1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(*kind, parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.getSource().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return getSource(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = getDest().getType(); 401 if (!isSupportedCombiningKind(getKind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 404 << "'"; 405 406 return success(); 407 } 408 409 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 410 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 411 Type redType; 412 Type resType; 413 CombiningKindAttr kindAttr; 414 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 415 result.attributes) || 416 parser.parseComma() || parser.parseOperandList(operandsInfo) || 417 parser.parseColonType(redType) || 418 parser.parseKeywordType("into", resType) || 419 (!operandsInfo.empty() && 420 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 421 (operandsInfo.size() > 1 && 422 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 423 parser.addTypeToList(resType, result.types)) 424 return failure(); 425 if (operandsInfo.empty() || operandsInfo.size() > 2) 426 return parser.emitError(parser.getNameLoc(), 427 "unsupported number of operands"); 428 return success(); 429 } 430 431 void ReductionOp::print(OpAsmPrinter &p) { 432 p << " "; 433 getKindAttr().print(p); 434 p << ", " << getVector(); 435 if (getAcc()) 436 p << ", " << getAcc(); 437 p << " : " << getVector().getType() << " into " << getDest().getType(); 438 } 439 440 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 441 OpBuilder &builder, Location loc, 442 Value vector) { 443 switch (op) { 444 case arith::AtomicRMWKind::addf: 445 case arith::AtomicRMWKind::addi: 446 return builder.create<vector::ReductionOp>(vector.getLoc(), 447 CombiningKind::ADD, vector); 448 case arith::AtomicRMWKind::mulf: 449 case arith::AtomicRMWKind::muli: 450 return builder.create<vector::ReductionOp>(vector.getLoc(), 451 CombiningKind::MUL, vector); 452 case arith::AtomicRMWKind::minf: 453 return builder.create<vector::ReductionOp>(vector.getLoc(), 454 CombiningKind::MINF, vector); 455 case arith::AtomicRMWKind::mins: 456 return builder.create<vector::ReductionOp>(vector.getLoc(), 457 CombiningKind::MINSI, vector); 458 case arith::AtomicRMWKind::minu: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MINUI, vector); 461 case arith::AtomicRMWKind::maxf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MAXF, vector); 464 case arith::AtomicRMWKind::maxs: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MAXSI, vector); 467 case arith::AtomicRMWKind::maxu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MAXUI, vector); 470 case arith::AtomicRMWKind::andi: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::AND, vector); 473 case arith::AtomicRMWKind::ori: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::OR, vector); 476 // TODO: Add remaining reduction operations. 477 default: 478 (void)emitOptionalError(loc, "Reduction operation type not supported"); 479 break; 480 } 481 return nullptr; 482 } 483 484 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 485 return llvm::to_vector<4>(getVectorType().getShape()); 486 } 487 488 namespace { 489 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> { 490 using OpRewritePattern::OpRewritePattern; 491 492 LogicalResult matchAndRewrite(ReductionOp reductionOp, 493 PatternRewriter &rewriter) const override { 494 if (reductionOp.getVectorType().getDimSize(0) != 1) 495 return failure(); 496 497 Location loc = reductionOp.getLoc(); 498 Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(), 499 reductionOp.getVector(), 500 rewriter.getI64ArrayAttr(0)); 501 502 if (Value acc = reductionOp.getAcc()) { 503 assert(reductionOp.getType().isa<FloatType>()); 504 switch (reductionOp.getKind()) { 505 case CombiningKind::ADD: 506 result = rewriter.create<arith::AddFOp>(loc, result, acc); 507 break; 508 case CombiningKind::MUL: 509 result = rewriter.create<arith::MulFOp>(loc, result, acc); 510 break; 511 default: 512 assert(false && "invalid op!"); 513 } 514 } 515 516 rewriter.replaceOp(reductionOp, result); 517 return success(); 518 } 519 }; 520 } // namespace 521 522 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results, 523 MLIRContext *context) { 524 results.add<ElideSingleElementReduction>(context); 525 } 526 527 //===----------------------------------------------------------------------===// 528 // ContractionOp 529 //===----------------------------------------------------------------------===// 530 531 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 532 Value lhs, Value rhs, Value acc, 533 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 534 ArrayRef<StringRef> iteratorTypes) { 535 result.addOperands({lhs, rhs, acc}); 536 result.addTypes(acc.getType()); 537 result.addAttribute(::mlir::getIndexingMapsAttrName(), 538 builder.getAffineMapArrayAttr( 539 AffineMap::inferFromExprList(indexingExprs))); 540 result.addAttribute(::mlir::getIteratorTypesAttrName(), 541 builder.getStrArrayAttr(iteratorTypes)); 542 } 543 544 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 545 Value lhs, Value rhs, Value acc, 546 ArrayAttr indexingMaps, 547 ArrayAttr iteratorTypes) { 548 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 549 ContractionOp::getDefaultKind()); 550 } 551 552 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 553 Value lhs, Value rhs, Value acc, 554 ArrayAttr indexingMaps, 555 ArrayAttr iteratorTypes, CombiningKind kind) { 556 result.addOperands({lhs, rhs, acc}); 557 result.addTypes(acc.getType()); 558 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 559 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 560 result.addAttribute(ContractionOp::getKindAttrStrName(), 561 CombiningKindAttr::get(kind, builder.getContext())); 562 } 563 564 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 565 OpAsmParser::UnresolvedOperand lhsInfo; 566 OpAsmParser::UnresolvedOperand rhsInfo; 567 OpAsmParser::UnresolvedOperand accInfo; 568 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 569 SmallVector<Type, 2> types; 570 Type resultType; 571 auto loc = parser.getCurrentLocation(); 572 DictionaryAttr dictAttr; 573 // TODO: Unify linalg op attribute parsing. 574 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 575 parser.parseOperand(lhsInfo) || parser.parseComma() || 576 parser.parseOperand(rhsInfo) || parser.parseComma() || 577 parser.parseOperand(accInfo) || 578 parser.parseTrailingOperandList(masksInfo) || 579 parser.parseOptionalAttrDict(result.attributes) || 580 parser.parseColonTypeList(types) || 581 parser.parseKeywordType("into", resultType) || 582 parser.resolveOperand(lhsInfo, types[0], result.operands) || 583 parser.resolveOperand(rhsInfo, types[1], result.operands) || 584 parser.resolveOperand(accInfo, resultType, result.operands) || 585 parser.addTypeToList(resultType, result.types)) 586 return failure(); 587 result.attributes.assign(dictAttr.getValue().begin(), 588 dictAttr.getValue().end()); 589 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 590 result.addAttribute(ContractionOp::getKindAttrStrName(), 591 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 592 result.getContext())); 593 } 594 if (masksInfo.empty()) 595 return success(); 596 if (masksInfo.size() != 2) 597 return parser.emitError(parser.getNameLoc(), 598 "expected zero or exactly 2 vector mask operands"); 599 auto lhsType = types[0].cast<VectorType>(); 600 auto rhsType = types[1].cast<VectorType>(); 601 auto maskElementType = parser.getBuilder().getI1Type(); 602 std::array<Type, 2> maskTypes = { 603 VectorType::Builder(lhsType).setElementType(maskElementType), 604 VectorType::Builder(rhsType).setElementType(maskElementType)}; 605 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 606 return failure(); 607 return success(); 608 } 609 610 void ContractionOp::print(OpAsmPrinter &p) { 611 // TODO: Unify printing code with linalg ops. 612 auto attrNames = getTraitAttrNames(); 613 llvm::StringSet<> traitAttrsSet; 614 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 615 SmallVector<NamedAttribute, 8> attrs; 616 for (auto attr : (*this)->getAttrs()) 617 if (traitAttrsSet.count(attr.getName().strref()) > 0) 618 attrs.push_back(attr); 619 620 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 621 p << " " << dictAttr << " " << getLhs() << ", "; 622 p << getRhs() << ", " << getAcc(); 623 if (getMasks().size() == 2) 624 p << ", " << getMasks(); 625 626 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 627 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 628 << getResultType(); 629 } 630 631 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 632 const std::vector<std::pair<int64_t, int64_t>> &map) { 633 for (auto &dimPair : map) { 634 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 635 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 636 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 637 return false; 638 } 639 return true; 640 } 641 642 static LogicalResult verifyOutputShape( 643 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 644 Type resType, 645 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 646 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 647 DenseSet<int64_t> lhsContractingDimSet; 648 DenseSet<int64_t> rhsContractingDimSet; 649 for (auto &dimPair : contractingDimMap) { 650 lhsContractingDimSet.insert(dimPair.first); 651 rhsContractingDimSet.insert(dimPair.second); 652 } 653 DenseSet<int64_t> rhsBatchDimSet; 654 for (auto &dimPair : batchDimMap) 655 rhsBatchDimSet.insert(dimPair.second); 656 657 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 658 SmallVector<int64_t, 4> expectedResultDims; 659 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 660 if (lhsContractingDimSet.count(i) > 0) 661 continue; 662 expectedResultDims.push_back(lhsType.getDimSize(i)); 663 } 664 665 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 666 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 667 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 668 continue; 669 expectedResultDims.push_back(rhsType.getDimSize(i)); 670 } 671 672 // Verify 'expectedResultDims'. 673 if (expectedResultDims.empty()) { 674 // No batch or free dimension implies a scalar result. 675 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 676 return op.emitOpError("invalid accumulator/result vector shape"); 677 } else { 678 // At least one batch or free dimension implies a vector result. 679 auto resVectorType = resType.dyn_cast<VectorType>(); 680 auto accVectorType = accType.dyn_cast<VectorType>(); 681 if (!resVectorType || !accVectorType) 682 return op.emitOpError("invalid accumulator/result vector shape"); 683 684 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 685 // types fully define the result vector type. This assumes the affine maps 686 // are well-formed, which must have been verified already. 687 MLIRContext *ctx = op.getContext(); 688 AffineMap lhsMap = op.getIndexingMaps()[0]; 689 AffineMap rhsMap = op.getIndexingMaps()[1]; 690 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 691 for (auto pair : 692 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 693 VectorType v = pair.first; 694 auto map = pair.second; 695 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 696 unsigned pos = map.getDimPosition(idx); 697 if (!extents[pos]) 698 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 699 } 700 } 701 if (!llvm::all_of(extents, [](AffineExpr e) { return e; })) 702 return op.emitOpError("expected all input dimensions to be used by " 703 "either the LHS or the RHS"); 704 705 AffineMap resMap = op.getIndexingMaps()[2]; 706 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 707 /*symCount=*/0, extents, ctx); 708 // Compose the resMap with the extentsMap, which is a constant map. 709 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 710 assert(llvm::all_of( 711 expectedMap.getResults(), 712 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 713 "expected constant extent along all dimensions."); 714 // Extract the expected shape and build the type. 715 auto expectedShape = llvm::to_vector<4>( 716 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 717 return e.cast<AffineConstantExpr>().getValue(); 718 })); 719 auto expected = 720 VectorType::get(expectedShape, resVectorType.getElementType()); 721 if (resVectorType != expected || accVectorType != expected) 722 return op.emitOpError( 723 "invalid accumulator/result vector shape, expected: ") 724 << expected; 725 } 726 return success(); 727 } 728 729 LogicalResult ContractionOp::verify() { 730 auto lhsType = getLhsType(); 731 auto rhsType = getRhsType(); 732 auto accType = getAccType(); 733 auto resType = getResultType(); 734 735 // Verify that an indexing map was specified for each vector operand. 736 if (getIndexingMaps().size() != 3) 737 return emitOpError("expected an indexing map for each vector operand"); 738 739 // Verify that each index map has 'numIterators' inputs, no symbols, and 740 // that the number of map outputs equals the rank of its associated 741 // vector operand. 742 unsigned numIterators = getIteratorTypes().getValue().size(); 743 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 744 auto index = it.index(); 745 auto map = it.value(); 746 if (map.getNumSymbols() != 0) 747 return emitOpError("expected indexing map ") 748 << index << " to have no symbols"; 749 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 750 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 751 // Verify that the map has the right number of inputs, outputs, and indices. 752 // This also correctly accounts for (..) -> () for rank-0 results. 753 if (map.getNumDims() != numIterators) 754 return emitOpError("expected indexing map ") 755 << index << " to have " << numIterators << " number of inputs"; 756 if (map.getNumResults() != rank) 757 return emitOpError("expected indexing map ") 758 << index << " to have " << rank << " number of outputs"; 759 if (!map.isProjectedPermutation()) 760 return emitOpError("expected indexing map ") 761 << index << " to be a projected permutation of its inputs"; 762 } 763 764 auto contractingDimMap = getContractingDimMap(); 765 auto batchDimMap = getBatchDimMap(); 766 767 // Verify at least one contracting dimension pair was specified. 768 if (contractingDimMap.empty()) 769 return emitOpError("expected at least one contracting dimension pair"); 770 771 // Verify contracting dimension map was properly constructed. 772 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 773 return emitOpError("invalid contracting dimension map"); 774 775 // Verify batch dimension map was properly constructed. 776 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 777 return emitOpError("invalid batch dimension map"); 778 779 // Verify 'accType' and 'resType' shape. 780 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 781 contractingDimMap, batchDimMap))) 782 return failure(); 783 784 // Verify that either two vector masks are set or none are set. 785 auto lhsMaskType = getLHSVectorMaskType(); 786 auto rhsMaskType = getRHSVectorMaskType(); 787 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 788 return emitOpError("invalid number of vector masks specified"); 789 if (lhsMaskType && rhsMaskType) { 790 // Verify mask rank == argument rank. 791 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 792 rhsMaskType.getShape().size() != rhsType.getShape().size()) 793 return emitOpError("invalid vector mask rank"); 794 } 795 796 // Verify supported combining kind. 797 auto vectorType = resType.dyn_cast<VectorType>(); 798 auto elementType = vectorType ? vectorType.getElementType() : resType; 799 if (!isSupportedCombiningKind(getKind(), elementType)) 800 return emitOpError("unsupported contraction type"); 801 802 return success(); 803 } 804 805 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 806 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 807 ::mlir::getIteratorTypesAttrName(), 808 ContractionOp::getKindAttrStrName()}; 809 return llvm::makeArrayRef(names); 810 } 811 812 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 813 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 814 if (targetExpr == map.getResult(i)) 815 return i; 816 return -1; 817 } 818 819 static std::vector<std::pair<int64_t, int64_t>> 820 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 821 StringRef targetIteratorTypeName, MLIRContext *context) { 822 std::vector<std::pair<int64_t, int64_t>> dimMap; 823 for (const auto &it : llvm::enumerate(iteratorTypes)) { 824 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 825 if (iteratorTypeName != targetIteratorTypeName) 826 continue; 827 // Search lhs/rhs map results for 'targetExpr'. 828 auto targetExpr = getAffineDimExpr(it.index(), context); 829 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 830 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 831 if (lhsDim >= 0 && rhsDim >= 0) 832 dimMap.emplace_back(lhsDim, rhsDim); 833 } 834 return dimMap; 835 } 836 837 void ContractionOp::getIterationBounds( 838 SmallVectorImpl<int64_t> &iterationBounds) { 839 auto lhsShape = getLhsType().getShape(); 840 auto resVectorType = getResultType().dyn_cast<VectorType>(); 841 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 842 SmallVector<int64_t, 2> iterationShape; 843 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 844 // Search lhs/rhs map results for 'targetExpr'. 845 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 846 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 847 if (iteratorTypeName == getReductionIteratorTypeName()) { 848 // Get reduction dim size from lhs shape (same size in rhsShape). 849 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 850 assert(lhsDimIndex >= 0); 851 iterationBounds.push_back(lhsShape[lhsDimIndex]); 852 continue; 853 } 854 // Get parallel dimension size from result shape. 855 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 856 assert(resDimIndex >= 0); 857 assert(resVectorType != nullptr); 858 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 859 } 860 } 861 862 void ContractionOp::getIterationIndexMap( 863 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 864 unsigned numMaps = getIndexingMaps().size(); 865 iterationIndexMap.resize(numMaps); 866 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 867 auto index = it.index(); 868 auto map = it.value(); 869 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 870 auto dim = map.getResult(i).cast<AffineDimExpr>(); 871 iterationIndexMap[index][dim.getPosition()] = i; 872 } 873 } 874 } 875 876 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 877 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 878 return getDimMap(indexingMaps, getIteratorTypes(), 879 getReductionIteratorTypeName(), getContext()); 880 } 881 882 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 883 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 884 return getDimMap(indexingMaps, getIteratorTypes(), 885 getParallelIteratorTypeName(), getContext()); 886 } 887 888 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 889 SmallVector<int64_t, 4> shape; 890 getIterationBounds(shape); 891 return shape; 892 } 893 894 /// Return a fused vector::ContractionOp which represents a patterns such as: 895 /// 896 /// ```mlir 897 /// %c0 = vector.constant 0: ... 898 /// %c = vector.contract %a, %b, %c0: ... 899 /// %e = add %c, %d: ... 900 /// ``` 901 /// 902 /// by: 903 /// 904 /// ```mlir 905 /// %e = vector.contract %a, %b, %d: ... 906 /// ``` 907 /// 908 /// Return null if the canonicalization does not apply. 909 // TODO: This should be a folding of Add into Contract in core but while they 910 // live in different dialects, it is not possible without unnatural 911 // dependencies. 912 template <typename AddOpType> 913 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 914 using OpRewritePattern<AddOpType>::OpRewritePattern; 915 916 LogicalResult matchAndRewrite(AddOpType addOp, 917 PatternRewriter &rewriter) const override { 918 auto canonicalize = [&](Value maybeContraction, 919 Value otherOperand) -> vector::ContractionOp { 920 vector::ContractionOp contractionOp = 921 dyn_cast_or_null<vector::ContractionOp>( 922 maybeContraction.getDefiningOp()); 923 if (!contractionOp) 924 return vector::ContractionOp(); 925 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 926 contractionOp.getAcc().getDefiningOp())) { 927 if (maybeZero.getValue() == 928 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 929 BlockAndValueMapping bvm; 930 bvm.map(contractionOp.getAcc(), otherOperand); 931 auto newContraction = 932 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 933 rewriter.replaceOp(addOp, newContraction.getResult()); 934 return newContraction; 935 } 936 } 937 return vector::ContractionOp(); 938 }; 939 940 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 941 vector::ContractionOp contract = canonicalize(a, b); 942 contract = contract ? contract : canonicalize(b, a); 943 return contract ? success() : failure(); 944 } 945 }; 946 947 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 948 MLIRContext *context) { 949 results.add<CanonicalizeContractAdd<arith::AddIOp>, 950 CanonicalizeContractAdd<arith::AddFOp>>(context); 951 } 952 953 //===----------------------------------------------------------------------===// 954 // ExtractElementOp 955 //===----------------------------------------------------------------------===// 956 957 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 958 Value source) { 959 result.addOperands({source}); 960 result.addTypes(source.getType().cast<VectorType>().getElementType()); 961 } 962 963 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 964 Value source, Value position) { 965 result.addOperands({source, position}); 966 result.addTypes(source.getType().cast<VectorType>().getElementType()); 967 } 968 969 LogicalResult vector::ExtractElementOp::verify() { 970 VectorType vectorType = getVectorType(); 971 if (vectorType.getRank() == 0) { 972 if (getPosition()) 973 return emitOpError("expected position to be empty with 0-D vector"); 974 return success(); 975 } 976 if (vectorType.getRank() != 1) 977 return emitOpError("unexpected >1 vector rank"); 978 if (!getPosition()) 979 return emitOpError("expected position for 1-D vector"); 980 return success(); 981 } 982 983 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) { 984 // Skip the 0-D vector here now. 985 if (operands.size() < 2) 986 return {}; 987 988 Attribute src = operands[0]; 989 Attribute pos = operands[1]; 990 991 // Fold extractelement (splat X) -> X. 992 if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) 993 return splat.getInput(); 994 995 if (!pos || !src) 996 return {}; 997 998 auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>(); 999 1000 auto attr = pos.dyn_cast<IntegerAttr>(); 1001 uint64_t posIdx = attr.getInt(); 1002 1003 return srcElements[posIdx]; 1004 } 1005 1006 //===----------------------------------------------------------------------===// 1007 // ExtractOp 1008 //===----------------------------------------------------------------------===// 1009 1010 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1011 Value source, ArrayRef<int64_t> position) { 1012 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 1013 } 1014 1015 // Convenience builder which assumes the values are constant indices. 