associated
1605   // them to the IDs in order.
1606   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1607     if (op.getSourceVectorType().getDimSize(i) !=
1608         op.getResultType().getDimSize(i))
1609       perm.push_back(getAffineDimExpr(i, op.getContext()));
1610   }
1611   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1612                             op.getContext());
1613   return map;
1614 }
1615 
1616 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1617 
1618 //===----------------------------------------------------------------------===//
1619 // FmaOp
1620 //===----------------------------------------------------------------------===//
1621 
1622 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1623   return llvm::to_vector<4>(getVectorType().getShape());
1624 }
1625 
1626 //===----------------------------------------------------------------------===//
1627 // BroadcastOp
1628 //===----------------------------------------------------------------------===//
1629 
1630 BroadcastableToResult
1631 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1632                                 std::pair<int, int> *mismatchingDims) {
1633   // Broadcast scalar to vector of the same element type.
1634   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1635       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1636     return BroadcastableToResult::Success;
1637   // From now on, only vectors broadcast.
1638   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1639   if (!srcVectorType)
1640     return BroadcastableToResult::SourceTypeNotAVector;
1641 
1642   int64_t srcRank = srcVectorType.getRank();
1643   int64_t dstRank = dstVectorType.getRank();
1644   if (srcRank > dstRank)
1645     return BroadcastableToResult::SourceRankHigher;
1646   // Source has an exact match or singleton value for all trailing dimensions
1647   // (all leading dimensions are simply duplicated).
1648   int64_t lead = dstRank - srcRank;
1649   for (int64_t r = 0; r < srcRank; ++r) {
1650     int64_t srcDim = srcVectorType.getDimSize(r);
1651     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1652     if (srcDim != 1 && srcDim != dstDim) {
1653       if (mismatchingDims) {
1654         mismatchingDims->first = srcDim;
1655         mismatchingDims->second = dstDim;
1656       }
1657       return BroadcastableToResult::DimensionMismatch;
1658     }
1659   }
1660 
1661   return BroadcastableToResult::Success;
1662 }
1663 
1664 LogicalResult BroadcastOp::verify() {
1665   std::pair<int, int> mismatchingDims;
1666   BroadcastableToResult res =
1667       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1668   if (res == BroadcastableToResult::Success)
1669     return success();
1670   if (res == BroadcastableToResult::SourceRankHigher)
1671     return emitOpError("source rank higher than destination rank");
1672   if (res == BroadcastableToResult::DimensionMismatch)
1673     return emitOpError("dimension mismatch (")
1674            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1675   if (res == BroadcastableToResult::SourceTypeNotAVector)
1676     return emitOpError("source type is not a vector");
1677   llvm_unreachable("unexpected vector.broadcast op error");
1678 }
1679 
1680 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1681   if (getSourceType() == getVectorType())
1682     return source();
1683   if (!operands[0])
1684     return {};
1685   auto vectorType = getVectorType();
1686   if (operands[0].getType().isIntOrIndexOrFloat())
1687     return DenseElementsAttr::get(vectorType, operands[0]);
1688   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1689     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1690   return {};
1691 }
1692 
1693 namespace {
1694 
1695 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1696 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1697   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1698 
1699   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1700                                 PatternRewriter &rewriter) const override {
1701     auto srcBroadcast = broadcastOp.source().getDefiningOp<BroadcastOp>();
1702     if (!srcBroadcast)
1703       return failure();
1704     rewriter.replaceOpWithNewOp<BroadcastOp>(
1705         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.source());
1706     return success();
1707   }
1708 };
1709 } // namespace
1710 
1711 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1712                                               MLIRContext *context) {
1713   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1714   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1715   results.add<BroadcastFolder>(context);
1716 }
1717 
1718 //===----------------------------------------------------------------------===//
1719 // ShuffleOp
1720 //===----------------------------------------------------------------------===//
1721 
1722 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1723                       Value v2, ArrayRef<int64_t> mask) {
1724   result.addOperands({v1, v2});
1725   auto maskAttr = getVectorSubscriptAttr(builder, mask);
1726   auto v1Type = v1.getType().cast<VectorType>();
1727   auto shape = llvm::to_vector<4>(v1Type.getShape());
1728   shape[0] = mask.size();
1729   result.addTypes(VectorType::get(shape, v1Type.getElementType()));
1730   result.addAttribute(getMaskAttrName(), maskAttr);
1731 }
1732 
1733 void ShuffleOp::print(OpAsmPrinter &p) {
1734   p << " " << v1() << ", " << v2() << " " << mask();
1735   p.printOptionalAttrDict((*this)->getAttrs(), {ShuffleOp::getMaskAttrName()});
1736   p << " : " << v1().getType() << ", " << v2().getType();
1737 }
1738 
1739 LogicalResult ShuffleOp::verify() {
1740   VectorType resultType = getVectorType();
1741   VectorType v1Type = getV1VectorType();
1742   VectorType v2Type = getV2VectorType();
1743   // Verify ranks.
1744   int64_t resRank = resultType.getRank();
1745   int64_t v1Rank = v1Type.getRank();
1746   int64_t v2Rank = v2Type.getRank();
1747   if (resRank != v1Rank || v1Rank != v2Rank)
1748     return emitOpError("rank mismatch");
1749   // Verify all but leading dimension sizes.
1750   for (int64_t r = 1; r < v1Rank; ++r) {
1751     int64_t resDim = resultType.getDimSize(r);
1752     int64_t v1Dim = v1Type.getDimSize(r);
1753     int64_t v2Dim = v2Type.getDimSize(r);
1754     if (resDim != v1Dim || v1Dim != v2Dim)
1755       return emitOpError("dimension mismatch");
1756   }
1757   // Verify mask length.
1758   auto maskAttr = mask().getValue();
1759   int64_t maskLength = maskAttr.size();
1760   if (maskLength != resultType.getDimSize(0))
1761     return emitOpError("mask length mismatch");
1762   // Verify all indices.
1763   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1764   for (const auto &en : llvm::enumerate(maskAttr)) {
1765     auto attr = en.value().dyn_cast<IntegerAttr>();
1766     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1767       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1768   }
1769   return success();
1770 }
1771 
1772 ParseResult ShuffleOp::parse(OpAsmParser &parser, OperationState &result) {
1773   OpAsmParser::OperandType v1, v2;
1774   Attribute attr;
1775   VectorType v1Type, v2Type;
1776   if (parser.parseOperand(v1) || parser.parseComma() ||
1777       parser.parseOperand(v2) ||
1778       parser.parseAttribute(attr, ShuffleOp::getMaskAttrName(),
1779                             result.attributes) ||
1780       parser.parseOptionalAttrDict(result.attributes) ||
1781       parser.parseColonType(v1Type) || parser.parseComma() ||
1782       parser.parseType(v2Type) ||
1783       parser.resolveOperand(v1, v1Type, result.operands) ||
1784       parser.resolveOperand(v2, v2Type, result.operands))
1785     return failure();
1786   // Construct resulting type: leading dimension matches mask length,
1787   // all trailing dimensions match the operands.
1788   auto maskAttr = attr.dyn_cast<ArrayAttr>();
1789   if (!maskAttr)
1790     return parser.emitError(parser.getNameLoc(), "missing mask attribute");
1791   int64_t maskLength = maskAttr.size();
1792   if (maskLength <= 0)
1793     return parser.emitError(parser.getNameLoc(), "invalid mask length");
1794   int64_t v1Rank = v1Type.getRank();
1795   SmallVector<int64_t, 4> shape;
1796   shape.reserve(v1Rank);
1797   shape.push_back(maskLength);
1798   for (int64_t r = 1; r < v1Rank; ++r)
1799     shape.push_back(v1Type.getDimSize(r));
1800   VectorType resType = VectorType::get(shape, v1Type.getElementType());
1801   parser.addTypeToList(resType, result.types);
1802   return success();
1803 }
1804 
1805 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1806   Attribute lhs = operands.front(), rhs = operands.back();
1807   if (!lhs || !rhs)
1808     return {};
1809 
1810   auto lhsType = lhs.getType().cast<VectorType>();
1811   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1812   // manipulation.
1813   if (lhsType.getRank() != 1)
1814     return {};
1815   int64_t lhsSize = lhsType.getDimSize(0);
1816 
1817   SmallVector<Attribute> results;
1818   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1819   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1820   for (const auto &index : this->mask().getAsValueRange<IntegerAttr>()) {
1821     int64_t i = index.getZExtValue();
1822     if (i >= lhsSize) {
1823       results.push_back(rhsElements[i - lhsSize]);
1824     } else {
1825       results.push_back(lhsElements[i]);
1826     }
1827   }
1828 
1829   return DenseElementsAttr::get(getVectorType(), results);
1830 }
1831 
1832 //===----------------------------------------------------------------------===//
1833 // InsertElementOp
1834 //===----------------------------------------------------------------------===//
1835 
1836 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1837                             Value source, Value dest) {
1838   result.addOperands({source, dest});
1839   result.addTypes(dest.getType());
1840 }
1841 
1842 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1843                             Value source, Value dest, Value position) {
1844   result.addOperands({source, dest, position});
1845   result.addTypes(dest.getType());
1846 }
1847 
1848 LogicalResult InsertElementOp::verify() {
1849   auto dstVectorType = getDestVectorType();
1850   if (dstVectorType.getRank() == 0) {
1851     if (position())
1852       return emitOpError("expected position to be empty with 0-D vector");
1853     return success();
1854   }
1855   if (dstVectorType.getRank() != 1)
1856     return emitOpError("unexpected >1 vector rank");
1857   if (!position())
1858     return emitOpError("expected position for 1-D vector");
1859   return success();
1860 }
1861 
1862 //===----------------------------------------------------------------------===//
1863 // InsertOp
1864 //===----------------------------------------------------------------------===//
1865 
1866 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1867                      Value dest, ArrayRef<int64_t> position) {
1868   result.addOperands({source, dest});
1869   auto positionAttr = getVectorSubscriptAttr(builder, position);
1870   result.addTypes(dest.getType());
1871   result.addAttribute(getPositionAttrName(), positionAttr);
1872 }
1873 
1874 // Convenience builder which assumes the values are constant indices.
1875 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1876                      Value dest, ValueRange position) {
1877   SmallVector<int64_t, 4> positionConstants =
1878       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1879         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1880       }));
1881   build(builder, result, source, dest, positionConstants);
1882 }
1883 
1884 LogicalResult InsertOp::verify() {
1885   auto positionAttr = position().getValue();
1886   auto destVectorType = getDestVectorType();
1887   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1888     return emitOpError(
1889         "expected position attribute of rank smaller than dest vector rank");
1890   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1891   if (srcVectorType &&
1892       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1893        static_cast<unsigned>(destVectorType.getRank())))
1894     return emitOpError("expected position attribute rank + source rank to "
1895                           "match dest vector rank");
1896   if (!srcVectorType &&
1897       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
1898     return emitOpError(
1899         "expected position attribute rank to match the dest vector rank");
1900   for (const auto &en : llvm::enumerate(positionAttr)) {
1901     auto attr = en.value().dyn_cast<IntegerAttr>();
1902     if (!attr || attr.getInt() < 0 ||
1903         attr.getInt() >= destVectorType.getDimSize(en.index()))
1904       return emitOpError("expected position attribute #")
1905              << (en.index() + 1)
1906              << " to be a non-negative integer smaller than the corresponding "
1907                 "dest vector dimension";
1908   }
1909   return success();
1910 }
1911 
1912 namespace {
1913 
1914 // If insertOp is only inserting unit dimensions it can be transformed to a
1915 // broadcast.
1916 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
1917 public:
1918   using OpRewritePattern<InsertOp>::OpRewritePattern;
1919 
1920   LogicalResult matchAndRewrite(InsertOp insertOp,
1921                                 PatternRewriter &rewriter) const override {
1922     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
1923     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
1924                            srcVecType.getNumElements())
1925       return failure();
1926     rewriter.replaceOpWithNewOp<BroadcastOp>(
1927         insertOp, insertOp.getDestVectorType(), insertOp.source());
1928     return success();
1929   }
1930 };
1931 
1932 } // namespace
1933 
1934 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
1935                                            MLIRContext *context) {
1936   results.add<InsertToBroadcast, BroadcastFolder>(context);
1937 }
1938 
1939 // Eliminates insert operations that produce values identical to their source
1940 // value. This happens when the source and destination vectors have identical
1941 // sizes.
