1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.getMaskDimSizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() &&
144          !read.getMask() && defWrite.getIndices() == read.getIndices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.getPermutationMap() == read.getPermutationMap();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.getIndices() == write.getIndices() &&
152          priorWrite.getMask() == write.getMask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.getPermutationMap() == write.getPermutationMap();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(kind.getValue(), parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   SmallVector<int64_t> reductionDims;
340   for (const auto &en : llvm::enumerate(reductionMask))
341     if (en.value())
342       reductionDims.push_back(en.index());
343   build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims));
344 }
345 
346 LogicalResult MultiDimReductionOp::inferReturnTypes(
347     MLIRContext *, Optional<Location>, ValueRange operands,
348     DictionaryAttr attributes, RegionRange,
349     SmallVectorImpl<Type> &inferredReturnTypes) {
350   MultiDimReductionOp::Adaptor op(operands, attributes);
351   auto vectorType = op.getSource().getType().cast<VectorType>();
352   SmallVector<int64_t> targetShape;
353   for (auto it : llvm::enumerate(vectorType.getShape()))
354     if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) {
355           return attr.cast<IntegerAttr>().getValue() == it.index();
356         }))
357       targetShape.push_back(it.value());
358   // TODO: update to also allow 0-d vectors when available.
359   if (targetShape.empty())
360     inferredReturnTypes.push_back(vectorType.getElementType());
361   else
362     inferredReturnTypes.push_back(
363         VectorType::get(targetShape, vectorType.getElementType()));
364   return success();
365 }
366 
367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
368   // Single parallel dim, this is a noop.
369   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
370     return getSource();
371   return {};
372 }
373 
374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() {
375   return llvm::to_vector<4>(getSourceVectorType().getShape());
376 }
377 
378 //===----------------------------------------------------------------------===//
379 // ReductionOp
380 //===----------------------------------------------------------------------===//
381 
382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
383                                 CombiningKind kind, Value vector) {
384   build(builder, result, kind, vector, /*acc=*/Value());
385 }
386 
387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
388                                 CombiningKind kind, Value vector, Value acc) {
389   build(builder, result, vector.getType().cast<VectorType>().getElementType(),
390         kind, vector, acc);
391 }
392 
393 LogicalResult ReductionOp::verify() {
394   // Verify for 1-D vector.
395   int64_t rank = getVectorType().getRank();
396   if (rank != 1)
397     return emitOpError("unsupported reduction rank: ") << rank;
398 
399   // Verify supported reduction kind.
400   Type eltType = getDest().getType();
401   if (!isSupportedCombiningKind(getKind(), eltType))
402     return emitOpError("unsupported reduction type '")
403            << eltType << "' for kind '" << stringifyCombiningKind(getKind())
404            << "'";
405 
406   // Verify optional accumulator.
407   if (getAcc()) {
408     if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL)
409       return emitOpError("no accumulator for reduction kind: ")
410              << stringifyCombiningKind(getKind());
411     if (!eltType.isa<FloatType>())
412       return emitOpError("no accumulator for type: ") << eltType;
413   }
414 
415   return success();
416 }
417 
418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
419   SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo;
420   Type redType;
421   Type resType;
422   CombiningKindAttr kindAttr;
423   if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind",
424                                               result.attributes) ||
425       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
426       parser.parseColonType(redType) ||
427       parser.parseKeywordType("into", resType) ||
428       (!operandsInfo.empty() &&
429        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
430       (operandsInfo.size() > 1 &&
431        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
432       parser.addTypeToList(resType, result.types))
433     return failure();
434   if (operandsInfo.empty() || operandsInfo.size() > 2)
435     return parser.emitError(parser.getNameLoc(),
436                             "unsupported number of operands");
437   return success();
438 }
439 
440 void ReductionOp::print(OpAsmPrinter &p) {
441   p << " ";
442   getKindAttr().print(p);
443   p << ", " << getVector();
444   if (getAcc())
445     p << ", " << getAcc();
446   p << " : " << getVector().getType() << " into " << getDest().getType();
447 }
448 
449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
450                                          OpBuilder &builder, Location loc,
451                                          Value vector) {
452   switch (op) {
453   case arith::AtomicRMWKind::addf:
454   case arith::AtomicRMWKind::addi:
455     return builder.create<vector::ReductionOp>(vector.getLoc(),
456                                                CombiningKind::ADD, vector);
457   case arith::AtomicRMWKind::mulf:
458   case arith::AtomicRMWKind::muli:
459     return builder.create<vector::ReductionOp>(vector.getLoc(),
460                                                CombiningKind::MUL, vector);
461   case arith::AtomicRMWKind::minf:
462     return builder.create<vector::ReductionOp>(vector.getLoc(),
463                                                CombiningKind::MINF, vector);
464   case arith::AtomicRMWKind::mins:
465     return builder.create<vector::ReductionOp>(vector.getLoc(),
466                                                CombiningKind::MINSI, vector);
467   case arith::AtomicRMWKind::minu:
468     return builder.create<vector::ReductionOp>(vector.getLoc(),
469                                                CombiningKind::MINUI, vector);
470   case arith::AtomicRMWKind::maxf:
471     return builder.create<vector::ReductionOp>(vector.getLoc(),
472                                                CombiningKind::MAXF, vector);
473   case arith::AtomicRMWKind::maxs:
474     return builder.create<vector::ReductionOp>(vector.getLoc(),
475                                                CombiningKind::MAXSI, vector);
476   case arith::AtomicRMWKind::maxu:
477     return builder.create<vector::ReductionOp>(vector.getLoc(),
478                                                CombiningKind::MAXUI, vector);
479   // TODO: Add remaining reduction operations.
480   default:
481     (void)emitOptionalError(loc, "Reduction operation type not supported");
482     break;
483   }
484   return nullptr;
485 }
486 
487 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
488   return llvm::to_vector<4>(getVectorType().getShape());
489 }
490 
491 //===----------------------------------------------------------------------===//
492 // ContractionOp
493 //===----------------------------------------------------------------------===//
494 
495 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
496                                   Value lhs, Value rhs, Value acc,
497                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
498                                   ArrayRef<StringRef> iteratorTypes) {
499   result.addOperands({lhs, rhs, acc});
500   result.addTypes(acc.getType());
501   result.addAttribute(::mlir::getIndexingMapsAttrName(),
502                       builder.getAffineMapArrayAttr(
503                           AffineMap::inferFromExprList(indexingExprs)));
504   result.addAttribute(::mlir::getIteratorTypesAttrName(),
505                       builder.getStrArrayAttr(iteratorTypes));
506 }
507 
508 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
509                                   Value lhs, Value rhs, Value acc,
510                                   ArrayAttr indexingMaps,
511                                   ArrayAttr iteratorTypes) {
512   build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
513         ContractionOp::getDefaultKind());
514 }
515 
516 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
517                                   Value lhs, Value rhs, Value acc,
518                                   ArrayAttr indexingMaps,
519                                   ArrayAttr iteratorTypes, CombiningKind kind) {
520   result.addOperands({lhs, rhs, acc});
521   result.addTypes(acc.getType());
522   result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps);
523   result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes);
524   result.addAttribute(ContractionOp::getKindAttrStrName(),
525                       CombiningKindAttr::get(kind, builder.getContext()));
526 }
527 
528 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
529   OpAsmParser::UnresolvedOperand lhsInfo;
530   OpAsmParser::UnresolvedOperand rhsInfo;
531   OpAsmParser::UnresolvedOperand accInfo;
532   SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
533   SmallVector<Type, 2> types;
534   Type resultType;
535   auto loc = parser.getCurrentLocation();
536   DictionaryAttr dictAttr;
537   // TODO: Unify linalg op attribute parsing.
538   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
539       parser.parseOperand(lhsInfo) || parser.parseComma() ||
540       parser.parseOperand(rhsInfo) || parser.parseComma() ||
541       parser.parseOperand(accInfo) ||
542       parser.parseTrailingOperandList(masksInfo) ||
543       parser.parseOptionalAttrDict(result.attributes) ||
544       parser.parseColonTypeList(types) ||
545       parser.parseKeywordType("into", resultType) ||
546       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
547       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
548       parser.resolveOperand(accInfo, resultType, result.operands) ||
549       parser.addTypeToList(resultType, result.types))
550     return failure();
551   result.attributes.assign(dictAttr.getValue().begin(),
552                            dictAttr.getValue().end());
553   if (!result.attributes.get(ContractionOp::getKindAttrStrName())) {
554     result.addAttribute(ContractionOp::getKindAttrStrName(),
555                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
556                                                result.getContext()));
557   }
558   if (masksInfo.empty())
559     return success();
560   if (masksInfo.size() != 2)
561     return parser.emitError(parser.getNameLoc(),
562                             "expected zero or exactly 2 vector mask operands");
563   auto lhsType = types[0].cast<VectorType>();
564   auto rhsType = types[1].cast<VectorType>();
565   auto maskElementType = parser.getBuilder().getI1Type();
566   std::array<Type, 2> maskTypes = {
567       VectorType::Builder(lhsType).setElementType(maskElementType),
568       VectorType::Builder(rhsType).setElementType(maskElementType)};
569   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
570     return failure();
571   return success();
572 }
573 
574 void ContractionOp::print(OpAsmPrinter &p) {
575   // TODO: Unify printing code with linalg ops.
576   auto attrNames = getTraitAttrNames();
577   llvm::StringSet<> traitAttrsSet;
578   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
579   SmallVector<NamedAttribute, 8> attrs;
580   for (auto attr : (*this)->getAttrs())
581     if (traitAttrsSet.count(attr.getName().strref()) > 0)
582       attrs.push_back(attr);
583 
584   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
585   p << " " << dictAttr << " " << getLhs() << ", ";
586   p << getRhs() << ", " << getAcc();
587   if (getMasks().size() == 2)
588     p << ", " << getMasks();
589 
590   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
591   p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
592     << getResultType();
593 }
594 
595 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
596                          const std::vector<std::pair<int64_t, int64_t>> &map) {
597   for (auto &dimPair : map) {
598     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
599         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
600         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
601       return false;
602   }
603   return true;
604 }
605 
606 static LogicalResult verifyOutputShape(
607     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
608     Type resType,
609     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
610     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
611   DenseSet<int64_t> lhsContractingDimSet;
612   DenseSet<int64_t> rhsContractingDimSet;
613   for (auto &dimPair : contractingDimMap) {
614     lhsContractingDimSet.insert(dimPair.first);
615     rhsContractingDimSet.insert(dimPair.second);
616   }
617   DenseSet<int64_t> rhsBatchDimSet;
618   for (auto &dimPair : batchDimMap)
619     rhsBatchDimSet.insert(dimPair.second);
620 
621   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
622   SmallVector<int64_t, 4> expectedResultDims;
623   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
624     if (lhsContractingDimSet.count(i) > 0)
625       continue;
626     expectedResultDims.push_back(lhsType.getDimSize(i));
627   }
628 
629   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
630   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
631     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
632       continue;
633     expectedResultDims.push_back(rhsType.getDimSize(i));
634   }
635 
636   // Verify 'expectedResultDims'.
637   if (expectedResultDims.empty()) {
638     // No batch or free dimension implies a scalar result.
639     if (resType.isa<VectorType>() || accType.isa<VectorType>())
640       return op.emitOpError("invalid accumulator/result vector shape");
641   } else {
642     // At least one batch or free dimension implies a vector result.
643     auto resVectorType = resType.dyn_cast<VectorType>();
644     auto accVectorType = accType.dyn_cast<VectorType>();
645     if (!resVectorType || !accVectorType)
646       return op.emitOpError("invalid accumulator/result vector shape");
647 
648     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
649     // types fully define the result vector type. This assumes the affine maps
650     // are well-formed, which must have been verified already.
651     MLIRContext *ctx = op.getContext();
652     AffineMap lhsMap = op.getIndexingMaps()[0];
653     AffineMap rhsMap = op.getIndexingMaps()[1];
654     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
655     for (auto pair :
656          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
657       VectorType v = pair.first;
658       auto map = pair.second;
659       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
660         unsigned pos = map.getDimPosition(idx);
661         if (!extents[pos])
662           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
663       }
664     }
665     assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) &&
666            "expected extent along all dimensions.");
667 
668     AffineMap resMap = op.getIndexingMaps()[2];
669     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
670                                      /*symCount=*/0, extents, ctx);
671     // Compose the resMap with the extentsMap, which is a constant map.
672     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
673     assert(llvm::all_of(
674                expectedMap.getResults(),
675                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
676            "expected constant extent along all dimensions.");
677     // Extract the expected shape and build the type.
678     auto expectedShape = llvm::to_vector<4>(
679         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
680           return e.cast<AffineConstantExpr>().getValue();
681         }));
682     auto expected =
683         VectorType::get(expectedShape, resVectorType.getElementType());
684     if (resVectorType != expected || accVectorType != expected)
685       return op.emitOpError(
686                  "invalid accumulator/result vector shape, expected: ")
687              << expected;
688   }
689   return success();
690 }
691 
692 LogicalResult ContractionOp::verify() {
693   auto lhsType = getLhsType();
694   auto rhsType = getRhsType();
695   auto accType = getAccType();
696   auto resType = getResultType();
697 
698   // Verify that an indexing map was specified for each vector operand.
699   if (getIndexingMaps().size() != 3)
700     return emitOpError("expected an indexing map for each vector operand");
701 
702   // Verify that each index map has 'numIterators' inputs, no symbols, and
703   // that the number of map outputs equals the rank of its associated
704   // vector operand.
705   unsigned numIterators = getIteratorTypes().getValue().size();
706   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
707     auto index = it.index();
708     auto map = it.value();
709     if (map.getNumSymbols() != 0)
710       return emitOpError("expected indexing map ")
711              << index << " to have no symbols";
712     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
713     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
714     // Verify that the map has the right number of inputs, outputs, and indices.
715     // This also correctly accounts for (..) -> () for rank-0 results.
716     if (map.getNumDims() != numIterators)
717       return emitOpError("expected indexing map ")
718              << index << " to have " << numIterators << " number of inputs";
719     if (map.getNumResults() != rank)
720       return emitOpError("expected indexing map ")
721              << index << " to have " << rank << " number of outputs";
722     if (!map.isProjectedPermutation())
723       return emitOpError("expected indexing map ")
724              << index << " to be a projected permutation of its inputs";
725   }
726 
727   auto contractingDimMap = getContractingDimMap();
728   auto batchDimMap = getBatchDimMap();
729 
730   // Verify at least one contracting dimension pair was specified.
731   if (contractingDimMap.empty())
732     return emitOpError("expected at least one contracting dimension pair");
733 
734   // Verify contracting dimension map was properly constructed.
735   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
736     return emitOpError("invalid contracting dimension map");
737 
738   // Verify batch dimension map was properly constructed.
739   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
740     return emitOpError("invalid batch dimension map");
741 
742   // Verify 'accType' and 'resType' shape.
743   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
744                                contractingDimMap, batchDimMap)))
745     return failure();
746 
747   // Verify that either two vector masks are set or none are set.
748   auto lhsMaskType = getLHSVectorMaskType();
749   auto rhsMaskType = getRHSVectorMaskType();
750   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
751     return emitOpError("invalid number of vector masks specified");
752   if (lhsMaskType && rhsMaskType) {
753     // Verify mask rank == argument rank.
754     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
755         rhsMaskType.getShape().size() != rhsType.getShape().size())
756       return emitOpError("invalid vector mask rank");
757   }
758 
759   // Verify supported combining kind.
760   auto vectorType = resType.dyn_cast<VectorType>();
761   auto elementType = vectorType ? vectorType.getElementType() : resType;
762   if (!isSupportedCombiningKind(getKind(), elementType))
763     return emitOpError("unsupported contraction type");
764 
765   return success();
766 }
767 
768 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
769   static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(),
770                                          ::mlir::getIteratorTypesAttrName(),
771                                          ContractionOp::getKindAttrStrName()};
772   return llvm::makeArrayRef(names);
773 }
774 
775 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
776   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
777     if (targetExpr == map.getResult(i))
778       return i;
779   return -1;
780 }
781 
782 static std::vector<std::pair<int64_t, int64_t>>
783 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
784           StringRef targetIteratorTypeName, MLIRContext *context) {
785   std::vector<std::pair<int64_t, int64_t>> dimMap;
786   for (const auto &it : llvm::enumerate(iteratorTypes)) {
787     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
788     if (iteratorTypeName != targetIteratorTypeName)
789       continue;
790     // Search lhs/rhs map results for 'targetExpr'.
791     auto targetExpr = getAffineDimExpr(it.index(), context);
792     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
793     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
794     if (lhsDim >= 0 && rhsDim >= 0)
795       dimMap.emplace_back(lhsDim, rhsDim);
796   }
797   return dimMap;
798 }
799 
800 void ContractionOp::getIterationBounds(
801     SmallVectorImpl<int64_t> &iterationBounds) {
802   auto lhsShape = getLhsType().getShape();
803   auto resVectorType = getResultType().dyn_cast<VectorType>();
804   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
805   SmallVector<int64_t, 2> iterationShape;
806   for (const auto &it : llvm::enumerate(getIteratorTypes())) {
807     // Search lhs/rhs map results for 'targetExpr'.
808     auto targetExpr = getAffineDimExpr(it.index(), getContext());
809     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
810     if (iteratorTypeName == getReductionIteratorTypeName()) {
811       // Get reduction dim size from lhs shape (same size in rhsShape).