1016 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1017 Value source, ValueRange position) { 1018 SmallVector<int64_t, 4> positionConstants = 1019 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1020 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1021 })); 1022 build(builder, result, source, positionConstants); 1023 } 1024 1025 LogicalResult 1026 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1027 ValueRange operands, DictionaryAttr attributes, 1028 RegionRange, 1029 SmallVectorImpl<Type> &inferredReturnTypes) { 1030 ExtractOp::Adaptor op(operands, attributes); 1031 auto vectorType = op.getVector().getType().cast<VectorType>(); 1032 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 1033 inferredReturnTypes.push_back(vectorType.getElementType()); 1034 } else { 1035 auto n = 1036 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 1037 inferredReturnTypes.push_back(VectorType::get( 1038 vectorType.getShape().drop_front(n), vectorType.getElementType())); 1039 } 1040 return success(); 1041 } 1042 1043 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 1044 // Allow extracting 1-element vectors instead of scalars. 1045 auto isCompatible = [](TypeRange l, TypeRange r) { 1046 auto vectorType = l.front().dyn_cast<VectorType>(); 1047 return vectorType && vectorType.getShape().equals({1}) && 1048 vectorType.getElementType() == r.front(); 1049 }; 1050 if (l.size() == 1 && r.size() == 1 && 1051 (isCompatible(l, r) || isCompatible(r, l))) 1052 return true; 1053 return l == r; 1054 } 1055 1056 LogicalResult vector::ExtractOp::verify() { 1057 auto positionAttr = getPosition().getValue(); 1058 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1059 return emitOpError( 1060 "expected position attribute of rank smaller than vector rank"); 1061 for (const auto &en : llvm::enumerate(positionAttr)) { 1062 auto attr = en.value().dyn_cast<IntegerAttr>(); 1063 if (!attr || attr.getInt() < 0 || 1064 attr.getInt() >= getVectorType().getDimSize(en.index())) 1065 return emitOpError("expected position attribute #") 1066 << (en.index() + 1) 1067 << " to be a non-negative integer smaller than the corresponding " 1068 "vector dimension"; 1069 } 1070 return success(); 1071 } 1072 1073 template <typename IntType> 1074 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1075 return llvm::to_vector<4>(llvm::map_range( 1076 arrayAttr.getAsRange<IntegerAttr>(), 1077 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1078 } 1079 1080 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1081 /// positions. 1082 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1083 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1084 return failure(); 1085 1086 SmallVector<int64_t, 4> globalPosition; 1087 ExtractOp currentOp = extractOp; 1088 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1089 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1090 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1091 currentOp = nextOp; 1092 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1093 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1094 } 1095 extractOp.setOperand(currentOp.getVector()); 1096 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1097 OpBuilder b(extractOp.getContext()); 1098 std::reverse(globalPosition.begin(), globalPosition.end()); 1099 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1100 b.getI64ArrayAttr(globalPosition)); 1101 return success(); 1102 } 1103 1104 namespace { 1105 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1106 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1107 /// Compose TransposeOp permutations as we walk back. 1108 /// This helper class keeps an updated extraction position `extractPosition` 1109 /// with extra trailing sentinels. 1110 /// The sentinels encode the internal transposition status of the result vector. 1111 /// As we iterate, extractPosition is permuted and updated. 1112 class ExtractFromInsertTransposeChainState { 1113 public: 1114 ExtractFromInsertTransposeChainState(ExtractOp e); 1115 1116 /// Iterate over producing insert and transpose ops until we find a fold. 1117 Value fold(); 1118 1119 private: 1120 /// Return true if the vector at position `a` is contained within the vector 1121 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1122 /// is a prefix of `b`. 1123 template <typename ContainerA, typename ContainerB> 1124 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1125 return a.size() <= b.size() && 1126 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1127 } 1128 1129 /// Return true if the vector at position `a` intersects the vector at 1130 /// position `b`. Under insert/extract semantics, this is the same as equality 1131 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1132 /// Comparison is on the common prefix (i.e. zip). 1133 template <typename ContainerA, typename ContainerB> 1134 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1135 for (auto it : llvm::zip(a, b)) { 1136 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1137 continue; 1138 if (std::get<0>(it) != std::get<1>(it)) 1139 return false; 1140 } 1141 return true; 1142 } 1143 1144 /// Folding is only possible in the absence of an internal permutation in the 1145 /// result vector. 1146 bool canFold() { 1147 return (sentinels == 1148 makeArrayRef(extractPosition).drop_front(extractedRank)); 1149 } 1150 1151 // Helper to get the next defining op of interest. 1152 void updateStateForNextIteration(Value v) { 1153 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1154 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1155 }; 1156 1157 // Case 1. If we hit a transpose, just compose the map and iterate. 1158 // Invariant: insert + transpose do not change rank, we can always compose. 1159 LogicalResult handleTransposeOp(); 1160 1161 // Case 2: the insert position matches extractPosition exactly, early return. 1162 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1163 1164 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1165 /// portion of the source of the insert. 1166 /// Example: 1167 /// ``` 1168 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1169 /// // extractPosition == [1, 2, 3] 1170 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1171 /// // can fold to vector.extract %source[0, 3] 1172 /// %ext = vector.extract %source[3]: vector<5x6> 1173 /// ``` 1174 /// To traverse through %source, we need to set the leading dims to 0 and 1175 /// drop the extra leading dims. 1176 /// This method updates the internal state. 1177 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1178 1179 /// Try to fold in place to extract(source, extractPosition) and return the 1180 /// folded result. Return null if folding is not possible (e.g. due to an 1181 /// internal tranposition in the result). 1182 Value tryToFoldExtractOpInPlace(Value source); 1183 1184 ExtractOp extractOp; 1185 int64_t vectorRank; 1186 int64_t extractedRank; 1187 1188 InsertOp nextInsertOp; 1189 TransposeOp nextTransposeOp; 1190 1191 /// Sentinel values that encode the internal permutation status of the result. 1192 /// They are set to (-1, ... , -k) at the beginning and appended to 1193 /// `extractPosition`. 1194 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1195 /// ensure that there is no internal transposition. 1196 /// Internal transposition cannot be accounted for with a folding pattern. 1197 // TODO: We could relax the internal transposition with an extra transposition 1198 // operation in a future canonicalizer. 1199 SmallVector<int64_t> sentinels; 1200 SmallVector<int64_t> extractPosition; 1201 }; 1202 } // namespace 1203 1204 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1205 ExtractOp e) 1206 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1207 extractedRank(extractOp.getPosition().size()) { 1208 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1209 sentinels.reserve(vectorRank - extractedRank); 1210 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1211 sentinels.push_back(-(i + 1)); 1212 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1213 llvm::append_range(extractPosition, sentinels); 1214 } 1215 1216 // Case 1. If we hit a transpose, just compose the map and iterate. 1217 // Invariant: insert + transpose do not change rank, we can always compose. 1218 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1219 if (!nextTransposeOp) 1220 return failure(); 1221 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1222 AffineMap m = inversePermutation( 1223 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1224 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1225 return success(); 1226 } 1227 1228 // Case 2: the insert position matches extractPosition exactly, early return. 1229 LogicalResult 1230 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1231 Value &res) { 1232 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1233 if (makeArrayRef(insertedPos) != 1234 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1235 return failure(); 1236 // Case 2.a. early-exit fold. 1237 res = nextInsertOp.getSource(); 1238 // Case 2.b. if internal transposition is present, canFold will be false. 1239 return success(); 1240 } 1241 1242 /// Case 3: if inserted position is a prefix of extractPosition, 1243 /// extract a portion of the source of the insertion. 1244 /// This method updates the internal state. 1245 LogicalResult 1246 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1247 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1248 if (!isContainedWithin(insertedPos, extractPosition)) 1249 return failure(); 1250 // Set leading dims to zero. 1251 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1252 // Drop extra leading dims. 1253 extractPosition.erase(extractPosition.begin(), 1254 extractPosition.begin() + insertedPos.size()); 1255 extractedRank = extractPosition.size() - sentinels.size(); 1256 // Case 3.a. early-exit fold (break and delegate to post-while path). 1257 res = nextInsertOp.getSource(); 1258 // Case 3.b. if internal transposition is present, canFold will be false. 1259 return success(); 1260 } 1261 1262 /// Try to fold in place to extract(source, extractPosition) and return the 1263 /// folded result. Return null if folding is not possible (e.g. due to an 1264 /// internal tranposition in the result). 1265 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1266 Value source) { 1267 // If we can't fold (either internal transposition, or nothing to fold), bail. 1268 bool nothingToFold = (source == extractOp.getVector()); 1269 if (nothingToFold || !canFold()) 1270 return Value(); 1271 // Otherwise, fold by updating the op inplace and return its result. 1272 OpBuilder b(extractOp.getContext()); 1273 extractOp->setAttr( 1274 extractOp.getPositionAttrName(), 1275 b.getI64ArrayAttr( 1276 makeArrayRef(extractPosition).take_front(extractedRank))); 1277 extractOp.getVectorMutable().assign(source); 1278 return extractOp.getResult(); 1279 } 1280 1281 /// Iterate over producing insert and transpose ops until we find a fold. 1282 Value ExtractFromInsertTransposeChainState::fold() { 1283 Value valueToExtractFrom = extractOp.getVector(); 1284 updateStateForNextIteration(valueToExtractFrom); 1285 while (nextInsertOp || nextTransposeOp) { 1286 // Case 1. If we hit a transpose, just compose the map and iterate. 1287 // Invariant: insert + transpose do not change rank, we can always compose. 1288 if (succeeded(handleTransposeOp())) { 1289 valueToExtractFrom = nextTransposeOp.getVector(); 1290 updateStateForNextIteration(valueToExtractFrom); 1291 continue; 1292 } 1293 1294 Value result; 1295 // Case 2: the position match exactly. 1296 if (succeeded(handleInsertOpWithMatchingPos(result))) 1297 return result; 1298 1299 // Case 3: if the inserted position is a prefix of extractPosition, we can 1300 // just extract a portion of the source of the insert. 1301 if (succeeded(handleInsertOpWithPrefixPos(result))) 1302 return tryToFoldExtractOpInPlace(result); 1303 1304 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1305 // values. This is a more difficult case and we bail. 1306 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1307 if (isContainedWithin(extractPosition, insertedPos) || 1308 intersectsWhereNonNegative(extractPosition, insertedPos)) 1309 return Value(); 1310 1311 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1312 valueToExtractFrom = nextInsertOp.getDest(); 1313 updateStateForNextIteration(valueToExtractFrom); 1314 } 1315 // If after all this we can fold, go for it. 1316 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1317 } 1318 1319 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1320 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1321 Operation *defOp = extractOp.getVector().getDefiningOp(); 1322 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1323 return Value(); 1324 Value source = defOp->getOperand(0); 1325 if (extractOp.getType() == source.getType()) 1326 return source; 1327 auto getRank = [](Type type) { 1328 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1329 }; 1330 unsigned broadcastSrcRank = getRank(source.getType()); 1331 unsigned extractResultRank = getRank(extractOp.getType()); 1332 if (extractResultRank >= broadcastSrcRank) 1333 return Value(); 1334 // Check that the dimension of the result haven't been broadcasted. 1335 auto extractVecType = extractOp.getType().dyn_cast<VectorType>(); 1336 auto broadcastVecType = source.getType().dyn_cast<VectorType>(); 1337 if (extractVecType && broadcastVecType && 1338 extractVecType.getShape() != 1339 broadcastVecType.getShape().take_back(extractResultRank)) 1340 return Value(); 1341 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1342 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1343 extractPos.erase(extractPos.begin(), 1344 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1345 extractOp.setOperand(source); 1346 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1347 OpBuilder b(extractOp.getContext()); 1348 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1349 b.getI64ArrayAttr(extractPos)); 1350 return extractOp.getResult(); 1351 } 1352 1353 // Fold extractOp with source coming from ShapeCast op. 1354 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1355 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1356 if (!shapeCastOp) 1357 return Value(); 1358 // Get the nth dimension size starting from lowest dimension. 1359 auto getDimReverse = [](VectorType type, int64_t n) { 1360 return type.getShape().take_back(n + 1).front(); 1361 }; 1362 int64_t destinationRank = 1363 extractOp.getType().isa<VectorType>() 1364 ? extractOp.getType().cast<VectorType>().getRank() 1365 : 0; 1366 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1367 return Value(); 1368 if (destinationRank > 0) { 1369 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1370 for (int64_t i = 0; i < destinationRank; i++) { 1371 // The lowest dimension of of the destination must match the lowest 1372 // dimension of the shapecast op source. 1373 // TODO: This case could be support in a canonicalization pattern. 1374 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1375 getDimReverse(destinationType, i)) 1376 return Value(); 1377 } 1378 } 1379 // Extract the strides associated with the extract op vector source. Then use 1380 // this to calculate a linearized position for the extract. 1381 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1382 std::reverse(extractedPos.begin(), extractedPos.end()); 1383 SmallVector<int64_t, 4> strides; 1384 int64_t stride = 1; 1385 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1386 strides.push_back(stride); 1387 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1388 } 1389 1390 int64_t position = linearize(extractedPos, strides); 1391 // Then extract the strides associated to the shapeCast op vector source and 1392 // delinearize the position using those strides. 1393 SmallVector<int64_t, 4> newStrides; 1394 int64_t numDimension = 1395 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1396 stride = 1; 1397 for (int64_t i = 0; i < numDimension; i++) { 1398 newStrides.push_back(stride); 1399 stride *= 1400 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1401 } 1402 std::reverse(newStrides.begin(), newStrides.end()); 1403 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1404 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1405 OpBuilder b(extractOp.getContext()); 1406 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1407 b.getI64ArrayAttr(newPosition)); 1408 extractOp.setOperand(shapeCastOp.getSource()); 1409 return extractOp.getResult(); 1410 } 1411 1412 /// Fold an ExtractOp from ExtractStridedSliceOp. 1413 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1414 auto extractStridedSliceOp = 1415 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1416 if (!extractStridedSliceOp) 1417 return Value(); 1418 // Return if 'extractStridedSliceOp' has non-unit strides. 1419 if (extractStridedSliceOp.hasNonUnitStrides()) 1420 return Value(); 1421 1422 // Trim offsets for dimensions fully extracted. 1423 auto sliceOffsets = 1424 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1425 while (!sliceOffsets.empty()) { 1426 size_t lastOffset = sliceOffsets.size() - 1; 1427 if (sliceOffsets.back() != 0 || 1428 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1429 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1430 break; 1431 sliceOffsets.pop_back(); 1432 } 1433 unsigned destinationRank = 0; 1434 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1435 destinationRank = vecType.getRank(); 1436 // The dimensions of the result need to be untouched by the 1437 // extractStridedSlice op. 1438 if (destinationRank > 1439 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1440 return Value(); 1441 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1442 assert(extractedPos.size() >= sliceOffsets.size()); 1443 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1444 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1445 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1446 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1447 OpBuilder b(extractOp.getContext()); 1448 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1449 b.getI64ArrayAttr(extractedPos)); 1450 return extractOp.getResult(); 1451 } 1452 1453 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1454 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1455 int64_t destinationRank = op.getType().isa<VectorType>() 1456 ? op.getType().cast<VectorType>().getRank() 1457 : 0; 1458 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1459 while (insertOp) { 1460 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1461 insertOp.getSourceVectorType().getRank(); 1462 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1463 return Value(); 1464 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1465 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1466 1467 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1468 return attr.cast<IntegerAttr>().getInt() != 1; 1469 })) 1470 return Value(); 1471 bool disjoint = false; 1472 SmallVector<int64_t, 4> offsetDiffs; 1473 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1474 int64_t start = insertOffsets[dim]; 1475 int64_t size = 1476 (dim < insertRankDiff) 1477 ? 1 1478 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1479 int64_t end = start + size; 1480 int64_t offset = extractOffsets[dim]; 1481 // Check if the start of the extract offset is in the interval inserted. 1482 if (start <= offset && offset < end) { 1483 if (dim >= insertRankDiff) 1484 offsetDiffs.push_back(offset - start); 1485 continue; 1486 } 1487 disjoint = true; 1488 break; 1489 } 1490 // The extract element chunk overlap with the vector inserted. 1491 if (!disjoint) { 1492 // If any of the inner dimensions are only partially inserted we have a 1493 // partial overlap. 1494 int64_t srcRankDiff = 1495 insertOp.getSourceVectorType().getRank() - destinationRank; 1496 for (int64_t i = 0; i < destinationRank; i++) { 1497 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1498 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1499 insertRankDiff)) 1500 return Value(); 1501 } 1502 op.getVectorMutable().assign(insertOp.getSource()); 1503 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1504 OpBuilder b(op.getContext()); 1505 op->setAttr(ExtractOp::getPositionAttrStrName(), 1506 b.getI64ArrayAttr(offsetDiffs)); 1507 return op.getResult(); 1508 } 1509 // If the chunk extracted is disjoint from the chunk inserted, keep 1510 // looking in the insert chain. 