1942 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
1943   if (position().empty())
1944     return source();
1945   return {};
1946 }
1947 
1948 //===----------------------------------------------------------------------===//
1949 // InsertMapOp
1950 //===----------------------------------------------------------------------===//
1951 
1952 void InsertMapOp::build(OpBuilder &builder, OperationState &result,
1953                         Value vector, Value dest, ValueRange ids) {
1954   InsertMapOp::build(builder, result, dest.getType(), vector, dest, ids);
1955 }
1956 
1957 LogicalResult InsertMapOp::verify() {
1958   if (getSourceVectorType().getRank() != getResultType().getRank())
1959     return emitOpError("expected source and destination vectors of same rank");
1960   unsigned numId = 0;
1961   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
1962     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
1963         0)
1964       return emitOpError(
1965           "destination vector size must be a multiple of source vector size");
1966     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
1967       numId++;
1968   }
1969   if (numId != ids().size())
1970     return emitOpError("expected number of ids must match the number of "
1971                        "dimensions distributed");
1972   return success();
1973 }
1974 
1975 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
1976 
1977 //===----------------------------------------------------------------------===//
1978 // InsertStridedSliceOp
1979 //===----------------------------------------------------------------------===//
1980 
1981 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
1982                                  Value source, Value dest,
1983                                  ArrayRef<int64_t> offsets,
1984                                  ArrayRef<int64_t> strides) {
1985   result.addOperands({source, dest});
1986   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
1987   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
1988   result.addTypes(dest.getType());
1989   result.addAttribute(getOffsetsAttrName(), offsetsAttr);
1990   result.addAttribute(getStridesAttrName(), stridesAttr);
1991 }
1992 
1993 // TODO: Should be moved to Tablegen Confined attributes.
1994 template <typename OpType>
1995 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
1996                                                         ArrayAttr arrayAttr,
1997                                                         ArrayRef<int64_t> shape,
1998                                                         StringRef attrName) {
1999   if (arrayAttr.size() > shape.size())
2000     return op.emitOpError("expected ")
2001            << attrName << " attribute of rank smaller than vector rank";
2002   return success();
2003 }
2004 
2005 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2006 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2007 // Otherwise, the admissible interval is [min, max].
2008 template <typename OpType>
2009 static LogicalResult
2010 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
2011                                   int64_t max, StringRef attrName,
2012                                   bool halfOpen = true) {
2013   for (auto attr : arrayAttr) {
2014     auto val = attr.cast<IntegerAttr>().getInt();
2015     auto upper = max;
2016     if (!halfOpen)
2017       upper += 1;
2018     if (val < min || val >= upper)
2019       return op.emitOpError("expected ") << attrName << " to be confined to ["
2020                                          << min << ", " << upper << ")";
2021   }
2022   return success();
2023 }
2024 
2025 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2026 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2027 // Otherwise, the admissible interval is [min, max].
2028 template <typename OpType>
2029 static LogicalResult
2030 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
2031                                   ArrayRef<int64_t> shape, StringRef attrName,
2032                                   bool halfOpen = true, int64_t min = 0) {
2033   assert(arrayAttr.size() <= shape.size());
2034   unsigned index = 0;
2035   for (auto it : llvm::zip(arrayAttr, shape)) {
2036     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
2037     auto max = std::get<1>(it);
2038     if (!halfOpen)
2039       max += 1;
2040     if (val < min || val >= max)
2041       return op.emitOpError("expected ")
2042              << attrName << " dimension " << index << " to be confined to ["
2043              << min << ", " << max << ")";
2044     ++index;
2045   }
2046   return success();
2047 }
2048 
2049 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
2050 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2051 // Otherwise, the admissible interval is [min, max].
2052 template <typename OpType>
2053 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2054     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2055     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2056     bool halfOpen = true, int64_t min = 1) {
2057   assert(arrayAttr1.size() <= shape.size());
2058   assert(arrayAttr2.size() <= shape.size());
2059   unsigned index = 0;
2060   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2061     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2062     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2063     auto max = std::get<2>(it);
2064     if (!halfOpen)
2065       max += 1;
2066     if (val1 + val2 < 0 || val1 + val2 >= max)
2067       return op.emitOpError("expected sum(")
2068              << attrName1 << ", " << attrName2 << ") dimension " << index
2069              << " to be confined to [" << min << ", " << max << ")";
2070     ++index;
2071   }
2072   return success();
2073 }
2074 
2075 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2076                                   MLIRContext *context) {
2077   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2078     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2079   });
2080   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2081 }
2082 
2083 LogicalResult InsertStridedSliceOp::verify() {
2084   auto sourceVectorType = getSourceVectorType();
2085   auto destVectorType = getDestVectorType();
2086   auto offsets = offsetsAttr();
2087   auto strides = stridesAttr();
2088   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2089     return emitOpError(
2090         "expected offsets of same size as destination vector rank");
2091   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2092     return emitOpError("expected strides of same size as source vector rank");
2093   if (sourceVectorType.getRank() > destVectorType.getRank())
2094     return emitOpError(
2095         "expected source rank to be smaller than destination rank");
2096 
2097   auto sourceShape = sourceVectorType.getShape();
2098   auto destShape = destVectorType.getShape();
2099   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2100       destShape.size() - sourceShape.size(), 0);
2101   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2102   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2103   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2104   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2105                                                offName)) ||
2106       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2107                                                stridesName,
2108                                                /*halfOpen=*/false)) ||
2109       failed(isSumOfIntegerArrayAttrConfinedToShape(
2110           *this, offsets,
2111           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2112           offName, "source vector shape",
2113           /*halfOpen=*/false, /*min=*/1)))
2114     return failure();
2115 
2116   return success();
2117 }
2118 
2119 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2120   if (getSourceVectorType() == getDestVectorType())
2121     return source();
2122   return {};
2123 }
2124 
2125 //===----------------------------------------------------------------------===//
2126 // OuterProductOp
2127 //===----------------------------------------------------------------------===//
2128 
2129 /// Build an op without mask, use the type of `acc` as the return type.
2130 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2131                            Value lhs, Value rhs, Value acc) {
2132   result.addOperands({lhs, rhs, acc});
2133   result.addTypes(acc.getType());
2134 }
2135 
2136 void OuterProductOp::print(OpAsmPrinter &p) {
2137   p << " " << lhs() << ", " << rhs();
2138   if (!acc().empty()) {
2139     p << ", " << acc();
2140     p.printOptionalAttrDict((*this)->getAttrs());
2141   }
2142   p << " : " << lhs().getType() << ", " << rhs().getType();
2143 }
2144 
2145 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2146   SmallVector<OpAsmParser::OperandType, 3> operandsInfo;
2147   Type tLHS, tRHS;
2148   if (parser.parseOperandList(operandsInfo) ||
2149       parser.parseOptionalAttrDict(result.attributes) ||
2150       parser.parseColonType(tLHS) || parser.parseComma() ||
2151       parser.parseType(tRHS))
2152     return failure();
2153   if (operandsInfo.size() < 2)
2154     return parser.emitError(parser.getNameLoc(),
2155                             "expected at least 2 operands");
2156   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2157   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2158   if (!vLHS)
2159     return parser.emitError(parser.getNameLoc(),
2160                             "expected vector type for operand #1");
2161   VectorType resType =
2162       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2163                              vLHS.getElementType())
2164            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2165 
2166   if (!result.attributes.get(OuterProductOp::getKindAttrName())) {
2167     result.attributes.append(
2168         OuterProductOp::getKindAttrName(),
2169         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2170                                result.getContext()));
2171   }
2172 
2173   return failure(
2174       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2175       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2176       (operandsInfo.size() > 2 &&
2177        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2178       parser.addTypeToList(resType, result.types));
2179 }
2180 
2181 LogicalResult OuterProductOp::verify() {
2182   Type tRHS = getOperandTypeRHS();
2183   VectorType vLHS = getOperandVectorTypeLHS(),
2184              vRHS = tRHS.dyn_cast<VectorType>(),
2185              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2186 
2187   if (vLHS.getRank() != 1)
2188     return emitOpError("expected 1-d vector for operand #1");
2189 
2190   if (vRHS) {
2191     // Proper OUTER operation.
2192     if (vRHS.getRank() != 1)
2193       return emitOpError("expected 1-d vector for operand #2");
2194     if (vRES.getRank() != 2)
2195       return emitOpError("expected 2-d vector result");
2196     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2197       return emitOpError("expected #1 operand dim to match result dim #1");
2198     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2199       return emitOpError("expected #2 operand dim to match result dim #2");
2200   } else {
2201     // An AXPY operation.
2202     if (vRES.getRank() != 1)
2203       return emitOpError("expected 1-d vector result");
2204     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2205       return emitOpError("expected #1 operand dim to match result dim #1");
2206   }
2207 
2208   if (vACC && vACC != vRES)
2209     return emitOpError("expected operand #3 of same type as result type");
2210 
2211   // Verify supported combining kind.
2212   if (!isSupportedCombiningKind(kind(), vRES.getElementType()))
2213     return emitOpError("unsupported outerproduct type");
2214 
2215   return success();
2216 }
2217 
2218 //===----------------------------------------------------------------------===//
2219 // ReshapeOp
2220 //===----------------------------------------------------------------------===//
2221 
2222 LogicalResult ReshapeOp::verify() {
2223   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2224   auto inputVectorType = getInputVectorType();
2225   auto outputVectorType = getOutputVectorType();
2226   int64_t inputShapeRank = getNumInputShapeSizes();
2227   int64_t outputShapeRank = getNumOutputShapeSizes();
2228   SmallVector<int64_t, 4> fixedVectorSizes;
2229   getFixedVectorSizes(fixedVectorSizes);
2230   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2231 
2232   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2233     return emitError("invalid input shape for vector type ")
2234            << inputVectorType;
2235 
2236   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2237     return emitError("invalid output shape for vector type ")
2238            << outputVectorType;
2239 
2240   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2241   // suffix.
2242   unsigned inputVectorRank = inputVectorType.getRank();
2243   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2244     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2245     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2246       return emitError("fixed vector size must match input vector for dim ")
2247              << i;
2248   }
2249 
2250   unsigned outputVectorRank = outputVectorType.getRank();
2251   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2252     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2253     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2254       return emitError("fixed vector size must match output vector for dim ")
2255              << i;
2256   }
2257 
2258   // If all shape operands are produced by constant ops, verify that product
2259   // of dimensions for input/output shape match.
2260   auto isDefByConstant = [](Value operand) {
2261     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2262   };
2263   if (llvm::all_of(input_shape(), isDefByConstant) &&
2264       llvm::all_of(output_shape(), isDefByConstant)) {
2265     int64_t numInputElements = 1;
2266     for (auto operand : input_shape())
2267       numInputElements *=
2268           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2269     int64_t numOutputElements = 1;
2270     for (auto operand : output_shape())
2271       numOutputElements *=
2272           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2273     if (numInputElements != numOutputElements)
2274       return emitError("product of input and output shape sizes must match");
2275   }
2276   return success();
2277 }
2278 
2279 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2280   populateFromInt64AttrArray(fixed_vector_sizes(), results);
2281 }
2282 
2283 //===----------------------------------------------------------------------===//
2284 // ExtractStridedSliceOp
2285 //===----------------------------------------------------------------------===//
2286 
2287 // Inference works as follows:
2288 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2289 //   2. Add sizes from 'vectorType' for remaining dims.