812       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
813       assert(lhsDimIndex >= 0);
814       iterationBounds.push_back(lhsShape[lhsDimIndex]);
815       continue;
816     }
817     // Get parallel dimension size from result shape.
818     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
819     assert(resDimIndex >= 0);
820     assert(resVectorType != nullptr);
821     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
822   }
823 }
824 
825 void ContractionOp::getIterationIndexMap(
826     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
827   unsigned numMaps = getIndexingMaps().size();
828   iterationIndexMap.resize(numMaps);
829   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
830     auto index = it.index();
831     auto map = it.value();
832     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
833       auto dim = map.getResult(i).cast<AffineDimExpr>();
834       iterationIndexMap[index][dim.getPosition()] = i;
835     }
836   }
837 }
838 
839 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
840   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
841   return getDimMap(indexingMaps, getIteratorTypes(),
842                    getReductionIteratorTypeName(), getContext());
843 }
844 
845 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
846   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
847   return getDimMap(indexingMaps, getIteratorTypes(),
848                    getParallelIteratorTypeName(), getContext());
849 }
850 
851 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
852   SmallVector<int64_t, 4> shape;
853   getIterationBounds(shape);
854   return shape;
855 }
856 
857 /// Return a fused vector::ContractionOp which represents a patterns such as:
858 ///
859 /// ```mlir
860 ///    %c0 = vector.constant 0: ...
861 ///    %c = vector.contract %a, %b, %c0: ...
862 ///    %e = add %c, %d: ...
863 /// ```
864 ///
865 /// by:
866 ///
867 /// ```mlir
868 ///    %e = vector.contract %a, %b, %d: ...
869 /// ```
870 ///
871 /// Return null if the canonicalization does not apply.
872 // TODO: This should be a folding of Add into Contract in core but while they
873 // live in different dialects, it is not possible without unnatural
874 // dependencies.
875 template <typename AddOpType>
876 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
877   using OpRewritePattern<AddOpType>::OpRewritePattern;
878 
879   LogicalResult matchAndRewrite(AddOpType addOp,
880                                 PatternRewriter &rewriter) const override {
881     auto canonicalize = [&](Value maybeContraction,
882                             Value otherOperand) -> vector::ContractionOp {
883       vector::ContractionOp contractionOp =
884           dyn_cast_or_null<vector::ContractionOp>(
885               maybeContraction.getDefiningOp());
886       if (!contractionOp)
887         return vector::ContractionOp();
888       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
889               contractionOp.getAcc().getDefiningOp())) {
890         if (maybeZero.getValue() ==
891             rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
892           BlockAndValueMapping bvm;
893           bvm.map(contractionOp.getAcc(), otherOperand);
894           auto newContraction =
895               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
896           rewriter.replaceOp(addOp, newContraction.getResult());
897           return newContraction;
898         }
899       }
900       return vector::ContractionOp();
901     };
902 
903     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
904     vector::ContractionOp contract = canonicalize(a, b);
905     contract = contract ? contract : canonicalize(b, a);
906     return contract ? success() : failure();
907   }
908 };
909 
910 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
911                                                 MLIRContext *context) {
912   results.add<CanonicalizeContractAdd<arith::AddIOp>,
913               CanonicalizeContractAdd<arith::AddFOp>>(context);
914 }
915 
916 //===----------------------------------------------------------------------===//
917 // ExtractElementOp
918 //===----------------------------------------------------------------------===//
919 
920 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
921                                      Value source) {
922   result.addOperands({source});
923   result.addTypes(source.getType().cast<VectorType>().getElementType());
924 }
925 
926 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
927                                      Value source, Value position) {
928   result.addOperands({source, position});
929   result.addTypes(source.getType().cast<VectorType>().getElementType());
930 }
931 
932 LogicalResult vector::ExtractElementOp::verify() {
933   VectorType vectorType = getVectorType();
934   if (vectorType.getRank() == 0) {
935     if (getPosition())
936       return emitOpError("expected position to be empty with 0-D vector");
937     return success();
938   }
939   if (vectorType.getRank() != 1)
940     return emitOpError("unexpected >1 vector rank");
941   if (!getPosition())
942     return emitOpError("expected position for 1-D vector");
943   return success();
944 }
945 
946 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) {
947   // Skip the 0-D vector here now.
948   if (operands.size() < 2)
949     return {};
950 
951   Attribute src = operands[0];
952   Attribute pos = operands[1];
953   if (!src || !pos)
954     return {};
955 
956   auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>();
957 
958   auto attr = pos.dyn_cast<IntegerAttr>();
959   uint64_t posIdx = attr.getInt();
960 
961   return srcElements[posIdx];
962 }
963 
964 //===----------------------------------------------------------------------===//
965 // ExtractOp
966 //===----------------------------------------------------------------------===//
967 
968 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
969                               Value source, ArrayRef<int64_t> position) {
970   build(builder, result, source, getVectorSubscriptAttr(builder, position));
971 }
972 
973 // Convenience builder which assumes the values are constant indices.
974 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
975                               Value source, ValueRange position) {
976   SmallVector<int64_t, 4> positionConstants =
977       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
978         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
979       }));
980   build(builder, result, source, positionConstants);
981 }
982 
983 LogicalResult
984 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>,
985                             ValueRange operands, DictionaryAttr attributes,
986                             RegionRange,
987                             SmallVectorImpl<Type> &inferredReturnTypes) {
988   ExtractOp::Adaptor op(operands, attributes);
989   auto vectorType = op.getVector().getType().cast<VectorType>();
990   if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) {
991     inferredReturnTypes.push_back(vectorType.getElementType());
992   } else {
993     auto n =
994         std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1);
995     inferredReturnTypes.push_back(VectorType::get(
996         vectorType.getShape().drop_front(n), vectorType.getElementType()));
997   }
998   return success();
999 }
1000 
1001 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
1002   // Allow extracting 1-element vectors instead of scalars.
1003   auto isCompatible = [](TypeRange l, TypeRange r) {
1004     auto vectorType = l.front().dyn_cast<VectorType>();
1005     return vectorType && vectorType.getShape().equals({1}) &&
1006            vectorType.getElementType() == r.front();
1007   };
1008   if (l.size() == 1 && r.size() == 1 &&
1009       (isCompatible(l, r) || isCompatible(r, l)))
1010     return true;
1011   return l == r;
1012 }
1013 
1014 LogicalResult vector::ExtractOp::verify() {
1015   auto positionAttr = getPosition().getValue();
1016   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
1017     return emitOpError(
1018         "expected position attribute of rank smaller than vector rank");
1019   for (const auto &en : llvm::enumerate(positionAttr)) {
1020     auto attr = en.value().dyn_cast<IntegerAttr>();
1021     if (!attr || attr.getInt() < 0 ||
1022         attr.getInt() >= getVectorType().getDimSize(en.index()))
1023       return emitOpError("expected position attribute #")
1024              << (en.index() + 1)
1025              << " to be a non-negative integer smaller than the corresponding "
1026                 "vector dimension";
1027   }
1028   return success();
1029 }
1030 
1031 template <typename IntType>
1032 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1033   return llvm::to_vector<4>(llvm::map_range(
1034       arrayAttr.getAsRange<IntegerAttr>(),
1035       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1036 }
1037 
1038 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1039 /// positions.
1040 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1041   if (!extractOp.getVector().getDefiningOp<ExtractOp>())
1042     return failure();
1043 
1044   SmallVector<int64_t, 4> globalPosition;
1045   ExtractOp currentOp = extractOp;
1046   auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1047   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1048   while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
1049     currentOp = nextOp;
1050     auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1051     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1052   }
1053   extractOp.setOperand(currentOp.getVector());
1054   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1055   OpBuilder b(extractOp.getContext());
1056   std::reverse(globalPosition.begin(), globalPosition.end());
1057   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1058                      b.getI64ArrayAttr(globalPosition));
1059   return success();
1060 }
1061 
1062 namespace {
1063 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1064 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1065 /// Compose TransposeOp permutations as we walk back.
1066 /// This helper class keeps an updated extraction position `extractPosition`
1067 /// with extra trailing sentinels.
1068 /// The sentinels encode the internal transposition status of the result vector.
1069 /// As we iterate, extractPosition is permuted and updated.
1070 class ExtractFromInsertTransposeChainState {
1071 public:
1072   ExtractFromInsertTransposeChainState(ExtractOp e);
1073 
1074   /// Iterate over producing insert and transpose ops until we find a fold.
1075   Value fold();
1076 
1077 private:
1078   /// Return true if the vector at position `a` is contained within the vector
1079   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1080   /// is a prefix of `b`.
1081   template <typename ContainerA, typename ContainerB>
1082   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1083     return a.size() <= b.size() &&
1084            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1085   }
1086 
1087   /// Return true if the vector at position `a` intersects the vector at
1088   /// position `b`. Under insert/extract semantics, this is the same as equality
1089   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1090   /// Comparison is on the common prefix (i.e. zip).
1091   template <typename ContainerA, typename ContainerB>
1092   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1093     for (auto it : llvm::zip(a, b)) {
1094       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1095         continue;
1096       if (std::get<0>(it) != std::get<1>(it))
1097         return false;
1098     }
1099     return true;
1100   }
1101 
1102   /// Folding is only possible in the absence of an internal permutation in the
1103   /// result vector.
1104   bool canFold() {
1105     return (sentinels ==
1106             makeArrayRef(extractPosition).drop_front(extractedRank));
1107   }
1108 
1109   // Helper to get the next defining op of interest.
1110   void updateStateForNextIteration(Value v) {
1111     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1112     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1113   };
1114 
1115   // Case 1. If we hit a transpose, just compose the map and iterate.
1116   // Invariant: insert + transpose do not change rank, we can always compose.
1117   LogicalResult handleTransposeOp();
1118 
1119   // Case 2: the insert position matches extractPosition exactly, early return.
1120   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1121 
1122   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1123   /// portion of the source of the insert.
1124   /// Example:
1125   /// ```
1126   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1127   /// // extractPosition == [1, 2, 3]
1128   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1129   /// // can fold to vector.extract %source[0, 3]
1130   /// %ext = vector.extract %source[3]: vector<5x6>
1131   /// ```
1132   /// To traverse through %source, we need to set the leading dims to 0 and
1133   /// drop the extra leading dims.
1134   /// This method updates the internal state.
1135   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1136 
1137   /// Try to fold in place to extract(source, extractPosition) and return the
1138   /// folded result. Return null if folding is not possible (e.g. due to an
1139   /// internal tranposition in the result).
1140   Value tryToFoldExtractOpInPlace(Value source);
1141 
1142   ExtractOp extractOp;
1143   int64_t vectorRank;
1144   int64_t extractedRank;
1145 
1146   InsertOp nextInsertOp;
1147   TransposeOp nextTransposeOp;
1148 
1149   /// Sentinel values that encode the internal permutation status of the result.
1150   /// They are set to (-1, ... , -k) at the beginning and appended to
1151   /// `extractPosition`.
1152   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1153   /// ensure that there is no internal transposition.
1154   /// Internal transposition cannot be accounted for with a folding pattern.
1155   // TODO: We could relax the internal transposition with an extra transposition
1156   // operation in a future canonicalizer.
1157   SmallVector<int64_t> sentinels;
1158   SmallVector<int64_t> extractPosition;
1159 };
1160 } // namespace
1161 
1162 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1163     ExtractOp e)
1164     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1165       extractedRank(extractOp.getPosition().size()) {
1166   assert(vectorRank >= extractedRank && "extracted pos overflow");
1167   sentinels.reserve(vectorRank - extractedRank);
1168   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1169     sentinels.push_back(-(i + 1));
1170   extractPosition = extractVector<int64_t>(extractOp.getPosition());
1171   llvm::append_range(extractPosition, sentinels);
1172 }
1173 
1174 // Case 1. If we hit a transpose, just compose the map and iterate.
1175 // Invariant: insert + transpose do not change rank, we can always compose.
1176 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1177   if (!nextTransposeOp)
1178     return failure();
1179   auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp());
1180   AffineMap m = inversePermutation(
1181       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1182   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1183   return success();
1184 }
1185 
1186 // Case 2: the insert position matches extractPosition exactly, early return.
1187 LogicalResult
1188 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1189     Value &res) {
1190   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1191   if (makeArrayRef(insertedPos) !=
1192       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1193     return failure();
1194   // Case 2.a. early-exit fold.
1195   res = nextInsertOp.getSource();
1196   // Case 2.b. if internal transposition is present, canFold will be false.
1197   return success();
1198 }
1199 
1200 /// Case 3: if inserted position is a prefix of extractPosition,
1201 /// extract a portion of the source of the insertion.
1202 /// This method updates the internal state.
1203 LogicalResult
1204 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1205   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1206   if (!isContainedWithin(insertedPos, extractPosition))
1207     return failure();
1208   // Set leading dims to zero.
1209   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1210   // Drop extra leading dims.
1211   extractPosition.erase(extractPosition.begin(),
1212                         extractPosition.begin() + insertedPos.size());
1213   extractedRank = extractPosition.size() - sentinels.size();
1214   // Case 3.a. early-exit fold (break and delegate to post-while path).
1215   res = nextInsertOp.getSource();
1216   // Case 3.b. if internal transposition is present, canFold will be false.
1217   return success();
1218 }
1219 
1220 /// Try to fold in place to extract(source, extractPosition) and return the
1221 /// folded result. Return null if folding is not possible (e.g. due to an
1222 /// internal tranposition in the result).
1223 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1224     Value source) {
1225   // If we can't fold (either internal transposition, or nothing to fold), bail.
1226   bool nothingToFold = (source == extractOp.getVector());
1227   if (nothingToFold || !canFold())
1228     return Value();
1229   // Otherwise, fold by updating the op inplace and return its result.
1230   OpBuilder b(extractOp.getContext());
1231   extractOp->setAttr(
1232       extractOp.getPositionAttrName(),
1233       b.getI64ArrayAttr(
1234           makeArrayRef(extractPosition).take_front(extractedRank)));
1235   extractOp.getVectorMutable().assign(source);
1236   return extractOp.getResult();
1237 }
1238 
1239 /// Iterate over producing insert and transpose ops until we find a fold.
1240 Value ExtractFromInsertTransposeChainState::fold() {
1241   Value valueToExtractFrom = extractOp.getVector();
1242   updateStateForNextIteration(valueToExtractFrom);
1243   while (nextInsertOp || nextTransposeOp) {
1244     // Case 1. If we hit a transpose, just compose the map and iterate.
1245     // Invariant: insert + transpose do not change rank, we can always compose.
1246     if (succeeded(handleTransposeOp())) {
1247       valueToExtractFrom = nextTransposeOp.getVector();
1248       updateStateForNextIteration(valueToExtractFrom);
1249       continue;
1250     }
1251 
1252     Value result;
1253     // Case 2: the position match exactly.
1254     if (succeeded(handleInsertOpWithMatchingPos(result)))
1255       return result;
1256 
1257     // Case 3: if the inserted position is a prefix of extractPosition, we can
1258     // just extract a portion of the source of the insert.
1259     if (succeeded(handleInsertOpWithPrefixPos(result)))
1260       return tryToFoldExtractOpInPlace(result);
1261 
1262     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1263     // values. This is a more difficult case and we bail.
1264     auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1265     if (isContainedWithin(extractPosition, insertedPos) ||
1266         intersectsWhereNonNegative(extractPosition, insertedPos))
1267       return Value();
1268 
1269     // Case 5: No intersection, we forward the extract to insertOp.dest().
1270     valueToExtractFrom = nextInsertOp.getDest();
1271     updateStateForNextIteration(valueToExtractFrom);
1272   }
1273   // If after all this we can fold, go for it.
1274   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1275 }
1276 
1277 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1278 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1279   Operation *defOp = extractOp.getVector().getDefiningOp();
1280   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1281     return Value();
1282   Value source = defOp->getOperand(0);
1283   if (extractOp.getType() == source.getType())
1284     return source;
1285   auto getRank = [](Type type) {
1286     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1287   };
1288   unsigned broadcastSrcRank = getRank(source.getType());
1289   unsigned extractResultRank = getRank(extractOp.getType());
1290   if (extractResultRank < broadcastSrcRank) {
1291     auto extractPos = extractVector<int64_t>(extractOp.getPosition());
1292     unsigned rankDiff = broadcastSrcRank - extractResultRank;
1293     extractPos.erase(
1294         extractPos.begin(),
1295         std::next(extractPos.begin(), extractPos.size() - rankDiff));
1296     extractOp.setOperand(source);
1297     // OpBuilder is only used as a helper to build an I64ArrayAttr.
1298     OpBuilder b(extractOp.getContext());
1299     extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1300                        b.getI64ArrayAttr(extractPos));
1301     return extractOp.getResult();
1302   }
1303   return Value();
1304 }
1305 
1306 // Fold extractOp with source coming from ShapeCast op.
1307 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1308   auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
1309   if (!shapeCastOp)
1310     return Value();
1311   // Get the nth dimension size starting from lowest dimension.
1312   auto getDimReverse = [](VectorType type, int64_t n) {
1313     return type.getShape().take_back(n + 1).front();
1314   };
1315   int64_t destinationRank =
1316       extractOp.getType().isa<VectorType>()
1317           ? extractOp.getType().cast<VectorType>().getRank()
1318           : 0;
1319   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1320     return Value();
1321   if (destinationRank > 0) {
1322     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1323     for (int64_t i = 0; i < destinationRank; i++) {
1324       // The lowest dimension of of the destination must match the lowest
1325       // dimension of the shapecast op source.