1511 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1512 } 1513 return Value(); 1514 } 1515 1516 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1517 if (getPosition().empty()) 1518 return getVector(); 1519 if (succeeded(foldExtractOpFromExtractChain(*this))) 1520 return getResult(); 1521 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1522 return res; 1523 if (auto res = foldExtractFromBroadcast(*this)) 1524 return res; 1525 if (auto res = foldExtractFromShapeCast(*this)) 1526 return res; 1527 if (auto val = foldExtractFromExtractStrided(*this)) 1528 return val; 1529 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1530 return val; 1531 return OpFoldResult(); 1532 } 1533 1534 namespace { 1535 1536 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1537 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1538 public: 1539 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1540 1541 LogicalResult matchAndRewrite(ExtractOp extractOp, 1542 PatternRewriter &rewriter) const override { 1543 Operation *defOp = extractOp.getVector().getDefiningOp(); 1544 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1545 return failure(); 1546 1547 Value source = defOp->getOperand(0); 1548 if (extractOp.getType() == source.getType()) 1549 return failure(); 1550 auto getRank = [](Type type) { 1551 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1552 }; 1553 unsigned broadcastSrcRank = getRank(source.getType()); 1554 unsigned extractResultRank = getRank(extractOp.getType()); 1555 // We only consider the case where the rank of the source is less than or 1556 // equal to the rank of the extract dst. The other cases are handled in the 1557 // folding patterns. 1558 if (extractResultRank < broadcastSrcRank) 1559 return failure(); 1560 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1561 extractOp, extractOp.getType(), source); 1562 return success(); 1563 } 1564 }; 1565 1566 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1567 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1568 public: 1569 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1570 1571 LogicalResult matchAndRewrite(ExtractOp extractOp, 1572 PatternRewriter &rewriter) const override { 1573 // Return if 'extractStridedSliceOp' operand is not defined by a 1574 // ConstantOp. 1575 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1576 if (!constantOp) 1577 return failure(); 1578 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1579 if (!dense) 1580 return failure(); 1581 Attribute newAttr = dense.getSplatValue<Attribute>(); 1582 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1583 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1584 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1585 return success(); 1586 } 1587 }; 1588 1589 } // namespace 1590 1591 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1592 MLIRContext *context) { 1593 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1594 } 1595 1596 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1597 SmallVectorImpl<int64_t> &results) { 1598 for (auto attr : arrayAttr) 1599 results.push_back(attr.cast<IntegerAttr>().getInt()); 1600 } 1601 1602 //===----------------------------------------------------------------------===// 1603 // ExtractMapOp 1604 //===----------------------------------------------------------------------===// 1605 1606 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1607 Value vector, ValueRange ids, 1608 ArrayRef<int64_t> multiplicity, 1609 AffineMap permutationMap) { 1610 assert(ids.size() == multiplicity.size() && 1611 ids.size() == permutationMap.getNumResults()); 1612 assert(permutationMap.isProjectedPermutation()); 1613 VectorType type = vector.getType().cast<VectorType>(); 1614 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1615 type.getShape().end()); 1616 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1617 AffineExpr expr = permutationMap.getResult(i); 1618 auto dim = expr.cast<AffineDimExpr>(); 1619 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1620 } 1621 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1622 ExtractMapOp::build(builder, result, resultType, vector, ids); 1623 } 1624 1625 LogicalResult ExtractMapOp::verify() { 1626 if (getSourceVectorType().getRank() != getResultType().getRank()) 1627 return emitOpError("expected source and destination vectors of same rank"); 1628 unsigned numId = 0; 1629 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1630 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1631 0) 1632 return emitOpError("source vector dimensions must be a multiple of " 1633 "destination vector dimensions"); 1634 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1635 numId++; 1636 } 1637 if (numId != getIds().size()) 1638 return emitOpError("expected number of ids must match the number of " 1639 "dimensions distributed"); 1640 return success(); 1641 } 1642 1643 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1644 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1645 if (insert == nullptr || getType() != insert.getVector().getType() || 1646 getIds() != insert.getIds()) 1647 return {}; 1648 return insert.getVector(); 1649 } 1650 1651 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1652 assert(multiplicity.empty()); 1653 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1654 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1655 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1656 getResultType().getDimSize(i)); 1657 } 1658 } 1659 1660 template <typename MapOp> 1661 AffineMap calculateImplicitMap(MapOp op) { 1662 SmallVector<AffineExpr, 4> perm; 1663 // Check which dimension have a multiplicity greater than 1 and associated 1664 // them to the IDs in order. 1665 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1666 if (op.getSourceVectorType().getDimSize(i) != 1667 op.getResultType().getDimSize(i)) 1668 perm.push_back(getAffineDimExpr(i, op.getContext())); 1669 } 1670 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1671 op.getContext()); 1672 return map; 1673 } 1674 1675 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1676 1677 //===----------------------------------------------------------------------===// 1678 // FmaOp 1679 //===----------------------------------------------------------------------===// 1680 1681 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1682 return llvm::to_vector<4>(getVectorType().getShape()); 1683 } 1684 1685 //===----------------------------------------------------------------------===// 1686 // BroadcastOp 1687 //===----------------------------------------------------------------------===// 1688 1689 BroadcastableToResult 1690 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1691 std::pair<int, int> *mismatchingDims) { 1692 // Broadcast scalar to vector of the same element type. 1693 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1694 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1695 return BroadcastableToResult::Success; 1696 // From now on, only vectors broadcast. 1697 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1698 if (!srcVectorType) 1699 return BroadcastableToResult::SourceTypeNotAVector; 1700 1701 int64_t srcRank = srcVectorType.getRank(); 1702 int64_t dstRank = dstVectorType.getRank(); 1703 if (srcRank > dstRank) 1704 return BroadcastableToResult::SourceRankHigher; 1705 // Source has an exact match or singleton value for all trailing dimensions 1706 // (all leading dimensions are simply duplicated). 1707 int64_t lead = dstRank - srcRank; 1708 for (int64_t r = 0; r < srcRank; ++r) { 1709 int64_t srcDim = srcVectorType.getDimSize(r); 1710 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1711 if (srcDim != 1 && srcDim != dstDim) { 1712 if (mismatchingDims) { 1713 mismatchingDims->first = srcDim; 1714 mismatchingDims->second = dstDim; 1715 } 1716 return BroadcastableToResult::DimensionMismatch; 1717 } 1718 } 1719 1720 return BroadcastableToResult::Success; 1721 } 1722 1723 LogicalResult BroadcastOp::verify() { 1724 std::pair<int, int> mismatchingDims; 1725 BroadcastableToResult res = 1726 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1727 if (res == BroadcastableToResult::Success) 1728 return success(); 1729 if (res == BroadcastableToResult::SourceRankHigher) 1730 return emitOpError("source rank higher than destination rank"); 1731 if (res == BroadcastableToResult::DimensionMismatch) 1732 return emitOpError("dimension mismatch (") 1733 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1734 if (res == BroadcastableToResult::SourceTypeNotAVector) 1735 return emitOpError("source type is not a vector"); 1736 llvm_unreachable("unexpected vector.broadcast op error"); 1737 } 1738 1739 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1740 if (getSourceType() == getVectorType()) 1741 return getSource(); 1742 if (!operands[0]) 1743 return {}; 1744 auto vectorType = getVectorType(); 1745 if (operands[0].getType().isIntOrIndexOrFloat()) 1746 return DenseElementsAttr::get(vectorType, operands[0]); 1747 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1748 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1749 return {}; 1750 } 1751 1752 namespace { 1753 1754 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1755 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1756 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1757 1758 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1759 PatternRewriter &rewriter) const override { 1760 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1761 if (!srcBroadcast) 1762 return failure(); 1763 rewriter.replaceOpWithNewOp<BroadcastOp>( 1764 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1765 return success(); 1766 } 1767 }; 1768 } // namespace 1769 1770 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1771 MLIRContext *context) { 1772 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1773 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1774 results.add<BroadcastFolder>(context); 1775 } 1776 1777 //===----------------------------------------------------------------------===// 1778 // ShuffleOp 1779 //===----------------------------------------------------------------------===// 1780 1781 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1782 Value v2, ArrayRef<int64_t> mask) { 1783 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1784 } 1785 1786 LogicalResult ShuffleOp::verify() { 1787 VectorType resultType = getVectorType(); 1788 VectorType v1Type = getV1VectorType(); 1789 VectorType v2Type = getV2VectorType(); 1790 // Verify ranks. 1791 int64_t resRank = resultType.getRank(); 1792 int64_t v1Rank = v1Type.getRank(); 1793 int64_t v2Rank = v2Type.getRank(); 1794 if (resRank != v1Rank || v1Rank != v2Rank) 1795 return emitOpError("rank mismatch"); 1796 // Verify all but leading dimension sizes. 1797 for (int64_t r = 1; r < v1Rank; ++r) { 1798 int64_t resDim = resultType.getDimSize(r); 1799 int64_t v1Dim = v1Type.getDimSize(r); 1800 int64_t v2Dim = v2Type.getDimSize(r); 1801 if (resDim != v1Dim || v1Dim != v2Dim) 1802 return emitOpError("dimension mismatch"); 1803 } 1804 // Verify mask length. 1805 auto maskAttr = getMask().getValue(); 1806 int64_t maskLength = maskAttr.size(); 1807 if (maskLength <= 0) 1808 return emitOpError("invalid mask length"); 1809 if (maskLength != resultType.getDimSize(0)) 1810 return emitOpError("mask length mismatch"); 1811 // Verify all indices. 1812 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1813 for (const auto &en : llvm::enumerate(maskAttr)) { 1814 auto attr = en.value().dyn_cast<IntegerAttr>(); 1815 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1816 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1817 } 1818 return success(); 1819 } 1820 1821 LogicalResult 1822 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1823 ValueRange operands, DictionaryAttr attributes, 1824 RegionRange, 1825 SmallVectorImpl<Type> &inferredReturnTypes) { 1826 ShuffleOp::Adaptor op(operands, attributes); 1827 auto v1Type = op.getV1().getType().cast<VectorType>(); 1828 // Construct resulting type: leading dimension matches mask length, 1829 // all trailing dimensions match the operands. 1830 SmallVector<int64_t, 4> shape; 1831 shape.reserve(v1Type.getRank()); 1832 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1833 llvm::append_range(shape, v1Type.getShape().drop_front()); 1834 inferredReturnTypes.push_back( 1835 VectorType::get(shape, v1Type.getElementType())); 1836 return success(); 1837 } 1838 1839 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { 1840 uint64_t expected = begin; 1841 return idxArr.size() == width && 1842 llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), 1843 [&expected](auto attr) { 1844 return attr.getZExtValue() == expected++; 1845 }); 1846 } 1847 1848 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1849 // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 1850 if (!getV1VectorType().isScalable() && 1851 isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0))) 1852 return getV1(); 1853 // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 1854 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && 1855 isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), 1856 getV2VectorType().getDimSize(0))) 1857 return getV2(); 1858 1859 Attribute lhs = operands.front(), rhs = operands.back(); 1860 if (!lhs || !rhs) 1861 return {}; 1862 1863 auto lhsType = lhs.getType().cast<VectorType>(); 1864 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1865 // manipulation. 1866 if (lhsType.getRank() != 1) 1867 return {}; 1868 int64_t lhsSize = lhsType.getDimSize(0); 1869 1870 SmallVector<Attribute> results; 1871 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1872 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1873 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1874 int64_t i = index.getZExtValue(); 1875 if (i >= lhsSize) { 1876 results.push_back(rhsElements[i - lhsSize]); 1877 } else { 1878 results.push_back(lhsElements[i]); 1879 } 1880 } 1881 1882 return DenseElementsAttr::get(getVectorType(), results); 1883 } 1884 1885 //===----------------------------------------------------------------------===// 1886 // InsertElementOp 1887 //===----------------------------------------------------------------------===// 1888 1889 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1890 Value source, Value dest) { 1891 build(builder, result, source, dest, {}); 1892 } 1893 1894 LogicalResult InsertElementOp::verify() { 1895 auto dstVectorType = getDestVectorType(); 1896 if (dstVectorType.getRank() == 0) { 1897 if (getPosition()) 1898 return emitOpError("expected position to be empty with 0-D vector"); 1899 return success(); 1900 } 1901 if (dstVectorType.getRank() != 1) 1902 return emitOpError("unexpected >1 vector rank"); 1903 if (!getPosition()) 1904 return emitOpError("expected position for 1-D vector"); 1905 return success(); 1906 } 1907 1908 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) { 1909 // Skip the 0-D vector here. 1910 if (operands.size() < 3) 1911 return {}; 1912 1913 Attribute src = operands[0]; 1914 Attribute dst = operands[1]; 1915 Attribute pos = operands[2]; 1916 if (!src || !dst || !pos) 1917 return {}; 1918 1919 auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>(); 1920 1921 SmallVector<Attribute> results(dstElements); 1922 1923 auto attr = pos.dyn_cast<IntegerAttr>(); 1924 uint64_t posIdx = attr.getInt(); 1925 1926 results[posIdx] = src; 1927 1928 return DenseElementsAttr::get(getDestVectorType(), results); 1929 } 1930 1931 //===----------------------------------------------------------------------===// 1932 // InsertOp 1933 //===----------------------------------------------------------------------===// 1934 1935 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1936 Value dest, ArrayRef<int64_t> position) { 1937 result.addOperands({source, dest}); 1938 auto positionAttr = getVectorSubscriptAttr(builder, position); 1939 result.addTypes(dest.getType()); 1940 result.addAttribute(getPositionAttrStrName(), positionAttr); 1941 } 1942 1943 // Convenience builder which assumes the values are constant indices. 1944 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1945 Value dest, ValueRange position) { 1946 SmallVector<int64_t, 4> positionConstants = 1947 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1948 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1949 })); 1950 build(builder, result, source, dest, positionConstants); 1951 } 1952 1953 LogicalResult InsertOp::verify() { 1954 auto positionAttr = getPosition().getValue(); 1955 auto destVectorType = getDestVectorType(); 1956 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1957 return emitOpError( 1958 "expected position attribute of rank smaller than dest vector rank"); 1959 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1960 if (srcVectorType && 1961 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1962 static_cast<unsigned>(destVectorType.getRank()))) 1963 return emitOpError("expected position attribute rank + source rank to " 1964 "match dest vector rank"); 1965 if (!srcVectorType && 1966 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1967 return emitOpError( 1968 "expected position attribute rank to match the dest vector rank"); 1969 for (const auto &en : llvm::enumerate(positionAttr)) { 1970 auto attr = en.value().dyn_cast<IntegerAttr>(); 1971 if (!attr || attr.getInt() < 0 || 1972 attr.getInt() >= destVectorType.getDimSize(en.index())) 1973 return emitOpError("expected position attribute #") 1974 << (en.index() + 1) 1975 << " to be a non-negative integer smaller than the corresponding " 1976 "dest vector dimension"; 1977 } 1978 return success(); 1979 } 1980 1981 namespace { 1982 1983 // If insertOp is only inserting unit dimensions it can be transformed to a 1984 // broadcast. 1985 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1986 public: 1987 using OpRewritePattern<InsertOp>::OpRewritePattern; 1988 1989 LogicalResult matchAndRewrite(InsertOp insertOp, 1990 PatternRewriter &rewriter) const override { 1991 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1992 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1993 srcVecType.getNumElements()) 1994 return failure(); 1995 rewriter.replaceOpWithNewOp<BroadcastOp>( 1996 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 1997 return success(); 1998 } 1999 }; 2000 2001 } // namespace 2002 2003 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 2004 MLIRContext *context) { 2005 results.add<InsertToBroadcast, BroadcastFolder>(context); 2006 } 2007 2008 // Eliminates insert operations that produce values identical to their source 2009 // value. This happens when the source and destination vectors have identical 2010 // sizes. 2011 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 2012 if (getPosition().empty()) 2013 return getSource(); 2014 return {}; 2015 } 2016 2017 //===----------------------------------------------------------------------===// 2018 // InsertMapOp 2019 //===----------------------------------------------------------------------===// 2020 2021 LogicalResult InsertMapOp::verify() { 2022 if (getSourceVectorType().getRank() != getResultType().getRank()) 2023 return emitOpError("expected source and destination vectors of same rank"); 2024 unsigned numId = 0; 2025 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 2026 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 2027 0) 2028 return emitOpError( 2029 "destination vector size must be a multiple of source vector size"); 2030 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 2031 numId++; 2032 } 2033 if (numId != getIds().size()) 2034 return emitOpError("expected number of ids must match the number of " 2035 "dimensions distributed"); 2036 return success(); 2037 } 2038 2039 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 2040 2041 //===----------------------------------------------------------------------===// 2042 // InsertStridedSliceOp 2043 //===----------------------------------------------------------------------===// 2044 2045 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2046 Value source, Value dest, 2047 ArrayRef<int64_t> offsets, 2048 ArrayRef<int64_t> strides) { 2049 result.addOperands({source, dest}); 2050 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2051 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2052 result.addTypes(dest.getType()); 2053 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2054 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2055 } 2056 2057 // TODO: Should be moved to Tablegen Confined attributes. 2058 template <typename OpType> 2059 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2060 ArrayAttr arrayAttr, 2061 ArrayRef<int64_t> shape, 2062 StringRef attrName) { 2063 if (arrayAttr.size() > shape.size()) 2064 return op.emitOpError("expected ") 2065 << attrName << " attribute of rank smaller than vector rank"; 2066 return success(); 2067 } 2068 2069 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2070 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2071 // Otherwise, the admissible interval is [min, max]. 2072 template <typename OpType> 2073 static LogicalResult 2074 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2075 int64_t max, StringRef attrName, 2076 bool halfOpen = true) { 2077 for (auto attr : arrayAttr) { 2078 auto val = attr.cast<IntegerAttr>().getInt(); 2079 auto upper = max; 2080 if (!halfOpen) 2081 upper += 1; 2082 if (val < min || val >= upper) 2083 return op.emitOpError("expected ") << attrName << " to be confined to [" 2084 << min << ", " << upper << ")"; 2085 } 2086 return success(); 2087 } 2088 2089 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2090 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2091 // Otherwise, the admissible interval is [min, max]. 