2290 static Type inferStridedSliceOpResultType(VectorType vectorType,
2291                                           ArrayAttr offsets, ArrayAttr sizes,
2292                                           ArrayAttr strides) {
2293   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2294   SmallVector<int64_t, 4> shape;
2295   shape.reserve(vectorType.getRank());
2296   unsigned idx = 0;
2297   for (unsigned e = offsets.size(); idx < e; ++idx)
2298     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2299   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2300     shape.push_back(vectorType.getShape()[idx]);
2301 
2302   return VectorType::get(shape, vectorType.getElementType());
2303 }
2304 
2305 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2306                                   Value source, ArrayRef<int64_t> offsets,
2307                                   ArrayRef<int64_t> sizes,
2308                                   ArrayRef<int64_t> strides) {
2309   result.addOperands(source);
2310   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2311   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2312   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2313   result.addTypes(
2314       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2315                                     offsetsAttr, sizesAttr, stridesAttr));
2316   result.addAttribute(getOffsetsAttrName(), offsetsAttr);
2317   result.addAttribute(getSizesAttrName(), sizesAttr);
2318   result.addAttribute(getStridesAttrName(), stridesAttr);
2319 }
2320 
2321 LogicalResult ExtractStridedSliceOp::verify() {
2322   auto type = getVectorType();
2323   auto offsets = offsetsAttr();
2324   auto sizes = sizesAttr();
2325   auto strides = stridesAttr();
2326   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2327     return emitOpError("expected offsets, sizes and strides attributes of same size");
2328 
2329   auto shape = type.getShape();
2330   auto offName = getOffsetsAttrName();
2331   auto sizesName = getSizesAttrName();
2332   auto stridesName = getStridesAttrName();
2333   if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2334       failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2335       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2336                                                 stridesName)) ||
2337       failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2338       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2339                                                /*halfOpen=*/false,
2340                                                /*min=*/1)) ||
2341       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName,
2342                                                /*halfOpen=*/false)) ||
2343       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape,
2344                                                     offName, sizesName,
2345                                                     /*halfOpen=*/false)))
2346     return failure();
2347 
2348   auto resultType =
2349       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2350   if (getResult().getType() != resultType)
2351     return emitOpError("expected result type to be ") << resultType;
2352 
2353   return success();
2354 }
2355 
2356 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2357 // to use the source of the InsertStrided ops if we can detect that the
2358 // extracted vector is a subset of one of the vector inserted.
2359 static LogicalResult
2360 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2361   // Helper to extract integer out of ArrayAttr.
2362   auto getElement = [](ArrayAttr array, int idx) {
2363     return array[idx].cast<IntegerAttr>().getInt();
2364   };
2365   ArrayAttr extractOffsets = op.offsets();
2366   ArrayAttr extractStrides = op.strides();
2367   ArrayAttr extractSizes = op.sizes();
2368   auto insertOp = op.vector().getDefiningOp<InsertStridedSliceOp>();
2369   while (insertOp) {
2370     if (op.getVectorType().getRank() !=
2371         insertOp.getSourceVectorType().getRank())
2372       return failure();
2373     ArrayAttr insertOffsets = insertOp.offsets();
2374     ArrayAttr insertStrides = insertOp.strides();
2375     // If the rank of extract is greater than the rank of insert, we are likely
2376     // extracting a partial chunk of the vector inserted.
2377     if (extractOffsets.size() > insertOffsets.size())
2378       return failure();
2379     bool patialoverlap = false;
2380     bool disjoint = false;
2381     SmallVector<int64_t, 4> offsetDiffs;
2382     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2383       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2384         return failure();
2385       int64_t start = getElement(insertOffsets, dim);
2386       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2387       int64_t offset = getElement(extractOffsets, dim);
2388       int64_t size = getElement(extractSizes, dim);
2389       // Check if the start of the extract offset is in the interval inserted.
2390       if (start <= offset && offset < end) {
2391         // If the extract interval overlaps but is not fully included we may
2392         // have a partial overlap that will prevent any folding.
2393         if (offset + size > end)
2394           patialoverlap = true;
2395         offsetDiffs.push_back(offset - start);
2396         continue;
2397       }
2398       disjoint = true;
2399       break;
2400     }
2401     // The extract element chunk is a subset of the insert element.
2402     if (!disjoint && !patialoverlap) {
2403       op.setOperand(insertOp.source());
2404       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2405       OpBuilder b(op.getContext());
2406       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrName(),
2407                   b.getI64ArrayAttr(offsetDiffs));
2408       return success();
2409     }
2410     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2411     // in the insert chain.
2412     if (disjoint)
2413       insertOp = insertOp.dest().getDefiningOp<InsertStridedSliceOp>();
2414     else {
2415       // The extracted vector partially overlap the inserted vector, we cannot
2416       // fold.
2417       return failure();
2418     }
2419   }
2420   return failure();
2421 }
2422 
2423 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2424   if (getVectorType() == getResult().getType())
2425     return vector();
2426   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2427     return getResult();
2428   return {};
2429 }
2430 
2431 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2432   populateFromInt64AttrArray(offsets(), results);
2433 }
2434 
2435 namespace {
2436 
2437 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2438 // ConstantMaskOp.
2439 class StridedSliceConstantMaskFolder final
2440     : public OpRewritePattern<ExtractStridedSliceOp> {
2441 public:
2442   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2443 
2444   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2445                                 PatternRewriter &rewriter) const override {
2446     // Return if 'extractStridedSliceOp' operand is not defined by a
2447     // ConstantMaskOp.
2448     auto *defOp = extractStridedSliceOp.vector().getDefiningOp();
2449     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2450     if (!constantMaskOp)
2451       return failure();
2452     // Return if 'extractStridedSliceOp' has non-unit strides.
2453     if (extractStridedSliceOp.hasNonUnitStrides())
2454       return failure();
2455     // Gather constant mask dimension sizes.
2456     SmallVector<int64_t, 4> maskDimSizes;
2457     populateFromInt64AttrArray(constantMaskOp.mask_dim_sizes(), maskDimSizes);
2458     // Gather strided slice offsets and sizes.
2459     SmallVector<int64_t, 4> sliceOffsets;
2460     populateFromInt64AttrArray(extractStridedSliceOp.offsets(), sliceOffsets);
2461     SmallVector<int64_t, 4> sliceSizes;
2462     populateFromInt64AttrArray(extractStridedSliceOp.sizes(), sliceSizes);
2463 
2464     // Compute slice of vector mask region.
2465     SmallVector<int64_t, 4> sliceMaskDimSizes;
2466     assert(sliceOffsets.size() == maskDimSizes.size());
2467     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2468       int64_t maskDimSize = std::get<0>(it);
2469       int64_t sliceOffset = std::get<1>(it);
2470       int64_t sliceSize = std::get<2>(it);
2471       int64_t sliceMaskDimSize = std::max(
2472           static_cast<int64_t>(0),
2473           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2474       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2475     }
2476     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2477     // region is a conjunction of mask dim intervals).
2478     if (llvm::is_contained(sliceMaskDimSizes, 0))
2479       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2480 
2481     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2482     // region.
2483     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2484         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2485         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2486     return success();
2487   }
2488 };
2489 
2490 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2491 class StridedSliceConstantFolder final
2492     : public OpRewritePattern<ExtractStridedSliceOp> {
2493 public:
2494   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2495 
2496   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2497                                 PatternRewriter &rewriter) const override {
2498     // Return if 'extractStridedSliceOp' operand is not defined by a
2499     // ConstantOp.
2500     auto constantOp =
2501         extractStridedSliceOp.vector().getDefiningOp<arith::ConstantOp>();
2502     if (!constantOp)
2503       return failure();
2504     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2505     if (!dense)
2506       return failure();
2507     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2508                                           dense.getSplatValue<Attribute>());
2509     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2510                                                    newAttr);
2511     return success();
2512   }
2513 };
2514 
2515 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2516 // BroadcastOp(ExtractStrideSliceOp).
2517 class StridedSliceBroadcast final
2518     : public OpRewritePattern<ExtractStridedSliceOp> {
2519 public:
2520   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2521 
2522   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2523                                 PatternRewriter &rewriter) const override {
2524     auto broadcast = op.vector().getDefiningOp<BroadcastOp>();
2525     if (!broadcast)
2526       return failure();
2527     auto srcVecType = broadcast.source().getType().dyn_cast<VectorType>();
2528     unsigned srcRrank = srcVecType ? srcVecType.getRank() : 0;
2529     auto dstVecType = op.getType().cast<VectorType>();
2530     unsigned dstRank = dstVecType.getRank();
2531     unsigned rankDiff = dstRank - srcRrank;
2532     // Check if the most inner dimensions of the source of the broadcast are the
2533     // same as the destination of the extract. If this is the case we can just
2534     // use a broadcast as the original dimensions are untouched.
2535     bool lowerDimMatch = true;
2536     for (unsigned i = 0; i < srcRrank; i++) {
2537       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2538         lowerDimMatch = false;
2539         break;
2540       }
2541     }
2542     Value source = broadcast.source();
2543     if (!lowerDimMatch) {
2544       // The inner dimensions don't match, it means we need to extract from the
2545       // source of the orignal broadcast and then broadcast the extracted value.
2546       source = rewriter.create<ExtractStridedSliceOp>(
2547           op->getLoc(), source,
2548           getI64SubArray(op.offsets(), /* dropFront=*/rankDiff),
2549           getI64SubArray(op.sizes(), /* dropFront=*/rankDiff),
2550           getI64SubArray(op.strides(), /* dropFront=*/rankDiff));
2551     }
2552     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2553     return success();
2554   }
2555 };
2556 
2557 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2558 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2559 public:
2560   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2561 
2562   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2563                                 PatternRewriter &rewriter) const override {
2564     auto splat = op.vector().getDefiningOp<SplatOp>();
2565     if (!splat)
2566       return failure();
2567     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.input());
2568     return success();
2569   }
2570 };
2571 
2572 } // namespace
2573 
2574 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2575     RewritePatternSet &results, MLIRContext *context) {
2576   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2577   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2578   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2579               StridedSliceBroadcast, StridedSliceSplat>(context);
2580 }
2581 
2582 //===----------------------------------------------------------------------===//
2583 // TransferReadOp
2584 //===----------------------------------------------------------------------===//
2585 
2586 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2587 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2588                            VectorType vectorType, Value source,
2589                            ValueRange indices, AffineMapAttr permutationMapAttr,
2590                            /*optional*/ ArrayAttr inBoundsAttr) {
2591   Type elemType = source.getType().cast<ShapedType>().getElementType();
2592   Value padding = builder.create<arith::ConstantOp>(
2593       result.location, elemType, builder.getZeroAttr(elemType));
2594   build(builder, result, vectorType, source, indices, permutationMapAttr,
2595         padding, /*mask=*/Value(), inBoundsAttr);
2596 }
2597 
2598 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2599 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2600                            VectorType vectorType, Value source,
2601                            ValueRange indices, AffineMap permutationMap,
2602                            Optional<ArrayRef<bool>> inBounds) {
2603   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2604   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2605                           ? builder.getBoolArrayAttr(inBounds.getValue())
2606                           : ArrayAttr();
2607   build(builder, result, vectorType, source, indices, permutationMapAttr,
2608         inBoundsAttr);
2609 }
2610 
2611 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2612 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2613                            VectorType vectorType, Value source,
2614                            ValueRange indices, Value padding,
2615                            Optional<ArrayRef<bool>> inBounds) {
2616   AffineMap permutationMap = getTransferMinorIdentityMap(
2617       source.getType().cast<ShapedType>(), vectorType);
2618   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2619   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2620                           ? builder.getBoolArrayAttr(inBounds.getValue())
2621                           : ArrayAttr();
2622   build(builder, result, vectorType, source, indices, permutationMapAttr,
2623         padding,
2624         /*mask=*/Value(), inBoundsAttr);
2625 }
2626 
2627 /// 4. Builder that sets padding to zero and permutation map to
2628 /// 'getMinorIdentityMap'.