1326       // TODO: This case could be support in a canonicalization pattern.
1327       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1328           getDimReverse(destinationType, i))
1329         return Value();
1330     }
1331   }
1332   // Extract the strides associated with the extract op vector source. Then use
1333   // this to calculate a linearized position for the extract.
1334   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1335   std::reverse(extractedPos.begin(), extractedPos.end());
1336   SmallVector<int64_t, 4> strides;
1337   int64_t stride = 1;
1338   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1339     strides.push_back(stride);
1340     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1341   }
1342 
1343   int64_t position = linearize(extractedPos, strides);
1344   // Then extract the strides associated to the shapeCast op vector source and
1345   // delinearize the position using those strides.
1346   SmallVector<int64_t, 4> newStrides;
1347   int64_t numDimension =
1348       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1349   stride = 1;
1350   for (int64_t i = 0; i < numDimension; i++) {
1351     newStrides.push_back(stride);
1352     stride *=
1353         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1354   }
1355   std::reverse(newStrides.begin(), newStrides.end());
1356   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1357   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1358   OpBuilder b(extractOp.getContext());
1359   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1360                      b.getI64ArrayAttr(newPosition));
1361   extractOp.setOperand(shapeCastOp.getSource());
1362   return extractOp.getResult();
1363 }
1364 
1365 /// Fold an ExtractOp from ExtractStridedSliceOp.
1366 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1367   auto extractStridedSliceOp =
1368       extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
1369   if (!extractStridedSliceOp)
1370     return Value();
1371   // Return if 'extractStridedSliceOp' has non-unit strides.
1372   if (extractStridedSliceOp.hasNonUnitStrides())
1373     return Value();
1374 
1375   // Trim offsets for dimensions fully extracted.
1376   auto sliceOffsets =
1377       extractVector<int64_t>(extractStridedSliceOp.getOffsets());
1378   while (!sliceOffsets.empty()) {
1379     size_t lastOffset = sliceOffsets.size() - 1;
1380     if (sliceOffsets.back() != 0 ||
1381         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1382             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1383       break;
1384     sliceOffsets.pop_back();
1385   }
1386   unsigned destinationRank = 0;
1387   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1388     destinationRank = vecType.getRank();
1389   // The dimensions of the result need to be untouched by the
1390   // extractStridedSlice op.
1391   if (destinationRank >
1392       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1393     return Value();
1394   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1395   assert(extractedPos.size() >= sliceOffsets.size());
1396   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1397     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1398   extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
1399   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1400   OpBuilder b(extractOp.getContext());
1401   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1402                      b.getI64ArrayAttr(extractedPos));
1403   return extractOp.getResult();
1404 }
1405 
1406 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1407 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1408   int64_t destinationRank = op.getType().isa<VectorType>()
1409                                 ? op.getType().cast<VectorType>().getRank()
1410                                 : 0;
1411   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
1412   while (insertOp) {
1413     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1414                              insertOp.getSourceVectorType().getRank();
1415     if (destinationRank > insertOp.getSourceVectorType().getRank())
1416       return Value();
1417     auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
1418     auto extractOffsets = extractVector<int64_t>(op.getPosition());
1419 
1420     if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
1421           return attr.cast<IntegerAttr>().getInt() != 1;
1422         }))
1423       return Value();
1424     bool disjoint = false;
1425     SmallVector<int64_t, 4> offsetDiffs;
1426     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1427       int64_t start = insertOffsets[dim];
1428       int64_t size =
1429           (dim < insertRankDiff)
1430               ? 1
1431               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1432       int64_t end = start + size;
1433       int64_t offset = extractOffsets[dim];
1434       // Check if the start of the extract offset is in the interval inserted.
1435       if (start <= offset && offset < end) {
1436         if (dim >= insertRankDiff)
1437           offsetDiffs.push_back(offset - start);
1438         continue;
1439       }
1440       disjoint = true;
1441       break;
1442     }
1443     // The extract element chunk overlap with the vector inserted.
1444     if (!disjoint) {
1445       // If any of the inner dimensions are only partially inserted we have a
1446       // partial overlap.
1447       int64_t srcRankDiff =
1448           insertOp.getSourceVectorType().getRank() - destinationRank;
1449       for (int64_t i = 0; i < destinationRank; i++) {
1450         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1451             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1452                                                     insertRankDiff))
1453           return Value();
1454       }
1455       op.getVectorMutable().assign(insertOp.getSource());
1456       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1457       OpBuilder b(op.getContext());
1458       op->setAttr(ExtractOp::getPositionAttrStrName(),
1459                   b.getI64ArrayAttr(offsetDiffs));
1460       return op.getResult();
1461     }
1462     // If the chunk extracted is disjoint from the chunk inserted, keep
1463     // looking in the insert chain.
1464     insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
1465   }
1466   return Value();
1467 }
1468 
1469 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1470   if (getPosition().empty())
1471     return getVector();
1472   if (succeeded(foldExtractOpFromExtractChain(*this)))
1473     return getResult();
1474   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1475     return res;
1476   if (auto res = foldExtractFromBroadcast(*this))
1477     return res;
1478   if (auto res = foldExtractFromShapeCast(*this))
1479     return res;
1480   if (auto val = foldExtractFromExtractStrided(*this))
1481     return val;
1482   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1483     return val;
1484   return OpFoldResult();
1485 }
1486 
1487 namespace {
1488 
1489 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1490 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1491 public:
1492   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1493 
1494   LogicalResult matchAndRewrite(ExtractOp extractOp,
1495                                 PatternRewriter &rewriter) const override {
1496     Operation *defOp = extractOp.getVector().getDefiningOp();
1497     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1498       return failure();
1499     Value source = defOp->getOperand(0);
1500     if (extractOp.getType() == source.getType())
1501       return failure();
1502     auto getRank = [](Type type) {
1503       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1504     };
1505     unsigned broadcastSrcRank = getRank(source.getType());
1506     unsigned extractResultRank = getRank(extractOp.getType());
1507     // We only consider the case where the rank of the source is smaller than
1508     // the rank of the extract dst. The other cases are handled in the folding
1509     // patterns.
1510     if (extractResultRank <= broadcastSrcRank)
1511       return failure();
1512     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1513         extractOp, extractOp.getType(), source);
1514     return success();
1515   }
1516 };
1517 
1518 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1519 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1520 public:
1521   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1522 
1523   LogicalResult matchAndRewrite(ExtractOp extractOp,
1524                                 PatternRewriter &rewriter) const override {
1525     // Return if 'extractStridedSliceOp' operand is not defined by a
1526     // ConstantOp.
1527     auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>();
1528     if (!constantOp)
1529       return failure();
1530     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1531     if (!dense)
1532       return failure();
1533     Attribute newAttr = dense.getSplatValue<Attribute>();
1534     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1535       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1536     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1537     return success();
1538   }
1539 };
1540 
1541 } // namespace
1542 
1543 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1544                                             MLIRContext *context) {
1545   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1546 }
1547 
1548 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1549                                        SmallVectorImpl<int64_t> &results) {
1550   for (auto attr : arrayAttr)
1551     results.push_back(attr.cast<IntegerAttr>().getInt());
1552 }
1553 
1554 //===----------------------------------------------------------------------===//
1555 // ExtractMapOp
1556 //===----------------------------------------------------------------------===//
1557 
1558 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1559                          Value vector, ValueRange ids,
1560                          ArrayRef<int64_t> multiplicity,
1561                          AffineMap permutationMap) {
1562   assert(ids.size() == multiplicity.size() &&
1563          ids.size() == permutationMap.getNumResults());
1564   assert(permutationMap.isProjectedPermutation());
1565   VectorType type = vector.getType().cast<VectorType>();
1566   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1567                                    type.getShape().end());
1568   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1569     AffineExpr expr = permutationMap.getResult(i);
1570     auto dim = expr.cast<AffineDimExpr>();
1571     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1572   }
1573   VectorType resultType = VectorType::get(newShape, type.getElementType());
1574   ExtractMapOp::build(builder, result, resultType, vector, ids);
1575 }
1576 
1577 LogicalResult ExtractMapOp::verify() {
1578   if (getSourceVectorType().getRank() != getResultType().getRank())
1579     return emitOpError("expected source and destination vectors of same rank");
1580   unsigned numId = 0;
1581   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1582     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1583         0)
1584       return emitOpError("source vector dimensions must be a multiple of "
1585                          "destination vector dimensions");
1586     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1587       numId++;
1588   }
1589   if (numId != getIds().size())
1590     return emitOpError("expected number of ids must match the number of "
1591                        "dimensions distributed");
1592   return success();
1593 }
1594 
1595 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1596   auto insert = getVector().getDefiningOp<vector::InsertMapOp>();
1597   if (insert == nullptr || getType() != insert.getVector().getType() ||
1598       getIds() != insert.getIds())
1599     return {};
1600   return insert.getVector();
1601 }
1602 
1603 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1604   assert(multiplicity.empty());
1605   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1606     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1607       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1608                              getResultType().getDimSize(i));
1609   }
1610 }
1611 
1612 template <typename MapOp>
1613 AffineMap calculateImplicitMap(MapOp op) {
1614   SmallVector<AffineExpr, 4> perm;
1615   // Check which dimension have a multiplicity greater than 1 and associated
1616   // them to the IDs in order.
1617   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1618     if (op.getSourceVectorType().getDimSize(i) !=
1619         op.getResultType().getDimSize(i))
1620       perm.push_back(getAffineDimExpr(i, op.getContext()));
1621   }
1622   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1623                             op.getContext());
1624   return map;
1625 }
1626 
1627 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1628 
1629 //===----------------------------------------------------------------------===//
1630 // FmaOp
1631 //===----------------------------------------------------------------------===//
1632 
1633 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1634   return llvm::to_vector<4>(getVectorType().getShape());
1635 }
1636 
1637 //===----------------------------------------------------------------------===//
1638 // BroadcastOp
1639 //===----------------------------------------------------------------------===//
1640 
1641 BroadcastableToResult
1642 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1643                                 std::pair<int, int> *mismatchingDims) {
1644   // Broadcast scalar to vector of the same element type.
1645   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1646       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1647     return BroadcastableToResult::Success;
1648   // From now on, only vectors broadcast.
1649   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1650   if (!srcVectorType)
1651     return BroadcastableToResult::SourceTypeNotAVector;
1652 
1653   int64_t srcRank = srcVectorType.getRank();
1654   int64_t dstRank = dstVectorType.getRank();
1655   if (srcRank > dstRank)
1656     return BroadcastableToResult::SourceRankHigher;
1657   // Source has an exact match or singleton value for all trailing dimensions
1658   // (all leading dimensions are simply duplicated).
1659   int64_t lead = dstRank - srcRank;
1660   for (int64_t r = 0; r < srcRank; ++r) {
1661     int64_t srcDim = srcVectorType.getDimSize(r);
1662     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1663     if (srcDim != 1 && srcDim != dstDim) {
1664       if (mismatchingDims) {
1665         mismatchingDims->first = srcDim;
1666         mismatchingDims->second = dstDim;
1667       }
1668       return BroadcastableToResult::DimensionMismatch;
1669     }
1670   }
1671 
1672   return BroadcastableToResult::Success;
1673 }
1674 
1675 LogicalResult BroadcastOp::verify() {
1676   std::pair<int, int> mismatchingDims;
1677   BroadcastableToResult res =
1678       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1679   if (res == BroadcastableToResult::Success)
1680     return success();
1681   if (res == BroadcastableToResult::SourceRankHigher)
1682     return emitOpError("source rank higher than destination rank");
1683   if (res == BroadcastableToResult::DimensionMismatch)
1684     return emitOpError("dimension mismatch (")
1685            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1686   if (res == BroadcastableToResult::SourceTypeNotAVector)
1687     return emitOpError("source type is not a vector");
1688   llvm_unreachable("unexpected vector.broadcast op error");
1689 }
1690 
1691 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1692   if (getSourceType() == getVectorType())
1693     return getSource();
1694   if (!operands[0])
1695     return {};
1696   auto vectorType = getVectorType();
1697   if (operands[0].getType().isIntOrIndexOrFloat())
1698     return DenseElementsAttr::get(vectorType, operands[0]);
1699   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1700     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1701   return {};
1702 }
1703 
1704 namespace {
1705 
1706 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1707 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1708   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1709 
1710   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1711                                 PatternRewriter &rewriter) const override {
1712     auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
1713     if (!srcBroadcast)
1714       return failure();
1715     rewriter.replaceOpWithNewOp<BroadcastOp>(
1716         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource());
1717     return success();
1718   }
1719 };
1720 } // namespace
1721 
1722 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1723                                               MLIRContext *context) {
1724   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1725   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1726   results.add<BroadcastFolder>(context);
1727 }
1728 
1729 //===----------------------------------------------------------------------===//
1730 // ShuffleOp
1731 //===----------------------------------------------------------------------===//
1732 
1733 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1734                       Value v2, ArrayRef<int64_t> mask) {
1735   build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask));
1736 }
1737 
1738 LogicalResult ShuffleOp::verify() {
1739   VectorType resultType = getVectorType();
1740   VectorType v1Type = getV1VectorType();
1741   VectorType v2Type = getV2VectorType();
1742   // Verify ranks.
1743   int64_t resRank = resultType.getRank();
1744   int64_t v1Rank = v1Type.getRank();
1745   int64_t v2Rank = v2Type.getRank();
1746   if (resRank != v1Rank || v1Rank != v2Rank)
1747     return emitOpError("rank mismatch");
1748   // Verify all but leading dimension sizes.
1749   for (int64_t r = 1; r < v1Rank; ++r) {
1750     int64_t resDim = resultType.getDimSize(r);
1751     int64_t v1Dim = v1Type.getDimSize(r);
1752     int64_t v2Dim = v2Type.getDimSize(r);
1753     if (resDim != v1Dim || v1Dim != v2Dim)
1754       return emitOpError("dimension mismatch");
1755   }
1756   // Verify mask length.
1757   auto maskAttr = getMask().getValue();
1758   int64_t maskLength = maskAttr.size();
1759   if (maskLength <= 0)
1760     return emitOpError("invalid mask length");
1761   if (maskLength != resultType.getDimSize(0))
1762     return emitOpError("mask length mismatch");
1763   // Verify all indices.
1764   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1765   for (const auto &en : llvm::enumerate(maskAttr)) {
1766     auto attr = en.value().dyn_cast<IntegerAttr>();
1767     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1768       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1769   }
1770   return success();
1771 }
1772 
1773 LogicalResult
1774 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1775                             ValueRange operands, DictionaryAttr attributes,
1776                             RegionRange,
1777                             SmallVectorImpl<Type> &inferredReturnTypes) {
1778   ShuffleOp::Adaptor op(operands, attributes);
1779   auto v1Type = op.getV1().getType().cast<VectorType>();
1780   // Construct resulting type: leading dimension matches mask length,
1781   // all trailing dimensions match the operands.
1782   SmallVector<int64_t, 4> shape;
1783   shape.reserve(v1Type.getRank());
1784   shape.push_back(std::max<size_t>(1, op.getMask().size()));
1785   llvm::append_range(shape, v1Type.getShape().drop_front());
1786   inferredReturnTypes.push_back(
1787       VectorType::get(shape, v1Type.getElementType()));
1788   return success();
1789 }
1790 
1791 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) {
1792   uint64_t expected = begin;
1793   return idxArr.size() == width &&
1794          llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(),
1795                       [&expected](auto attr) {
1796                         return attr.getZExtValue() == expected++;
1797                       });
1798 }
1799 
1800 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1801   // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1
1802   if (!getV1VectorType().isScalable() &&
1803       isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0)))
1804     return getV1();
1805   // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2
1806   if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() &&
1807       isStepIndexArray(getMask(), getV1VectorType().getDimSize(0),
1808                        getV2VectorType().getDimSize(0)))
1809     return getV2();
1810 
1811   Attribute lhs = operands.front(), rhs = operands.back();
1812   if (!lhs || !rhs)
1813     return {};
1814 
1815   auto lhsType = lhs.getType().cast<VectorType>();
1816   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1817   // manipulation.
1818   if (lhsType.getRank() != 1)
1819     return {};
1820   int64_t lhsSize = lhsType.getDimSize(0);
1821 
1822   SmallVector<Attribute> results;
1823   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1824   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1825   for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) {
1826     int64_t i = index.getZExtValue();
1827     if (i >= lhsSize) {
1828       results.push_back(rhsElements[i - lhsSize]);
1829     } else {
1830       results.push_back(lhsElements[i]);
1831     }
1832   }
1833 
1834   return DenseElementsAttr::get(getVectorType(), results);
1835 }
1836 
1837 //===----------------------------------------------------------------------===//
1838 // InsertElementOp
1839 //===----------------------------------------------------------------------===//
1840 
1841 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1842                             Value source, Value dest) {
1843   build(builder, result, source, dest, {});
1844 }
1845 
1846 LogicalResult InsertElementOp::verify() {
1847   auto dstVectorType = getDestVectorType();
1848   if (dstVectorType.getRank() == 0) {
1849     if (getPosition())
1850       return emitOpError("expected position to be empty with 0-D vector");
1851     return success();
1852   }
1853   if (dstVectorType.getRank() != 1)
1854     return emitOpError("unexpected >1 vector rank");
1855   if (!getPosition())
1856     return emitOpError("expected position for 1-D vector");
1857   return success();
1858 }
1859 
1860 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) {
1861   // Skip the 0-D vector here.