2092 template <typename OpType> 2093 static LogicalResult 2094 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2095 ArrayRef<int64_t> shape, StringRef attrName, 2096 bool halfOpen = true, int64_t min = 0) { 2097 assert(arrayAttr.size() <= shape.size()); 2098 unsigned index = 0; 2099 for (auto it : llvm::zip(arrayAttr, shape)) { 2100 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2101 auto max = std::get<1>(it); 2102 if (!halfOpen) 2103 max += 1; 2104 if (val < min || val >= max) 2105 return op.emitOpError("expected ") 2106 << attrName << " dimension " << index << " to be confined to [" 2107 << min << ", " << max << ")"; 2108 ++index; 2109 } 2110 return success(); 2111 } 2112 2113 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2114 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2115 // Otherwise, the admissible interval is [min, max]. 2116 template <typename OpType> 2117 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2118 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2119 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2120 bool halfOpen = true, int64_t min = 1) { 2121 assert(arrayAttr1.size() <= shape.size()); 2122 assert(arrayAttr2.size() <= shape.size()); 2123 unsigned index = 0; 2124 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2125 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2126 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2127 auto max = std::get<2>(it); 2128 if (!halfOpen) 2129 max += 1; 2130 if (val1 + val2 < 0 || val1 + val2 >= max) 2131 return op.emitOpError("expected sum(") 2132 << attrName1 << ", " << attrName2 << ") dimension " << index 2133 << " to be confined to [" << min << ", " << max << ")"; 2134 ++index; 2135 } 2136 return success(); 2137 } 2138 2139 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2140 MLIRContext *context) { 2141 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2142 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2143 }); 2144 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2145 } 2146 2147 LogicalResult InsertStridedSliceOp::verify() { 2148 auto sourceVectorType = getSourceVectorType(); 2149 auto destVectorType = getDestVectorType(); 2150 auto offsets = getOffsetsAttr(); 2151 auto strides = getStridesAttr(); 2152 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2153 return emitOpError( 2154 "expected offsets of same size as destination vector rank"); 2155 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2156 return emitOpError("expected strides of same size as source vector rank"); 2157 if (sourceVectorType.getRank() > destVectorType.getRank()) 2158 return emitOpError( 2159 "expected source rank to be smaller than destination rank"); 2160 2161 auto sourceShape = sourceVectorType.getShape(); 2162 auto destShape = destVectorType.getShape(); 2163 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2164 destShape.size() - sourceShape.size(), 0); 2165 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2166 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2167 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2168 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2169 offName)) || 2170 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2171 stridesName, 2172 /*halfOpen=*/false)) || 2173 failed(isSumOfIntegerArrayAttrConfinedToShape( 2174 *this, offsets, 2175 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2176 offName, "source vector shape", 2177 /*halfOpen=*/false, /*min=*/1))) 2178 return failure(); 2179 2180 return success(); 2181 } 2182 2183 namespace { 2184 /// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type, 2185 /// SplatOp(X):dst_type) to SplatOp(X):dst_type. 2186 class FoldInsertStridedSliceSplat final 2187 : public OpRewritePattern<InsertStridedSliceOp> { 2188 public: 2189 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 2190 2191 LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, 2192 PatternRewriter &rewriter) const override { 2193 auto srcSplatOp = 2194 insertStridedSliceOp.getSource().getDefiningOp<vector::SplatOp>(); 2195 auto destSplatOp = 2196 insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>(); 2197 2198 if (!srcSplatOp || !destSplatOp) 2199 return failure(); 2200 2201 if (srcSplatOp.getInput() != destSplatOp.getInput()) 2202 return failure(); 2203 2204 rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); 2205 return success(); 2206 } 2207 }; 2208 2209 /// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst) 2210 /// to dst. 2211 class FoldInsertStridedSliceOfExtract final 2212 : public OpRewritePattern<InsertStridedSliceOp> { 2213 public: 2214 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 2215 2216 LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, 2217 PatternRewriter &rewriter) const override { 2218 auto extractStridedSliceOp = 2219 insertStridedSliceOp.getSource() 2220 .getDefiningOp<vector::ExtractStridedSliceOp>(); 2221 2222 if (!extractStridedSliceOp) 2223 return failure(); 2224 2225 if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest()) 2226 return failure(); 2227 2228 // Check if have the same strides and offsets. 2229 if (extractStridedSliceOp.getStrides() != 2230 insertStridedSliceOp.getStrides() || 2231 extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets()) 2232 return failure(); 2233 2234 rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); 2235 return success(); 2236 } 2237 }; 2238 2239 } // namespace 2240 2241 void vector::InsertStridedSliceOp::getCanonicalizationPatterns( 2242 RewritePatternSet &results, MLIRContext *context) { 2243 results.add<FoldInsertStridedSliceSplat, FoldInsertStridedSliceOfExtract>( 2244 context); 2245 } 2246 2247 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2248 if (getSourceVectorType() == getDestVectorType()) 2249 return getSource(); 2250 return {}; 2251 } 2252 2253 //===----------------------------------------------------------------------===// 2254 // OuterProductOp 2255 //===----------------------------------------------------------------------===// 2256 2257 /// Build an op without mask, use the type of `acc` as the return type. 2258 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2259 Value lhs, Value rhs, Value acc) { 2260 result.addOperands({lhs, rhs, acc}); 2261 result.addTypes(acc.getType()); 2262 } 2263 2264 void OuterProductOp::print(OpAsmPrinter &p) { 2265 p << " " << getLhs() << ", " << getRhs(); 2266 if (!getAcc().empty()) { 2267 p << ", " << getAcc(); 2268 p.printOptionalAttrDict((*this)->getAttrs()); 2269 } 2270 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2271 } 2272 2273 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2274 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2275 Type tLHS, tRHS; 2276 if (parser.parseOperandList(operandsInfo) || 2277 parser.parseOptionalAttrDict(result.attributes) || 2278 parser.parseColonType(tLHS) || parser.parseComma() || 2279 parser.parseType(tRHS)) 2280 return failure(); 2281 if (operandsInfo.size() < 2) 2282 return parser.emitError(parser.getNameLoc(), 2283 "expected at least 2 operands"); 2284 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2285 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2286 if (!vLHS) 2287 return parser.emitError(parser.getNameLoc(), 2288 "expected vector type for operand #1"); 2289 VectorType resType = 2290 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2291 vLHS.getElementType()) 2292 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2293 2294 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2295 result.attributes.append( 2296 OuterProductOp::getKindAttrStrName(), 2297 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2298 result.getContext())); 2299 } 2300 2301 return failure( 2302 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2303 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2304 (operandsInfo.size() > 2 && 2305 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2306 parser.addTypeToList(resType, result.types)); 2307 } 2308 2309 LogicalResult OuterProductOp::verify() { 2310 Type tRHS = getOperandTypeRHS(); 2311 VectorType vLHS = getOperandVectorTypeLHS(), 2312 vRHS = tRHS.dyn_cast<VectorType>(), 2313 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2314 2315 if (vLHS.getRank() != 1) 2316 return emitOpError("expected 1-d vector for operand #1"); 2317 2318 if (vRHS) { 2319 // Proper OUTER operation. 2320 if (vRHS.getRank() != 1) 2321 return emitOpError("expected 1-d vector for operand #2"); 2322 if (vRES.getRank() != 2) 2323 return emitOpError("expected 2-d vector result"); 2324 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2325 return emitOpError("expected #1 operand dim to match result dim #1"); 2326 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2327 return emitOpError("expected #2 operand dim to match result dim #2"); 2328 } else { 2329 // An AXPY operation. 2330 if (vRES.getRank() != 1) 2331 return emitOpError("expected 1-d vector result"); 2332 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2333 return emitOpError("expected #1 operand dim to match result dim #1"); 2334 } 2335 2336 if (vACC && vACC != vRES) 2337 return emitOpError("expected operand #3 of same type as result type"); 2338 2339 // Verify supported combining kind. 2340 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2341 return emitOpError("unsupported outerproduct type"); 2342 2343 return success(); 2344 } 2345 2346 //===----------------------------------------------------------------------===// 2347 // ReshapeOp 2348 //===----------------------------------------------------------------------===// 2349 2350 LogicalResult ReshapeOp::verify() { 2351 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2352 auto inputVectorType = getInputVectorType(); 2353 auto outputVectorType = getOutputVectorType(); 2354 int64_t inputShapeRank = getNumInputShapeSizes(); 2355 int64_t outputShapeRank = getNumOutputShapeSizes(); 2356 SmallVector<int64_t, 4> fixedVectorSizes; 2357 getFixedVectorSizes(fixedVectorSizes); 2358 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2359 2360 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2361 return emitError("invalid input shape for vector type ") << inputVectorType; 2362 2363 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2364 return emitError("invalid output shape for vector type ") 2365 << outputVectorType; 2366 2367 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2368 // suffix. 2369 unsigned inputVectorRank = inputVectorType.getRank(); 2370 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2371 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2372 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2373 return emitError("fixed vector size must match input vector for dim ") 2374 << i; 2375 } 2376 2377 unsigned outputVectorRank = outputVectorType.getRank(); 2378 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2379 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2380 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2381 return emitError("fixed vector size must match output vector for dim ") 2382 << i; 2383 } 2384 2385 // If all shape operands are produced by constant ops, verify that product 2386 // of dimensions for input/output shape match. 2387 auto isDefByConstant = [](Value operand) { 2388 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2389 }; 2390 if (llvm::all_of(getInputShape(), isDefByConstant) && 2391 llvm::all_of(getOutputShape(), isDefByConstant)) { 2392 int64_t numInputElements = 1; 2393 for (auto operand : getInputShape()) 2394 numInputElements *= 2395 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2396 int64_t numOutputElements = 1; 2397 for (auto operand : getOutputShape()) 2398 numOutputElements *= 2399 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2400 if (numInputElements != numOutputElements) 2401 return emitError("product of input and output shape sizes must match"); 2402 } 2403 return success(); 2404 } 2405 2406 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2407 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2408 } 2409 2410 //===----------------------------------------------------------------------===// 2411 // ExtractStridedSliceOp 2412 //===----------------------------------------------------------------------===// 2413 2414 // Inference works as follows: 2415 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2416 // 2. Add sizes from 'vectorType' for remaining dims. 2417 static Type inferStridedSliceOpResultType(VectorType vectorType, 2418 ArrayAttr offsets, ArrayAttr sizes, 2419 ArrayAttr strides) { 2420 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2421 SmallVector<int64_t, 4> shape; 2422 shape.reserve(vectorType.getRank()); 2423 unsigned idx = 0; 2424 for (unsigned e = offsets.size(); idx < e; ++idx) 2425 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2426 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2427 shape.push_back(vectorType.getShape()[idx]); 2428 2429 return VectorType::get(shape, vectorType.getElementType()); 2430 } 2431 2432 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2433 Value source, ArrayRef<int64_t> offsets, 2434 ArrayRef<int64_t> sizes, 2435 ArrayRef<int64_t> strides) { 2436 result.addOperands(source); 2437 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2438 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2439 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2440 result.addTypes( 2441 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2442 offsetsAttr, sizesAttr, stridesAttr)); 2443 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2444 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2445 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2446 } 2447 2448 LogicalResult ExtractStridedSliceOp::verify() { 2449 auto type = getVectorType(); 2450 auto offsets = getOffsetsAttr(); 2451 auto sizes = getSizesAttr(); 2452 auto strides = getStridesAttr(); 2453 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2454 return emitOpError( 2455 "expected offsets, sizes and strides attributes of same size"); 2456 2457 auto shape = type.getShape(); 2458 auto offName = getOffsetsAttrName(); 2459 auto sizesName = getSizesAttrName(); 2460 auto stridesName = getStridesAttrName(); 2461 if (failed( 2462 isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2463 failed( 2464 isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2465 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2466 stridesName)) || 2467 failed( 2468 isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2469 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2470 /*halfOpen=*/false, 2471 /*min=*/1)) || 2472 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2473 stridesName, 2474 /*halfOpen=*/false)) || 2475 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, 2476 shape, offName, sizesName, 2477 /*halfOpen=*/false))) 2478 return failure(); 2479 2480 auto resultType = 2481 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2482 if (getResult().getType() != resultType) 2483 return emitOpError("expected result type to be ") << resultType; 2484 2485 return success(); 2486 } 2487 2488 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2489 // to use the source of the InsertStrided ops if we can detect that the 2490 // extracted vector is a subset of one of the vector inserted. 2491 static LogicalResult 2492 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2493 // Helper to extract integer out of ArrayAttr. 2494 auto getElement = [](ArrayAttr array, int idx) { 2495 return array[idx].cast<IntegerAttr>().getInt(); 2496 }; 2497 ArrayAttr extractOffsets = op.getOffsets(); 2498 ArrayAttr extractStrides = op.getStrides(); 2499 ArrayAttr extractSizes = op.getSizes(); 2500 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2501 while (insertOp) { 2502 if (op.getVectorType().getRank() != 2503 insertOp.getSourceVectorType().getRank()) 2504 return failure(); 2505 ArrayAttr insertOffsets = insertOp.getOffsets(); 2506 ArrayAttr insertStrides = insertOp.getStrides(); 2507 // If the rank of extract is greater than the rank of insert, we are likely 2508 // extracting a partial chunk of the vector inserted. 2509 if (extractOffsets.size() > insertOffsets.size()) 2510 return failure(); 2511 bool patialoverlap = false; 2512 bool disjoint = false; 2513 SmallVector<int64_t, 4> offsetDiffs; 2514 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2515 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2516 return failure(); 2517 int64_t start = getElement(insertOffsets, dim); 2518 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2519 int64_t offset = getElement(extractOffsets, dim); 2520 int64_t size = getElement(extractSizes, dim); 2521 // Check if the start of the extract offset is in the interval inserted. 2522 if (start <= offset && offset < end) { 2523 // If the extract interval overlaps but is not fully included we may 2524 // have a partial overlap that will prevent any folding. 2525 if (offset + size > end) 2526 patialoverlap = true; 2527 offsetDiffs.push_back(offset - start); 2528 continue; 2529 } 2530 disjoint = true; 2531 break; 2532 } 2533 // The extract element chunk is a subset of the insert element. 2534 if (!disjoint && !patialoverlap) { 2535 op.setOperand(insertOp.getSource()); 2536 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2537 OpBuilder b(op.getContext()); 2538 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2539 b.getI64ArrayAttr(offsetDiffs)); 2540 return success(); 2541 } 2542 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2543 // in the insert chain. 2544 if (disjoint) 2545 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2546 else { 2547 // The extracted vector partially overlap the inserted vector, we cannot 2548 // fold. 2549 return failure(); 2550 } 2551 } 2552 return failure(); 2553 } 2554 2555 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2556 if (getVectorType() == getResult().getType()) 2557 return getVector(); 2558 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2559 return getResult(); 2560 return {}; 2561 } 2562 2563 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2564 populateFromInt64AttrArray(getOffsets(), results); 2565 } 2566 2567 namespace { 2568 2569 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2570 // ConstantMaskOp. 2571 class StridedSliceConstantMaskFolder final 2572 : public OpRewritePattern<ExtractStridedSliceOp> { 2573 public: 2574 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2575 2576 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2577 PatternRewriter &rewriter) const override { 2578 // Return if 'extractStridedSliceOp' operand is not defined by a 2579 // ConstantMaskOp. 2580 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2581 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2582 if (!constantMaskOp) 2583 return failure(); 2584 // Return if 'extractStridedSliceOp' has non-unit strides. 2585 if (extractStridedSliceOp.hasNonUnitStrides()) 2586 return failure(); 2587 // Gather constant mask dimension sizes. 2588 SmallVector<int64_t, 4> maskDimSizes; 2589 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2590 // Gather strided slice offsets and sizes. 2591 SmallVector<int64_t, 4> sliceOffsets; 2592 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2593 sliceOffsets); 2594 SmallVector<int64_t, 4> sliceSizes; 2595 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2596 2597 // Compute slice of vector mask region. 2598 SmallVector<int64_t, 4> sliceMaskDimSizes; 2599 assert(sliceOffsets.size() == maskDimSizes.size()); 2600 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2601 int64_t maskDimSize = std::get<0>(it); 2602 int64_t sliceOffset = std::get<1>(it); 2603 int64_t sliceSize = std::get<2>(it); 2604 int64_t sliceMaskDimSize = std::max( 2605 static_cast<int64_t>(0), 2606 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2607 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2608 } 2609 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2610 // region is a conjunction of mask dim intervals). 2611 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2612 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2613 2614 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2615 // region. 2616 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2617 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2618 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2619 return success(); 2620 } 2621 }; 2622 2623 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2624 class StridedSliceConstantFolder final 2625 : public OpRewritePattern<ExtractStridedSliceOp> { 2626 public: 2627 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2628 2629 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2630 PatternRewriter &rewriter) const override { 2631 // Return if 'extractStridedSliceOp' operand is not defined by a 2632 // ConstantOp. 2633 auto constantOp = 2634 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2635 if (!constantOp) 2636 return failure(); 2637 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2638 if (!dense) 2639 return failure(); 2640 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2641 dense.getSplatValue<Attribute>()); 2642 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2643 newAttr); 2644 return success(); 2645 } 2646 }; 2647 2648 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2649 // BroadcastOp(ExtractStrideSliceOp). 2650 class StridedSliceBroadcast final 2651 : public OpRewritePattern<ExtractStridedSliceOp> { 2652 public: 2653 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2654 2655 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2656 PatternRewriter &rewriter) const override { 2657 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2658 if (!broadcast) 2659 return failure(); 2660 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2661 unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; 2662 auto dstVecType = op.getType().cast<VectorType>(); 2663 unsigned dstRank = dstVecType.getRank(); 2664 unsigned rankDiff = dstRank - srcRank; 2665 // Check if the most inner dimensions of the source of the broadcast are the 2666 // same as the destination of the extract. If this is the case we can just 2667 // use a broadcast as the original dimensions are untouched. 