2629 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2630                            VectorType vectorType, Value source,
2631                            ValueRange indices,
2632                            Optional<ArrayRef<bool>> inBounds) {
2633   Type elemType = source.getType().cast<ShapedType>().getElementType();
2634   Value padding = builder.create<arith::ConstantOp>(
2635       result.location, elemType, builder.getZeroAttr(elemType));
2636   build(builder, result, vectorType, source, indices, padding, inBounds);
2637 }
2638 
2639 template <typename EmitFun>
2640 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2641                                           EmitFun emitOpError) {
2642   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2643   for (auto expr : permutationMap.getResults()) {
2644     auto dim = expr.dyn_cast<AffineDimExpr>();
2645     auto zero = expr.dyn_cast<AffineConstantExpr>();
2646     if (zero) {
2647       if (zero.getValue() != 0) {
2648         return emitOpError(
2649             "requires a projected permutation_map (at most one dim or the zero "
2650             "constant can appear in each result)");
2651       }
2652       continue;
2653     }
2654     if (!dim) {
2655       return emitOpError("requires a projected permutation_map (at most one "
2656                          "dim or the zero constant can appear in each result)");
2657     }
2658     if (seen[dim.getPosition()]) {
2659       return emitOpError(
2660           "requires a permutation_map that is a permutation (found one dim "
2661           "used more than once)");
2662     }
2663     seen[dim.getPosition()] = true;
2664   }
2665   return success();
2666 }
2667 
2668 static LogicalResult
2669 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2670                  VectorType vectorType, VectorType maskType,
2671                  AffineMap permutationMap, ArrayAttr inBounds) {
2672   if (op->hasAttr("masked")) {
2673     return op->emitOpError("masked attribute has been removed. "
2674                            "Use in_bounds instead.");
2675   }
2676 
2677   if (!shapedType.isa<MemRefType, RankedTensorType>())
2678     return op->emitOpError(
2679         "requires source to be a memref or ranked tensor type");
2680 
2681   auto elementType = shapedType.getElementType();
2682   DataLayout dataLayout = DataLayout::closest(op);
2683   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2684     // Memref or tensor has vector element type.
2685     unsigned sourceVecSize =
2686         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2687         vectorElementType.getShape().back();
2688     unsigned resultVecSize =
2689         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2690         vectorType.getShape().back();
2691     if (resultVecSize % sourceVecSize != 0)
2692       return op->emitOpError(
2693           "requires the bitwidth of the minor 1-D vector to be an integral "
2694           "multiple of the bitwidth of the minor 1-D vector of the source");
2695 
2696     unsigned sourceVecEltRank = vectorElementType.getRank();
2697     unsigned resultVecRank = vectorType.getRank();
2698     if (sourceVecEltRank > resultVecRank)
2699       return op->emitOpError(
2700           "requires source vector element and vector result ranks to match.");
2701     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2702     // Check that permutation map results match 'rankOffset' of vector type.
2703     if (permutationMap.getNumResults() != rankOffset)
2704       return op->emitOpError("requires a permutation_map with result dims of "
2705                              "the same rank as the vector type");
2706 
2707     if (maskType)
2708       return op->emitOpError("does not support masks with vector element type");
2709   } else {
2710     // Memref or tensor has scalar element type.
2711     unsigned minorSize =
2712         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2713     unsigned resultVecSize =
2714         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2715     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2716       return op->emitOpError(
2717           "requires the bitwidth of the minor 1-D vector to be an integral "
2718           "multiple of the bitwidth of the source element type");
2719 
2720     // Check that permutation map results match rank of vector type.
2721     if (permutationMap.getNumResults() != vectorType.getRank())
2722       return op->emitOpError("requires a permutation_map with result dims of "
2723                              "the same rank as the vector type");
2724 
2725     VectorType expectedMaskType =
2726         vector::detail::transferMaskType(vectorType, permutationMap);
2727     if (maskType && expectedMaskType != maskType)
2728       return op->emitOpError("expects mask type consistent with permutation "
2729                              "map: ")
2730              << maskType;
2731   }
2732 
2733   if (permutationMap.getNumSymbols() != 0)
2734     return op->emitOpError("requires permutation_map without symbols");
2735 
2736   if (permutationMap.getNumInputs() != shapedType.getRank())
2737     return op->emitOpError("requires a permutation_map with input dims of the "
2738                            "same rank as the source type");
2739 
2740   if (inBounds) {
2741     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2742       return op->emitOpError("expects the optional in_bounds attr of same rank "
2743                              "as permutation_map results: ")
2744              << AffineMapAttr::get(permutationMap)
2745              << " vs inBounds of size: " << inBounds.size();
2746     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2747       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2748           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2749         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2750   }
2751 
2752   return success();
2753 }
2754 
2755 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2756   SmallVector<StringRef, 3> elidedAttrs;
2757   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2758   if (op.permutation_map().isMinorIdentity())
2759     elidedAttrs.push_back(op.getPermutationMapAttrName());
2760   bool elideInBounds = true;
2761   if (auto inBounds = op.in_bounds()) {
2762     for (auto attr : *inBounds) {
2763       if (attr.template cast<BoolAttr>().getValue()) {
2764         elideInBounds = false;
2765         break;
2766       }
2767     }
2768   }
2769   if (elideInBounds)
2770     elidedAttrs.push_back(op.getInBoundsAttrName());
2771   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2772 }
2773 
2774 void TransferReadOp::print(OpAsmPrinter &p) {
2775   p << " " << source() << "[" << indices() << "], " << padding();
2776   if (mask())
2777     p << ", " << mask();
2778   printTransferAttrs(p, *this);
2779   p << " : " << getShapedType() << ", " << getVectorType();
2780 }
2781 
2782 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2783   auto &builder = parser.getBuilder();
2784   SMLoc typesLoc;
2785   OpAsmParser::OperandType sourceInfo;
2786   SmallVector<OpAsmParser::OperandType, 8> indexInfo;
2787   OpAsmParser::OperandType paddingInfo;
2788   SmallVector<Type, 2> types;
2789   OpAsmParser::OperandType maskInfo;
2790   // Parsing with support for paddingValue.
2791   if (parser.parseOperand(sourceInfo) ||
2792       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2793       parser.parseComma() || parser.parseOperand(paddingInfo))
2794     return failure();
2795   ParseResult hasMask = parser.parseOptionalComma();
2796   if (hasMask.succeeded()) {
2797     parser.parseOperand(maskInfo);
2798   }
2799   if (parser.parseOptionalAttrDict(result.attributes) ||
2800       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2801     return failure();
2802   if (types.size() != 2)
2803     return parser.emitError(typesLoc, "requires two types");
2804   auto indexType = builder.getIndexType();
2805   auto shapedType = types[0].dyn_cast<ShapedType>();
2806   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2807     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2808   VectorType vectorType = types[1].dyn_cast<VectorType>();
2809   if (!vectorType)
2810     return parser.emitError(typesLoc, "requires vector type");
2811   auto permutationAttrName = TransferReadOp::getPermutationMapAttrName();
2812   Attribute mapAttr = result.attributes.get(permutationAttrName);
2813   if (!mapAttr) {
2814     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
2815     // Update `mapAttr` that is used later to determine mask type.
2816     mapAttr = AffineMapAttr::get(permMap);
2817     result.attributes.set(permutationAttrName, mapAttr);
2818   }
2819   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
2820       parser.resolveOperands(indexInfo, indexType, result.operands) ||
2821       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
2822                             result.operands))
2823     return failure();
2824   if (hasMask.succeeded()) {
2825     if (shapedType.getElementType().dyn_cast<VectorType>())
2826       return parser.emitError(
2827           maskInfo.location, "does not support masks with vector element type");
2828     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
2829     // Instead of adding the mask type as an op type, compute it based on the
2830     // vector type and the permutation map (to keep the type signature small).
2831     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
2832     if (parser.resolveOperand(maskInfo, maskType, result.operands))
2833       return failure();
2834   }
2835   result.addAttribute(
2836       TransferReadOp::getOperandSegmentSizeAttr(),
2837       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
2838                                 static_cast<int32_t>(hasMask.succeeded())}));
2839   return parser.addTypeToList(vectorType, result.types);
2840 }
2841 
2842 LogicalResult TransferReadOp::verify() {
2843   // Consistency of elemental types in source and vector.
2844   ShapedType shapedType = getShapedType();
2845   VectorType vectorType = getVectorType();
2846   VectorType maskType = getMaskType();
2847   auto paddingType = padding().getType();
2848   auto permutationMap = permutation_map();
2849   auto sourceElementType = shapedType.getElementType();
2850 
2851   if (static_cast<int64_t>(indices().size()) != shapedType.getRank())
2852     return emitOpError("requires ") << shapedType.getRank() << " indices";
2853 
2854   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
2855                               shapedType, vectorType, maskType, permutationMap,
2856                               in_bounds() ? *in_bounds() : ArrayAttr())))
2857     return failure();
2858 
2859   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
2860     // Source has vector element type.
2861     // Check that 'sourceVectorElementType' and 'paddingType' types match.
2862     if (sourceVectorElementType != paddingType)
2863       return emitOpError(
2864           "requires source element type and padding type to match.");
2865 
2866   } else {
2867     // Check that 'paddingType' is valid to store in a vector type.
2868     if (!VectorType::isValidElementType(paddingType))
2869       return emitOpError("requires valid padding vector elemental type");
2870 
2871     // Check that padding type and vector element types match.
2872     if (paddingType != sourceElementType)
2873       return emitOpError(
2874           "requires formal padding and source of the same elemental type");
2875   }
2876 
2877   return verifyPermutationMap(permutationMap,
2878                               [&](Twine t) { return emitOpError(t); });
2879 }
2880 
2881 /// This is a common class used for patterns of the form
2882 /// ```
2883 ///    someop(memrefcast) -> someop
2884 /// ```
2885 /// It folds the source of the memref.cast into the root operation directly.
2886 static LogicalResult foldMemRefCast(Operation *op) {
2887   bool folded = false;
2888   for (OpOperand &operand : op->getOpOperands()) {
2889     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
2890     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
2891       operand.set(castOp.getOperand());
2892       folded = true;
2893     }
2894   }
2895   return success(folded);
2896 }
2897 
2898 static LogicalResult foldTensorCast(Operation *op) {
2899   bool folded = false;
2900   for (OpOperand &operand : op->getOpOperands()) {
2901     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
2902     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
2903       operand.set(castOp.getOperand());
2904       folded = true;
2905     }
2906   }
2907   return success(folded);
2908 }
2909 
2910 template <typename TransferOp>
2911 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
2912   // TODO: support more aggressive createOrFold on:
2913   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
2914   if (op.getShapedType().isDynamicDim(indicesIdx))
2915     return false;
2916   Value index = op.indices()[indicesIdx];
2917   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
2918   if (!cstOp)
2919     return false;
2920 
2921   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
2922   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
2923 
2924   return cstOp.value() + vectorSize <= sourceSize;
2925 }
2926 
2927 template <typename TransferOp>
2928 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
2929   // TODO: support 0-d corner case.
2930   // TODO: Be less conservative.
2931   if (op.getTransferRank() == 0)
2932     return failure();
2933   AffineMap permutationMap = op.permutation_map();
2934   bool changed = false;
2935   SmallVector<bool, 4> newInBounds;
2936   newInBounds.reserve(op.getTransferRank());
2937   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
2938     // Already marked as in-bounds, nothing to see here.
2939     if (op.isDimInBounds(i)) {
2940       newInBounds.push_back(true);
2941       continue;
2942     }
2943     // Currently out-of-bounds, check whether we can statically determine it is
2944     // inBounds.
2945     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
2946     assert(dimExpr && "Broadcast dims must be in-bounds");
2947     auto inBounds =
2948         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
2949     newInBounds.push_back(inBounds);
2950     // We commit the pattern if it is "more inbounds".
2951     changed |= inBounds;
2952   }
2953   if (!changed)
2954     return failure();
2955   // OpBuilder is only used as a helper to build an I64ArrayAttr.