1862   if (operands.size() < 3)
1863     return {};
1864 
1865   Attribute src = operands[0];
1866   Attribute dst = operands[1];
1867   Attribute pos = operands[2];
1868   if (!src || !dst || !pos)
1869     return {};
1870 
1871   auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>();
1872 
1873   SmallVector<Attribute> results(dstElements);
1874 
1875   auto attr = pos.dyn_cast<IntegerAttr>();
1876   uint64_t posIdx = attr.getInt();
1877 
1878   results[posIdx] = src;
1879 
1880   return DenseElementsAttr::get(getDestVectorType(), results);
1881 }
1882 
1883 //===----------------------------------------------------------------------===//
1884 // InsertOp
1885 //===----------------------------------------------------------------------===//
1886 
1887 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1888                      Value dest, ArrayRef<int64_t> position) {
1889   result.addOperands({source, dest});
1890   auto positionAttr = getVectorSubscriptAttr(builder, position);
1891   result.addTypes(dest.getType());
1892   result.addAttribute(getPositionAttrStrName(), positionAttr);
1893 }
1894 
1895 // Convenience builder which assumes the values are constant indices.
1896 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1897                      Value dest, ValueRange position) {
1898   SmallVector<int64_t, 4> positionConstants =
1899       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1900         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1901       }));
1902   build(builder, result, source, dest, positionConstants);
1903 }
1904 
1905 LogicalResult InsertOp::verify() {
1906   auto positionAttr = getPosition().getValue();
1907   auto destVectorType = getDestVectorType();
1908   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1909     return emitOpError(
1910         "expected position attribute of rank smaller than dest vector rank");
1911   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1912   if (srcVectorType &&
1913       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1914        static_cast<unsigned>(destVectorType.getRank())))
1915     return emitOpError("expected position attribute rank + source rank to "
1916                           "match dest vector rank");
1917   if (!srcVectorType &&
1918       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
1919     return emitOpError(
1920         "expected position attribute rank to match the dest vector rank");
1921   for (const auto &en : llvm::enumerate(positionAttr)) {
1922     auto attr = en.value().dyn_cast<IntegerAttr>();
1923     if (!attr || attr.getInt() < 0 ||
1924         attr.getInt() >= destVectorType.getDimSize(en.index()))
1925       return emitOpError("expected position attribute #")
1926              << (en.index() + 1)
1927              << " to be a non-negative integer smaller than the corresponding "
1928                 "dest vector dimension";
1929   }
1930   return success();
1931 }
1932 
1933 namespace {
1934 
1935 // If insertOp is only inserting unit dimensions it can be transformed to a
1936 // broadcast.
1937 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
1938 public:
1939   using OpRewritePattern<InsertOp>::OpRewritePattern;
1940 
1941   LogicalResult matchAndRewrite(InsertOp insertOp,
1942                                 PatternRewriter &rewriter) const override {
1943     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
1944     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
1945                            srcVecType.getNumElements())
1946       return failure();
1947     rewriter.replaceOpWithNewOp<BroadcastOp>(
1948         insertOp, insertOp.getDestVectorType(), insertOp.getSource());
1949     return success();
1950   }
1951 };
1952 
1953 } // namespace
1954 
1955 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
1956                                            MLIRContext *context) {
1957   results.add<InsertToBroadcast, BroadcastFolder>(context);
1958 }
1959 
1960 // Eliminates insert operations that produce values identical to their source
1961 // value. This happens when the source and destination vectors have identical
1962 // sizes.
1963 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
1964   if (getPosition().empty())
1965     return getSource();
1966   return {};
1967 }
1968 
1969 //===----------------------------------------------------------------------===//
1970 // InsertMapOp
1971 //===----------------------------------------------------------------------===//
1972 
1973 LogicalResult InsertMapOp::verify() {
1974   if (getSourceVectorType().getRank() != getResultType().getRank())
1975     return emitOpError("expected source and destination vectors of same rank");
1976   unsigned numId = 0;
1977   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
1978     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
1979         0)
1980       return emitOpError(
1981           "destination vector size must be a multiple of source vector size");
1982     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
1983       numId++;
1984   }
1985   if (numId != getIds().size())
1986     return emitOpError("expected number of ids must match the number of "
1987                        "dimensions distributed");
1988   return success();
1989 }
1990 
1991 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
1992 
1993 //===----------------------------------------------------------------------===//
1994 // InsertStridedSliceOp
1995 //===----------------------------------------------------------------------===//
1996 
1997 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
1998                                  Value source, Value dest,
1999                                  ArrayRef<int64_t> offsets,
2000                                  ArrayRef<int64_t> strides) {
2001   result.addOperands({source, dest});
2002   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2003   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2004   result.addTypes(dest.getType());
2005   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2006   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2007 }
2008 
2009 // TODO: Should be moved to Tablegen Confined attributes.
2010 template <typename OpType>
2011 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
2012                                                         ArrayAttr arrayAttr,
2013                                                         ArrayRef<int64_t> shape,
2014                                                         StringRef attrName) {
2015   if (arrayAttr.size() > shape.size())
2016     return op.emitOpError("expected ")
2017            << attrName << " attribute of rank smaller than vector rank";
2018   return success();
2019 }
2020 
2021 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2022 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2023 // Otherwise, the admissible interval is [min, max].
2024 template <typename OpType>
2025 static LogicalResult
2026 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
2027                                   int64_t max, StringRef attrName,
2028                                   bool halfOpen = true) {
2029   for (auto attr : arrayAttr) {
2030     auto val = attr.cast<IntegerAttr>().getInt();
2031     auto upper = max;
2032     if (!halfOpen)
2033       upper += 1;
2034     if (val < min || val >= upper)
2035       return op.emitOpError("expected ") << attrName << " to be confined to ["
2036                                          << min << ", " << upper << ")";
2037   }
2038   return success();
2039 }
2040 
2041 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2042 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2043 // Otherwise, the admissible interval is [min, max].
2044 template <typename OpType>
2045 static LogicalResult
2046 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
2047                                   ArrayRef<int64_t> shape, StringRef attrName,
2048                                   bool halfOpen = true, int64_t min = 0) {
2049   assert(arrayAttr.size() <= shape.size());
2050   unsigned index = 0;
2051   for (auto it : llvm::zip(arrayAttr, shape)) {
2052     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
2053     auto max = std::get<1>(it);
2054     if (!halfOpen)
2055       max += 1;
2056     if (val < min || val >= max)
2057       return op.emitOpError("expected ")
2058              << attrName << " dimension " << index << " to be confined to ["
2059              << min << ", " << max << ")";
2060     ++index;
2061   }
2062   return success();
2063 }
2064 
2065 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
2066 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2067 // Otherwise, the admissible interval is [min, max].
2068 template <typename OpType>
2069 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2070     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2071     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2072     bool halfOpen = true, int64_t min = 1) {
2073   assert(arrayAttr1.size() <= shape.size());
2074   assert(arrayAttr2.size() <= shape.size());
2075   unsigned index = 0;
2076   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2077     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2078     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2079     auto max = std::get<2>(it);
2080     if (!halfOpen)
2081       max += 1;
2082     if (val1 + val2 < 0 || val1 + val2 >= max)
2083       return op.emitOpError("expected sum(")
2084              << attrName1 << ", " << attrName2 << ") dimension " << index
2085              << " to be confined to [" << min << ", " << max << ")";
2086     ++index;
2087   }
2088   return success();
2089 }
2090 
2091 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2092                                   MLIRContext *context) {
2093   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2094     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2095   });
2096   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2097 }
2098 
2099 LogicalResult InsertStridedSliceOp::verify() {
2100   auto sourceVectorType = getSourceVectorType();
2101   auto destVectorType = getDestVectorType();
2102   auto offsets = getOffsetsAttr();
2103   auto strides = getStridesAttr();
2104   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2105     return emitOpError(
2106         "expected offsets of same size as destination vector rank");
2107   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2108     return emitOpError("expected strides of same size as source vector rank");
2109   if (sourceVectorType.getRank() > destVectorType.getRank())
2110     return emitOpError(
2111         "expected source rank to be smaller than destination rank");
2112 
2113   auto sourceShape = sourceVectorType.getShape();
2114   auto destShape = destVectorType.getShape();
2115   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2116       destShape.size() - sourceShape.size(), 0);
2117   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2118   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2119   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2120   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2121                                                offName)) ||
2122       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2123                                                stridesName,
2124                                                /*halfOpen=*/false)) ||
2125       failed(isSumOfIntegerArrayAttrConfinedToShape(
2126           *this, offsets,
2127           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2128           offName, "source vector shape",
2129           /*halfOpen=*/false, /*min=*/1)))
2130     return failure();
2131 
2132   return success();
2133 }
2134 
2135 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2136   if (getSourceVectorType() == getDestVectorType())
2137     return getSource();
2138   return {};
2139 }
2140 
2141 //===----------------------------------------------------------------------===//
2142 // OuterProductOp
2143 //===----------------------------------------------------------------------===//
2144 
2145 /// Build an op without mask, use the type of `acc` as the return type.
2146 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2147                            Value lhs, Value rhs, Value acc) {
2148   result.addOperands({lhs, rhs, acc});
2149   result.addTypes(acc.getType());
2150 }
2151 
2152 void OuterProductOp::print(OpAsmPrinter &p) {
2153   p << " " << getLhs() << ", " << getRhs();
2154   if (!getAcc().empty()) {
2155     p << ", " << getAcc();
2156     p.printOptionalAttrDict((*this)->getAttrs());
2157   }
2158   p << " : " << getLhs().getType() << ", " << getRhs().getType();
2159 }
2160 
2161 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2162   SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
2163   Type tLHS, tRHS;
2164   if (parser.parseOperandList(operandsInfo) ||
2165       parser.parseOptionalAttrDict(result.attributes) ||
2166       parser.parseColonType(tLHS) || parser.parseComma() ||
2167       parser.parseType(tRHS))
2168     return failure();
2169   if (operandsInfo.size() < 2)
2170     return parser.emitError(parser.getNameLoc(),
2171                             "expected at least 2 operands");
2172   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2173   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2174   if (!vLHS)
2175     return parser.emitError(parser.getNameLoc(),
2176                             "expected vector type for operand #1");
2177   VectorType resType =
2178       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2179                              vLHS.getElementType())
2180            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2181 
2182   if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) {
2183     result.attributes.append(
2184         OuterProductOp::getKindAttrStrName(),
2185         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2186                                result.getContext()));
2187   }
2188 
2189   return failure(
2190       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2191       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2192       (operandsInfo.size() > 2 &&
2193        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2194       parser.addTypeToList(resType, result.types));
2195 }
2196 
2197 LogicalResult OuterProductOp::verify() {
2198   Type tRHS = getOperandTypeRHS();
2199   VectorType vLHS = getOperandVectorTypeLHS(),
2200              vRHS = tRHS.dyn_cast<VectorType>(),
2201              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2202 
2203   if (vLHS.getRank() != 1)
2204     return emitOpError("expected 1-d vector for operand #1");
2205 
2206   if (vRHS) {
2207     // Proper OUTER operation.
2208     if (vRHS.getRank() != 1)
2209       return emitOpError("expected 1-d vector for operand #2");
2210     if (vRES.getRank() != 2)
2211       return emitOpError("expected 2-d vector result");
2212     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2213       return emitOpError("expected #1 operand dim to match result dim #1");
2214     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2215       return emitOpError("expected #2 operand dim to match result dim #2");
2216   } else {
2217     // An AXPY operation.
2218     if (vRES.getRank() != 1)
2219       return emitOpError("expected 1-d vector result");
2220     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2221       return emitOpError("expected #1 operand dim to match result dim #1");
2222   }
2223 
2224   if (vACC && vACC != vRES)
2225     return emitOpError("expected operand #3 of same type as result type");
2226 
2227   // Verify supported combining kind.
2228   if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
2229     return emitOpError("unsupported outerproduct type");
2230 
2231   return success();
2232 }
2233 
2234 //===----------------------------------------------------------------------===//
2235 // ReshapeOp
2236 //===----------------------------------------------------------------------===//
2237 
2238 LogicalResult ReshapeOp::verify() {
2239   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2240   auto inputVectorType = getInputVectorType();
2241   auto outputVectorType = getOutputVectorType();
2242   int64_t inputShapeRank = getNumInputShapeSizes();
2243   int64_t outputShapeRank = getNumOutputShapeSizes();
2244   SmallVector<int64_t, 4> fixedVectorSizes;
2245   getFixedVectorSizes(fixedVectorSizes);
2246   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2247 
2248   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2249     return emitError("invalid input shape for vector type ")
2250            << inputVectorType;
2251 
2252   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2253     return emitError("invalid output shape for vector type ")
2254            << outputVectorType;
2255 
2256   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2257   // suffix.
2258   unsigned inputVectorRank = inputVectorType.getRank();
2259   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2260     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2261     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2262       return emitError("fixed vector size must match input vector for dim ")
2263              << i;
2264   }
2265 
2266   unsigned outputVectorRank = outputVectorType.getRank();
2267   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2268     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2269     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2270       return emitError("fixed vector size must match output vector for dim ")
2271              << i;
2272   }
2273 
2274   // If all shape operands are produced by constant ops, verify that product
2275   // of dimensions for input/output shape match.
2276   auto isDefByConstant = [](Value operand) {
2277     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2278   };
2279   if (llvm::all_of(getInputShape(), isDefByConstant) &&
2280       llvm::all_of(getOutputShape(), isDefByConstant)) {
2281     int64_t numInputElements = 1;
2282     for (auto operand : getInputShape())
2283       numInputElements *=
2284           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2285     int64_t numOutputElements = 1;
2286     for (auto operand : getOutputShape())
2287       numOutputElements *=
2288           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2289     if (numInputElements != numOutputElements)
2290       return emitError("product of input and output shape sizes must match");
2291   }
2292   return success();
2293 }
2294 
2295 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2296   populateFromInt64AttrArray(getFixedVectorSizes(), results);
2297 }
2298 
2299 //===----------------------------------------------------------------------===//
2300 // ExtractStridedSliceOp
2301 //===----------------------------------------------------------------------===//
2302 
2303 // Inference works as follows:
2304 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2305 //   2. Add sizes from 'vectorType' for remaining dims.
2306 static Type inferStridedSliceOpResultType(VectorType vectorType,
2307                                           ArrayAttr offsets, ArrayAttr sizes,
2308                                           ArrayAttr strides) {
2309   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2310   SmallVector<int64_t, 4> shape;
2311   shape.reserve(vectorType.getRank());
2312   unsigned idx = 0;
2313   for (unsigned e = offsets.size(); idx < e; ++idx)
2314     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2315   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2316     shape.push_back(vectorType.getShape()[idx]);
2317 
2318   return VectorType::get(shape, vectorType.getElementType());
2319 }
2320 
2321 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2322                                   Value source, ArrayRef<int64_t> offsets,
2323                                   ArrayRef<int64_t> sizes,
2324                                   ArrayRef<int64_t> strides) {
2325   result.addOperands(source);
2326   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2327   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2328   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2329   result.addTypes(
2330       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2331                                     offsetsAttr, sizesAttr, stridesAttr));
2332   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2333   result.addAttribute(getSizesAttrStrName(), sizesAttr);
2334   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2335 }
2336 
2337 LogicalResult ExtractStridedSliceOp::verify() {
2338   auto type = getVectorType();
2339   auto offsets = getOffsetsAttr();
2340   auto sizes = getSizesAttr();
2341   auto strides = getStridesAttr();
2342   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2343     return emitOpError("expected offsets, sizes and strides attributes of same size");
2344 
2345   auto shape = type.getShape();
2346   auto offName = getOffsetsAttrName();
2347   auto sizesName = getSizesAttrName();
2348   auto stridesName = getStridesAttrName();
2349   if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2350       failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2351       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2352                                                 stridesName)) ||
2353       failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2354       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2355                                                /*halfOpen=*/false,
2356                                                /*min=*/1)) ||
2357       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName,
2358                                                /*halfOpen=*/false)) ||
2359       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape,
2360                                                     offName, sizesName,
2361                                                     /*halfOpen=*/false)))
2362     return failure();
2363 
2364   auto resultType =
2365       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2366   if (getResult().getType() != resultType)
2367     return emitOpError("expected result type to be ") << resultType;
2368 
2369   return success();
2370 }
2371 
2372 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2373 // to use the source of the InsertStrided ops if we can detect that the
2374 // extracted vector is a subset of one of the vector inserted.
2375 static LogicalResult
2376 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2377   // Helper to extract integer out of ArrayAttr.
2378   auto getElement = [](ArrayAttr array, int idx) {
2379     return array[idx].cast<IntegerAttr>().getInt();
2380   };
2381   ArrayAttr extractOffsets = op.getOffsets();
2382   ArrayAttr extractStrides = op.getStrides();
2383   ArrayAttr extractSizes = op.getSizes();
2384   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
2385   while (insertOp) {
2386     if (op.getVectorType().getRank() !=
2387         insertOp.getSourceVectorType().getRank())
2388       return failure();
2389     ArrayAttr insertOffsets = insertOp.getOffsets();
2390     ArrayAttr insertStrides = insertOp.getStrides();
2391     // If the rank of extract is greater than the rank of insert, we are likely
2392     // extracting a partial chunk of the vector inserted.