2668 bool lowerDimMatch = true; 2669 for (unsigned i = 0; i < srcRank; i++) { 2670 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2671 lowerDimMatch = false; 2672 break; 2673 } 2674 } 2675 Value source = broadcast.getSource(); 2676 // If the inner dimensions don't match, it means we need to extract from the 2677 // source of the orignal broadcast and then broadcast the extracted value. 2678 // We also need to handle degenerated cases where the source is effectively 2679 // just a single scalar. 2680 bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); 2681 if (!lowerDimMatch && !isScalarSrc) { 2682 source = rewriter.create<ExtractStridedSliceOp>( 2683 op->getLoc(), source, 2684 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2685 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2686 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2687 } 2688 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2689 return success(); 2690 } 2691 }; 2692 2693 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2694 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2695 public: 2696 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2697 2698 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2699 PatternRewriter &rewriter) const override { 2700 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2701 if (!splat) 2702 return failure(); 2703 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2704 return success(); 2705 } 2706 }; 2707 2708 } // namespace 2709 2710 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2711 RewritePatternSet &results, MLIRContext *context) { 2712 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2713 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2714 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2715 StridedSliceBroadcast, StridedSliceSplat>(context); 2716 } 2717 2718 //===----------------------------------------------------------------------===// 2719 // TransferReadOp 2720 //===----------------------------------------------------------------------===// 2721 2722 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2723 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2724 VectorType vectorType, Value source, 2725 ValueRange indices, AffineMapAttr permutationMapAttr, 2726 /*optional*/ ArrayAttr inBoundsAttr) { 2727 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2728 Value padding = builder.create<arith::ConstantOp>( 2729 result.location, elemType, builder.getZeroAttr(elemType)); 2730 build(builder, result, vectorType, source, indices, permutationMapAttr, 2731 padding, /*mask=*/Value(), inBoundsAttr); 2732 } 2733 2734 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2735 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2736 VectorType vectorType, Value source, 2737 ValueRange indices, AffineMap permutationMap, 2738 Optional<ArrayRef<bool>> inBounds) { 2739 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2740 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2741 ? builder.getBoolArrayAttr(inBounds.getValue()) 2742 : ArrayAttr(); 2743 build(builder, result, vectorType, source, indices, permutationMapAttr, 2744 inBoundsAttr); 2745 } 2746 2747 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2748 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2749 VectorType vectorType, Value source, 2750 ValueRange indices, Value padding, 2751 Optional<ArrayRef<bool>> inBounds) { 2752 AffineMap permutationMap = getTransferMinorIdentityMap( 2753 source.getType().cast<ShapedType>(), vectorType); 2754 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2755 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2756 ? builder.getBoolArrayAttr(inBounds.getValue()) 2757 : ArrayAttr(); 2758 build(builder, result, vectorType, source, indices, permutationMapAttr, 2759 padding, 2760 /*mask=*/Value(), inBoundsAttr); 2761 } 2762 2763 /// 4. Builder that sets padding to zero and permutation map to 2764 /// 'getMinorIdentityMap'. 2765 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2766 VectorType vectorType, Value source, 2767 ValueRange indices, 2768 Optional<ArrayRef<bool>> inBounds) { 2769 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2770 Value padding = builder.create<arith::ConstantOp>( 2771 result.location, elemType, builder.getZeroAttr(elemType)); 2772 build(builder, result, vectorType, source, indices, padding, inBounds); 2773 } 2774 2775 template <typename EmitFun> 2776 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2777 EmitFun emitOpError) { 2778 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2779 for (auto expr : permutationMap.getResults()) { 2780 auto dim = expr.dyn_cast<AffineDimExpr>(); 2781 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2782 if (zero) { 2783 if (zero.getValue() != 0) { 2784 return emitOpError( 2785 "requires a projected permutation_map (at most one dim or the zero " 2786 "constant can appear in each result)"); 2787 } 2788 continue; 2789 } 2790 if (!dim) { 2791 return emitOpError("requires a projected permutation_map (at most one " 2792 "dim or the zero constant can appear in each result)"); 2793 } 2794 if (seen[dim.getPosition()]) { 2795 return emitOpError( 2796 "requires a permutation_map that is a permutation (found one dim " 2797 "used more than once)"); 2798 } 2799 seen[dim.getPosition()] = true; 2800 } 2801 return success(); 2802 } 2803 2804 static LogicalResult 2805 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2806 VectorType vectorType, VectorType maskType, 2807 AffineMap permutationMap, ArrayAttr inBounds) { 2808 if (op->hasAttr("masked")) { 2809 return op->emitOpError("masked attribute has been removed. " 2810 "Use in_bounds instead."); 2811 } 2812 2813 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2814 return op->emitOpError( 2815 "requires source to be a memref or ranked tensor type"); 2816 2817 auto elementType = shapedType.getElementType(); 2818 DataLayout dataLayout = DataLayout::closest(op); 2819 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2820 // Memref or tensor has vector element type. 2821 unsigned sourceVecSize = 2822 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2823 vectorElementType.getShape().back(); 2824 unsigned resultVecSize = 2825 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2826 vectorType.getShape().back(); 2827 if (resultVecSize % sourceVecSize != 0) 2828 return op->emitOpError( 2829 "requires the bitwidth of the minor 1-D vector to be an integral " 2830 "multiple of the bitwidth of the minor 1-D vector of the source"); 2831 2832 unsigned sourceVecEltRank = vectorElementType.getRank(); 2833 unsigned resultVecRank = vectorType.getRank(); 2834 if (sourceVecEltRank > resultVecRank) 2835 return op->emitOpError( 2836 "requires source vector element and vector result ranks to match."); 2837 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2838 // Check that permutation map results match 'rankOffset' of vector type. 2839 if (permutationMap.getNumResults() != rankOffset) 2840 return op->emitOpError("requires a permutation_map with result dims of " 2841 "the same rank as the vector type"); 2842 2843 if (maskType) 2844 return op->emitOpError("does not support masks with vector element type"); 2845 } else { 2846 // Memref or tensor has scalar element type. 2847 unsigned minorSize = 2848 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2849 unsigned resultVecSize = 2850 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2851 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2852 return op->emitOpError( 2853 "requires the bitwidth of the minor 1-D vector to be an integral " 2854 "multiple of the bitwidth of the source element type"); 2855 2856 // Check that permutation map results match rank of vector type. 2857 if (permutationMap.getNumResults() != vectorType.getRank()) 2858 return op->emitOpError("requires a permutation_map with result dims of " 2859 "the same rank as the vector type"); 2860 2861 VectorType expectedMaskType = 2862 vector::detail::transferMaskType(vectorType, permutationMap); 2863 if (maskType && expectedMaskType != maskType) 2864 return op->emitOpError("expects mask type consistent with permutation " 2865 "map: ") 2866 << maskType; 2867 } 2868 2869 if (permutationMap.getNumSymbols() != 0) 2870 return op->emitOpError("requires permutation_map without symbols"); 2871 2872 if (permutationMap.getNumInputs() != shapedType.getRank()) 2873 return op->emitOpError("requires a permutation_map with input dims of the " 2874 "same rank as the source type"); 2875 2876 if (inBounds) { 2877 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2878 return op->emitOpError("expects the optional in_bounds attr of same rank " 2879 "as permutation_map results: ") 2880 << AffineMapAttr::get(permutationMap) 2881 << " vs inBounds of size: " << inBounds.size(); 2882 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2883 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2884 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2885 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2886 } 2887 2888 return success(); 2889 } 2890 2891 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2892 SmallVector<StringRef, 3> elidedAttrs; 2893 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2894 if (op.permutation_map().isMinorIdentity()) 2895 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2896 bool elideInBounds = true; 2897 if (auto inBounds = op.in_bounds()) { 2898 for (auto attr : *inBounds) { 2899 if (attr.template cast<BoolAttr>().getValue()) { 2900 elideInBounds = false; 2901 break; 2902 } 2903 } 2904 } 2905 if (elideInBounds) 2906 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2907 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2908 } 2909 2910 void TransferReadOp::print(OpAsmPrinter &p) { 2911 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2912 if (getMask()) 2913 p << ", " << getMask(); 2914 printTransferAttrs(p, *this); 2915 p << " : " << getShapedType() << ", " << getVectorType(); 2916 } 2917 2918 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2919 auto &builder = parser.getBuilder(); 2920 SMLoc typesLoc; 2921 OpAsmParser::UnresolvedOperand sourceInfo; 2922 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2923 OpAsmParser::UnresolvedOperand paddingInfo; 2924 SmallVector<Type, 2> types; 2925 OpAsmParser::UnresolvedOperand maskInfo; 2926 // Parsing with support for paddingValue. 2927 if (parser.parseOperand(sourceInfo) || 2928 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2929 parser.parseComma() || parser.parseOperand(paddingInfo)) 2930 return failure(); 2931 ParseResult hasMask = parser.parseOptionalComma(); 2932 if (hasMask.succeeded()) { 2933 if (parser.parseOperand(maskInfo)) 2934 return failure(); 2935 } 2936 if (parser.parseOptionalAttrDict(result.attributes) || 2937 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2938 return failure(); 2939 if (types.size() != 2) 2940 return parser.emitError(typesLoc, "requires two types"); 2941 auto indexType = builder.getIndexType(); 2942 auto shapedType = types[0].dyn_cast<ShapedType>(); 2943 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2944 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2945 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2946 if (!vectorType) 2947 return parser.emitError(typesLoc, "requires vector type"); 2948 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2949 Attribute mapAttr = result.attributes.get(permutationAttrName); 2950 if (!mapAttr) { 2951 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2952 // Update `mapAttr` that is used later to determine mask type. 2953 mapAttr = AffineMapAttr::get(permMap); 2954 result.attributes.set(permutationAttrName, mapAttr); 2955 } 2956 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2957 parser.resolveOperands(indexInfo, indexType, result.operands) || 2958 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2959 result.operands)) 2960 return failure(); 2961 if (hasMask.succeeded()) { 2962 if (shapedType.getElementType().dyn_cast<VectorType>()) 2963 return parser.emitError( 2964 maskInfo.location, "does not support masks with vector element type"); 2965 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2966 // Instead of adding the mask type as an op type, compute it based on the 2967 // vector type and the permutation map (to keep the type signature small). 2968 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2969 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2970 return failure(); 2971 } 2972 result.addAttribute( 2973 TransferReadOp::getOperandSegmentSizeAttr(), 2974 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2975 static_cast<int32_t>(hasMask.succeeded())})); 2976 return parser.addTypeToList(vectorType, result.types); 2977 } 2978 2979 LogicalResult TransferReadOp::verify() { 2980 // Consistency of elemental types in source and vector. 2981 ShapedType shapedType = getShapedType(); 2982 VectorType vectorType = getVectorType(); 2983 VectorType maskType = getMaskType(); 2984 auto paddingType = getPadding().getType(); 2985 auto permutationMap = getPermutationMap(); 2986 auto sourceElementType = shapedType.getElementType(); 2987 2988 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 2989 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2990 2991 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2992 shapedType, vectorType, maskType, permutationMap, 2993 getInBounds() ? *getInBounds() : ArrayAttr()))) 2994 return failure(); 2995 2996 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2997 // Source has vector element type. 2998 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2999 if (sourceVectorElementType != paddingType) 3000 return emitOpError( 3001 "requires source element type and padding type to match."); 3002 3003 } else { 3004 // Check that 'paddingType' is valid to store in a vector type. 3005 if (!VectorType::isValidElementType(paddingType)) 3006 return emitOpError("requires valid padding vector elemental type"); 3007 3008 // Check that padding type and vector element types match. 3009 if (paddingType != sourceElementType) 3010 return emitOpError( 3011 "requires formal padding and source of the same elemental type"); 3012 } 3013 3014 return verifyPermutationMap(permutationMap, 3015 [&](Twine t) { return emitOpError(t); }); 3016 } 3017 3018 /// This is a common class used for patterns of the form 3019 /// ``` 3020 /// someop(memrefcast) -> someop 3021 /// ``` 3022 /// It folds the source of the memref.cast into the root operation directly. 3023 static LogicalResult foldMemRefCast(Operation *op) { 3024 bool folded = false; 3025 for (OpOperand &operand : op->getOpOperands()) { 3026 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 3027 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 3028 operand.set(castOp.getOperand()); 3029 folded = true; 3030 } 3031 } 3032 return success(folded); 3033 } 3034 3035 static LogicalResult foldTensorCast(Operation *op) { 3036 bool folded = false; 3037 for (OpOperand &operand : op->getOpOperands()) { 3038 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 3039 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 3040 operand.set(castOp.getOperand()); 3041 folded = true; 3042 } 3043 } 3044 return success(folded); 3045 } 3046 3047 template <typename TransferOp> 3048 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 3049 // TODO: support more aggressive createOrFold on: 3050 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 3051 if (op.getShapedType().isDynamicDim(indicesIdx)) 3052 return false; 3053 Value index = op.getIndices()[indicesIdx]; 3054 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 3055 if (!cstOp) 3056 return false; 3057 3058 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 3059 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 3060 3061 return cstOp.value() + vectorSize <= sourceSize; 3062 } 3063 3064 template <typename TransferOp> 3065 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 3066 // TODO: support 0-d corner case. 3067 // TODO: Be less conservative. 3068 if (op.getTransferRank() == 0) 3069 return failure(); 3070 AffineMap permutationMap = op.getPermutationMap(); 3071 bool changed = false; 3072 SmallVector<bool, 4> newInBounds; 3073 newInBounds.reserve(op.getTransferRank()); 3074 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 3075 // Already marked as in-bounds, nothing to see here. 3076 if (op.isDimInBounds(i)) { 3077 newInBounds.push_back(true); 3078 continue; 3079 } 3080 // Currently out-of-bounds, check whether we can statically determine it is 3081 // inBounds. 3082 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 3083 assert(dimExpr && "Broadcast dims must be in-bounds"); 3084 auto inBounds = 3085 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 3086 newInBounds.push_back(inBounds); 3087 // We commit the pattern if it is "more inbounds". 3088 changed |= inBounds; 3089 } 3090 if (!changed) 3091 return failure(); 3092 // OpBuilder is only used as a helper to build an I64ArrayAttr. 3093 OpBuilder b(op.getContext()); 3094 op->setAttr(TransferOp::getInBoundsAttrStrName(), 3095 b.getBoolArrayAttr(newInBounds)); 3096 return success(); 3097 } 3098 3099 /// ``` 3100 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3101 /// : vector<1x4xf32>, tensor<4x4xf32> 3102 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 3103 /// : tensor<4x4xf32>, vector<1x4xf32> 3104 /// ``` 3105 /// -> Folds into 3106 /// ``` 3107 /// %v0 3108 /// ``` 3109 static Value foldRAW(TransferReadOp readOp) { 3110 if (!readOp.getShapedType().isa<RankedTensorType>()) 3111 return {}; 3112 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3113 while (defWrite) { 3114 if (checkSameValueRAW(defWrite, readOp)) 3115 return defWrite.getVector(); 3116 if (!isDisjointTransferIndices( 3117 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3118 cast<VectorTransferOpInterface>(readOp.getOperation()))) 3119 break; 3120 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3121 } 3122 return {}; 3123 } 3124 3125 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 3126 if (Value vec = foldRAW(*this)) 3127 return vec; 3128 /// transfer_read(memrefcast) -> transfer_read 3129 if (succeeded(foldTransferInBoundsAttribute(*this))) 3130 return getResult(); 3131 if (succeeded(foldMemRefCast(*this))) 3132 return getResult(); 3133 if (succeeded(foldTensorCast(*this))) 3134 return getResult(); 3135 return OpFoldResult(); 3136 } 3137 3138 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3139 return llvm::to_vector<4>(getVectorType().getShape()); 3140 } 3141 3142 void TransferReadOp::getEffects( 3143 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3144 &effects) { 3145 if (getShapedType().isa<MemRefType>()) 3146 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 3147 SideEffects::DefaultResource::get()); 3148 } 3149 3150 namespace { 3151 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3152 /// 3153 /// ``` 3154 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3155 /// : tensor<?x?xf32> to tensor<?x?xf32> 3156 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3157 /// : tensor<?x?xf32>, vector<4x5xf32> 3158 /// ``` 3159 /// is rewritten to: 3160 /// ``` 3161 /// %p0 = arith.addi %a, %e : index 3162 /// %p1 = arith.addi %b, %f : index 3163 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3164 /// : tensor<?x?xf32>, vector<4x5xf32> 3165 /// ``` 3166 struct FoldExtractSliceIntoTransferRead 3167 : public OpRewritePattern<TransferReadOp> { 3168 public: 3169 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3170 3171 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3172 PatternRewriter &rewriter) const override { 3173 // TODO: support 0-d corner case. 3174 if (xferOp.getTransferRank() == 0) 3175 return failure(); 3176 if (xferOp.hasOutOfBoundsDim()) 3177 return failure(); 3178 if (!xferOp.getPermutationMap().isIdentity()) 3179 return failure(); 3180 if (xferOp.getMask()) 3181 return failure(); 3182 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3183 if (!extractOp) 3184 return failure(); 3185 if (!extractOp.hasUnitStride()) 3186 return failure(); 3187 3188 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3189 // dims are exactly the leading dims. I.e. the following is illegal: 3190 // ``` 3191 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3192 // tensor<2x1x4xf32> to tensor<2x4xf32> 3193 // %1 = vector.transfer_read %0[0,0], %cst : 3194 // tensor<2x4xf32>, vector<2x4xf32> 3195 // ``` 3196 // 3197 // Cannot fold into: 3198 // ``` 3199 // %0 = vector.transfer_read %t[0,0,0], %cst : 3200 // tensor<2x1x4xf32>, vector<2x4xf32> 3201 // ``` 3202 // For this, check the trailing `vectorRank` dims of the extract_slice 3203 // result tensor match the trailing dims of the inferred result tensor. 3204 int64_t rankReduced = 3205 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3206 int64_t vectorRank = xferOp.getVectorType().getRank(); 3207 RankedTensorType inferredDestTensorType = 3208 tensor::ExtractSliceOp::inferResultType( 3209 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3210 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3211 auto actualDestTensorShape = extractOp.getType().getShape(); 3212 if (rankReduced > 0 && 3213 actualDestTensorShape.take_back(vectorRank) != 3214 inferredDestTensorType.getShape().take_back(vectorRank)) 3215 return failure(); 3216 3217 SmallVector<Value> newIndices; 3218 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3219 // indices first. 