2956   OpBuilder b(op.getContext());
2957   op->setAttr(TransferOp::getInBoundsAttrName(),
2958               b.getBoolArrayAttr(newInBounds));
2959   return success();
2960 }
2961 
2962 ///  ```
2963 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
2964 ///    : vector<1x4xf32>, tensor<4x4xf32>
2965 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
2966 ///    : tensor<4x4xf32>, vector<1x4xf32>
2967 ///  ```
2968 ///  -> Folds into
2969 ///  ```
2970 ///  %v0
2971 ///  ```
2972 static Value foldRAW(TransferReadOp readOp) {
2973   if (!readOp.getShapedType().isa<RankedTensorType>())
2974     return {};
2975   auto defWrite = readOp.source().getDefiningOp<vector::TransferWriteOp>();
2976   while (defWrite) {
2977     if (checkSameValueRAW(defWrite, readOp))
2978       return defWrite.vector();
2979     if (!isDisjointTransferIndices(
2980             cast<VectorTransferOpInterface>(defWrite.getOperation()),
2981             cast<VectorTransferOpInterface>(readOp.getOperation())))
2982       break;
2983     defWrite = defWrite.source().getDefiningOp<vector::TransferWriteOp>();
2984   }
2985   return {};
2986 }
2987 
2988 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
2989   if (Value vec = foldRAW(*this))
2990     return vec;
2991   /// transfer_read(memrefcast) -> transfer_read
2992   if (succeeded(foldTransferInBoundsAttribute(*this)))
2993     return getResult();
2994   if (succeeded(foldMemRefCast(*this)))
2995     return getResult();
2996   if (succeeded(foldTensorCast(*this)))
2997     return getResult();
2998   return OpFoldResult();
2999 }
3000 
3001 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
3002   return llvm::to_vector<4>(getVectorType().getShape());
3003 }
3004 
3005 void TransferReadOp::getEffects(
3006     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3007         &effects) {
3008   if (getShapedType().isa<MemRefType>())
3009     effects.emplace_back(MemoryEffects::Read::get(), source(),
3010                          SideEffects::DefaultResource::get());
3011 }
3012 
3013 namespace {
3014 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
3015 ///
3016 /// ```
3017 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
3018 ///     : tensor<?x?xf32> to tensor<?x?xf32>
3019 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
3020 ///     : tensor<?x?xf32>, vector<4x5xf32>
3021 /// ```
3022 /// is rewritten to:
3023 /// ```
3024 /// %p0 = arith.addi %a, %e : index
3025 /// %p1 = arith.addi %b, %f : index
3026 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
3027 ///     : tensor<?x?xf32>, vector<4x5xf32>
3028 /// ```
3029 struct FoldExtractSliceIntoTransferRead
3030     : public OpRewritePattern<TransferReadOp> {
3031 public:
3032   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
3033 
3034   LogicalResult matchAndRewrite(TransferReadOp xferOp,
3035                                 PatternRewriter &rewriter) const override {
3036     // TODO: support 0-d corner case.
3037     if (xferOp.getTransferRank() == 0)
3038       return failure();
3039     if (xferOp.hasOutOfBoundsDim())
3040       return failure();
3041     if (!xferOp.permutation_map().isIdentity())
3042       return failure();
3043     if (xferOp.mask())
3044       return failure();
3045     auto extractOp = xferOp.source().getDefiningOp<tensor::ExtractSliceOp>();
3046     if (!extractOp)
3047       return failure();
3048     if (!extractOp.hasUnitStride())
3049       return failure();
3050 
3051     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3052     // dims are exactly the leading dims. I.e. the following is illegal:
3053     // ```
3054     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3055     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3056     //    %1 = vector.transfer_read %0[0,0], %cst :
3057     //      tensor<2x4xf32>, vector<2x4xf32>
3058     // ```
3059     //
3060     // Cannot fold into:
3061     // ```
3062     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3063     //      tensor<2x1x4xf32>, vector<2x4xf32>
3064     // ```
3065     // For this, check the trailing `vectorRank` dims of the extract_slice
3066     // result tensor match the trailing dims of the inferred result tensor.
3067     int64_t rankReduced =
3068         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3069     int64_t vectorRank = xferOp.getVectorType().getRank();
3070     RankedTensorType inferredDestTensorType =
3071         tensor::ExtractSliceOp::inferResultType(
3072             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3073             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3074     auto actualDestTensorShape = extractOp.getType().getShape();
3075     if (rankReduced > 0 &&
3076         actualDestTensorShape.take_back(vectorRank) !=
3077             inferredDestTensorType.getShape().take_back(vectorRank))
3078       return failure();
3079 
3080     SmallVector<Value> newIndices;
3081     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3082     // indices first.
3083     for (int64_t i = 0; i < rankReduced; ++i) {
3084       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3085       newIndices.push_back(getValueOrCreateConstantIndexOp(
3086           rewriter, extractOp.getLoc(), offset));
3087     }
3088     for (const auto &it : llvm::enumerate(xferOp.indices())) {
3089       OpFoldResult offset =
3090           extractOp.getMixedOffsets()[it.index() + rankReduced];
3091       newIndices.push_back(rewriter.create<arith::AddIOp>(
3092           xferOp->getLoc(), it.value(),
3093           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3094                                           offset)));
3095     }
3096     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3097     rewriter.replaceOpWithNewOp<TransferReadOp>(
3098         xferOp, xferOp.getVectorType(), extractOp.source(), newIndices,
3099         xferOp.padding(), ArrayRef<bool>{inBounds});
3100 
3101     return success();
3102   }
3103 };
3104 } // namespace
3105 
3106 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3107                                                  MLIRContext *context) {
3108   results.add<FoldExtractSliceIntoTransferRead>(context);
3109 }
3110 
3111 //===----------------------------------------------------------------------===//
3112 // TransferWriteOp
3113 //===----------------------------------------------------------------------===//
3114 
3115 /// 1. Builder with type inference.
3116 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3117                             Value vector, Value dest, ValueRange indices,
3118                             AffineMapAttr permutationMapAttr,
3119                             /*optional*/ Value mask,
3120                             /*optional*/ ArrayAttr inBoundsAttr) {
3121   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3122   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3123         mask, inBoundsAttr);
3124 }
3125 
3126 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3127 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3128                             Value vector, Value dest, ValueRange indices,
3129                             AffineMapAttr permutationMapAttr,
3130                             /*optional*/ ArrayAttr inBoundsAttr) {
3131   build(builder, result, vector, dest, indices, permutationMapAttr,
3132         /*mask=*/Value(), inBoundsAttr);
3133 }
3134 
3135 /// 3. Builder with type inference that sets an empty mask (variant without
3136 /// attrs)
3137 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3138                             Value vector, Value dest, ValueRange indices,
3139                             AffineMap permutationMap,
3140                             Optional<ArrayRef<bool>> inBounds) {
3141   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3142   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
3143                           ? builder.getBoolArrayAttr(inBounds.getValue())
3144                           : ArrayAttr();
3145   build(builder, result, vector, dest, indices, permutationMapAttr,
3146         /*mask=*/Value(), inBoundsAttr);
3147 }
3148 
3149 /// 4. Builder with type inference that sets an empty mask and sets permutation
3150 ///    map to 'getMinorIdentityMap'.
3151 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3152                             Value vector, Value dest, ValueRange indices,
3153                             Optional<ArrayRef<bool>> inBounds) {
3154   auto vectorType = vector.getType().cast<VectorType>();
3155   AffineMap permutationMap = getTransferMinorIdentityMap(
3156       dest.getType().cast<ShapedType>(), vectorType);
3157   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3158 }
3159 
3160 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3161                                    OperationState &result) {
3162   auto &builder = parser.getBuilder();
3163   SMLoc typesLoc;
3164   OpAsmParser::OperandType vectorInfo, sourceInfo;
3165   SmallVector<OpAsmParser::OperandType, 8> indexInfo;
3166   SmallVector<Type, 2> types;
3167   OpAsmParser::OperandType maskInfo;
3168   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3169       parser.parseOperand(sourceInfo) ||
3170       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3171     return failure();
3172   ParseResult hasMask = parser.parseOptionalComma();
3173   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3174     return failure();
3175   if (parser.parseOptionalAttrDict(result.attributes) ||
3176       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3177     return failure();
3178   if (types.size() != 2)
3179     return parser.emitError(typesLoc, "requires two types");
3180   auto indexType = builder.getIndexType();
3181   VectorType vectorType = types[0].dyn_cast<VectorType>();
3182   if (!vectorType)
3183     return parser.emitError(typesLoc, "requires vector type");
3184   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3185   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3186     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3187   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrName();
3188   auto attr = result.attributes.get(permutationAttrName);
3189   if (!attr) {
3190     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3191     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3192   }
3193   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3194       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3195       parser.resolveOperands(indexInfo, indexType, result.operands))
3196     return failure();
3197   if (hasMask.succeeded()) {
3198     if (shapedType.getElementType().dyn_cast<VectorType>())
3199       return parser.emitError(
3200           maskInfo.location, "does not support masks with vector element type");
3201     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3202     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3203       return failure();
3204   }
3205   result.addAttribute(
3206       TransferWriteOp::getOperandSegmentSizeAttr(),
3207       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3208                                 static_cast<int32_t>(hasMask.succeeded())}));
3209   return failure(shapedType.isa<RankedTensorType>() &&
3210                  parser.addTypeToList(shapedType, result.types));
3211 }
3212 
3213 void TransferWriteOp::print(OpAsmPrinter &p) {
3214   p << " " << vector() << ", " << source() << "[" << indices() << "]";
3215   if (mask())
3216     p << ", " << mask();
3217   printTransferAttrs(p, *this);
3218   p << " : " << getVectorType() << ", " << getShapedType();
3219 }
3220 
3221 LogicalResult TransferWriteOp::verify() {
3222   // Consistency of elemental types in shape and vector.
3223   ShapedType shapedType = getShapedType();
3224   VectorType vectorType = getVectorType();
3225   VectorType maskType = getMaskType();
3226   auto permutationMap = permutation_map();
3227 
3228   if (llvm::size(indices()) != shapedType.getRank())
3229     return emitOpError("requires ") << shapedType.getRank() << " indices";
3230 
3231   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3232   // as the semantics is unclear. This can be revisited later if necessary.
3233   if (hasBroadcastDim())
3234     return emitOpError("should not have broadcast dimensions");
3235 
3236   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3237                               shapedType, vectorType, maskType, permutationMap,
3238                               in_bounds() ? *in_bounds() : ArrayAttr())))
3239     return failure();
3240 
3241   return verifyPermutationMap(permutationMap,
3242                               [&](Twine t) { return emitOpError(t); });
3243 }
3244 
3245 /// Fold:
3246 /// ```
3247 ///    %t1 = ...
3248 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3249 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3250 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3251 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3252 /// ```
3253 ///
3254 /// into:
3255 ///
3256 /// ```
3257 ///    %t0
3258 /// ```
3259 ///
3260 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3261 /// block argument or has side effects.
3262 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3263                                        ArrayRef<Attribute>,
3264                                        SmallVectorImpl<OpFoldResult> &results) {
3265   // TODO: support 0-d corner case.
3266   if (write.getTransferRank() == 0)
3267     return failure();
3268   auto rankedTensorType = write.source().getType().dyn_cast<RankedTensorType>();
3269   // If not operating on tensors, bail.
3270   if (!rankedTensorType)
3271     return failure();
3272   // If no read, bail.
3273   auto read = write.vector().getDefiningOp<vector::TransferReadOp>();
3274   if (!read)
3275     return failure();
3276   // TODO: support 0-d corner case.
3277   if (read.getTransferRank() == 0)
3278     return failure();
3279   // For now, only accept minor identity. Future: composition is minor identity.
3280   if (!read.permutation_map().isMinorIdentity() ||
3281       !write.permutation_map().isMinorIdentity())
3282     return failure();
3283   // Bail on mismatching ranks.
3284   if (read.getTransferRank() != write.getTransferRank())
3285     return failure();
3286   // Bail on potential out-of-bounds accesses.
3287   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3288     return failure();
3289   // Tensor types must be the same.
3290   if (read.source().getType() != rankedTensorType)
3291     return failure();
3292   // Vector types must be the same.
3293   if (read.getVectorType() != write.getVectorType())
3294     return failure();
3295   // Vector and Tensor shapes must match.
3296   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3297     return failure();
3298   // If any index is nonzero.
3299   auto isNotConstantZero = [](Value v) {
3300     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3301     return !cstOp || cstOp.value() != 0;
3302   };
3303   if (llvm::any_of(read.indices(), isNotConstantZero) ||
3304       llvm::any_of(write.indices(), isNotConstantZero))
3305     return failure();
3306   // Success.
3307   results.push_back(read.source());
3308   return success();
3309 }
3310 
3311 static bool checkSameValueWAR(vector::TransferReadOp read,
3312                               vector::TransferWriteOp write) {
3313   return read.source() == write.source() && read.indices() == write.indices() &&
3314          read.permutation_map() == write.permutation_map() &&
3315          read.getVectorType() == write.getVectorType() && !read.mask() &&
3316          !write.mask();
3317 }
3318 /// Fold transfer_write write after read:
3319 /// ```
3320 ///    %t0 = ...