2393     if (extractOffsets.size() > insertOffsets.size())
2394       return failure();
2395     bool patialoverlap = false;
2396     bool disjoint = false;
2397     SmallVector<int64_t, 4> offsetDiffs;
2398     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2399       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2400         return failure();
2401       int64_t start = getElement(insertOffsets, dim);
2402       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2403       int64_t offset = getElement(extractOffsets, dim);
2404       int64_t size = getElement(extractSizes, dim);
2405       // Check if the start of the extract offset is in the interval inserted.
2406       if (start <= offset && offset < end) {
2407         // If the extract interval overlaps but is not fully included we may
2408         // have a partial overlap that will prevent any folding.
2409         if (offset + size > end)
2410           patialoverlap = true;
2411         offsetDiffs.push_back(offset - start);
2412         continue;
2413       }
2414       disjoint = true;
2415       break;
2416     }
2417     // The extract element chunk is a subset of the insert element.
2418     if (!disjoint && !patialoverlap) {
2419       op.setOperand(insertOp.getSource());
2420       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2421       OpBuilder b(op.getContext());
2422       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(),
2423                   b.getI64ArrayAttr(offsetDiffs));
2424       return success();
2425     }
2426     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2427     // in the insert chain.
2428     if (disjoint)
2429       insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
2430     else {
2431       // The extracted vector partially overlap the inserted vector, we cannot
2432       // fold.
2433       return failure();
2434     }
2435   }
2436   return failure();
2437 }
2438 
2439 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2440   if (getVectorType() == getResult().getType())
2441     return getVector();
2442   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2443     return getResult();
2444   return {};
2445 }
2446 
2447 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2448   populateFromInt64AttrArray(getOffsets(), results);
2449 }
2450 
2451 namespace {
2452 
2453 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2454 // ConstantMaskOp.
2455 class StridedSliceConstantMaskFolder final
2456     : public OpRewritePattern<ExtractStridedSliceOp> {
2457 public:
2458   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2459 
2460   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2461                                 PatternRewriter &rewriter) const override {
2462     // Return if 'extractStridedSliceOp' operand is not defined by a
2463     // ConstantMaskOp.
2464     auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
2465     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2466     if (!constantMaskOp)
2467       return failure();
2468     // Return if 'extractStridedSliceOp' has non-unit strides.
2469     if (extractStridedSliceOp.hasNonUnitStrides())
2470       return failure();
2471     // Gather constant mask dimension sizes.
2472     SmallVector<int64_t, 4> maskDimSizes;
2473     populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes);
2474     // Gather strided slice offsets and sizes.
2475     SmallVector<int64_t, 4> sliceOffsets;
2476     populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
2477                                sliceOffsets);
2478     SmallVector<int64_t, 4> sliceSizes;
2479     populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
2480 
2481     // Compute slice of vector mask region.
2482     SmallVector<int64_t, 4> sliceMaskDimSizes;
2483     assert(sliceOffsets.size() == maskDimSizes.size());
2484     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2485       int64_t maskDimSize = std::get<0>(it);
2486       int64_t sliceOffset = std::get<1>(it);
2487       int64_t sliceSize = std::get<2>(it);
2488       int64_t sliceMaskDimSize = std::max(
2489           static_cast<int64_t>(0),
2490           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2491       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2492     }
2493     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2494     // region is a conjunction of mask dim intervals).
2495     if (llvm::is_contained(sliceMaskDimSizes, 0))
2496       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2497 
2498     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2499     // region.
2500     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2501         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2502         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2503     return success();
2504   }
2505 };
2506 
2507 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2508 class StridedSliceConstantFolder final
2509     : public OpRewritePattern<ExtractStridedSliceOp> {
2510 public:
2511   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2512 
2513   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2514                                 PatternRewriter &rewriter) const override {
2515     // Return if 'extractStridedSliceOp' operand is not defined by a
2516     // ConstantOp.
2517     auto constantOp =
2518         extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>();
2519     if (!constantOp)
2520       return failure();
2521     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2522     if (!dense)
2523       return failure();
2524     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2525                                           dense.getSplatValue<Attribute>());
2526     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2527                                                    newAttr);
2528     return success();
2529   }
2530 };
2531 
2532 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2533 // BroadcastOp(ExtractStrideSliceOp).
2534 class StridedSliceBroadcast final
2535     : public OpRewritePattern<ExtractStridedSliceOp> {
2536 public:
2537   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2538 
2539   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2540                                 PatternRewriter &rewriter) const override {
2541     auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
2542     if (!broadcast)
2543       return failure();
2544     auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>();
2545     unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
2546     auto dstVecType = op.getType().cast<VectorType>();
2547     unsigned dstRank = dstVecType.getRank();
2548     unsigned rankDiff = dstRank - srcRank;
2549     // Check if the most inner dimensions of the source of the broadcast are the
2550     // same as the destination of the extract. If this is the case we can just
2551     // use a broadcast as the original dimensions are untouched.
2552     bool lowerDimMatch = true;
2553     for (unsigned i = 0; i < srcRank; i++) {
2554       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2555         lowerDimMatch = false;
2556         break;
2557       }
2558     }
2559     Value source = broadcast.getSource();
2560     // If the inner dimensions don't match, it means we need to extract from the
2561     // source of the orignal broadcast and then broadcast the extracted value.
2562     // We also need to handle degenerated cases where the source is effectively
2563     // just a single scalar.
2564     bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1);
2565     if (!lowerDimMatch && !isScalarSrc) {
2566       source = rewriter.create<ExtractStridedSliceOp>(
2567           op->getLoc(), source,
2568           getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff),
2569           getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff),
2570           getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff));
2571     }
2572     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2573     return success();
2574   }
2575 };
2576 
2577 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2578 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2579 public:
2580   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2581 
2582   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2583                                 PatternRewriter &rewriter) const override {
2584     auto splat = op.getVector().getDefiningOp<SplatOp>();
2585     if (!splat)
2586       return failure();
2587     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
2588     return success();
2589   }
2590 };
2591 
2592 } // namespace
2593 
2594 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2595     RewritePatternSet &results, MLIRContext *context) {
2596   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2597   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2598   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2599               StridedSliceBroadcast, StridedSliceSplat>(context);
2600 }
2601 
2602 //===----------------------------------------------------------------------===//
2603 // TransferReadOp
2604 //===----------------------------------------------------------------------===//
2605 
2606 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2607 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2608                            VectorType vectorType, Value source,
2609                            ValueRange indices, AffineMapAttr permutationMapAttr,
2610                            /*optional*/ ArrayAttr inBoundsAttr) {
2611   Type elemType = source.getType().cast<ShapedType>().getElementType();
2612   Value padding = builder.create<arith::ConstantOp>(
2613       result.location, elemType, builder.getZeroAttr(elemType));
2614   build(builder, result, vectorType, source, indices, permutationMapAttr,
2615         padding, /*mask=*/Value(), inBoundsAttr);
2616 }
2617 
2618 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2619 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2620                            VectorType vectorType, Value source,
2621                            ValueRange indices, AffineMap permutationMap,
2622                            Optional<ArrayRef<bool>> inBounds) {
2623   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2624   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2625                           ? builder.getBoolArrayAttr(inBounds.getValue())
2626                           : ArrayAttr();
2627   build(builder, result, vectorType, source, indices, permutationMapAttr,
2628         inBoundsAttr);
2629 }
2630 
2631 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2632 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2633                            VectorType vectorType, Value source,
2634                            ValueRange indices, Value padding,
2635                            Optional<ArrayRef<bool>> inBounds) {
2636   AffineMap permutationMap = getTransferMinorIdentityMap(
2637       source.getType().cast<ShapedType>(), vectorType);
2638   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2639   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2640                           ? builder.getBoolArrayAttr(inBounds.getValue())
2641                           : ArrayAttr();
2642   build(builder, result, vectorType, source, indices, permutationMapAttr,
2643         padding,
2644         /*mask=*/Value(), inBoundsAttr);
2645 }
2646 
2647 /// 4. Builder that sets padding to zero and permutation map to
2648 /// 'getMinorIdentityMap'.
2649 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2650                            VectorType vectorType, Value source,
2651                            ValueRange indices,
2652                            Optional<ArrayRef<bool>> inBounds) {
2653   Type elemType = source.getType().cast<ShapedType>().getElementType();
2654   Value padding = builder.create<arith::ConstantOp>(
2655       result.location, elemType, builder.getZeroAttr(elemType));
2656   build(builder, result, vectorType, source, indices, padding, inBounds);
2657 }
2658 
2659 template <typename EmitFun>
2660 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2661                                           EmitFun emitOpError) {
2662   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2663   for (auto expr : permutationMap.getResults()) {
2664     auto dim = expr.dyn_cast<AffineDimExpr>();
2665     auto zero = expr.dyn_cast<AffineConstantExpr>();
2666     if (zero) {
2667       if (zero.getValue() != 0) {
2668         return emitOpError(
2669             "requires a projected permutation_map (at most one dim or the zero "
2670             "constant can appear in each result)");
2671       }
2672       continue;
2673     }
2674     if (!dim) {
2675       return emitOpError("requires a projected permutation_map (at most one "
2676                          "dim or the zero constant can appear in each result)");
2677     }
2678     if (seen[dim.getPosition()]) {
2679       return emitOpError(
2680           "requires a permutation_map that is a permutation (found one dim "
2681           "used more than once)");
2682     }
2683     seen[dim.getPosition()] = true;
2684   }
2685   return success();
2686 }
2687 
2688 static LogicalResult
2689 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2690                  VectorType vectorType, VectorType maskType,
2691                  AffineMap permutationMap, ArrayAttr inBounds) {
2692   if (op->hasAttr("masked")) {
2693     return op->emitOpError("masked attribute has been removed. "
2694                            "Use in_bounds instead.");
2695   }
2696 
2697   if (!shapedType.isa<MemRefType, RankedTensorType>())
2698     return op->emitOpError(
2699         "requires source to be a memref or ranked tensor type");
2700 
2701   auto elementType = shapedType.getElementType();
2702   DataLayout dataLayout = DataLayout::closest(op);
2703   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2704     // Memref or tensor has vector element type.
2705     unsigned sourceVecSize =
2706         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2707         vectorElementType.getShape().back();
2708     unsigned resultVecSize =
2709         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2710         vectorType.getShape().back();
2711     if (resultVecSize % sourceVecSize != 0)
2712       return op->emitOpError(
2713           "requires the bitwidth of the minor 1-D vector to be an integral "
2714           "multiple of the bitwidth of the minor 1-D vector of the source");
2715 
2716     unsigned sourceVecEltRank = vectorElementType.getRank();
2717     unsigned resultVecRank = vectorType.getRank();
2718     if (sourceVecEltRank > resultVecRank)
2719       return op->emitOpError(
2720           "requires source vector element and vector result ranks to match.");
2721     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2722     // Check that permutation map results match 'rankOffset' of vector type.
2723     if (permutationMap.getNumResults() != rankOffset)
2724       return op->emitOpError("requires a permutation_map with result dims of "
2725                              "the same rank as the vector type");
2726 
2727     if (maskType)
2728       return op->emitOpError("does not support masks with vector element type");
2729   } else {
2730     // Memref or tensor has scalar element type.
2731     unsigned minorSize =
2732         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2733     unsigned resultVecSize =
2734         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2735     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2736       return op->emitOpError(
2737           "requires the bitwidth of the minor 1-D vector to be an integral "
2738           "multiple of the bitwidth of the source element type");
2739 
2740     // Check that permutation map results match rank of vector type.
2741     if (permutationMap.getNumResults() != vectorType.getRank())
2742       return op->emitOpError("requires a permutation_map with result dims of "
2743                              "the same rank as the vector type");
2744 
2745     VectorType expectedMaskType =
2746         vector::detail::transferMaskType(vectorType, permutationMap);
2747     if (maskType && expectedMaskType != maskType)
2748       return op->emitOpError("expects mask type consistent with permutation "
2749                              "map: ")
2750              << maskType;
2751   }
2752 
2753   if (permutationMap.getNumSymbols() != 0)
2754     return op->emitOpError("requires permutation_map without symbols");
2755 
2756   if (permutationMap.getNumInputs() != shapedType.getRank())
2757     return op->emitOpError("requires a permutation_map with input dims of the "
2758                            "same rank as the source type");
2759 
2760   if (inBounds) {
2761     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2762       return op->emitOpError("expects the optional in_bounds attr of same rank "
2763                              "as permutation_map results: ")
2764              << AffineMapAttr::get(permutationMap)
2765              << " vs inBounds of size: " << inBounds.size();
2766     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2767       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2768           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2769         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2770   }
2771 
2772   return success();
2773 }
2774 
2775 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2776   SmallVector<StringRef, 3> elidedAttrs;
2777   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2778   if (op.permutation_map().isMinorIdentity())
2779     elidedAttrs.push_back(op.getPermutationMapAttrStrName());
2780   bool elideInBounds = true;
2781   if (auto inBounds = op.in_bounds()) {
2782     for (auto attr : *inBounds) {
2783       if (attr.template cast<BoolAttr>().getValue()) {
2784         elideInBounds = false;
2785         break;
2786       }
2787     }
2788   }
2789   if (elideInBounds)
2790     elidedAttrs.push_back(op.getInBoundsAttrStrName());
2791   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2792 }
2793 
2794 void TransferReadOp::print(OpAsmPrinter &p) {
2795   p << " " << getSource() << "[" << getIndices() << "], " << getPadding();
2796   if (getMask())
2797     p << ", " << getMask();
2798   printTransferAttrs(p, *this);
2799   p << " : " << getShapedType() << ", " << getVectorType();
2800 }
2801 
2802 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2803   auto &builder = parser.getBuilder();
2804   SMLoc typesLoc;
2805   OpAsmParser::UnresolvedOperand sourceInfo;
2806   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
2807   OpAsmParser::UnresolvedOperand paddingInfo;
2808   SmallVector<Type, 2> types;
2809   OpAsmParser::UnresolvedOperand maskInfo;
2810   // Parsing with support for paddingValue.
2811   if (parser.parseOperand(sourceInfo) ||
2812       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2813       parser.parseComma() || parser.parseOperand(paddingInfo))
2814     return failure();
2815   ParseResult hasMask = parser.parseOptionalComma();
2816   if (hasMask.succeeded()) {
2817     parser.parseOperand(maskInfo);
2818   }
2819   if (parser.parseOptionalAttrDict(result.attributes) ||
2820       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2821     return failure();
2822   if (types.size() != 2)
2823     return parser.emitError(typesLoc, "requires two types");
2824   auto indexType = builder.getIndexType();
2825   auto shapedType = types[0].dyn_cast<ShapedType>();
2826   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2827     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2828   VectorType vectorType = types[1].dyn_cast<VectorType>();
2829   if (!vectorType)
2830     return parser.emitError(typesLoc, "requires vector type");
2831   auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName();
2832   Attribute mapAttr = result.attributes.get(permutationAttrName);
2833   if (!mapAttr) {
2834     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
2835     // Update `mapAttr` that is used later to determine mask type.
2836     mapAttr = AffineMapAttr::get(permMap);
2837     result.attributes.set(permutationAttrName, mapAttr);
2838   }
2839   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
2840       parser.resolveOperands(indexInfo, indexType, result.operands) ||
2841       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
2842                             result.operands))
2843     return failure();
2844   if (hasMask.succeeded()) {
2845     if (shapedType.getElementType().dyn_cast<VectorType>())
2846       return parser.emitError(
2847           maskInfo.location, "does not support masks with vector element type");
2848     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
2849     // Instead of adding the mask type as an op type, compute it based on the
2850     // vector type and the permutation map (to keep the type signature small).
2851     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
2852     if (parser.resolveOperand(maskInfo, maskType, result.operands))
2853       return failure();
2854   }
2855   result.addAttribute(
2856       TransferReadOp::getOperandSegmentSizeAttr(),
2857       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
2858                                 static_cast<int32_t>(hasMask.succeeded())}));
2859   return parser.addTypeToList(vectorType, result.types);
2860 }
2861 
2862 LogicalResult TransferReadOp::verify() {
2863   // Consistency of elemental types in source and vector.
2864   ShapedType shapedType = getShapedType();
2865   VectorType vectorType = getVectorType();
2866   VectorType maskType = getMaskType();
2867   auto paddingType = getPadding().getType();
2868   auto permutationMap = getPermutationMap();
2869   auto sourceElementType = shapedType.getElementType();
2870 
2871   if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
2872     return emitOpError("requires ") << shapedType.getRank() << " indices";
2873 
2874   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
2875                               shapedType, vectorType, maskType, permutationMap,
2876                               getInBounds() ? *getInBounds() : ArrayAttr())))
2877     return failure();
2878 
2879   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
2880     // Source has vector element type.
2881     // Check that 'sourceVectorElementType' and 'paddingType' types match.
2882     if (sourceVectorElementType != paddingType)
2883       return emitOpError(
2884           "requires source element type and padding type to match.");
2885 
2886   } else {
2887     // Check that 'paddingType' is valid to store in a vector type.
2888     if (!VectorType::isValidElementType(paddingType))
2889       return emitOpError("requires valid padding vector elemental type");
2890 
2891     // Check that padding type and vector element types match.