3220 for (int64_t i = 0; i < rankReduced; ++i) { 3221 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3222 newIndices.push_back(getValueOrCreateConstantIndexOp( 3223 rewriter, extractOp.getLoc(), offset)); 3224 } 3225 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3226 OpFoldResult offset = 3227 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3228 newIndices.push_back(rewriter.create<arith::AddIOp>( 3229 xferOp->getLoc(), it.value(), 3230 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3231 offset))); 3232 } 3233 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3234 rewriter.replaceOpWithNewOp<TransferReadOp>( 3235 xferOp, xferOp.getVectorType(), extractOp.getSource(), newIndices, 3236 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3237 3238 return success(); 3239 } 3240 }; 3241 } // namespace 3242 3243 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3244 MLIRContext *context) { 3245 results.add<FoldExtractSliceIntoTransferRead>(context); 3246 } 3247 3248 //===----------------------------------------------------------------------===// 3249 // TransferWriteOp 3250 //===----------------------------------------------------------------------===// 3251 3252 /// 1. Builder with type inference. 3253 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3254 Value vector, Value dest, ValueRange indices, 3255 AffineMapAttr permutationMapAttr, 3256 /*optional*/ Value mask, 3257 /*optional*/ ArrayAttr inBoundsAttr) { 3258 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3259 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3260 mask, inBoundsAttr); 3261 } 3262 3263 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3264 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3265 Value vector, Value dest, ValueRange indices, 3266 AffineMapAttr permutationMapAttr, 3267 /*optional*/ ArrayAttr inBoundsAttr) { 3268 build(builder, result, vector, dest, indices, permutationMapAttr, 3269 /*mask=*/Value(), inBoundsAttr); 3270 } 3271 3272 /// 3. Builder with type inference that sets an empty mask (variant without 3273 /// attrs) 3274 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3275 Value vector, Value dest, ValueRange indices, 3276 AffineMap permutationMap, 3277 Optional<ArrayRef<bool>> inBounds) { 3278 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3279 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3280 ? builder.getBoolArrayAttr(inBounds.getValue()) 3281 : ArrayAttr(); 3282 build(builder, result, vector, dest, indices, permutationMapAttr, 3283 /*mask=*/Value(), inBoundsAttr); 3284 } 3285 3286 /// 4. Builder with type inference that sets an empty mask and sets permutation 3287 /// map to 'getMinorIdentityMap'. 3288 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3289 Value vector, Value dest, ValueRange indices, 3290 Optional<ArrayRef<bool>> inBounds) { 3291 auto vectorType = vector.getType().cast<VectorType>(); 3292 AffineMap permutationMap = getTransferMinorIdentityMap( 3293 dest.getType().cast<ShapedType>(), vectorType); 3294 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3295 } 3296 3297 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3298 OperationState &result) { 3299 auto &builder = parser.getBuilder(); 3300 SMLoc typesLoc; 3301 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3302 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3303 SmallVector<Type, 2> types; 3304 OpAsmParser::UnresolvedOperand maskInfo; 3305 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3306 parser.parseOperand(sourceInfo) || 3307 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3308 return failure(); 3309 ParseResult hasMask = parser.parseOptionalComma(); 3310 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3311 return failure(); 3312 if (parser.parseOptionalAttrDict(result.attributes) || 3313 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3314 return failure(); 3315 if (types.size() != 2) 3316 return parser.emitError(typesLoc, "requires two types"); 3317 auto indexType = builder.getIndexType(); 3318 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3319 if (!vectorType) 3320 return parser.emitError(typesLoc, "requires vector type"); 3321 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3322 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3323 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3324 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3325 auto attr = result.attributes.get(permutationAttrName); 3326 if (!attr) { 3327 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3328 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3329 } 3330 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3331 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3332 parser.resolveOperands(indexInfo, indexType, result.operands)) 3333 return failure(); 3334 if (hasMask.succeeded()) { 3335 if (shapedType.getElementType().dyn_cast<VectorType>()) 3336 return parser.emitError( 3337 maskInfo.location, "does not support masks with vector element type"); 3338 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3339 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3340 return failure(); 3341 } 3342 result.addAttribute( 3343 TransferWriteOp::getOperandSegmentSizeAttr(), 3344 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3345 static_cast<int32_t>(hasMask.succeeded())})); 3346 return failure(shapedType.isa<RankedTensorType>() && 3347 parser.addTypeToList(shapedType, result.types)); 3348 } 3349 3350 void TransferWriteOp::print(OpAsmPrinter &p) { 3351 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3352 if (getMask()) 3353 p << ", " << getMask(); 3354 printTransferAttrs(p, *this); 3355 p << " : " << getVectorType() << ", " << getShapedType(); 3356 } 3357 3358 LogicalResult TransferWriteOp::verify() { 3359 // Consistency of elemental types in shape and vector. 3360 ShapedType shapedType = getShapedType(); 3361 VectorType vectorType = getVectorType(); 3362 VectorType maskType = getMaskType(); 3363 auto permutationMap = getPermutationMap(); 3364 3365 if (llvm::size(getIndices()) != shapedType.getRank()) 3366 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3367 3368 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3369 // as the semantics is unclear. This can be revisited later if necessary. 3370 if (hasBroadcastDim()) 3371 return emitOpError("should not have broadcast dimensions"); 3372 3373 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3374 shapedType, vectorType, maskType, permutationMap, 3375 getInBounds() ? *getInBounds() : ArrayAttr()))) 3376 return failure(); 3377 3378 return verifyPermutationMap(permutationMap, 3379 [&](Twine t) { return emitOpError(t); }); 3380 } 3381 3382 /// Fold: 3383 /// ``` 3384 /// %t1 = ... 3385 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3386 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3387 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3388 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3389 /// ``` 3390 /// 3391 /// into: 3392 /// 3393 /// ``` 3394 /// %t0 3395 /// ``` 3396 /// 3397 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3398 /// block argument or has side effects. 3399 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3400 ArrayRef<Attribute>, 3401 SmallVectorImpl<OpFoldResult> &results) { 3402 // TODO: support 0-d corner case. 3403 if (write.getTransferRank() == 0) 3404 return failure(); 3405 auto rankedTensorType = 3406 write.getSource().getType().dyn_cast<RankedTensorType>(); 3407 // If not operating on tensors, bail. 3408 if (!rankedTensorType) 3409 return failure(); 3410 // If no read, bail. 3411 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3412 if (!read) 3413 return failure(); 3414 // TODO: support 0-d corner case. 3415 if (read.getTransferRank() == 0) 3416 return failure(); 3417 // For now, only accept minor identity. Future: composition is minor identity. 3418 if (!read.getPermutationMap().isMinorIdentity() || 3419 !write.getPermutationMap().isMinorIdentity()) 3420 return failure(); 3421 // Bail on mismatching ranks. 3422 if (read.getTransferRank() != write.getTransferRank()) 3423 return failure(); 3424 // Bail on potential out-of-bounds accesses. 3425 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3426 return failure(); 3427 // Tensor types must be the same. 3428 if (read.getSource().getType() != rankedTensorType) 3429 return failure(); 3430 // Vector types must be the same. 3431 if (read.getVectorType() != write.getVectorType()) 3432 return failure(); 3433 // Vector and Tensor shapes must match. 3434 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3435 return failure(); 3436 // If any index is nonzero. 3437 auto isNotConstantZero = [](Value v) { 3438 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3439 return !cstOp || cstOp.value() != 0; 3440 }; 3441 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3442 llvm::any_of(write.getIndices(), isNotConstantZero)) 3443 return failure(); 3444 // Success. 3445 results.push_back(read.getSource()); 3446 return success(); 3447 } 3448 3449 static bool checkSameValueWAR(vector::TransferReadOp read, 3450 vector::TransferWriteOp write) { 3451 return read.getSource() == write.getSource() && 3452 read.getIndices() == write.getIndices() && 3453 read.getPermutationMap() == write.getPermutationMap() && 3454 read.getVectorType() == write.getVectorType() && !read.getMask() && 3455 !write.getMask(); 3456 } 3457 /// Fold transfer_write write after read: 3458 /// ``` 3459 /// %t0 = ... 3460 /// %v = vector.transfer_read %t0[%c0...] : 3461 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3462 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3463 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3464 /// ``` 3465 /// 3466 /// into: 3467 /// 3468 /// ``` 3469 /// %t0 3470 /// ``` 3471 static LogicalResult foldWAR(TransferWriteOp write, 3472 SmallVectorImpl<OpFoldResult> &results) { 3473 if (!write.getSource().getType().isa<RankedTensorType>()) 3474 return failure(); 3475 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3476 if (!read) 3477 return failure(); 3478 3479 if (!checkSameValueWAR(read, write)) 3480 return failure(); 3481 results.push_back(read.getSource()); 3482 return success(); 3483 } 3484 3485 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3486 SmallVectorImpl<OpFoldResult> &results) { 3487 if (succeeded(foldReadInitWrite(*this, operands, results))) 3488 return success(); 3489 if (succeeded(foldWAR(*this, results))) 3490 return success(); 3491 if (succeeded(foldTransferInBoundsAttribute(*this))) 3492 return success(); 3493 return foldMemRefCast(*this); 3494 } 3495 3496 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3497 return llvm::to_vector<4>(getVectorType().getShape()); 3498 } 3499 3500 void TransferWriteOp::getEffects( 3501 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3502 &effects) { 3503 if (getShapedType().isa<MemRefType>()) 3504 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3505 SideEffects::DefaultResource::get()); 3506 } 3507 3508 namespace { 3509 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3510 /// DCE 3511 /// ``` 3512 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3513 /// : vector<1x4xf32>, tensor<4x4xf32> 3514 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3515 /// : vector<1x4xf32>, tensor<4x4xf32> 3516 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3517 /// : vector<1x4xf32>, tensor<4x4xf32> 3518 /// ``` 3519 /// 3520 /// into: 3521 /// 3522 /// ``` 3523 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3524 /// : vector<1x4xf32>, tensor<4x4xf32> 3525 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3526 /// : vector<1x4xf32>, tensor<4x4xf32> 3527 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3528 /// : vector<1x4xf32>, tensor<4x4xf32> 3529 /// ``` 3530 /// 3531 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3532 /// any other uses. 3533 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3534 public: 3535 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3536 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3537 PatternRewriter &rewriter) const override { 3538 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3539 return failure(); 3540 vector::TransferWriteOp writeToModify = writeOp; 3541 3542 auto defWrite = 3543 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3544 while (defWrite) { 3545 if (checkSameValueWAW(writeOp, defWrite)) { 3546 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3547 return success(); 3548 } 3549 if (!isDisjointTransferIndices( 3550 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3551 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3552 break; 3553 // If the previous write op doesn't have any other use we an safely look 3554 // at the previous store to see if it can be removed. 3555 if (!defWrite->hasOneUse()) 3556 break; 3557 writeToModify = defWrite; 3558 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3559 } 3560 return failure(); 3561 } 3562 }; 3563 3564 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3565 /// could directly write to the insert_slice's destination. E.g.: 3566 /// 3567 /// ``` 3568 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3569 /// : vector<4x5xf32>, tensor<4x5xf32> 3570 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3571 /// : tensor<4x5xf32> into tensor<?x?xf32> 3572 /// ``` 3573 /// is rewritten to: 3574 /// ``` 3575 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3576 /// : vector<4x5xf32>, tensor<?x?xf32> 3577 /// ``` 3578 struct FoldInsertSliceIntoTransferWrite 3579 : public OpRewritePattern<tensor::InsertSliceOp> { 3580 public: 3581 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3582 3583 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3584 PatternRewriter &rewriter) const override { 3585 if (!insertOp.hasUnitStride()) 3586 return failure(); 3587 3588 auto xferOp = insertOp.getSource().getDefiningOp<TransferWriteOp>(); 3589 if (!xferOp) 3590 return failure(); 3591 // TODO: support 0-d corner case. 3592 if (xferOp.getTransferRank() == 0) 3593 return failure(); 3594 3595 if (xferOp.hasOutOfBoundsDim()) 3596 return failure(); 3597 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3598 return failure(); 3599 if (xferOp.getMask()) 3600 return failure(); 3601 // Fold only if the TransferWriteOp completely overwrites the `source` with 3602 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3603 // content is the data of the vector. 3604 if (!llvm::equal(xferOp.getVectorType().getShape(), 3605 xferOp.getShapedType().getShape())) 3606 return failure(); 3607 if (!xferOp.getPermutationMap().isIdentity()) 3608 return failure(); 3609 3610 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3611 // dims are exactly the leading dims. I.e. the following is illegal: 3612 // ``` 3613 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3614 // vector<2x4xf32>, tensor<2x4xf32> 3615 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3616 // tensor<2x4xf32> into tensor<2x1x4xf32> 3617 // ``` 3618 // 3619 // Cannot fold into: 3620 // ``` 3621 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3622 // vector<2x4xf32>, tensor<2x1x4xf32> 3623 // ``` 3624 // For this, check the trailing `vectorRank` dims of the insert_slice result 3625 // tensor match the trailing dims of the inferred result tensor. 3626 int64_t rankReduced = 3627 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3628 int64_t vectorRank = xferOp.getVectorType().getRank(); 3629 RankedTensorType inferredSourceTensorType = 3630 tensor::ExtractSliceOp::inferResultType( 3631 insertOp.getType(), insertOp.getMixedOffsets(), 3632 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3633 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3634 if (rankReduced > 0 && 3635 actualSourceTensorShape.take_back(vectorRank) != 3636 inferredSourceTensorType.getShape().take_back(vectorRank)) 3637 return failure(); 3638 3639 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3640 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3641 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3642 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3643 insertOp.getDest(), indices, 3644 ArrayRef<bool>{inBounds}); 3645 return success(); 3646 } 3647 }; 3648 3649 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to 3650 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is 3651 /// overwritten and inserted into another tensor. After this rewrite, the 3652 /// operations bufferize in-place since all of them work on the same slice. 3653 /// 3654 /// For example: 3655 /// ```mlir 3656 /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] 3657 /// : vector<8x16xf32>, tensor<8x16xf32> 3658 /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] 3659 /// : tensor<8x16xf32> to tensor<?x?xf32> 3660 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3661 /// : tensor<?x?xf32> into tensor<27x37xf32> 3662 /// ``` 3663 /// folds to 3664 /// ```mlir 3665 /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3666 /// : tensor<27x37xf32> to tensor<?x?xf32> 3667 /// %1 = vector.transfer_write %vec, %0[%c0, %c0] 3668 /// : vector<8x16xf32>, tensor<?x?xf32> 3669 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3670 /// : tensor<?x?xf32> into tensor<27x37xf32> 3671 /// ``` 3672 struct SwapExtractSliceOfTransferWrite 3673 : public OpRewritePattern<tensor::InsertSliceOp> { 3674 public: 3675 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3676 3677 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3678 PatternRewriter &rewriter) const override { 3679 if (!insertOp.hasUnitStride()) 3680 return failure(); 3681 auto extractOp = 3682 insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3683 if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) 3684 return failure(); 3685 auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>(); 3686 if (!transferOp || !transferOp->hasOneUse()) 3687 return failure(); 3688 3689 // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is 3690 // rank-reducing. 3691 if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { 3692 return rewriter.notifyMatchFailure(insertOp, 3693 "use-def chain is rank-reducing"); 3694 } 3695 3696 // Fail if tensor::ExtractSliceOp has non-zero offset. 3697 if (!extractOp.hasZeroOffset()) { 3698 return rewriter.notifyMatchFailure(insertOp, 3699 "ExtractSliceOp has non-zero offset"); 3700 } 3701 3702 // Fail if tensor::TransferWriteOp has non-zero offset. 3703 if (!llvm::all_of(transferOp.getIndices(), [](Value value) { 3704 return getConstantIntValue(value) == static_cast<int64_t>(0); 3705 })) { 3706 return rewriter.notifyMatchFailure(insertOp, 3707 "TranferWriteOp has non-zero offset"); 3708 } 3709 3710 // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. 3711 for (const auto &it : 3712 llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { 3713 if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) { 3714 return rewriter.notifyMatchFailure( 3715 insertOp, "InsertSliceOp and ExtractSliceOp sizes differ"); 3716 } 3717 } 3718 3719 // Fail if the vector::TransferWriteOp may not overwrite the full tensor. 3720 assert(transferOp.getVectorType().hasStaticShape() && 3721 "expected vector to have a static shape"); 3722 ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape(); 3723 SmallVector<int64_t> resultShape = applyPermutationMap( 3724 transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); 3725 if (transferOp.getMask() || !vectorShape.equals(resultShape)) { 3726 return rewriter.notifyMatchFailure( 3727 insertOp, "TransferWriteOp may not write the full tensor."); 3728 } 3729 3730 // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. 3731 SmallVector<int64_t> newResultShape = applyPermutationMap( 3732 transferOp.getPermutationMap(), insertOp.getSourceType().getShape()); 3733 SmallVector<bool> newInBounds; 3734 for (const auto &en : enumerate(newResultShape)) 3735 newInBounds.push_back(en.value() == vectorShape[en.index()]); 3736 auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>( 3737 extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(), 3738 insertOp.getMixedOffsets(), insertOp.getMixedSizes(), 3739 insertOp.getMixedStrides()); 3740 auto newTransferWriteOp = rewriter.create<TransferWriteOp>( 3741 transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), 3742 transferOp.getIndices(), transferOp.getPermutationMapAttr(), 3743 rewriter.getBoolArrayAttr(newInBounds)); 3744 rewriter.updateRootInPlace(insertOp, [&]() { 3745 insertOp.getSourceMutable().assign(newTransferWriteOp.getResult()); 3746 }); 3747 return success(); 3748 } 3749 }; 3750 3751 } // namespace 3752 3753 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3754 MLIRContext *context) { 3755 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite, 3756 SwapExtractSliceOfTransferWrite>(context); 3757 } 3758 3759 //===----------------------------------------------------------------------===// 3760 // LoadOp 3761 //===----------------------------------------------------------------------===// 3762 3763 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3764 MemRefType memRefTy) { 3765 if (!isLastMemrefDimUnitStride(memRefTy)) 3766 return op->emitOpError("most minor memref dim must have unit stride"); 3767 return success(); 3768 } 3769 3770 LogicalResult vector::LoadOp::verify() { 3771 VectorType resVecTy = getVectorType(); 3772 MemRefType memRefTy = getMemRefType(); 3773 3774 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3775 return failure(); 3776 3777 // Checks for vector memrefs. 3778 Type memElemTy = memRefTy.getElementType(); 3779 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3780 if (memVecTy != resVecTy) 3781 return emitOpError("base memref and result vector types should match"); 3782 memElemTy = memVecTy.getElementType(); 3783 } 3784 3785 if (resVecTy.getElementType() != memElemTy) 3786 return emitOpError("base and result element types should match"); 3787 if (llvm::size(getIndices()) != memRefTy.getRank()) 3788 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3789 return success(); 3790 } 3791 3792 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3793 if (succeeded(foldMemRefCast(*this))) 3794 return getResult(); 3795 return OpFoldResult(); 3796 } 3797 3798 //===----------------------------------------------------------------------===// 3799 // StoreOp 3800 //===----------------------------------------------------------------------===// 3801 3802 LogicalResult vector::StoreOp::verify() { 3803 VectorType valueVecTy = getVectorType(); 3804 MemRefType memRefTy = getMemRefType(); 3805 3806 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3807 return failure(); 3808 3809 // Checks for vector memrefs. 