3321 ///    %v = vector.transfer_read %t0[%c0...] :
3322 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3323 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3324 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3325 /// ```
3326 ///
3327 /// into:
3328 ///
3329 /// ```
3330 ///    %t0
3331 /// ```
3332 static LogicalResult foldWAR(TransferWriteOp write,
3333                              SmallVectorImpl<OpFoldResult> &results) {
3334   if (!write.source().getType().isa<RankedTensorType>())
3335     return failure();
3336   auto read = write.vector().getDefiningOp<vector::TransferReadOp>();
3337   if (!read)
3338     return failure();
3339 
3340   if (!checkSameValueWAR(read, write))
3341     return failure();
3342   results.push_back(read.source());
3343   return success();
3344 }
3345 
3346 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3347                                     SmallVectorImpl<OpFoldResult> &results) {
3348   if (succeeded(foldReadInitWrite(*this, operands, results)))
3349     return success();
3350   if (succeeded(foldWAR(*this, results)))
3351     return success();
3352   if (succeeded(foldTransferInBoundsAttribute(*this)))
3353     return success();
3354   return foldMemRefCast(*this);
3355 }
3356 
3357 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3358   return llvm::to_vector<4>(getVectorType().getShape());
3359 }
3360 
3361 void TransferWriteOp::getEffects(
3362     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3363         &effects) {
3364   if (getShapedType().isa<MemRefType>())
3365     effects.emplace_back(MemoryEffects::Write::get(), source(),
3366                          SideEffects::DefaultResource::get());
3367 }
3368 
3369 namespace {
3370 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3371 /// DCE
3372 /// ```
3373 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3374 ///    : vector<1x4xf32>, tensor<4x4xf32>
3375 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3376 ///    : vector<1x4xf32>, tensor<4x4xf32>
3377 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3378 ///    : vector<1x4xf32>, tensor<4x4xf32>
3379 /// ```
3380 ///
3381 /// into:
3382 ///
3383 /// ```
3384 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3385 ///    : vector<1x4xf32>, tensor<4x4xf32>
3386 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3387 ///    : vector<1x4xf32>, tensor<4x4xf32>
3388 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3389 ///    : vector<1x4xf32>, tensor<4x4xf32>
3390 /// ```
3391 ///
3392 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3393 /// any other uses.
3394 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3395 public:
3396   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3397   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3398                                 PatternRewriter &rewriter) const override {
3399     if (!writeOp.getShapedType().isa<RankedTensorType>())
3400       return failure();
3401     vector::TransferWriteOp writeToModify = writeOp;
3402 
3403     auto defWrite = writeOp.source().getDefiningOp<vector::TransferWriteOp>();
3404     while (defWrite) {
3405       if (checkSameValueWAW(writeOp, defWrite)) {
3406         writeToModify.sourceMutable().assign(defWrite.source());
3407         return success();
3408       }
3409       if (!isDisjointTransferIndices(
3410               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3411               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3412         break;
3413       // If the previous write op doesn't have any other use we an safely look
3414       // at the previous store to see if it can be removed.
3415       if (!defWrite->hasOneUse())
3416         break;
3417       writeToModify = defWrite;
3418       defWrite = defWrite.source().getDefiningOp<vector::TransferWriteOp>();
3419     }
3420     return failure();
3421   }
3422 };
3423 
3424 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3425 /// could directly write to the insert_slice's destination. E.g.:
3426 ///
3427 /// ```
3428 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3429 ///     : vector<4x5xf32>, tensor<4x5xf32>
3430 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3431 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3432 /// ```
3433 /// is rewritten to:
3434 /// ```
3435 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3436 ///     : vector<4x5xf32>, tensor<?x?xf32>
3437 /// ```
3438 struct FoldInsertSliceIntoTransferWrite
3439     : public OpRewritePattern<tensor::InsertSliceOp> {
3440 public:
3441   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3442 
3443   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3444                                 PatternRewriter &rewriter) const override {
3445     if (!insertOp.hasUnitStride())
3446       return failure();
3447 
3448     auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>();
3449     if (!xferOp)
3450       return failure();
3451     // TODO: support 0-d corner case.
3452     if (xferOp.getTransferRank() == 0)
3453       return failure();
3454 
3455     if (xferOp.hasOutOfBoundsDim())
3456       return failure();
3457     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3458       return failure();
3459     if (xferOp.mask())
3460       return failure();
3461     // Fold only if the TransferWriteOp completely overwrites the `source` with
3462     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3463     // content is the data of the vector.
3464     if (!llvm::equal(xferOp.getVectorType().getShape(),
3465                      xferOp.getShapedType().getShape()))
3466       return failure();
3467     if (!xferOp.permutation_map().isIdentity())
3468       return failure();
3469 
3470     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3471     // dims are exactly the leading dims. I.e. the following is illegal:
3472     // ```
3473     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3474     //      vector<2x4xf32>, tensor<2x4xf32>
3475     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3476     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3477     // ```
3478     //
3479     // Cannot fold into:
3480     // ```
3481     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3482     //      vector<2x4xf32>, tensor<2x1x4xf32>
3483     // ```
3484     // For this, check the trailing `vectorRank` dims of the insert_slice result
3485     // tensor match the trailing dims of the inferred result tensor.
3486     int64_t rankReduced =
3487         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3488     int64_t vectorRank = xferOp.getVectorType().getRank();
3489     RankedTensorType inferredSourceTensorType =
3490         tensor::ExtractSliceOp::inferResultType(
3491             insertOp.getType(), insertOp.getMixedOffsets(),
3492             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3493     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3494     if (rankReduced > 0 &&
3495         actualSourceTensorShape.take_back(vectorRank) !=
3496             inferredSourceTensorType.getShape().take_back(vectorRank))
3497       return failure();
3498 
3499     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3500         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3501     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3502     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.vector(),
3503                                                  insertOp.dest(), indices,
3504                                                  ArrayRef<bool>{inBounds});
3505     return success();
3506   }
3507 };
3508 } // namespace
3509 
3510 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3511                                                   MLIRContext *context) {
3512   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite>(context);
3513 }
3514 
3515 //===----------------------------------------------------------------------===//
3516 // LoadOp
3517 //===----------------------------------------------------------------------===//
3518 
3519 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3520                                                  MemRefType memRefTy) {
3521   if (!isLastMemrefDimUnitStride(memRefTy))
3522     return op->emitOpError("most minor memref dim must have unit stride");
3523   return success();
3524 }
3525 
3526 LogicalResult vector::LoadOp::verify() {
3527   VectorType resVecTy = getVectorType();
3528   MemRefType memRefTy = getMemRefType();
3529 
3530   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3531     return failure();
3532 
3533   // Checks for vector memrefs.
3534   Type memElemTy = memRefTy.getElementType();
3535   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3536     if (memVecTy != resVecTy)
3537       return emitOpError("base memref and result vector types should match");
3538     memElemTy = memVecTy.getElementType();
3539   }
3540 
3541   if (resVecTy.getElementType() != memElemTy)
3542     return emitOpError("base and result element types should match");
3543   if (llvm::size(indices()) != memRefTy.getRank())
3544     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3545   return success();
3546 }
3547 
3548 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3549   if (succeeded(foldMemRefCast(*this)))
3550     return getResult();
3551   return OpFoldResult();
3552 }
3553 
3554 //===----------------------------------------------------------------------===//
3555 // StoreOp
3556 //===----------------------------------------------------------------------===//
3557 
3558 LogicalResult vector::StoreOp::verify() {
3559   VectorType valueVecTy = getVectorType();
3560   MemRefType memRefTy = getMemRefType();
3561 
3562   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3563     return failure();
3564 
3565   // Checks for vector memrefs.
3566   Type memElemTy = memRefTy.getElementType();
3567   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3568     if (memVecTy != valueVecTy)
3569       return emitOpError(
3570           "base memref and valueToStore vector types should match");
3571     memElemTy = memVecTy.getElementType();
3572   }
3573 
3574   if (valueVecTy.getElementType() != memElemTy)
3575     return emitOpError("base and valueToStore element type should match");
3576   if (llvm::size(indices()) != memRefTy.getRank())
3577     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3578   return success();
3579 }
3580 
3581 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3582                             SmallVectorImpl<OpFoldResult> &results) {
3583   return foldMemRefCast(*this);
3584 }
3585 
3586 //===----------------------------------------------------------------------===//
3587 // MaskedLoadOp
3588 //===----------------------------------------------------------------------===//
3589 
3590 LogicalResult MaskedLoadOp::verify() {
3591   VectorType maskVType = getMaskVectorType();
3592   VectorType passVType = getPassThruVectorType();
3593   VectorType resVType = getVectorType();
3594   MemRefType memType = getMemRefType();
3595 
3596   if (resVType.getElementType() != memType.getElementType())
3597     return emitOpError("base and result element type should match");
3598   if (llvm::size(indices()) != memType.getRank())
3599     return emitOpError("requires ") << memType.getRank() << " indices";
3600   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3601     return emitOpError("expected result dim to match mask dim");
3602   if (resVType != passVType)
3603     return emitOpError("expected pass_thru of same type as result type");
3604   return success();
3605 }
3606 
3607 namespace {
3608 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3609 public:
3610   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3611   LogicalResult matchAndRewrite(MaskedLoadOp load,
3612                                 PatternRewriter &rewriter) const override {
3613     switch (get1DMaskFormat(load.mask())) {
3614     case MaskFormat::AllTrue:
3615       rewriter.replaceOpWithNewOp<vector::LoadOp>(load, load.getType(),
3616                                                   load.base(), load.indices());
3617       return success();
3618     case MaskFormat::AllFalse:
3619       rewriter.replaceOp(load, load.pass_thru());
3620       return success();
3621     case MaskFormat::Unknown:
3622       return failure();
3623     }
3624     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3625   }
3626 };
3627 } // namespace
3628 
3629 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3630                                                MLIRContext *context) {
3631   results.add<MaskedLoadFolder>(context);
3632 }
3633 
3634 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3635   if (succeeded(foldMemRefCast(*this)))
3636     return getResult();
3637   return OpFoldResult();
3638 }
3639 
3640 //===----------------------------------------------------------------------===//
3641 // MaskedStoreOp
3642 //===----------------------------------------------------------------------===//
3643 
3644 LogicalResult MaskedStoreOp::verify() {
3645   VectorType maskVType = getMaskVectorType();
3646   VectorType valueVType = getVectorType();
3647   MemRefType memType = getMemRefType();
3648 
3649   if (valueVType.getElementType() != memType.getElementType())
3650     return emitOpError("base and valueToStore element type should match");
3651   if (llvm::size(indices()) != memType.getRank())
3652     return emitOpError("requires ") << memType.getRank() << " indices";
3653   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3654     return emitOpError("expected valueToStore dim to match mask dim");
3655   return success();
3656 }
3657 
3658 namespace {
3659 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3660 public:
3661   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3662   LogicalResult matchAndRewrite(MaskedStoreOp store,
3663                                 PatternRewriter &rewriter) const override {
3664     switch (get1DMaskFormat(store.mask())) {
3665     case MaskFormat::AllTrue:
3666       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3667           store, store.valueToStore(), store.base(), store.indices());
3668       return success();
3669     case MaskFormat::AllFalse:
3670       rewriter.eraseOp(store);
3671       return success();
3672     case MaskFormat::Unknown:
3673       return failure();
3674     }
3675     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3676   }
3677 };
3678 } // namespace
3679 
3680 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3681                                                 MLIRContext *context) {
3682   results.add<MaskedStoreFolder>(context);
3683 }
3684 
3685 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3686                                   SmallVectorImpl<OpFoldResult> &results) {