2892     if (paddingType != sourceElementType)
2893       return emitOpError(
2894           "requires formal padding and source of the same elemental type");
2895   }
2896 
2897   return verifyPermutationMap(permutationMap,
2898                               [&](Twine t) { return emitOpError(t); });
2899 }
2900 
2901 /// This is a common class used for patterns of the form
2902 /// ```
2903 ///    someop(memrefcast) -> someop
2904 /// ```
2905 /// It folds the source of the memref.cast into the root operation directly.
2906 static LogicalResult foldMemRefCast(Operation *op) {
2907   bool folded = false;
2908   for (OpOperand &operand : op->getOpOperands()) {
2909     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
2910     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
2911       operand.set(castOp.getOperand());
2912       folded = true;
2913     }
2914   }
2915   return success(folded);
2916 }
2917 
2918 static LogicalResult foldTensorCast(Operation *op) {
2919   bool folded = false;
2920   for (OpOperand &operand : op->getOpOperands()) {
2921     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
2922     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
2923       operand.set(castOp.getOperand());
2924       folded = true;
2925     }
2926   }
2927   return success(folded);
2928 }
2929 
2930 template <typename TransferOp>
2931 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
2932   // TODO: support more aggressive createOrFold on:
2933   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
2934   if (op.getShapedType().isDynamicDim(indicesIdx))
2935     return false;
2936   Value index = op.getIndices()[indicesIdx];
2937   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
2938   if (!cstOp)
2939     return false;
2940 
2941   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
2942   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
2943 
2944   return cstOp.value() + vectorSize <= sourceSize;
2945 }
2946 
2947 template <typename TransferOp>
2948 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
2949   // TODO: support 0-d corner case.
2950   // TODO: Be less conservative.
2951   if (op.getTransferRank() == 0)
2952     return failure();
2953   AffineMap permutationMap = op.getPermutationMap();
2954   bool changed = false;
2955   SmallVector<bool, 4> newInBounds;
2956   newInBounds.reserve(op.getTransferRank());
2957   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
2958     // Already marked as in-bounds, nothing to see here.
2959     if (op.isDimInBounds(i)) {
2960       newInBounds.push_back(true);
2961       continue;
2962     }
2963     // Currently out-of-bounds, check whether we can statically determine it is
2964     // inBounds.
2965     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
2966     assert(dimExpr && "Broadcast dims must be in-bounds");
2967     auto inBounds =
2968         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
2969     newInBounds.push_back(inBounds);
2970     // We commit the pattern if it is "more inbounds".
2971     changed |= inBounds;
2972   }
2973   if (!changed)
2974     return failure();
2975   // OpBuilder is only used as a helper to build an I64ArrayAttr.
2976   OpBuilder b(op.getContext());
2977   op->setAttr(TransferOp::getInBoundsAttrStrName(),
2978               b.getBoolArrayAttr(newInBounds));
2979   return success();
2980 }
2981 
2982 ///  ```
2983 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
2984 ///    : vector<1x4xf32>, tensor<4x4xf32>
2985 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
2986 ///    : tensor<4x4xf32>, vector<1x4xf32>
2987 ///  ```
2988 ///  -> Folds into
2989 ///  ```
2990 ///  %v0
2991 ///  ```
2992 static Value foldRAW(TransferReadOp readOp) {
2993   if (!readOp.getShapedType().isa<RankedTensorType>())
2994     return {};
2995   auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>();
2996   while (defWrite) {
2997     if (checkSameValueRAW(defWrite, readOp))
2998       return defWrite.getVector();
2999     if (!isDisjointTransferIndices(
3000             cast<VectorTransferOpInterface>(defWrite.getOperation()),
3001             cast<VectorTransferOpInterface>(readOp.getOperation())))
3002       break;
3003     defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3004   }
3005   return {};
3006 }
3007 
3008 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
3009   if (Value vec = foldRAW(*this))
3010     return vec;
3011   /// transfer_read(memrefcast) -> transfer_read
3012   if (succeeded(foldTransferInBoundsAttribute(*this)))
3013     return getResult();
3014   if (succeeded(foldMemRefCast(*this)))
3015     return getResult();
3016   if (succeeded(foldTensorCast(*this)))
3017     return getResult();
3018   return OpFoldResult();
3019 }
3020 
3021 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
3022   return llvm::to_vector<4>(getVectorType().getShape());
3023 }
3024 
3025 void TransferReadOp::getEffects(
3026     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3027         &effects) {
3028   if (getShapedType().isa<MemRefType>())
3029     effects.emplace_back(MemoryEffects::Read::get(), getSource(),
3030                          SideEffects::DefaultResource::get());
3031 }
3032 
3033 namespace {
3034 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
3035 ///
3036 /// ```
3037 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
3038 ///     : tensor<?x?xf32> to tensor<?x?xf32>
3039 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
3040 ///     : tensor<?x?xf32>, vector<4x5xf32>
3041 /// ```
3042 /// is rewritten to:
3043 /// ```
3044 /// %p0 = arith.addi %a, %e : index
3045 /// %p1 = arith.addi %b, %f : index
3046 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
3047 ///     : tensor<?x?xf32>, vector<4x5xf32>
3048 /// ```
3049 struct FoldExtractSliceIntoTransferRead
3050     : public OpRewritePattern<TransferReadOp> {
3051 public:
3052   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
3053 
3054   LogicalResult matchAndRewrite(TransferReadOp xferOp,
3055                                 PatternRewriter &rewriter) const override {
3056     // TODO: support 0-d corner case.
3057     if (xferOp.getTransferRank() == 0)
3058       return failure();
3059     if (xferOp.hasOutOfBoundsDim())
3060       return failure();
3061     if (!xferOp.getPermutationMap().isIdentity())
3062       return failure();
3063     if (xferOp.getMask())
3064       return failure();
3065     auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3066     if (!extractOp)
3067       return failure();
3068     if (!extractOp.hasUnitStride())
3069       return failure();
3070 
3071     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3072     // dims are exactly the leading dims. I.e. the following is illegal:
3073     // ```
3074     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3075     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3076     //    %1 = vector.transfer_read %0[0,0], %cst :
3077     //      tensor<2x4xf32>, vector<2x4xf32>
3078     // ```
3079     //
3080     // Cannot fold into:
3081     // ```
3082     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3083     //      tensor<2x1x4xf32>, vector<2x4xf32>
3084     // ```
3085     // For this, check the trailing `vectorRank` dims of the extract_slice
3086     // result tensor match the trailing dims of the inferred result tensor.
3087     int64_t rankReduced =
3088         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3089     int64_t vectorRank = xferOp.getVectorType().getRank();
3090     RankedTensorType inferredDestTensorType =
3091         tensor::ExtractSliceOp::inferResultType(
3092             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3093             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3094     auto actualDestTensorShape = extractOp.getType().getShape();
3095     if (rankReduced > 0 &&
3096         actualDestTensorShape.take_back(vectorRank) !=
3097             inferredDestTensorType.getShape().take_back(vectorRank))
3098       return failure();
3099 
3100     SmallVector<Value> newIndices;
3101     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3102     // indices first.
3103     for (int64_t i = 0; i < rankReduced; ++i) {
3104       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3105       newIndices.push_back(getValueOrCreateConstantIndexOp(
3106           rewriter, extractOp.getLoc(), offset));
3107     }
3108     for (const auto &it : llvm::enumerate(xferOp.getIndices())) {
3109       OpFoldResult offset =
3110           extractOp.getMixedOffsets()[it.index() + rankReduced];
3111       newIndices.push_back(rewriter.create<arith::AddIOp>(
3112           xferOp->getLoc(), it.value(),
3113           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3114                                           offset)));
3115     }
3116     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3117     rewriter.replaceOpWithNewOp<TransferReadOp>(
3118         xferOp, xferOp.getVectorType(), extractOp.source(), newIndices,
3119         xferOp.getPadding(), ArrayRef<bool>{inBounds});
3120 
3121     return success();
3122   }
3123 };
3124 } // namespace
3125 
3126 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3127                                                  MLIRContext *context) {
3128   results.add<FoldExtractSliceIntoTransferRead>(context);
3129 }
3130 
3131 //===----------------------------------------------------------------------===//
3132 // TransferWriteOp
3133 //===----------------------------------------------------------------------===//
3134 
3135 /// 1. Builder with type inference.
3136 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3137                             Value vector, Value dest, ValueRange indices,
3138                             AffineMapAttr permutationMapAttr,
3139                             /*optional*/ Value mask,
3140                             /*optional*/ ArrayAttr inBoundsAttr) {
3141   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3142   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3143         mask, inBoundsAttr);
3144 }
3145 
3146 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3147 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3148                             Value vector, Value dest, ValueRange indices,
3149                             AffineMapAttr permutationMapAttr,
3150                             /*optional*/ ArrayAttr inBoundsAttr) {
3151   build(builder, result, vector, dest, indices, permutationMapAttr,
3152         /*mask=*/Value(), inBoundsAttr);
3153 }
3154 
3155 /// 3. Builder with type inference that sets an empty mask (variant without
3156 /// attrs)
3157 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3158                             Value vector, Value dest, ValueRange indices,
3159                             AffineMap permutationMap,
3160                             Optional<ArrayRef<bool>> inBounds) {
3161   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3162   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
3163                           ? builder.getBoolArrayAttr(inBounds.getValue())
3164                           : ArrayAttr();
3165   build(builder, result, vector, dest, indices, permutationMapAttr,
3166         /*mask=*/Value(), inBoundsAttr);
3167 }
3168 
3169 /// 4. Builder with type inference that sets an empty mask and sets permutation
3170 ///    map to 'getMinorIdentityMap'.
3171 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3172                             Value vector, Value dest, ValueRange indices,
3173                             Optional<ArrayRef<bool>> inBounds) {
3174   auto vectorType = vector.getType().cast<VectorType>();
3175   AffineMap permutationMap = getTransferMinorIdentityMap(
3176       dest.getType().cast<ShapedType>(), vectorType);
3177   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3178 }
3179 
3180 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3181                                    OperationState &result) {
3182   auto &builder = parser.getBuilder();
3183   SMLoc typesLoc;
3184   OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
3185   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
3186   SmallVector<Type, 2> types;
3187   OpAsmParser::UnresolvedOperand maskInfo;
3188   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3189       parser.parseOperand(sourceInfo) ||
3190       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3191     return failure();
3192   ParseResult hasMask = parser.parseOptionalComma();
3193   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3194     return failure();
3195   if (parser.parseOptionalAttrDict(result.attributes) ||
3196       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3197     return failure();
3198   if (types.size() != 2)
3199     return parser.emitError(typesLoc, "requires two types");
3200   auto indexType = builder.getIndexType();
3201   VectorType vectorType = types[0].dyn_cast<VectorType>();
3202   if (!vectorType)
3203     return parser.emitError(typesLoc, "requires vector type");
3204   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3205   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3206     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3207   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName();
3208   auto attr = result.attributes.get(permutationAttrName);
3209   if (!attr) {
3210     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3211     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3212   }
3213   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3214       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3215       parser.resolveOperands(indexInfo, indexType, result.operands))
3216     return failure();
3217   if (hasMask.succeeded()) {
3218     if (shapedType.getElementType().dyn_cast<VectorType>())
3219       return parser.emitError(
3220           maskInfo.location, "does not support masks with vector element type");
3221     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3222     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3223       return failure();
3224   }
3225   result.addAttribute(
3226       TransferWriteOp::getOperandSegmentSizeAttr(),
3227       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3228                                 static_cast<int32_t>(hasMask.succeeded())}));
3229   return failure(shapedType.isa<RankedTensorType>() &&
3230                  parser.addTypeToList(shapedType, result.types));
3231 }
3232 
3233 void TransferWriteOp::print(OpAsmPrinter &p) {
3234   p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]";
3235   if (getMask())
3236     p << ", " << getMask();
3237   printTransferAttrs(p, *this);
3238   p << " : " << getVectorType() << ", " << getShapedType();
3239 }
3240 
3241 LogicalResult TransferWriteOp::verify() {
3242   // Consistency of elemental types in shape and vector.
3243   ShapedType shapedType = getShapedType();
3244   VectorType vectorType = getVectorType();
3245   VectorType maskType = getMaskType();
3246   auto permutationMap = getPermutationMap();
3247 
3248   if (llvm::size(getIndices()) != shapedType.getRank())
3249     return emitOpError("requires ") << shapedType.getRank() << " indices";
3250 
3251   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3252   // as the semantics is unclear. This can be revisited later if necessary.
3253   if (hasBroadcastDim())
3254     return emitOpError("should not have broadcast dimensions");
3255 
3256   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3257                               shapedType, vectorType, maskType, permutationMap,
3258                               getInBounds() ? *getInBounds() : ArrayAttr())))
3259     return failure();
3260 
3261   return verifyPermutationMap(permutationMap,
3262                               [&](Twine t) { return emitOpError(t); });
3263 }
3264 
3265 /// Fold:
3266 /// ```
3267 ///    %t1 = ...
3268 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3269 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3270 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3271 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3272 /// ```
3273 ///
3274 /// into:
3275 ///
3276 /// ```
3277 ///    %t0
3278 /// ```
3279 ///
3280 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3281 /// block argument or has side effects.
3282 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3283                                        ArrayRef<Attribute>,
3284                                        SmallVectorImpl<OpFoldResult> &results) {
3285   // TODO: support 0-d corner case.
3286   if (write.getTransferRank() == 0)
3287     return failure();
3288   auto rankedTensorType =
3289       write.getSource().getType().dyn_cast<RankedTensorType>();
3290   // If not operating on tensors, bail.
3291   if (!rankedTensorType)
3292     return failure();
3293   // If no read, bail.
3294   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3295   if (!read)
3296     return failure();
3297   // TODO: support 0-d corner case.
3298   if (read.getTransferRank() == 0)
3299     return failure();
3300   // For now, only accept minor identity. Future: composition is minor identity.
3301   if (!read.getPermutationMap().isMinorIdentity() ||
3302       !write.getPermutationMap().isMinorIdentity())
3303     return failure();
3304   // Bail on mismatching ranks.
3305   if (read.getTransferRank() != write.getTransferRank())
3306     return failure();
3307   // Bail on potential out-of-bounds accesses.
3308   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3309     return failure();
3310   // Tensor types must be the same.
3311   if (read.getSource().getType() != rankedTensorType)
3312     return failure();
3313   // Vector types must be the same.
3314   if (read.getVectorType() != write.getVectorType())
3315     return failure();
3316   // Vector and Tensor shapes must match.
3317   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3318     return failure();
3319   // If any index is nonzero.
3320   auto isNotConstantZero = [](Value v) {
3321     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3322     return !cstOp || cstOp.value() != 0;
3323   };
3324   if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
3325       llvm::any_of(write.getIndices(), isNotConstantZero))
3326     return failure();
3327   // Success.
3328   results.push_back(read.getSource());
3329   return success();
3330 }
3331 
3332 static bool checkSameValueWAR(vector::TransferReadOp read,
3333                               vector::TransferWriteOp write) {
3334   return read.getSource() == write.getSource() &&
3335          read.getIndices() == write.getIndices() &&
3336          read.getPermutationMap() == write.getPermutationMap() &&
3337          read.getVectorType() == write.getVectorType() && !read.getMask() &&
3338          !write.getMask();
3339 }
3340 /// Fold transfer_write write after read:
3341 /// ```
3342 ///    %t0 = ...
3343 ///    %v = vector.transfer_read %t0[%c0...] :
3344 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3345 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3346 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3347 /// ```
3348 ///
3349 /// into:
3350 ///
3351 /// ```
3352 ///    %t0
3353 /// ```
3354 static LogicalResult foldWAR(TransferWriteOp write,
3355                              SmallVectorImpl<OpFoldResult> &results) {
3356   if (!write.getSource().getType().isa<RankedTensorType>())
3357     return failure();
3358   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3359   if (!read)
3360     return failure();
3361 
3362   if (!checkSameValueWAR(read, write))
3363     return failure();
3364   results.push_back(read.getSource());
3365   return success();
3366 }
3367 
3368 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3369                                     SmallVectorImpl<OpFoldResult> &results) {
3370   if (succeeded(foldReadInitWrite(*this, operands, results)))
3371     return success();
3372   if (succeeded(foldWAR(*this, results)))
3373     return success();
3374   if (succeeded(foldTransferInBoundsAttribute(*this)))
3375     return success();
3376   return foldMemRefCast(*this);
3377 }
3378 
3379 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3380   return llvm::to_vector<4>(getVectorType().getShape());
3381 }
3382 
3383 void TransferWriteOp::getEffects(
3384     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3385         &effects) {
3386   if (getShapedType().isa<MemRefType>())
3387     effects.emplace_back(MemoryEffects::Write::get(), getSource(),
3388                          SideEffects::DefaultResource::get());
3389 }
3390 
3391 namespace {
3392 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3393 /// DCE
3394 /// ```
3395 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3396 ///    : vector<1x4xf32>, tensor<4x4xf32>
3397 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3398 ///    : vector<1x4xf32>, tensor<4x4xf32>
3399 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3400 ///    : vector<1x4xf32>, tensor<4x4xf32>
3401 /// ```
3402 ///
3403 /// into:
3404 ///
3405 /// ```
3406 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3407 ///    : vector<1x4xf32>, tensor<4x4xf32>
3408 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3409 ///    : vector<1x4xf32>, tensor<4x4xf32>
3410 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3411 ///    : vector<1x4xf32>, tensor<4x4xf32>
3412 /// ```
3413 ///
3414 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3415 /// any other uses.