3810 Type memElemTy = memRefTy.getElementType(); 3811 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3812 if (memVecTy != valueVecTy) 3813 return emitOpError( 3814 "base memref and valueToStore vector types should match"); 3815 memElemTy = memVecTy.getElementType(); 3816 } 3817 3818 if (valueVecTy.getElementType() != memElemTy) 3819 return emitOpError("base and valueToStore element type should match"); 3820 if (llvm::size(getIndices()) != memRefTy.getRank()) 3821 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3822 return success(); 3823 } 3824 3825 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3826 SmallVectorImpl<OpFoldResult> &results) { 3827 return foldMemRefCast(*this); 3828 } 3829 3830 //===----------------------------------------------------------------------===// 3831 // MaskedLoadOp 3832 //===----------------------------------------------------------------------===// 3833 3834 LogicalResult MaskedLoadOp::verify() { 3835 VectorType maskVType = getMaskVectorType(); 3836 VectorType passVType = getPassThruVectorType(); 3837 VectorType resVType = getVectorType(); 3838 MemRefType memType = getMemRefType(); 3839 3840 if (resVType.getElementType() != memType.getElementType()) 3841 return emitOpError("base and result element type should match"); 3842 if (llvm::size(getIndices()) != memType.getRank()) 3843 return emitOpError("requires ") << memType.getRank() << " indices"; 3844 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3845 return emitOpError("expected result dim to match mask dim"); 3846 if (resVType != passVType) 3847 return emitOpError("expected pass_thru of same type as result type"); 3848 return success(); 3849 } 3850 3851 namespace { 3852 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3853 public: 3854 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3855 LogicalResult matchAndRewrite(MaskedLoadOp load, 3856 PatternRewriter &rewriter) const override { 3857 switch (get1DMaskFormat(load.getMask())) { 3858 case MaskFormat::AllTrue: 3859 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3860 load, load.getType(), load.getBase(), load.getIndices()); 3861 return success(); 3862 case MaskFormat::AllFalse: 3863 rewriter.replaceOp(load, load.getPassThru()); 3864 return success(); 3865 case MaskFormat::Unknown: 3866 return failure(); 3867 } 3868 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3869 } 3870 }; 3871 } // namespace 3872 3873 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3874 MLIRContext *context) { 3875 results.add<MaskedLoadFolder>(context); 3876 } 3877 3878 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3879 if (succeeded(foldMemRefCast(*this))) 3880 return getResult(); 3881 return OpFoldResult(); 3882 } 3883 3884 //===----------------------------------------------------------------------===// 3885 // MaskedStoreOp 3886 //===----------------------------------------------------------------------===// 3887 3888 LogicalResult MaskedStoreOp::verify() { 3889 VectorType maskVType = getMaskVectorType(); 3890 VectorType valueVType = getVectorType(); 3891 MemRefType memType = getMemRefType(); 3892 3893 if (valueVType.getElementType() != memType.getElementType()) 3894 return emitOpError("base and valueToStore element type should match"); 3895 if (llvm::size(getIndices()) != memType.getRank()) 3896 return emitOpError("requires ") << memType.getRank() << " indices"; 3897 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3898 return emitOpError("expected valueToStore dim to match mask dim"); 3899 return success(); 3900 } 3901 3902 namespace { 3903 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3904 public: 3905 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3906 LogicalResult matchAndRewrite(MaskedStoreOp store, 3907 PatternRewriter &rewriter) const override { 3908 switch (get1DMaskFormat(store.getMask())) { 3909 case MaskFormat::AllTrue: 3910 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3911 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3912 return success(); 3913 case MaskFormat::AllFalse: 3914 rewriter.eraseOp(store); 3915 return success(); 3916 case MaskFormat::Unknown: 3917 return failure(); 3918 } 3919 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3920 } 3921 }; 3922 } // namespace 3923 3924 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3925 MLIRContext *context) { 3926 results.add<MaskedStoreFolder>(context); 3927 } 3928 3929 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3930 SmallVectorImpl<OpFoldResult> &results) { 3931 return foldMemRefCast(*this); 3932 } 3933 3934 //===----------------------------------------------------------------------===// 3935 // GatherOp 3936 //===----------------------------------------------------------------------===// 3937 3938 LogicalResult GatherOp::verify() { 3939 VectorType indVType = getIndexVectorType(); 3940 VectorType maskVType = getMaskVectorType(); 3941 VectorType resVType = getVectorType(); 3942 MemRefType memType = getMemRefType(); 3943 3944 if (resVType.getElementType() != memType.getElementType()) 3945 return emitOpError("base and result element type should match"); 3946 if (llvm::size(getIndices()) != memType.getRank()) 3947 return emitOpError("requires ") << memType.getRank() << " indices"; 3948 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3949 return emitOpError("expected result dim to match indices dim"); 3950 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3951 return emitOpError("expected result dim to match mask dim"); 3952 if (resVType != getPassThruVectorType()) 3953 return emitOpError("expected pass_thru of same type as result type"); 3954 return success(); 3955 } 3956 3957 namespace { 3958 class GatherFolder final : public OpRewritePattern<GatherOp> { 3959 public: 3960 using OpRewritePattern<GatherOp>::OpRewritePattern; 3961 LogicalResult matchAndRewrite(GatherOp gather, 3962 PatternRewriter &rewriter) const override { 3963 switch (get1DMaskFormat(gather.getMask())) { 3964 case MaskFormat::AllTrue: 3965 return failure(); // no unmasked equivalent 3966 case MaskFormat::AllFalse: 3967 rewriter.replaceOp(gather, gather.getPassThru()); 3968 return success(); 3969 case MaskFormat::Unknown: 3970 return failure(); 3971 } 3972 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3973 } 3974 }; 3975 } // namespace 3976 3977 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3978 MLIRContext *context) { 3979 results.add<GatherFolder>(context); 3980 } 3981 3982 //===----------------------------------------------------------------------===// 3983 // ScatterOp 3984 //===----------------------------------------------------------------------===// 3985 3986 LogicalResult ScatterOp::verify() { 3987 VectorType indVType = getIndexVectorType(); 3988 VectorType maskVType = getMaskVectorType(); 3989 VectorType valueVType = getVectorType(); 3990 MemRefType memType = getMemRefType(); 3991 3992 if (valueVType.getElementType() != memType.getElementType()) 3993 return emitOpError("base and valueToStore element type should match"); 3994 if (llvm::size(getIndices()) != memType.getRank()) 3995 return emitOpError("requires ") << memType.getRank() << " indices"; 3996 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3997 return emitOpError("expected valueToStore dim to match indices dim"); 3998 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3999 return emitOpError("expected valueToStore dim to match mask dim"); 4000 return success(); 4001 } 4002 4003 namespace { 4004 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 4005 public: 4006 using OpRewritePattern<ScatterOp>::OpRewritePattern; 4007 LogicalResult matchAndRewrite(ScatterOp scatter, 4008 PatternRewriter &rewriter) const override { 4009 switch (get1DMaskFormat(scatter.getMask())) { 4010 case MaskFormat::AllTrue: 4011 return failure(); // no unmasked equivalent 4012 case MaskFormat::AllFalse: 4013 rewriter.eraseOp(scatter); 4014 return success(); 4015 case MaskFormat::Unknown: 4016 return failure(); 4017 } 4018 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 4019 } 4020 }; 4021 } // namespace 4022 4023 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 4024 MLIRContext *context) { 4025 results.add<ScatterFolder>(context); 4026 } 4027 4028 //===----------------------------------------------------------------------===// 4029 // ExpandLoadOp 4030 //===----------------------------------------------------------------------===// 4031 4032 LogicalResult ExpandLoadOp::verify() { 4033 VectorType maskVType = getMaskVectorType(); 4034 VectorType passVType = getPassThruVectorType(); 4035 VectorType resVType = getVectorType(); 4036 MemRefType memType = getMemRefType(); 4037 4038 if (resVType.getElementType() != memType.getElementType()) 4039 return emitOpError("base and result element type should match"); 4040 if (llvm::size(getIndices()) != memType.getRank()) 4041 return emitOpError("requires ") << memType.getRank() << " indices"; 4042 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 4043 return emitOpError("expected result dim to match mask dim"); 4044 if (resVType != passVType) 4045 return emitOpError("expected pass_thru of same type as result type"); 4046 return success(); 4047 } 4048 4049 namespace { 4050 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 4051 public: 4052 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 4053 LogicalResult matchAndRewrite(ExpandLoadOp expand, 4054 PatternRewriter &rewriter) const override { 4055 switch (get1DMaskFormat(expand.getMask())) { 4056 case MaskFormat::AllTrue: 4057 rewriter.replaceOpWithNewOp<vector::LoadOp>( 4058 expand, expand.getType(), expand.getBase(), expand.getIndices()); 4059 return success(); 4060 case MaskFormat::AllFalse: 4061 rewriter.replaceOp(expand, expand.getPassThru()); 4062 return success(); 4063 case MaskFormat::Unknown: 4064 return failure(); 4065 } 4066 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 4067 } 4068 }; 4069 } // namespace 4070 4071 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 4072 MLIRContext *context) { 4073 results.add<ExpandLoadFolder>(context); 4074 } 4075 4076 //===----------------------------------------------------------------------===// 4077 // CompressStoreOp 4078 //===----------------------------------------------------------------------===// 4079 4080 LogicalResult CompressStoreOp::verify() { 4081 VectorType maskVType = getMaskVectorType(); 4082 VectorType valueVType = getVectorType(); 4083 MemRefType memType = getMemRefType(); 4084 4085 if (valueVType.getElementType() != memType.getElementType()) 4086 return emitOpError("base and valueToStore element type should match"); 4087 if (llvm::size(getIndices()) != memType.getRank()) 4088 return emitOpError("requires ") << memType.getRank() << " indices"; 4089 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 4090 return emitOpError("expected valueToStore dim to match mask dim"); 4091 return success(); 4092 } 4093 4094 namespace { 4095 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 4096 public: 4097 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 4098 LogicalResult matchAndRewrite(CompressStoreOp compress, 4099 PatternRewriter &rewriter) const override { 4100 switch (get1DMaskFormat(compress.getMask())) { 4101 case MaskFormat::AllTrue: 4102 rewriter.replaceOpWithNewOp<vector::StoreOp>( 4103 compress, compress.getValueToStore(), compress.getBase(), 4104 compress.getIndices()); 4105 return success(); 4106 case MaskFormat::AllFalse: 4107 rewriter.eraseOp(compress); 4108 return success(); 4109 case MaskFormat::Unknown: 4110 return failure(); 4111 } 4112 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 4113 } 4114 }; 4115 } // namespace 4116 4117 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 4118 MLIRContext *context) { 4119 results.add<CompressStoreFolder>(context); 4120 } 4121 4122 //===----------------------------------------------------------------------===// 4123 // ShapeCastOp 4124 //===----------------------------------------------------------------------===// 4125 4126 /// Returns true if each element of 'a' is equal to the product of a contiguous 4127 /// sequence of the elements of 'b'. Returns false otherwise. 4128 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 4129 unsigned rankA = a.size(); 4130 unsigned rankB = b.size(); 4131 assert(rankA < rankB); 4132 4133 unsigned i = 0; 4134 unsigned j = 0; 4135 while (i < rankA && j < rankB) { 4136 int64_t dimA = a[i]; 4137 int64_t dimB = 1; 4138 while (dimB < dimA && j < rankB) 4139 dimB *= b[j++]; 4140 if (dimA != dimB) 4141 break; 4142 ++i; 4143 4144 // Handle the case when trailing dimensions are of size 1. 4145 // Include them into the contiguous sequence. 4146 auto isOne = [](int64_t v) { return v == 1; }; 4147 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 4148 i = rankA; 4149 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 4150 j = rankB; 4151 } 4152 4153 return i == rankA && j == rankB; 4154 } 4155 4156 static LogicalResult verifyVectorShapeCast(Operation *op, 4157 VectorType sourceVectorType, 4158 VectorType resultVectorType) { 4159 // Check that element type is the same. 4160 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 4161 return op->emitOpError("source/result vectors must have same element type"); 4162 auto sourceShape = sourceVectorType.getShape(); 4163 auto resultShape = resultVectorType.getShape(); 4164 4165 // Check that product of source dim sizes matches product of result dim sizes. 4166 int64_t sourceDimProduct = std::accumulate( 4167 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 4168 int64_t resultDimProduct = std::accumulate( 4169 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 4170 if (sourceDimProduct != resultDimProduct) 4171 return op->emitOpError("source/result number of elements must match"); 4172 4173 // Check that expanding/contracting rank cases. 4174 unsigned sourceRank = sourceVectorType.getRank(); 4175 unsigned resultRank = resultVectorType.getRank(); 4176 if (sourceRank < resultRank) { 4177 if (!isValidShapeCast(sourceShape, resultShape)) 4178 return op->emitOpError("invalid shape cast"); 4179 } else if (sourceRank > resultRank) { 4180 if (!isValidShapeCast(resultShape, sourceShape)) 4181 return op->emitOpError("invalid shape cast"); 4182 } 4183 return success(); 4184 } 4185 4186 LogicalResult ShapeCastOp::verify() { 4187 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 4188 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 4189 4190 // Check if source/result are of vector type. 4191 if (sourceVectorType && resultVectorType) 4192 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 4193 4194 return success(); 4195 } 4196 4197 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 4198 // No-op shape cast. 4199 if (getSource().getType() == getResult().getType()) 4200 return getSource(); 4201 4202 // Canceling shape casts. 4203 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 4204 if (getResult().getType() == otherOp.getSource().getType()) 4205 return otherOp.getSource(); 4206 4207 // Only allows valid transitive folding. 4208 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 4209 VectorType resultType = getResult().getType().cast<VectorType>(); 4210 if (srcType.getRank() < resultType.getRank()) { 4211 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 4212 return {}; 4213 } else if (srcType.getRank() > resultType.getRank()) { 4214 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 4215 return {}; 4216 } else { 4217 return {}; 4218 } 4219 4220 setOperand(otherOp.getSource()); 4221 return getResult(); 4222 } 4223 4224 // Cancelling broadcast and shape cast ops. 4225 if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) { 4226 if (bcastOp.getSourceType() == getType()) 4227 return bcastOp.getSource(); 4228 } 4229 4230 return {}; 4231 } 4232 4233 namespace { 4234 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 4235 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 4236 public: 4237 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4238 4239 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4240 PatternRewriter &rewriter) const override { 4241 auto constantOp = 4242 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 4243 if (!constantOp) 4244 return failure(); 4245 // Only handle splat for now. 4246 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4247 if (!dense) 4248 return failure(); 4249 auto newAttr = 4250 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4251 dense.getSplatValue<Attribute>()); 4252 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4253 return success(); 4254 } 4255 }; 4256 4257 /// Pattern to rewrite a ShapeCast(Broadcast) -> Broadcast. 4258 /// This only applies when the shape of the broadcast source is a suffix of the 4259 /// shape of the result (i.e. when broadcast without reshape is expressive 4260 /// enough to capture the result in a single op). 4261 class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> { 4262 public: 4263 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4264 4265 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4266 PatternRewriter &rewriter) const override { 4267 auto broadcastOp = 4268 shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>(); 4269 if (!broadcastOp) 4270 return failure(); 4271 4272 auto broadcastSourceVectorType = 4273 broadcastOp.getSourceType().dyn_cast<VectorType>(); 4274 auto broadcastSourceShape = broadcastSourceVectorType 4275 ? broadcastSourceVectorType.getShape() 4276 : ArrayRef<int64_t>{}; 4277 auto shapeCastTargetShape = shapeCastOp.getResultVectorType().getShape(); 4278 4279 // Bail if `broadcastSourceShape` is not a suffix of the result. 4280 bool isSuffix = (broadcastSourceShape == shapeCastTargetShape.take_back( 4281 broadcastSourceShape.size())); 4282 if (!isSuffix) 4283 return failure(); 4284 4285 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4286 shapeCastOp, shapeCastOp.getResultVectorType(), 4287 broadcastOp.getSource()); 4288 return success(); 4289 } 4290 }; 4291 4292 } // namespace 4293 4294 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4295 MLIRContext *context) { 4296 results.add<ShapeCastConstantFolder, ShapeCastBroadcastFolder>(context); 4297 } 4298 4299 //===----------------------------------------------------------------------===// 4300 // VectorBitCastOp 4301 //===----------------------------------------------------------------------===// 4302 4303 LogicalResult BitCastOp::verify() { 4304 auto sourceVectorType = getSourceVectorType(); 4305 auto resultVectorType = getResultVectorType(); 4306 4307 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4308 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4309 return emitOpError("dimension size mismatch at: ") << i; 4310 } 4311 4312 DataLayout dataLayout = DataLayout::closest(*this); 4313 auto sourceElementBits = 4314 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4315 auto resultElementBits = 4316 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4317 4318 if (sourceVectorType.getRank() == 0) { 4319 if (sourceElementBits != resultElementBits) 4320 return emitOpError("source/result bitwidth of the 0-D vector element " 4321 "types must be equal"); 4322 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4323 resultElementBits * resultVectorType.getShape().back()) { 4324 return emitOpError( 4325 "source/result bitwidth of the minor 1-D vectors must be equal"); 4326 } 4327 4328 return success(); 4329 } 4330 4331 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4332 // Nop cast. 4333 if (getSource().getType() == getResult().getType()) 4334 return getSource(); 4335 4336 // Canceling bitcasts. 4337 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) { 4338 if (getResult().getType() == otherOp.getSource().getType()) 4339 return otherOp.getSource(); 4340 4341 setOperand(otherOp.getSource()); 4342 return getResult(); 4343 } 4344 4345 Attribute sourceConstant = operands.front(); 4346 if (!sourceConstant) 4347 return {}; 4348 4349 Type srcElemType = getSourceVectorType().getElementType(); 4350 Type dstElemType = getResultVectorType().getElementType(); 4351 4352 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4353 if (floatPack.isSplat()) { 4354 auto splat = floatPack.getSplatValue<FloatAttr>(); 4355 4356 // Casting fp16 into fp32. 4357 if (srcElemType.isF16() && dstElemType.isF32()) { 4358 uint32_t bits = static_cast<uint32_t>( 4359 splat.getValue().bitcastToAPInt().getZExtValue()); 4360 // Duplicate the 16-bit pattern. 4361 bits = (bits << 16) | (bits & 0xffff); 4362 APInt intBits(32, bits); 4363 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4364 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4365 } 4366 } 4367 } 4368 4369 return {}; 4370 } 4371 4372 //===----------------------------------------------------------------------===// 4373 // TypeCastOp 4374 //===----------------------------------------------------------------------===// 4375 4376 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4377 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4378 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4379 memRefType.getShape().end()); 4380 if (vectorType) 4381 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4382 return res; 4383 } 4384 4385 /// Build the canonical memRefType with a single vector. 