3687   return foldMemRefCast(*this);
3688 }
3689 
3690 //===----------------------------------------------------------------------===//
3691 // GatherOp
3692 //===----------------------------------------------------------------------===//
3693 
3694 LogicalResult GatherOp::verify() {
3695   VectorType indVType = getIndexVectorType();
3696   VectorType maskVType = getMaskVectorType();
3697   VectorType resVType = getVectorType();
3698   MemRefType memType = getMemRefType();
3699 
3700   if (resVType.getElementType() != memType.getElementType())
3701     return emitOpError("base and result element type should match");
3702   if (llvm::size(indices()) != memType.getRank())
3703     return emitOpError("requires ") << memType.getRank() << " indices";
3704   if (resVType.getDimSize(0) != indVType.getDimSize(0))
3705     return emitOpError("expected result dim to match indices dim");
3706   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3707     return emitOpError("expected result dim to match mask dim");
3708   if (resVType != getPassThruVectorType())
3709     return emitOpError("expected pass_thru of same type as result type");
3710   return success();
3711 }
3712 
3713 namespace {
3714 class GatherFolder final : public OpRewritePattern<GatherOp> {
3715 public:
3716   using OpRewritePattern<GatherOp>::OpRewritePattern;
3717   LogicalResult matchAndRewrite(GatherOp gather,
3718                                 PatternRewriter &rewriter) const override {
3719     switch (get1DMaskFormat(gather.mask())) {
3720     case MaskFormat::AllTrue:
3721       return failure(); // no unmasked equivalent
3722     case MaskFormat::AllFalse:
3723       rewriter.replaceOp(gather, gather.pass_thru());
3724       return success();
3725     case MaskFormat::Unknown:
3726       return failure();
3727     }
3728     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
3729   }
3730 };
3731 } // namespace
3732 
3733 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
3734                                            MLIRContext *context) {
3735   results.add<GatherFolder>(context);
3736 }
3737 
3738 //===----------------------------------------------------------------------===//
3739 // ScatterOp
3740 //===----------------------------------------------------------------------===//
3741 
3742 LogicalResult ScatterOp::verify() {
3743   VectorType indVType = getIndexVectorType();
3744   VectorType maskVType = getMaskVectorType();
3745   VectorType valueVType = getVectorType();
3746   MemRefType memType = getMemRefType();
3747 
3748   if (valueVType.getElementType() != memType.getElementType())
3749     return emitOpError("base and valueToStore element type should match");
3750   if (llvm::size(indices()) != memType.getRank())
3751     return emitOpError("requires ") << memType.getRank() << " indices";
3752   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
3753     return emitOpError("expected valueToStore dim to match indices dim");
3754   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3755     return emitOpError("expected valueToStore dim to match mask dim");
3756   return success();
3757 }
3758 
3759 namespace {
3760 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
3761 public:
3762   using OpRewritePattern<ScatterOp>::OpRewritePattern;
3763   LogicalResult matchAndRewrite(ScatterOp scatter,
3764                                 PatternRewriter &rewriter) const override {
3765     switch (get1DMaskFormat(scatter.mask())) {
3766     case MaskFormat::AllTrue:
3767       return failure(); // no unmasked equivalent
3768     case MaskFormat::AllFalse:
3769       rewriter.eraseOp(scatter);
3770       return success();
3771     case MaskFormat::Unknown:
3772       return failure();
3773     }
3774     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
3775   }
3776 };
3777 } // namespace
3778 
3779 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
3780                                             MLIRContext *context) {
3781   results.add<ScatterFolder>(context);
3782 }
3783 
3784 //===----------------------------------------------------------------------===//
3785 // ExpandLoadOp
3786 //===----------------------------------------------------------------------===//
3787 
3788 LogicalResult ExpandLoadOp::verify() {
3789   VectorType maskVType = getMaskVectorType();
3790   VectorType passVType = getPassThruVectorType();
3791   VectorType resVType = getVectorType();
3792   MemRefType memType = getMemRefType();
3793 
3794   if (resVType.getElementType() != memType.getElementType())
3795     return emitOpError("base and result element type should match");
3796   if (llvm::size(indices()) != memType.getRank())
3797     return emitOpError("requires ") << memType.getRank() << " indices";
3798   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3799     return emitOpError("expected result dim to match mask dim");
3800   if (resVType != passVType)
3801     return emitOpError("expected pass_thru of same type as result type");
3802   return success();
3803 }
3804 
3805 namespace {
3806 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
3807 public:
3808   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
3809   LogicalResult matchAndRewrite(ExpandLoadOp expand,
3810                                 PatternRewriter &rewriter) const override {
3811     switch (get1DMaskFormat(expand.mask())) {
3812     case MaskFormat::AllTrue:
3813       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3814           expand, expand.getType(), expand.base(), expand.indices());
3815       return success();
3816     case MaskFormat::AllFalse:
3817       rewriter.replaceOp(expand, expand.pass_thru());
3818       return success();
3819     case MaskFormat::Unknown:
3820       return failure();
3821     }
3822     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
3823   }
3824 };
3825 } // namespace
3826 
3827 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3828                                                MLIRContext *context) {
3829   results.add<ExpandLoadFolder>(context);
3830 }
3831 
3832 //===----------------------------------------------------------------------===//
3833 // CompressStoreOp
3834 //===----------------------------------------------------------------------===//
3835 
3836 LogicalResult CompressStoreOp::verify() {
3837   VectorType maskVType = getMaskVectorType();
3838   VectorType valueVType = getVectorType();
3839   MemRefType memType = getMemRefType();
3840 
3841   if (valueVType.getElementType() != memType.getElementType())
3842     return emitOpError("base and valueToStore element type should match");
3843   if (llvm::size(indices()) != memType.getRank())
3844     return emitOpError("requires ") << memType.getRank() << " indices";
3845   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3846     return emitOpError("expected valueToStore dim to match mask dim");
3847   return success();
3848 }
3849 
3850 namespace {
3851 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
3852 public:
3853   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
3854   LogicalResult matchAndRewrite(CompressStoreOp compress,
3855                                 PatternRewriter &rewriter) const override {
3856     switch (get1DMaskFormat(compress.mask())) {
3857     case MaskFormat::AllTrue:
3858       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3859           compress, compress.valueToStore(), compress.base(),
3860           compress.indices());
3861       return success();
3862     case MaskFormat::AllFalse:
3863       rewriter.eraseOp(compress);
3864       return success();
3865     case MaskFormat::Unknown:
3866       return failure();
3867     }
3868     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
3869   }
3870 };
3871 } // namespace
3872 
3873 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3874                                                   MLIRContext *context) {
3875   results.add<CompressStoreFolder>(context);
3876 }
3877 
3878 //===----------------------------------------------------------------------===//
3879 // ShapeCastOp
3880 //===----------------------------------------------------------------------===//
3881 
3882 /// Returns true if each element of 'a' is equal to the product of a contiguous
3883 /// sequence of the elements of 'b'. Returns false otherwise.
3884 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
3885   unsigned rankA = a.size();
3886   unsigned rankB = b.size();
3887   assert(rankA < rankB);
3888 
3889   unsigned i = 0;
3890   unsigned j = 0;
3891   while (i < rankA && j < rankB) {
3892     int64_t dimA = a[i];
3893     int64_t dimB = 1;
3894     while (dimB < dimA && j < rankB)
3895       dimB *= b[j++];
3896     if (dimA != dimB)
3897       break;
3898     ++i;
3899 
3900     // Handle the case when trailing dimensions are of size 1.
3901     // Include them into the contiguous sequence.
3902     auto isOne = [](int64_t v) { return v == 1; };
3903     if (i < rankA && llvm::all_of(a.slice(i), isOne))
3904       i = rankA;
3905     if (j < rankB && llvm::all_of(b.slice(j), isOne))
3906       j = rankB;
3907   }
3908 
3909   return i == rankA && j == rankB;
3910 }
3911 
3912 static LogicalResult verifyVectorShapeCast(Operation *op,
3913                                            VectorType sourceVectorType,
3914                                            VectorType resultVectorType) {
3915   // Check that element type is the same.
3916   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
3917     return op->emitOpError("source/result vectors must have same element type");
3918   auto sourceShape = sourceVectorType.getShape();
3919   auto resultShape = resultVectorType.getShape();
3920 
3921   // Check that product of source dim sizes matches product of result dim sizes.
3922   int64_t sourceDimProduct = std::accumulate(
3923       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
3924   int64_t resultDimProduct = std::accumulate(
3925       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
3926   if (sourceDimProduct != resultDimProduct)
3927     return op->emitOpError("source/result number of elements must match");
3928 
3929   // Check that expanding/contracting rank cases.
3930   unsigned sourceRank = sourceVectorType.getRank();
3931   unsigned resultRank = resultVectorType.getRank();
3932   if (sourceRank < resultRank) {
3933     if (!isValidShapeCast(sourceShape, resultShape))
3934       return op->emitOpError("invalid shape cast");
3935   } else if (sourceRank > resultRank) {
3936     if (!isValidShapeCast(resultShape, sourceShape))
3937       return op->emitOpError("invalid shape cast");
3938   }
3939   return success();
3940 }
3941 
3942 LogicalResult ShapeCastOp::verify() {
3943   auto sourceVectorType = source().getType().dyn_cast_or_null<VectorType>();
3944   auto resultVectorType = result().getType().dyn_cast_or_null<VectorType>();
3945 
3946   // Check if source/result are of vector type.
3947   if (sourceVectorType && resultVectorType)
3948     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
3949 
3950   return success();
3951 }
3952 
3953 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
3954   // Nop shape cast.
3955   if (source().getType() == result().getType())
3956     return source();
3957 
3958   // Canceling shape casts.
3959   if (auto otherOp = source().getDefiningOp<ShapeCastOp>()) {
3960     if (result().getType() == otherOp.source().getType())
3961       return otherOp.source();
3962 
3963     // Only allows valid transitive folding.
3964     VectorType srcType = otherOp.source().getType().cast<VectorType>();
3965     VectorType resultType = getResult().getType().cast<VectorType>();
3966     if (srcType.getRank() < resultType.getRank()) {
3967       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
3968         return {};
3969     } else if (srcType.getRank() > resultType.getRank()) {
3970       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
3971         return {};
3972     } else {
3973       return {};
3974     }
3975 
3976     setOperand(otherOp.source());
3977     return getResult();
3978   }
3979   return {};
3980 }
3981 
3982 namespace {
3983 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
3984 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
3985 public:
3986   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
3987 
3988   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
3989                                 PatternRewriter &rewriter) const override {
3990     auto constantOp = shapeCastOp.source().getDefiningOp<arith::ConstantOp>();
3991     if (!constantOp)
3992       return failure();
3993     // Only handle splat for now.
3994     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
3995     if (!dense)
3996       return failure();
3997     auto newAttr =
3998         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
3999                                dense.getSplatValue<Attribute>());
4000     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
4001     return success();
4002   }
4003 };
4004 
4005 } // namespace
4006 
4007 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
4008                                               MLIRContext *context) {
4009   // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp.
4010   results.add<ShapeCastConstantFolder>(context);
4011 }
4012 
4013 //===----------------------------------------------------------------------===//
4014 // VectorBitCastOp
4015 //===----------------------------------------------------------------------===//
4016 
4017 LogicalResult BitCastOp::verify() {
4018   auto sourceVectorType = getSourceVectorType();
4019   auto resultVectorType = getResultVectorType();
4020 
4021   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
4022     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
4023       return emitOpError("dimension size mismatch at: ") << i;
4024   }
4025 
4026   DataLayout dataLayout = DataLayout::closest(*this);
4027   auto sourceElementBits =
4028       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
4029   auto resultElementBits =
4030       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
4031 
4032   if (sourceVectorType.getRank() == 0) {
4033     if (sourceElementBits != resultElementBits)
4034       return emitOpError("source/result bitwidth of the 0-D vector element "
4035                             "types must be equal");
4036   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
4037              resultElementBits * resultVectorType.getShape().back()) {
4038     return emitOpError(
4039         "source/result bitwidth of the minor 1-D vectors must be equal");
4040   }
4041 
4042   return success();
4043 }
4044 
4045 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
4046   // Nop cast.
4047   if (source().getType() == result().getType())
4048     return source();
4049 
4050   // Canceling bitcasts.