3416 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3417 public:
3418   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3419   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3420                                 PatternRewriter &rewriter) const override {
3421     if (!writeOp.getShapedType().isa<RankedTensorType>())
3422       return failure();
3423     vector::TransferWriteOp writeToModify = writeOp;
3424 
3425     auto defWrite =
3426         writeOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3427     while (defWrite) {
3428       if (checkSameValueWAW(writeOp, defWrite)) {
3429         writeToModify.getSourceMutable().assign(defWrite.getSource());
3430         return success();
3431       }
3432       if (!isDisjointTransferIndices(
3433               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3434               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3435         break;
3436       // If the previous write op doesn't have any other use we an safely look
3437       // at the previous store to see if it can be removed.
3438       if (!defWrite->hasOneUse())
3439         break;
3440       writeToModify = defWrite;
3441       defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3442     }
3443     return failure();
3444   }
3445 };
3446 
3447 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3448 /// could directly write to the insert_slice's destination. E.g.:
3449 ///
3450 /// ```
3451 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3452 ///     : vector<4x5xf32>, tensor<4x5xf32>
3453 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3454 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3455 /// ```
3456 /// is rewritten to:
3457 /// ```
3458 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3459 ///     : vector<4x5xf32>, tensor<?x?xf32>
3460 /// ```
3461 struct FoldInsertSliceIntoTransferWrite
3462     : public OpRewritePattern<tensor::InsertSliceOp> {
3463 public:
3464   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3465 
3466   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3467                                 PatternRewriter &rewriter) const override {
3468     if (!insertOp.hasUnitStride())
3469       return failure();
3470 
3471     auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>();
3472     if (!xferOp)
3473       return failure();
3474     // TODO: support 0-d corner case.
3475     if (xferOp.getTransferRank() == 0)
3476       return failure();
3477 
3478     if (xferOp.hasOutOfBoundsDim())
3479       return failure();
3480     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3481       return failure();
3482     if (xferOp.getMask())
3483       return failure();
3484     // Fold only if the TransferWriteOp completely overwrites the `source` with
3485     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3486     // content is the data of the vector.
3487     if (!llvm::equal(xferOp.getVectorType().getShape(),
3488                      xferOp.getShapedType().getShape()))
3489       return failure();
3490     if (!xferOp.getPermutationMap().isIdentity())
3491       return failure();
3492 
3493     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3494     // dims are exactly the leading dims. I.e. the following is illegal:
3495     // ```
3496     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3497     //      vector<2x4xf32>, tensor<2x4xf32>
3498     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3499     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3500     // ```
3501     //
3502     // Cannot fold into:
3503     // ```
3504     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3505     //      vector<2x4xf32>, tensor<2x1x4xf32>
3506     // ```
3507     // For this, check the trailing `vectorRank` dims of the insert_slice result
3508     // tensor match the trailing dims of the inferred result tensor.
3509     int64_t rankReduced =
3510         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3511     int64_t vectorRank = xferOp.getVectorType().getRank();
3512     RankedTensorType inferredSourceTensorType =
3513         tensor::ExtractSliceOp::inferResultType(
3514             insertOp.getType(), insertOp.getMixedOffsets(),
3515             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3516     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3517     if (rankReduced > 0 &&
3518         actualSourceTensorShape.take_back(vectorRank) !=
3519             inferredSourceTensorType.getShape().take_back(vectorRank))
3520       return failure();
3521 
3522     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3523         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3524     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3525     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(),
3526                                                  insertOp.dest(), indices,
3527                                                  ArrayRef<bool>{inBounds});
3528     return success();
3529   }
3530 };
3531 } // namespace
3532 
3533 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3534                                                   MLIRContext *context) {
3535   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite>(context);
3536 }
3537 
3538 //===----------------------------------------------------------------------===//
3539 // LoadOp
3540 //===----------------------------------------------------------------------===//
3541 
3542 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3543                                                  MemRefType memRefTy) {
3544   if (!isLastMemrefDimUnitStride(memRefTy))
3545     return op->emitOpError("most minor memref dim must have unit stride");
3546   return success();
3547 }
3548 
3549 LogicalResult vector::LoadOp::verify() {
3550   VectorType resVecTy = getVectorType();
3551   MemRefType memRefTy = getMemRefType();
3552 
3553   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3554     return failure();
3555 
3556   // Checks for vector memrefs.
3557   Type memElemTy = memRefTy.getElementType();
3558   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3559     if (memVecTy != resVecTy)
3560       return emitOpError("base memref and result vector types should match");
3561     memElemTy = memVecTy.getElementType();
3562   }
3563 
3564   if (resVecTy.getElementType() != memElemTy)
3565     return emitOpError("base and result element types should match");
3566   if (llvm::size(getIndices()) != memRefTy.getRank())
3567     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3568   return success();
3569 }
3570 
3571 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3572   if (succeeded(foldMemRefCast(*this)))
3573     return getResult();
3574   return OpFoldResult();
3575 }
3576 
3577 //===----------------------------------------------------------------------===//
3578 // StoreOp
3579 //===----------------------------------------------------------------------===//
3580 
3581 LogicalResult vector::StoreOp::verify() {
3582   VectorType valueVecTy = getVectorType();
3583   MemRefType memRefTy = getMemRefType();
3584 
3585   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3586     return failure();
3587 
3588   // Checks for vector memrefs.
3589   Type memElemTy = memRefTy.getElementType();
3590   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3591     if (memVecTy != valueVecTy)
3592       return emitOpError(
3593           "base memref and valueToStore vector types should match");
3594     memElemTy = memVecTy.getElementType();
3595   }
3596 
3597   if (valueVecTy.getElementType() != memElemTy)
3598     return emitOpError("base and valueToStore element type should match");
3599   if (llvm::size(getIndices()) != memRefTy.getRank())
3600     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3601   return success();
3602 }
3603 
3604 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3605                             SmallVectorImpl<OpFoldResult> &results) {
3606   return foldMemRefCast(*this);
3607 }
3608 
3609 //===----------------------------------------------------------------------===//
3610 // MaskedLoadOp
3611 //===----------------------------------------------------------------------===//
3612 
3613 LogicalResult MaskedLoadOp::verify() {
3614   VectorType maskVType = getMaskVectorType();
3615   VectorType passVType = getPassThruVectorType();
3616   VectorType resVType = getVectorType();
3617   MemRefType memType = getMemRefType();
3618 
3619   if (resVType.getElementType() != memType.getElementType())
3620     return emitOpError("base and result element type should match");
3621   if (llvm::size(getIndices()) != memType.getRank())
3622     return emitOpError("requires ") << memType.getRank() << " indices";
3623   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3624     return emitOpError("expected result dim to match mask dim");
3625   if (resVType != passVType)
3626     return emitOpError("expected pass_thru of same type as result type");
3627   return success();
3628 }
3629 
3630 namespace {
3631 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3632 public:
3633   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3634   LogicalResult matchAndRewrite(MaskedLoadOp load,
3635                                 PatternRewriter &rewriter) const override {
3636     switch (get1DMaskFormat(load.getMask())) {
3637     case MaskFormat::AllTrue:
3638       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3639           load, load.getType(), load.getBase(), load.getIndices());
3640       return success();
3641     case MaskFormat::AllFalse:
3642       rewriter.replaceOp(load, load.getPassThru());
3643       return success();
3644     case MaskFormat::Unknown:
3645       return failure();
3646     }
3647     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3648   }
3649 };
3650 } // namespace
3651 
3652 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3653                                                MLIRContext *context) {
3654   results.add<MaskedLoadFolder>(context);
3655 }
3656 
3657 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3658   if (succeeded(foldMemRefCast(*this)))
3659     return getResult();
3660   return OpFoldResult();
3661 }
3662 
3663 //===----------------------------------------------------------------------===//
3664 // MaskedStoreOp
3665 //===----------------------------------------------------------------------===//
3666 
3667 LogicalResult MaskedStoreOp::verify() {
3668   VectorType maskVType = getMaskVectorType();
3669   VectorType valueVType = getVectorType();
3670   MemRefType memType = getMemRefType();
3671 
3672   if (valueVType.getElementType() != memType.getElementType())
3673     return emitOpError("base and valueToStore element type should match");
3674   if (llvm::size(getIndices()) != memType.getRank())
3675     return emitOpError("requires ") << memType.getRank() << " indices";
3676   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3677     return emitOpError("expected valueToStore dim to match mask dim");
3678   return success();
3679 }
3680 
3681 namespace {
3682 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3683 public:
3684   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3685   LogicalResult matchAndRewrite(MaskedStoreOp store,
3686                                 PatternRewriter &rewriter) const override {
3687     switch (get1DMaskFormat(store.getMask())) {
3688     case MaskFormat::AllTrue:
3689       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3690           store, store.getValueToStore(), store.getBase(), store.getIndices());
3691       return success();
3692     case MaskFormat::AllFalse:
3693       rewriter.eraseOp(store);
3694       return success();
3695     case MaskFormat::Unknown:
3696       return failure();
3697     }
3698     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3699   }
3700 };
3701 } // namespace
3702 
3703 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3704                                                 MLIRContext *context) {
3705   results.add<MaskedStoreFolder>(context);
3706 }
3707 
3708 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3709                                   SmallVectorImpl<OpFoldResult> &results) {
3710   return foldMemRefCast(*this);
3711 }
3712 
3713 //===----------------------------------------------------------------------===//
3714 // GatherOp
3715 //===----------------------------------------------------------------------===//
3716 
3717 LogicalResult GatherOp::verify() {
3718   VectorType indVType = getIndexVectorType();
3719   VectorType maskVType = getMaskVectorType();
3720   VectorType resVType = getVectorType();
3721   MemRefType memType = getMemRefType();
3722 
3723   if (resVType.getElementType() != memType.getElementType())
3724     return emitOpError("base and result element type should match");
3725   if (llvm::size(getIndices()) != memType.getRank())
3726     return emitOpError("requires ") << memType.getRank() << " indices";
3727   if (resVType.getDimSize(0) != indVType.getDimSize(0))
3728     return emitOpError("expected result dim to match indices dim");
3729   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3730     return emitOpError("expected result dim to match mask dim");
3731   if (resVType != getPassThruVectorType())
3732     return emitOpError("expected pass_thru of same type as result type");
3733   return success();
3734 }
3735 
3736 namespace {
3737 class GatherFolder final : public OpRewritePattern<GatherOp> {
3738 public:
3739   using OpRewritePattern<GatherOp>::OpRewritePattern;
3740   LogicalResult matchAndRewrite(GatherOp gather,
3741                                 PatternRewriter &rewriter) const override {
3742     switch (get1DMaskFormat(gather.getMask())) {
3743     case MaskFormat::AllTrue:
3744       return failure(); // no unmasked equivalent
3745     case MaskFormat::AllFalse:
3746       rewriter.replaceOp(gather, gather.getPassThru());
3747       return success();
3748     case MaskFormat::Unknown:
3749       return failure();
3750     }
3751     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
3752   }
3753 };
3754 } // namespace
3755 
3756 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
3757                                            MLIRContext *context) {
3758   results.add<GatherFolder>(context);
3759 }
3760 
3761 //===----------------------------------------------------------------------===//
3762 // ScatterOp
3763 //===----------------------------------------------------------------------===//
3764 
3765 LogicalResult ScatterOp::verify() {
3766   VectorType indVType = getIndexVectorType();
3767   VectorType maskVType = getMaskVectorType();
3768   VectorType valueVType = getVectorType();
3769   MemRefType memType = getMemRefType();
3770 
3771   if (valueVType.getElementType() != memType.getElementType())
3772     return emitOpError("base and valueToStore element type should match");
3773   if (llvm::size(getIndices()) != memType.getRank())
3774     return emitOpError("requires ") << memType.getRank() << " indices";
3775   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
3776     return emitOpError("expected valueToStore dim to match indices dim");
3777   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3778     return emitOpError("expected valueToStore dim to match mask dim");
3779   return success();
3780 }
3781 
3782 namespace {
3783 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
3784 public:
3785   using OpRewritePattern<ScatterOp>::OpRewritePattern;
3786   LogicalResult matchAndRewrite(ScatterOp scatter,
3787                                 PatternRewriter &rewriter) const override {
3788     switch (get1DMaskFormat(scatter.getMask())) {
3789     case MaskFormat::AllTrue:
3790       return failure(); // no unmasked equivalent
3791     case MaskFormat::AllFalse:
3792       rewriter.eraseOp(scatter);
3793       return success();
3794     case MaskFormat::Unknown:
3795       return failure();
3796     }
3797     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
3798   }
3799 };
3800 } // namespace
3801 
3802 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
3803                                             MLIRContext *context) {
3804   results.add<ScatterFolder>(context);
3805 }
3806 
3807 //===----------------------------------------------------------------------===//
3808 // ExpandLoadOp
3809 //===----------------------------------------------------------------------===//
3810 
3811 LogicalResult ExpandLoadOp::verify() {
3812   VectorType maskVType = getMaskVectorType();
3813   VectorType passVType = getPassThruVectorType();
3814   VectorType resVType = getVectorType();
3815   MemRefType memType = getMemRefType();
3816 
3817   if (resVType.getElementType() != memType.getElementType())
3818     return emitOpError("base and result element type should match");
3819   if (llvm::size(getIndices()) != memType.getRank())
3820     return emitOpError("requires ") << memType.getRank() << " indices";
3821   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3822     return emitOpError("expected result dim to match mask dim");
3823   if (resVType != passVType)
3824     return emitOpError("expected pass_thru of same type as result type");
3825   return success();
3826 }
3827 
3828 namespace {
3829 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
3830 public:
3831   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
3832   LogicalResult matchAndRewrite(ExpandLoadOp expand,
3833                                 PatternRewriter &rewriter) const override {
3834     switch (get1DMaskFormat(expand.getMask())) {
3835     case MaskFormat::AllTrue:
3836       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3837           expand, expand.getType(), expand.getBase(), expand.getIndices());
3838       return success();
3839     case MaskFormat::AllFalse:
3840       rewriter.replaceOp(expand, expand.getPassThru());
3841       return success();
3842     case MaskFormat::Unknown:
3843       return failure();
3844     }
3845     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
3846   }
3847 };
3848 } // namespace
3849 
3850 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3851                                                MLIRContext *context) {
3852   results.add<ExpandLoadFolder>(context);
3853 }
3854 
3855 //===----------------------------------------------------------------------===//
3856 // CompressStoreOp
3857 //===----------------------------------------------------------------------===//
3858 
3859 LogicalResult CompressStoreOp::verify() {
3860   VectorType maskVType = getMaskVectorType();
3861   VectorType valueVType = getVectorType();
3862   MemRefType memType = getMemRefType();
3863 
3864   if (valueVType.getElementType() != memType.getElementType())
3865     return emitOpError("base and valueToStore element type should match");
3866   if (llvm::size(getIndices()) != memType.getRank())
3867     return emitOpError("requires ") << memType.getRank() << " indices";
3868   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3869     return emitOpError("expected valueToStore dim to match mask dim");
3870   return success();
3871 }
3872 
3873 namespace {
3874 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
3875 public:
3876   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
3877   LogicalResult matchAndRewrite(CompressStoreOp compress,
3878                                 PatternRewriter &rewriter) const override {
3879     switch (get1DMaskFormat(compress.getMask())) {
3880     case MaskFormat::AllTrue:
3881       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3882           compress, compress.getValueToStore(), compress.getBase(),
3883           compress.getIndices());
3884       return success();
3885     case MaskFormat::AllFalse:
3886       rewriter.eraseOp(compress);
3887       return success();
3888     case MaskFormat::Unknown:
3889       return failure();
3890     }
3891     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
3892   }
3893 };
3894 } // namespace
3895 
3896 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3897                                                   MLIRContext *context) {
3898   results.add<CompressStoreFolder>(context);
3899 }
3900 
3901 //===----------------------------------------------------------------------===//
3902 // ShapeCastOp
3903 //===----------------------------------------------------------------------===//
3904 
3905 /// Returns true if each element of 'a' is equal to the product of a contiguous
3906 /// sequence of the elements of 'b'. Returns false otherwise.
3907 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
3908   unsigned rankA = a.size();
3909   unsigned rankB = b.size();
3910   assert(rankA < rankB);
3911 
3912   unsigned i = 0;
3913   unsigned j = 0;
3914   while (i < rankA && j < rankB) {
3915     int64_t dimA = a[i];
3916     int64_t dimB = 1;
3917     while (dimB < dimA && j < rankB)
3918       dimB *= b[j++];
3919     if (dimA != dimB)
3920       break;
3921     ++i;
3922 
3923     // Handle the case when trailing dimensions are of size 1.
3924     // Include them into the contiguous sequence.
3925     auto isOne = [](int64_t v) { return v == 1; };
3926     if (i < rankA && llvm::all_of(a.slice(i), isOne))
3927       i = rankA;
3928     if (j < rankB && llvm::all_of(b.slice(j), isOne))
3929       j = rankB;
3930   }
3931 
3932   return i == rankA && j == rankB;
3933 }
3934 
3935 static LogicalResult verifyVectorShapeCast(Operation *op,
3936                                            VectorType sourceVectorType,
3937                                            VectorType resultVectorType) {
3938   // Check that element type is the same.
3939   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
3940     return op->emitOpError("source/result vectors must have same element type");
3941   auto sourceShape = sourceVectorType.getShape();
3942   auto resultShape = resultVectorType.getShape();
3943 
3944   // Check that product of source dim sizes matches product of result dim sizes.