4386 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4387 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4388 Value source) { 4389 result.addOperands(source); 4390 MemRefType memRefType = source.getType().cast<MemRefType>(); 4391 VectorType vectorType = 4392 VectorType::get(extractShape(memRefType), 4393 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4394 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4395 memRefType.getMemorySpace())); 4396 } 4397 4398 LogicalResult TypeCastOp::verify() { 4399 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4400 if (!canonicalType.getLayout().isIdentity()) 4401 return emitOpError("expects operand to be a memref with identity layout"); 4402 if (!getResultMemRefType().getLayout().isIdentity()) 4403 return emitOpError("expects result to be a memref with identity layout"); 4404 if (getResultMemRefType().getMemorySpace() != 4405 getMemRefType().getMemorySpace()) 4406 return emitOpError("expects result in same memory space"); 4407 4408 auto sourceType = getMemRefType(); 4409 auto resultType = getResultMemRefType(); 4410 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4411 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4412 return emitOpError( 4413 "expects result and operand with same underlying scalar type: ") 4414 << resultType; 4415 if (extractShape(sourceType) != extractShape(resultType)) 4416 return emitOpError( 4417 "expects concatenated result and operand shapes to be equal: ") 4418 << resultType; 4419 return success(); 4420 } 4421 4422 //===----------------------------------------------------------------------===// 4423 // TransposeOp 4424 //===----------------------------------------------------------------------===// 4425 4426 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4427 Value vector, ArrayRef<int64_t> transp) { 4428 VectorType vt = vector.getType().cast<VectorType>(); 4429 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4430 for (unsigned i = 0; i < transp.size(); ++i) 4431 transposedShape[i] = vt.getShape()[transp[i]]; 4432 4433 result.addOperands(vector); 4434 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4435 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4436 } 4437 4438 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4439 // Eliminate splat constant transpose ops. 4440 if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>()) 4441 if (attr.isSplat()) 4442 return attr.reshape(getResultType()); 4443 4444 // Eliminate identity transpose ops. This happens when the dimensions of the 4445 // input vector remain in their original order after the transpose operation. 4446 SmallVector<int64_t, 4> transp; 4447 getTransp(transp); 4448 4449 // Check if the permutation of the dimensions contains sequential values: 4450 // {0, 1, 2, ...}. 4451 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4452 if (transp[i] != i) 4453 return {}; 4454 } 4455 4456 return getVector(); 4457 } 4458 4459 LogicalResult vector::TransposeOp::verify() { 4460 VectorType vectorType = getVectorType(); 4461 VectorType resultType = getResultType(); 4462 int64_t rank = resultType.getRank(); 4463 if (vectorType.getRank() != rank) 4464 return emitOpError("vector result rank mismatch: ") << rank; 4465 // Verify transposition array. 4466 auto transpAttr = getTransp().getValue(); 4467 int64_t size = transpAttr.size(); 4468 if (rank != size) 4469 return emitOpError("transposition length mismatch: ") << size; 4470 SmallVector<bool, 8> seen(rank, false); 4471 for (const auto &ta : llvm::enumerate(transpAttr)) { 4472 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4473 if (i < 0 || i >= rank) 4474 return emitOpError("transposition index out of range: ") << i; 4475 if (seen[i]) 4476 return emitOpError("duplicate position index: ") << i; 4477 seen[i] = true; 4478 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4479 return emitOpError("dimension size mismatch at: ") << i; 4480 } 4481 return success(); 4482 } 4483 4484 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() { 4485 return llvm::to_vector<4>(getResultType().getShape()); 4486 } 4487 4488 namespace { 4489 4490 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4491 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4492 public: 4493 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4494 4495 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4496 PatternRewriter &rewriter) const override { 4497 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4498 auto getPermutation = [](vector::TransposeOp transpose) { 4499 SmallVector<int64_t, 4> permutation; 4500 transpose.getTransp(permutation); 4501 return permutation; 4502 }; 4503 4504 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4505 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4506 ArrayRef<int64_t> permutation2) { 4507 SmallVector<int64_t, 4> result; 4508 for (auto index : permutation2) 4509 result.push_back(permutation1[index]); 4510 return result; 4511 }; 4512 4513 // Return if the input of 'transposeOp' is not defined by another transpose. 4514 vector::TransposeOp parentTransposeOp = 4515 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4516 if (!parentTransposeOp) 4517 return failure(); 4518 4519 SmallVector<int64_t, 4> permutation = composePermutations( 4520 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4521 // Replace 'transposeOp' with a new transpose operation. 4522 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4523 transposeOp, transposeOp.getResult().getType(), 4524 parentTransposeOp.getVector(), 4525 vector::getVectorSubscriptAttr(rewriter, permutation)); 4526 return success(); 4527 } 4528 }; 4529 4530 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). 4531 struct FoldTransposedScalarBroadcast final 4532 : public OpRewritePattern<vector::TransposeOp> { 4533 using OpRewritePattern::OpRewritePattern; 4534 4535 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4536 PatternRewriter &rewriter) const override { 4537 auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); 4538 if (!bcastOp) 4539 return failure(); 4540 4541 auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>(); 4542 if (!srcVectorType || srcVectorType.getNumElements() == 1) { 4543 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4544 transposeOp, transposeOp.getResultType(), bcastOp.getSource()); 4545 return success(); 4546 } 4547 4548 return failure(); 4549 } 4550 }; 4551 4552 // Folds transpose(splat x : src_type) : res_type into splat x : res_type. 4553 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> { 4554 public: 4555 using OpRewritePattern<TransposeOp>::OpRewritePattern; 4556 4557 LogicalResult matchAndRewrite(TransposeOp transposeOp, 4558 PatternRewriter &rewriter) const override { 4559 auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>(); 4560 if (!splatOp) 4561 return failure(); 4562 4563 rewriter.replaceOpWithNewOp<vector::SplatOp>( 4564 transposeOp, transposeOp.getResultType(), splatOp.getInput()); 4565 return success(); 4566 } 4567 }; 4568 4569 } // namespace 4570 4571 void vector::TransposeOp::getCanonicalizationPatterns( 4572 RewritePatternSet &results, MLIRContext *context) { 4573 results 4574 .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>( 4575 context); 4576 } 4577 4578 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4579 populateFromInt64AttrArray(getTransp(), results); 4580 } 4581 4582 //===----------------------------------------------------------------------===// 4583 // ConstantMaskOp 4584 //===----------------------------------------------------------------------===// 4585 4586 LogicalResult ConstantMaskOp::verify() { 4587 auto resultType = getResult().getType().cast<VectorType>(); 4588 // Check the corner case of 0-D vectors first. 4589 if (resultType.getRank() == 0) { 4590 if (getMaskDimSizes().size() != 1) 4591 return emitError("array attr must have length 1 for 0-D vectors"); 4592 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4593 if (dim != 0 && dim != 1) 4594 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4595 return success(); 4596 } 4597 4598 // Verify that array attr size matches the rank of the vector result. 4599 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4600 return emitOpError( 4601 "must specify array attr of size equal vector result rank"); 4602 // Verify that each array attr element is in bounds of corresponding vector 4603 // result dimension size. 4604 auto resultShape = resultType.getShape(); 4605 SmallVector<int64_t, 4> maskDimSizes; 4606 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4607 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4608 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4609 return emitOpError( 4610 "array attr of size out of bounds of vector result dimension size"); 4611 maskDimSizes.push_back(attrValue); 4612 } 4613 // Verify that if one mask dim size is zero, they all should be zero (because 4614 // the mask region is a conjunction of each mask dimension interval). 4615 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4616 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4617 if (anyZeros && !allZeros) 4618 return emitOpError("expected all mask dim sizes to be zeros, " 4619 "as a result of conjunction with zero mask dim"); 4620 // Verify that if the mask type is scalable, dimensions should be zero because 4621 // constant scalable masks can only be defined for the "none set" or "all set" 4622 // cases, and there is no VLA way to define an "all set" case for 4623 // `vector.constant_mask`. In the future, a convention could be established 4624 // to decide if a specific dimension value could be considered as "all set". 4625 if (resultType.isScalable() && 4626 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4627 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4628 return success(); 4629 } 4630 4631 //===----------------------------------------------------------------------===// 4632 // CreateMaskOp 4633 //===----------------------------------------------------------------------===// 4634 4635 LogicalResult CreateMaskOp::verify() { 4636 auto vectorType = getResult().getType().cast<VectorType>(); 4637 // Verify that an operand was specified for each result vector each dimension. 4638 if (vectorType.getRank() == 0) { 4639 if (getNumOperands() != 1) 4640 return emitOpError( 4641 "must specify exactly one operand for 0-D create_mask"); 4642 } else if (getNumOperands() != 4643 getResult().getType().cast<VectorType>().getRank()) { 4644 return emitOpError( 4645 "must specify an operand for each result vector dimension"); 4646 } 4647 return success(); 4648 } 4649 4650 namespace { 4651 4652 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4653 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4654 public: 4655 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4656 4657 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4658 PatternRewriter &rewriter) const override { 4659 // Return if any of 'createMaskOp' operands are not defined by a constant. 4660 auto isNotDefByConstant = [](Value operand) { 4661 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4662 }; 4663 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4664 return failure(); 4665 4666 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4667 // are negative or zero. 4668 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4669 if (vType.isScalable()) 4670 for (auto opDim : createMaskOp.getOperands()) { 4671 APInt intVal; 4672 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4673 intVal.isStrictlyPositive()) 4674 return failure(); 4675 } 4676 } 4677 4678 // Gather constant mask dimension sizes. 4679 SmallVector<int64_t, 4> maskDimSizes; 4680 for (auto it : llvm::zip(createMaskOp.operands(), 4681 createMaskOp.getType().getShape())) { 4682 auto *defOp = std::get<0>(it).getDefiningOp(); 4683 int64_t maxDimSize = std::get<1>(it); 4684 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4685 dimSize = std::min(dimSize, maxDimSize); 4686 // If one of dim sizes is zero, set all dims to zero. 4687 if (dimSize <= 0) { 4688 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4689 break; 4690 } 4691 maskDimSizes.push_back(dimSize); 4692 } 4693 // Replace 'createMaskOp' with ConstantMaskOp. 4694 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4695 createMaskOp, createMaskOp.getResult().getType(), 4696 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4697 return success(); 4698 } 4699 }; 4700 4701 } // namespace 4702 4703 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4704 MLIRContext *context) { 4705 results.add<CreateMaskFolder>(context); 4706 } 4707 4708 //===----------------------------------------------------------------------===// 4709 // ScanOp 4710 //===----------------------------------------------------------------------===// 4711 4712 LogicalResult ScanOp::verify() { 4713 VectorType srcType = getSourceType(); 4714 VectorType initialType = getInitialValueType(); 4715 // Check reduction dimension < rank. 4716 int64_t srcRank = srcType.getRank(); 4717 int64_t reductionDim = getReductionDim(); 4718 if (reductionDim >= srcRank) 4719 return emitOpError("reduction dimension ") 4720 << reductionDim << " has to be less than " << srcRank; 4721 4722 // Check that rank(initial_value) = rank(src) - 1. 4723 int64_t initialValueRank = initialType.getRank(); 4724 if (initialValueRank != srcRank - 1) 4725 return emitOpError("initial value rank ") 4726 << initialValueRank << " has to be equal to " << srcRank - 1; 4727 4728 // Check shapes of initial value and src. 4729 ArrayRef<int64_t> srcShape = srcType.getShape(); 4730 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4731 SmallVector<int64_t> expectedShape; 4732 for (int i = 0; i < srcRank; i++) { 4733 if (i != reductionDim) 4734 expectedShape.push_back(srcShape[i]); 4735 } 4736 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4737 [](std::tuple<int64_t, int64_t> s) { 4738 return std::get<0>(s) != std::get<1>(s); 4739 })) { 4740 return emitOpError("incompatible input/initial value shapes"); 4741 } 4742 4743 // Verify supported reduction kind. 4744 Type eltType = getDestType().getElementType(); 4745 if (!isSupportedCombiningKind(getKind(), eltType)) 4746 return emitOpError("unsupported reduction type ") 4747 << eltType << " for kind '" << stringifyCombiningKind(getKind()) 4748 << "'"; 4749 4750 return success(); 4751 } 4752 4753 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4754 RewritePatternSet &patterns) { 4755 patterns 4756 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4757 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4758 StridedSliceConstantMaskFolder, TransposeFolder>( 4759 patterns.getContext()); 4760 } 4761 4762 //===----------------------------------------------------------------------===// 4763 // SplatOp 4764 //===----------------------------------------------------------------------===// 4765 4766 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4767 auto constOperand = operands.front(); 4768 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4769 return {}; 4770 4771 // SplatElementsAttr::get treats single value for second arg as being a splat. 4772 return SplatElementsAttr::get(getType(), {constOperand}); 4773 } 4774 4775 //===----------------------------------------------------------------------===// 4776 // WarpExecuteOnLane0Op 4777 //===----------------------------------------------------------------------===// 4778 4779 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) { 4780 p << "(" << getLaneid() << ")"; 4781 4782 SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()}; 4783 auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName()); 4784 p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]"; 4785 4786 if (!getArgs().empty()) 4787 p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")"; 4788 if (!getResults().empty()) 4789 p << " -> (" << getResults().getTypes() << ')'; 4790 p << " "; 4791 p.printRegion(getRegion(), 4792 /*printEntryBlockArgs=*/true, 4793 /*printBlockTerminators=*/!getResults().empty()); 4794 p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr); 4795 } 4796 4797 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser, 4798 OperationState &result) { 4799 // Create the region. 4800 result.regions.reserve(1); 4801 Region *warpRegion = result.addRegion(); 4802 4803 auto &builder = parser.getBuilder(); 4804 OpAsmParser::UnresolvedOperand laneId; 4805 4806 // Parse predicate operand. 4807 if (parser.parseLParen() || 4808 parser.parseOperand(laneId, /*allowResultNumber=*/false) || 4809 parser.parseRParen()) 4810 return failure(); 4811 4812 int64_t warpSize; 4813 if (parser.parseLSquare() || parser.parseInteger(warpSize) || 4814 parser.parseRSquare()) 4815 return failure(); 4816 result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(), 4817 builder.getContext())), 4818 builder.getI64IntegerAttr(warpSize)); 4819 4820 if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands)) 4821 return failure(); 4822 4823 llvm::SMLoc inputsOperandsLoc; 4824 SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands; 4825 SmallVector<Type> inputTypes; 4826 if (succeeded(parser.parseOptionalKeyword("args"))) { 4827 if (parser.parseLParen()) 4828 return failure(); 4829 4830 inputsOperandsLoc = parser.getCurrentLocation(); 4831 if (parser.parseOperandList(inputsOperands) || 4832 parser.parseColonTypeList(inputTypes) || parser.parseRParen()) 4833 return failure(); 4834 } 4835 if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc, 4836 result.operands)) 4837 return failure(); 4838 4839 // Parse optional results type list. 4840 if (parser.parseOptionalArrowTypeList(result.types)) 4841 return failure(); 4842 // Parse the region. 4843 if (parser.parseRegion(*warpRegion, /*arguments=*/{}, 4844 /*argTypes=*/{})) 4845 return failure(); 4846 WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location); 4847 4848 // Parse the optional attribute list. 4849 if (parser.parseOptionalAttrDict(result.attributes)) 4850 return failure(); 4851 return success(); 4852 } 4853 4854 void WarpExecuteOnLane0Op::getSuccessorRegions( 4855 Optional<unsigned> index, ArrayRef<Attribute> operands, 4856 SmallVectorImpl<RegionSuccessor> ®ions) { 4857 if (index) { 4858 regions.push_back(RegionSuccessor(getResults())); 4859 return; 4860 } 4861 4862 // The warp region is always executed 4863 regions.push_back(RegionSuccessor(&getWarpRegion())); 4864 } 4865 4866 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4867 TypeRange resultTypes, Value laneId, 4868 int64_t warpSize) { 4869 build(builder, result, resultTypes, laneId, warpSize, 4870 /*operands=*/llvm::None, /*argTypes=*/llvm::None); 4871 } 4872 4873 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4874 TypeRange resultTypes, Value laneId, 4875 int64_t warpSize, ValueRange args, 4876 TypeRange blockArgTypes) { 4877 result.addOperands(laneId); 4878 result.addAttribute(getAttributeNames()[0], 4879 builder.getI64IntegerAttr(warpSize)); 4880 result.addTypes(resultTypes); 4881 result.addOperands(args); 4882 assert(args.size() == blockArgTypes.size()); 4883 OpBuilder::InsertionGuard guard(builder); 4884 Region *warpRegion = result.addRegion(); 4885 Block *block = builder.createBlock(warpRegion); 4886 for (auto it : llvm::zip(blockArgTypes, args)) 4887 block->addArgument(std::get<0>(it), std::get<1>(it).getLoc()); 4888 } 4889 4890 /// Helper check if the distributed vector type is consistent with the expanded 4891 /// type and distributed size. 4892 static LogicalResult verifyDistributedType(Type expanded, Type distributed, 4893 int64_t warpSize, Operation *op) { 4894 // If the types matches there is no distribution. 4895 if (expanded == distributed) 4896 return success(); 4897 auto expandedVecType = expanded.dyn_cast<VectorType>(); 4898 auto distributedVecType = distributed.dyn_cast<VectorType>(); 4899 if (!expandedVecType || !distributedVecType) 4900 return op->emitOpError("expected vector type for distributed operands."); 4901 if (expandedVecType.getRank() != distributedVecType.getRank() || 4902 expandedVecType.getElementType() != distributedVecType.getElementType()) 4903 return op->emitOpError( 4904 "expected distributed vectors to have same rank and element type."); 4905 bool foundDistributedDim = false; 4906 for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) { 4907 if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i)) 4908 continue; 4909 if (expandedVecType.getDimSize(i) == 4910 distributedVecType.getDimSize(i) * warpSize) { 4911 if (foundDistributedDim) 4912 return op->emitOpError() 4913 << "expected only one dimension to be distributed from " 4914 << expandedVecType << " to " << distributedVecType; 4915 foundDistributedDim = true; 4916 continue; 4917 } 4918 return op->emitOpError() << "incompatible distribution dimensions from " 4919 << expandedVecType << " to " << distributedVecType; 4920 } 4921 return success(); 4922 } 4923 4924 LogicalResult WarpExecuteOnLane0Op::verify() { 4925 if (getArgs().size() != getWarpRegion().getNumArguments()) 4926 return emitOpError( 4927 "expected same number op arguments and block arguments."); 4928 auto yield = 4929 cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator()); 4930 if (yield.getNumOperands() != getNumResults()) 4931 return emitOpError( 4932 "expected same number of yield operands and return values."); 4933 int64_t warpSize = getWarpSize(); 4934 for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) { 4935 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4936 std::get<1>(it).getType(), warpSize, 4937 getOperation()))) 4938 return failure(); 4939 } 4940 for (auto it : llvm::zip(yield.getOperands(), getResults())) { 4941 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4942 std::get<1>(it).getType(), warpSize, 4943 getOperation()))) 4944 return failure(); 4945 } 4946 return success(); 4947 } 4948 4949 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) { 4950 return succeeded( 4951 verifyDistributedType(lhs, rhs, getWarpSize(), getOperation())); 4952 } 4953 4954 //===----------------------------------------------------------------------===// 4955 // TableGen'd op method definitions 4956 //===----------------------------------------------------------------------===// 4957 4958 #define GET_OP_CLASSES 4959 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4960