4051   if (auto otherOp = source().getDefiningOp<BitCastOp>())
4052     if (result().getType() == otherOp.source().getType())
4053       return otherOp.source();
4054 
4055   Attribute sourceConstant = operands.front();
4056   if (!sourceConstant)
4057     return {};
4058 
4059   Type srcElemType = getSourceVectorType().getElementType();
4060   Type dstElemType = getResultVectorType().getElementType();
4061 
4062   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4063     if (floatPack.isSplat()) {
4064       auto splat = floatPack.getSplatValue<FloatAttr>();
4065 
4066       // Casting fp16 into fp32.
4067       if (srcElemType.isF16() && dstElemType.isF32()) {
4068         uint32_t bits = static_cast<uint32_t>(
4069             splat.getValue().bitcastToAPInt().getZExtValue());
4070         // Duplicate the 16-bit pattern.
4071         bits = (bits << 16) | (bits & 0xffff);
4072         APInt intBits(32, bits);
4073         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4074         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4075       }
4076     }
4077   }
4078 
4079   return {};
4080 }
4081 
4082 //===----------------------------------------------------------------------===//
4083 // TypeCastOp
4084 //===----------------------------------------------------------------------===//
4085 
4086 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4087   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4088   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4089                               memRefType.getShape().end());
4090   if (vectorType)
4091     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4092   return res;
4093 }
4094 
4095 /// Build the canonical memRefType with a single vector.
4096 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4097 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4098                        Value source) {
4099   result.addOperands(source);
4100   MemRefType memRefType = source.getType().cast<MemRefType>();
4101   VectorType vectorType =
4102       VectorType::get(extractShape(memRefType),
4103                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4104   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4105                                   memRefType.getMemorySpace()));
4106 }
4107 
4108 LogicalResult TypeCastOp::verify() {
4109   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4110   if (!canonicalType.getLayout().isIdentity())
4111     return emitOpError("expects operand to be a memref with identity layout");
4112   if (!getResultMemRefType().getLayout().isIdentity())
4113     return emitOpError("expects result to be a memref with identity layout");
4114   if (getResultMemRefType().getMemorySpace() !=
4115       getMemRefType().getMemorySpace())
4116     return emitOpError("expects result in same memory space");
4117 
4118   auto sourceType = getMemRefType();
4119   auto resultType = getResultMemRefType();
4120   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4121       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4122     return emitOpError(
4123                "expects result and operand with same underlying scalar type: ")
4124            << resultType;
4125   if (extractShape(sourceType) != extractShape(resultType))
4126     return emitOpError(
4127                "expects concatenated result and operand shapes to be equal: ")
4128            << resultType;
4129   return success();
4130 }
4131 
4132 //===----------------------------------------------------------------------===//
4133 // TransposeOp
4134 //===----------------------------------------------------------------------===//
4135 
4136 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4137                                 Value vector, ArrayRef<int64_t> transp) {
4138   VectorType vt = vector.getType().cast<VectorType>();
4139   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4140   for (unsigned i = 0; i < transp.size(); ++i)
4141     transposedShape[i] = vt.getShape()[transp[i]];
4142 
4143   result.addOperands(vector);
4144   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4145   result.addAttribute(getTranspAttrName(), builder.getI64ArrayAttr(transp));
4146 }
4147 
4148 // Eliminates transpose operations, which produce values identical to their
4149 // input values. This happens when the dimensions of the input vector remain in
4150 // their original order after the transpose operation.
4151 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4152   SmallVector<int64_t, 4> transp;
4153   getTransp(transp);
4154 
4155   // Check if the permutation of the dimensions contains sequential values:
4156   // {0, 1, 2, ...}.
4157   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4158     if (transp[i] != i)
4159       return {};
4160   }
4161 
4162   return vector();
4163 }
4164 
4165 LogicalResult vector::TransposeOp::verify() {
4166   VectorType vectorType = getVectorType();
4167   VectorType resultType = getResultType();
4168   int64_t rank = resultType.getRank();
4169   if (vectorType.getRank() != rank)
4170     return emitOpError("vector result rank mismatch: ") << rank;
4171   // Verify transposition array.
4172   auto transpAttr = transp().getValue();
4173   int64_t size = transpAttr.size();
4174   if (rank != size)
4175     return emitOpError("transposition length mismatch: ") << size;
4176   SmallVector<bool, 8> seen(rank, false);
4177   for (const auto &ta : llvm::enumerate(transpAttr)) {
4178     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4179     if (i < 0 || i >= rank)
4180       return emitOpError("transposition index out of range: ") << i;
4181     if (seen[i])
4182       return emitOpError("duplicate position index: ") << i;
4183     seen[i] = true;
4184     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4185       return emitOpError("dimension size mismatch at: ") << i;
4186   }
4187   return success();
4188 }
4189 
4190 namespace {
4191 
4192 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4193 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4194 public:
4195   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4196 
4197   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4198                                 PatternRewriter &rewriter) const override {
4199     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4200     auto getPermutation = [](vector::TransposeOp transpose) {
4201       SmallVector<int64_t, 4> permutation;
4202       transpose.getTransp(permutation);
4203       return permutation;
4204     };
4205 
4206     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4207     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4208                                   ArrayRef<int64_t> permutation2) {
4209       SmallVector<int64_t, 4> result;
4210       for (auto index : permutation2)
4211         result.push_back(permutation1[index]);
4212       return result;
4213     };
4214 
4215     // Return if the input of 'transposeOp' is not defined by another transpose.
4216     vector::TransposeOp parentTransposeOp =
4217         transposeOp.vector().getDefiningOp<vector::TransposeOp>();
4218     if (!parentTransposeOp)
4219       return failure();
4220 
4221     SmallVector<int64_t, 4> permutation = composePermutations(
4222         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4223     // Replace 'transposeOp' with a new transpose operation.
4224     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4225         transposeOp, transposeOp.getResult().getType(),
4226         parentTransposeOp.vector(),
4227         vector::getVectorSubscriptAttr(rewriter, permutation));
4228     return success();
4229   }
4230 };
4231 
4232 } // namespace
4233 
4234 void vector::TransposeOp::getCanonicalizationPatterns(
4235     RewritePatternSet &results, MLIRContext *context) {
4236   results.add<TransposeFolder>(context);
4237 }
4238 
4239 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4240   populateFromInt64AttrArray(transp(), results);
4241 }
4242 
4243 //===----------------------------------------------------------------------===//
4244 // ConstantMaskOp
4245 //===----------------------------------------------------------------------===//
4246 
4247 LogicalResult ConstantMaskOp::verify() {
4248   auto resultType = getResult().getType().cast<VectorType>();
4249   // Check the corner case of 0-D vectors first.
4250   if (resultType.getRank() == 0) {
4251     if (mask_dim_sizes().size() != 1)
4252       return emitError("array attr must have length 1 for 0-D vectors");
4253     auto dim = mask_dim_sizes()[0].cast<IntegerAttr>().getInt();
4254     if (dim != 0 && dim != 1)
4255       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4256     return success();
4257   }
4258 
4259   // Verify that array attr size matches the rank of the vector result.
4260   if (static_cast<int64_t>(mask_dim_sizes().size()) != resultType.getRank())
4261     return emitOpError(
4262         "must specify array attr of size equal vector result rank");
4263   // Verify that each array attr element is in bounds of corresponding vector
4264   // result dimension size.
4265   auto resultShape = resultType.getShape();
4266   SmallVector<int64_t, 4> maskDimSizes;
4267   for (const auto &it : llvm::enumerate(mask_dim_sizes())) {
4268     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4269     if (attrValue < 0 || attrValue > resultShape[it.index()])
4270       return emitOpError(
4271           "array attr of size out of bounds of vector result dimension size");
4272     maskDimSizes.push_back(attrValue);
4273   }
4274   // Verify that if one mask dim size is zero, they all should be zero (because
4275   // the mask region is a conjunction of each mask dimension interval).
4276   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4277   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4278   if (anyZeros && !allZeros)
4279     return emitOpError("expected all mask dim sizes to be zeros, "
4280                        "as a result of conjunction with zero mask dim");
4281   return success();
4282 }
4283 
4284 //===----------------------------------------------------------------------===//
4285 // CreateMaskOp
4286 //===----------------------------------------------------------------------===//
4287 
4288 LogicalResult CreateMaskOp::verify() {
4289   auto vectorType = getResult().getType().cast<VectorType>();
4290   // Verify that an operand was specified for each result vector each dimension.
4291   if (vectorType.getRank() == 0) {
4292     if (getNumOperands() != 1)
4293       return emitOpError(
4294           "must specify exactly one operand for 0-D create_mask");
4295   } else if (getNumOperands() !=
4296              getResult().getType().cast<VectorType>().getRank()) {
4297     return emitOpError(
4298         "must specify an operand for each result vector dimension");
4299   }
4300   return success();
4301 }
4302 
4303 namespace {
4304 
4305 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4306 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4307 public:
4308   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4309 
4310   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4311                                 PatternRewriter &rewriter) const override {
4312     // Return if any of 'createMaskOp' operands are not defined by a constant.
4313     auto isNotDefByConstant = [](Value operand) {
4314       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4315     };
4316     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4317       return failure();
4318     // Gather constant mask dimension sizes.
4319     SmallVector<int64_t, 4> maskDimSizes;
4320     for (auto it : llvm::zip(createMaskOp.operands(),
4321                              createMaskOp.getType().getShape())) {
4322       auto *defOp = std::get<0>(it).getDefiningOp();
4323       int64_t maxDimSize = std::get<1>(it);
4324       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4325       dimSize = std::min(dimSize, maxDimSize);
4326       // If one of dim sizes is zero, set all dims to zero.
4327       if (dimSize <= 0) {
4328         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4329         break;
4330       }
4331       maskDimSizes.push_back(dimSize);
4332     }
4333     // Replace 'createMaskOp' with ConstantMaskOp.
4334     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4335         createMaskOp, createMaskOp.getResult().getType(),
4336         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4337     return success();
4338   }
4339 };
4340 
4341 } // namespace
4342 
4343 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4344                                                MLIRContext *context) {
4345   results.add<CreateMaskFolder>(context);
4346 }
4347 
4348 //===----------------------------------------------------------------------===//
4349 // ScanOp
4350 //===----------------------------------------------------------------------===//
4351 
4352 LogicalResult ScanOp::verify() {
4353   VectorType srcType = getSourceType();
4354   VectorType initialType = getInitialValueType();
4355   // Check reduction dimension < rank.
4356   int64_t srcRank = srcType.getRank();
4357   int64_t reductionDim = reduction_dim();
4358   if (reductionDim >= srcRank)
4359     return emitOpError("reduction dimension ")
4360            << reductionDim << " has to be less than " << srcRank;
4361 
4362   // Check that rank(initial_value) = rank(src) - 1.
4363   int64_t initialValueRank = initialType.getRank();
4364   if (initialValueRank != srcRank - 1)
4365     return emitOpError("initial value rank ")
4366            << initialValueRank << " has to be equal to " << srcRank - 1;
4367 
4368   // Check shapes of initial value and src.
4369   ArrayRef<int64_t> srcShape = srcType.getShape();
4370   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4371   SmallVector<int64_t> expectedShape;
4372   for (int i = 0; i < srcRank; i++) {
4373     if (i != reductionDim)
4374       expectedShape.push_back(srcShape[i]);
4375   }
4376   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4377                    [](std::tuple<int64_t, int64_t> s) {
4378                      return std::get<0>(s) != std::get<1>(s);
4379                    })) {
4380     return emitOpError("incompatible input/initial value shapes");
4381   }
4382 
4383   return success();
4384 }
4385 
4386 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4387     RewritePatternSet &patterns) {
4388   patterns
4389       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4390            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4391            StridedSliceConstantMaskFolder, TransposeFolder>(
4392           patterns.getContext());
4393 }
4394 
4395 //===----------------------------------------------------------------------===//
4396 // SplatOp
4397 //===----------------------------------------------------------------------===//
4398 
4399 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4400   auto constOperand = operands.front();
4401   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4402     return {};
4403 
4404   // SplatElementsAttr::get treats single value for second arg as being a splat.
4405   return SplatElementsAttr::get(getType(), {constOperand});
4406 }
4407 
4408 //===----------------------------------------------------------------------===//
4409 // TableGen'd op method definitions
4410 //===----------------------------------------------------------------------===//
4411 
4412 #define GET_OP_CLASSES
4413 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
4414