3945   int64_t sourceDimProduct = std::accumulate(
3946       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
3947   int64_t resultDimProduct = std::accumulate(
3948       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
3949   if (sourceDimProduct != resultDimProduct)
3950     return op->emitOpError("source/result number of elements must match");
3951 
3952   // Check that expanding/contracting rank cases.
3953   unsigned sourceRank = sourceVectorType.getRank();
3954   unsigned resultRank = resultVectorType.getRank();
3955   if (sourceRank < resultRank) {
3956     if (!isValidShapeCast(sourceShape, resultShape))
3957       return op->emitOpError("invalid shape cast");
3958   } else if (sourceRank > resultRank) {
3959     if (!isValidShapeCast(resultShape, sourceShape))
3960       return op->emitOpError("invalid shape cast");
3961   }
3962   return success();
3963 }
3964 
3965 LogicalResult ShapeCastOp::verify() {
3966   auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>();
3967   auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>();
3968 
3969   // Check if source/result are of vector type.
3970   if (sourceVectorType && resultVectorType)
3971     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
3972 
3973   return success();
3974 }
3975 
3976 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
3977   // Nop shape cast.
3978   if (getSource().getType() == getResult().getType())
3979     return getSource();
3980 
3981   // Canceling shape casts.
3982   if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
3983     if (getResult().getType() == otherOp.getSource().getType())
3984       return otherOp.getSource();
3985 
3986     // Only allows valid transitive folding.
3987     VectorType srcType = otherOp.getSource().getType().cast<VectorType>();
3988     VectorType resultType = getResult().getType().cast<VectorType>();
3989     if (srcType.getRank() < resultType.getRank()) {
3990       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
3991         return {};
3992     } else if (srcType.getRank() > resultType.getRank()) {
3993       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
3994         return {};
3995     } else {
3996       return {};
3997     }
3998 
3999     setOperand(otherOp.getSource());
4000     return getResult();
4001   }
4002   return {};
4003 }
4004 
4005 namespace {
4006 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
4007 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
4008 public:
4009   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4010 
4011   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4012                                 PatternRewriter &rewriter) const override {
4013     auto constantOp =
4014         shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>();
4015     if (!constantOp)
4016       return failure();
4017     // Only handle splat for now.
4018     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
4019     if (!dense)
4020       return failure();
4021     auto newAttr =
4022         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
4023                                dense.getSplatValue<Attribute>());
4024     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
4025     return success();
4026   }
4027 };
4028 
4029 } // namespace
4030 
4031 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
4032                                               MLIRContext *context) {
4033   // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp.
4034   results.add<ShapeCastConstantFolder>(context);
4035 }
4036 
4037 //===----------------------------------------------------------------------===//
4038 // VectorBitCastOp
4039 //===----------------------------------------------------------------------===//
4040 
4041 LogicalResult BitCastOp::verify() {
4042   auto sourceVectorType = getSourceVectorType();
4043   auto resultVectorType = getResultVectorType();
4044 
4045   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
4046     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
4047       return emitOpError("dimension size mismatch at: ") << i;
4048   }
4049 
4050   DataLayout dataLayout = DataLayout::closest(*this);
4051   auto sourceElementBits =
4052       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
4053   auto resultElementBits =
4054       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
4055 
4056   if (sourceVectorType.getRank() == 0) {
4057     if (sourceElementBits != resultElementBits)
4058       return emitOpError("source/result bitwidth of the 0-D vector element "
4059                             "types must be equal");
4060   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
4061              resultElementBits * resultVectorType.getShape().back()) {
4062     return emitOpError(
4063         "source/result bitwidth of the minor 1-D vectors must be equal");
4064   }
4065 
4066   return success();
4067 }
4068 
4069 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
4070   // Nop cast.
4071   if (getSource().getType() == getResult().getType())
4072     return getSource();
4073 
4074   // Canceling bitcasts.
4075   if (auto otherOp = getSource().getDefiningOp<BitCastOp>())
4076     if (getResult().getType() == otherOp.getSource().getType())
4077       return otherOp.getSource();
4078 
4079   Attribute sourceConstant = operands.front();
4080   if (!sourceConstant)
4081     return {};
4082 
4083   Type srcElemType = getSourceVectorType().getElementType();
4084   Type dstElemType = getResultVectorType().getElementType();
4085 
4086   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4087     if (floatPack.isSplat()) {
4088       auto splat = floatPack.getSplatValue<FloatAttr>();
4089 
4090       // Casting fp16 into fp32.
4091       if (srcElemType.isF16() && dstElemType.isF32()) {
4092         uint32_t bits = static_cast<uint32_t>(
4093             splat.getValue().bitcastToAPInt().getZExtValue());
4094         // Duplicate the 16-bit pattern.
4095         bits = (bits << 16) | (bits & 0xffff);
4096         APInt intBits(32, bits);
4097         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4098         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4099       }
4100     }
4101   }
4102 
4103   return {};
4104 }
4105 
4106 //===----------------------------------------------------------------------===//
4107 // TypeCastOp
4108 //===----------------------------------------------------------------------===//
4109 
4110 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4111   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4112   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4113                               memRefType.getShape().end());
4114   if (vectorType)
4115     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4116   return res;
4117 }
4118 
4119 /// Build the canonical memRefType with a single vector.
4120 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4121 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4122                        Value source) {
4123   result.addOperands(source);
4124   MemRefType memRefType = source.getType().cast<MemRefType>();
4125   VectorType vectorType =
4126       VectorType::get(extractShape(memRefType),
4127                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4128   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4129                                   memRefType.getMemorySpace()));
4130 }
4131 
4132 LogicalResult TypeCastOp::verify() {
4133   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4134   if (!canonicalType.getLayout().isIdentity())
4135     return emitOpError("expects operand to be a memref with identity layout");
4136   if (!getResultMemRefType().getLayout().isIdentity())
4137     return emitOpError("expects result to be a memref with identity layout");
4138   if (getResultMemRefType().getMemorySpace() !=
4139       getMemRefType().getMemorySpace())
4140     return emitOpError("expects result in same memory space");
4141 
4142   auto sourceType = getMemRefType();
4143   auto resultType = getResultMemRefType();
4144   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4145       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4146     return emitOpError(
4147                "expects result and operand with same underlying scalar type: ")
4148            << resultType;
4149   if (extractShape(sourceType) != extractShape(resultType))
4150     return emitOpError(
4151                "expects concatenated result and operand shapes to be equal: ")
4152            << resultType;
4153   return success();
4154 }
4155 
4156 //===----------------------------------------------------------------------===//
4157 // TransposeOp
4158 //===----------------------------------------------------------------------===//
4159 
4160 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4161                                 Value vector, ArrayRef<int64_t> transp) {
4162   VectorType vt = vector.getType().cast<VectorType>();
4163   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4164   for (unsigned i = 0; i < transp.size(); ++i)
4165     transposedShape[i] = vt.getShape()[transp[i]];
4166 
4167   result.addOperands(vector);
4168   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4169   result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp));
4170 }
4171 
4172 // Eliminates transpose operations, which produce values identical to their
4173 // input values. This happens when the dimensions of the input vector remain in
4174 // their original order after the transpose operation.
4175 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4176   SmallVector<int64_t, 4> transp;
4177   getTransp(transp);
4178 
4179   // Check if the permutation of the dimensions contains sequential values:
4180   // {0, 1, 2, ...}.
4181   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4182     if (transp[i] != i)
4183       return {};
4184   }
4185 
4186   return getVector();
4187 }
4188 
4189 LogicalResult vector::TransposeOp::verify() {
4190   VectorType vectorType = getVectorType();
4191   VectorType resultType = getResultType();
4192   int64_t rank = resultType.getRank();
4193   if (vectorType.getRank() != rank)
4194     return emitOpError("vector result rank mismatch: ") << rank;
4195   // Verify transposition array.
4196   auto transpAttr = getTransp().getValue();
4197   int64_t size = transpAttr.size();
4198   if (rank != size)
4199     return emitOpError("transposition length mismatch: ") << size;
4200   SmallVector<bool, 8> seen(rank, false);
4201   for (const auto &ta : llvm::enumerate(transpAttr)) {
4202     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4203     if (i < 0 || i >= rank)
4204       return emitOpError("transposition index out of range: ") << i;
4205     if (seen[i])
4206       return emitOpError("duplicate position index: ") << i;
4207     seen[i] = true;
4208     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4209       return emitOpError("dimension size mismatch at: ") << i;
4210   }
4211   return success();
4212 }
4213 
4214 namespace {
4215 
4216 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4217 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4218 public:
4219   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4220 
4221   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4222                                 PatternRewriter &rewriter) const override {
4223     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4224     auto getPermutation = [](vector::TransposeOp transpose) {
4225       SmallVector<int64_t, 4> permutation;
4226       transpose.getTransp(permutation);
4227       return permutation;
4228     };
4229 
4230     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4231     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4232                                   ArrayRef<int64_t> permutation2) {
4233       SmallVector<int64_t, 4> result;
4234       for (auto index : permutation2)
4235         result.push_back(permutation1[index]);
4236       return result;
4237     };
4238 
4239     // Return if the input of 'transposeOp' is not defined by another transpose.
4240     vector::TransposeOp parentTransposeOp =
4241         transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
4242     if (!parentTransposeOp)
4243       return failure();
4244 
4245     SmallVector<int64_t, 4> permutation = composePermutations(
4246         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4247     // Replace 'transposeOp' with a new transpose operation.
4248     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4249         transposeOp, transposeOp.getResult().getType(),
4250         parentTransposeOp.getVector(),
4251         vector::getVectorSubscriptAttr(rewriter, permutation));
4252     return success();
4253   }
4254 };
4255 
4256 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>).
4257 struct FoldTransposedScalarBroadcast final
4258     : public OpRewritePattern<vector::TransposeOp> {
4259   using OpRewritePattern::OpRewritePattern;
4260 
4261   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4262                                 PatternRewriter &rewriter) const override {
4263     auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>();
4264     if (!bcastOp)
4265       return failure();
4266 
4267     auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>();
4268     if (!srcVectorType || srcVectorType.getNumElements() == 1) {
4269       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4270           transposeOp, transposeOp.getResultType(), bcastOp.getSource());
4271       return success();
4272     }
4273 
4274     return failure();
4275   }
4276 };
4277 
4278 } // namespace
4279 
4280 void vector::TransposeOp::getCanonicalizationPatterns(
4281     RewritePatternSet &results, MLIRContext *context) {
4282   results.add<FoldTransposedScalarBroadcast, TransposeFolder>(context);
4283 }
4284 
4285 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4286   populateFromInt64AttrArray(getTransp(), results);
4287 }
4288 
4289 //===----------------------------------------------------------------------===//
4290 // ConstantMaskOp
4291 //===----------------------------------------------------------------------===//
4292 
4293 LogicalResult ConstantMaskOp::verify() {
4294   auto resultType = getResult().getType().cast<VectorType>();
4295   // Check the corner case of 0-D vectors first.
4296   if (resultType.getRank() == 0) {
4297     if (getMaskDimSizes().size() != 1)
4298       return emitError("array attr must have length 1 for 0-D vectors");
4299     auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt();
4300     if (dim != 0 && dim != 1)
4301       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4302     return success();
4303   }
4304 
4305   // Verify that array attr size matches the rank of the vector result.
4306   if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
4307     return emitOpError(
4308         "must specify array attr of size equal vector result rank");
4309   // Verify that each array attr element is in bounds of corresponding vector
4310   // result dimension size.
4311   auto resultShape = resultType.getShape();
4312   SmallVector<int64_t, 4> maskDimSizes;
4313   for (const auto &it : llvm::enumerate(getMaskDimSizes())) {
4314     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4315     if (attrValue < 0 || attrValue > resultShape[it.index()])
4316       return emitOpError(
4317           "array attr of size out of bounds of vector result dimension size");
4318     maskDimSizes.push_back(attrValue);
4319   }
4320   // Verify that if one mask dim size is zero, they all should be zero (because
4321   // the mask region is a conjunction of each mask dimension interval).
4322   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4323   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4324   if (anyZeros && !allZeros)
4325     return emitOpError("expected all mask dim sizes to be zeros, "
4326                        "as a result of conjunction with zero mask dim");
4327   // Verify that if the mask type is scalable, dimensions should be zero because
4328   // constant scalable masks can only be defined for the "none set" or "all set"
4329   // cases, and there is no VLA way to define an "all set" case for
4330   // `vector.constant_mask`. In the future, a convention could be established
4331   // to decide if a specific dimension value could be considered as "all set".
4332   if (resultType.isScalable() &&
4333       getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0)
4334     return emitOpError("expected mask dim sizes for scalable masks to be 0");
4335   return success();
4336 }
4337 
4338 //===----------------------------------------------------------------------===//
4339 // CreateMaskOp
4340 //===----------------------------------------------------------------------===//
4341 
4342 LogicalResult CreateMaskOp::verify() {
4343   auto vectorType = getResult().getType().cast<VectorType>();
4344   // Verify that an operand was specified for each result vector each dimension.
4345   if (vectorType.getRank() == 0) {
4346     if (getNumOperands() != 1)
4347       return emitOpError(
4348           "must specify exactly one operand for 0-D create_mask");
4349   } else if (getNumOperands() !=
4350              getResult().getType().cast<VectorType>().getRank()) {
4351     return emitOpError(
4352         "must specify an operand for each result vector dimension");
4353   }
4354   return success();
4355 }
4356 
4357 namespace {
4358 
4359 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4360 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4361 public:
4362   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4363 
4364   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4365                                 PatternRewriter &rewriter) const override {
4366     // Return if any of 'createMaskOp' operands are not defined by a constant.
4367     auto isNotDefByConstant = [](Value operand) {
4368       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4369     };
4370     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4371       return failure();
4372 
4373     // CreateMaskOp for scalable vectors can be folded only if all dimensions
4374     // are negative or zero.
4375     if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) {
4376       if (vType.isScalable())
4377         for (auto opDim : createMaskOp.getOperands()) {
4378           APInt intVal;
4379           if (matchPattern(opDim, m_ConstantInt(&intVal)) &&
4380               intVal.isStrictlyPositive())
4381             return failure();
4382         }
4383     }
4384 
4385     // Gather constant mask dimension sizes.
4386     SmallVector<int64_t, 4> maskDimSizes;
4387     for (auto it : llvm::zip(createMaskOp.operands(),
4388                              createMaskOp.getType().getShape())) {
4389       auto *defOp = std::get<0>(it).getDefiningOp();
4390       int64_t maxDimSize = std::get<1>(it);
4391       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4392       dimSize = std::min(dimSize, maxDimSize);
4393       // If one of dim sizes is zero, set all dims to zero.
4394       if (dimSize <= 0) {
4395         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4396         break;
4397       }
4398       maskDimSizes.push_back(dimSize);
4399     }
4400     // Replace 'createMaskOp' with ConstantMaskOp.
4401     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4402         createMaskOp, createMaskOp.getResult().getType(),
4403         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4404     return success();
4405   }
4406 };
4407 
4408 } // namespace
4409 
4410 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4411                                                MLIRContext *context) {
4412   results.add<CreateMaskFolder>(context);
4413 }
4414 
4415 //===----------------------------------------------------------------------===//
4416 // ScanOp
4417 //===----------------------------------------------------------------------===//
4418 
4419 LogicalResult ScanOp::verify() {
4420   VectorType srcType = getSourceType();
4421   VectorType initialType = getInitialValueType();
4422   // Check reduction dimension < rank.
4423   int64_t srcRank = srcType.getRank();
4424   int64_t reductionDim = getReductionDim();
4425   if (reductionDim >= srcRank)
4426     return emitOpError("reduction dimension ")
4427            << reductionDim << " has to be less than " << srcRank;
4428 
4429   // Check that rank(initial_value) = rank(src) - 1.
4430   int64_t initialValueRank = initialType.getRank();
4431   if (initialValueRank != srcRank - 1)
4432     return emitOpError("initial value rank ")
4433            << initialValueRank << " has to be equal to " << srcRank - 1;
4434 
4435   // Check shapes of initial value and src.
4436   ArrayRef<int64_t> srcShape = srcType.getShape();
4437   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4438   SmallVector<int64_t> expectedShape;
4439   for (int i = 0; i < srcRank; i++) {
4440     if (i != reductionDim)
4441       expectedShape.push_back(srcShape[i]);
4442   }
4443   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4444                    [](std::tuple<int64_t, int64_t> s) {
4445                      return std::get<0>(s) != std::get<1>(s);
4446                    })) {
4447     return emitOpError("incompatible input/initial value shapes");
4448   }
4449 
4450   return success();
4451 }
4452 
4453 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4454     RewritePatternSet &patterns) {
4455   patterns
4456       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4457            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4458            StridedSliceConstantMaskFolder, TransposeFolder>(
4459           patterns.getContext());
4460 }
4461 
4462 //===----------------------------------------------------------------------===//
4463 // SplatOp
4464 //===----------------------------------------------------------------------===//
4465 
4466 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4467   auto constOperand = operands.front();
4468   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4469     return {};
4470 
4471   // SplatElementsAttr::get treats single value for second arg as being a splat.
4472   return SplatElementsAttr::get(getType(), {constOperand});
4473 }
4474 
4475 //===----------------------------------------------------------------------===//
4476 // TableGen'd op method definitions
4477 //===----------------------------------------------------------------------===//
4478 
4479 #define GET_OP_CLASSES
4480 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
4481