1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(kind.getValue(), parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.getSource().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return getSource(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = getDest().getType(); 401 if (!isSupportedCombiningKind(getKind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 404 << "'"; 405 406 // Verify optional accumulator. 407 if (getAcc()) { 408 if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL) 409 return emitOpError("no accumulator for reduction kind: ") 410 << stringifyCombiningKind(getKind()); 411 if (!eltType.isa<FloatType>()) 412 return emitOpError("no accumulator for type: ") << eltType; 413 } 414 415 return success(); 416 } 417 418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 419 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 420 Type redType; 421 Type resType; 422 CombiningKindAttr kindAttr; 423 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 424 result.attributes) || 425 parser.parseComma() || parser.parseOperandList(operandsInfo) || 426 parser.parseColonType(redType) || 427 parser.parseKeywordType("into", resType) || 428 (!operandsInfo.empty() && 429 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 430 (operandsInfo.size() > 1 && 431 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 432 parser.addTypeToList(resType, result.types)) 433 return failure(); 434 if (operandsInfo.empty() || operandsInfo.size() > 2) 435 return parser.emitError(parser.getNameLoc(), 436 "unsupported number of operands"); 437 return success(); 438 } 439 440 void ReductionOp::print(OpAsmPrinter &p) { 441 p << " "; 442 getKindAttr().print(p); 443 p << ", " << getVector(); 444 if (getAcc()) 445 p << ", " << getAcc(); 446 p << " : " << getVector().getType() << " into " << getDest().getType(); 447 } 448 449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 450 OpBuilder &builder, Location loc, 451 Value vector) { 452 switch (op) { 453 case arith::AtomicRMWKind::addf: 454 case arith::AtomicRMWKind::addi: 455 return builder.create<vector::ReductionOp>(vector.getLoc(), 456 CombiningKind::ADD, vector); 457 case arith::AtomicRMWKind::mulf: 458 case arith::AtomicRMWKind::muli: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MUL, vector); 461 case arith::AtomicRMWKind::minf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MINF, vector); 464 case arith::AtomicRMWKind::mins: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MINSI, vector); 467 case arith::AtomicRMWKind::minu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MINUI, vector); 470 case arith::AtomicRMWKind::maxf: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::MAXF, vector); 473 case arith::AtomicRMWKind::maxs: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::MAXSI, vector); 476 case arith::AtomicRMWKind::maxu: 477 return builder.create<vector::ReductionOp>(vector.getLoc(), 478 CombiningKind::MAXUI, vector); 479 // TODO: Add remaining reduction operations. 480 default: 481 (void)emitOptionalError(loc, "Reduction operation type not supported"); 482 break; 483 } 484 return nullptr; 485 } 486 487 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 488 return llvm::to_vector<4>(getVectorType().getShape()); 489 } 490 491 namespace { 492 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> { 493 using OpRewritePattern::OpRewritePattern; 494 495 LogicalResult matchAndRewrite(ReductionOp reductionOp, 496 PatternRewriter &rewriter) const override { 497 if (reductionOp.getVectorType().getDimSize(0) != 1) 498 return failure(); 499 500 Location loc = reductionOp.getLoc(); 501 Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(), 502 reductionOp.getVector(), 503 rewriter.getI64ArrayAttr(0)); 504 505 if (Value acc = reductionOp.getAcc()) { 506 assert(reductionOp.getType().isa<FloatType>()); 507 switch (reductionOp.getKind()) { 508 case CombiningKind::ADD: 509 result = rewriter.create<arith::AddFOp>(loc, result, acc); 510 break; 511 case CombiningKind::MUL: 512 result = rewriter.create<arith::MulFOp>(loc, result, acc); 513 break; 514 default: 515 assert(false && "invalid op!"); 516 } 517 } 518 519 rewriter.replaceOp(reductionOp, result); 520 return success(); 521 } 522 }; 523 } // namespace 524 525 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results, 526 MLIRContext *context) { 527 results.add<ElideSingleElementReduction>(context); 528 } 529 530 //===----------------------------------------------------------------------===// 531 // ContractionOp 532 //===----------------------------------------------------------------------===// 533 534 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 535 Value lhs, Value rhs, Value acc, 536 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 537 ArrayRef<StringRef> iteratorTypes) { 538 result.addOperands({lhs, rhs, acc}); 539 result.addTypes(acc.getType()); 540 result.addAttribute(::mlir::getIndexingMapsAttrName(), 541 builder.getAffineMapArrayAttr( 542 AffineMap::inferFromExprList(indexingExprs))); 543 result.addAttribute(::mlir::getIteratorTypesAttrName(), 544 builder.getStrArrayAttr(iteratorTypes)); 545 } 546 547 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 548 Value lhs, Value rhs, Value acc, 549 ArrayAttr indexingMaps, 550 ArrayAttr iteratorTypes) { 551 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 552 ContractionOp::getDefaultKind()); 553 } 554 555 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 556 Value lhs, Value rhs, Value acc, 557 ArrayAttr indexingMaps, 558 ArrayAttr iteratorTypes, CombiningKind kind) { 559 result.addOperands({lhs, rhs, acc}); 560 result.addTypes(acc.getType()); 561 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 562 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 563 result.addAttribute(ContractionOp::getKindAttrStrName(), 564 CombiningKindAttr::get(kind, builder.getContext())); 565 } 566 567 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 568 OpAsmParser::UnresolvedOperand lhsInfo; 569 OpAsmParser::UnresolvedOperand rhsInfo; 570 OpAsmParser::UnresolvedOperand accInfo; 571 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 572 SmallVector<Type, 2> types; 573 Type resultType; 574 auto loc = parser.getCurrentLocation(); 575 DictionaryAttr dictAttr; 576 // TODO: Unify linalg op attribute parsing. 577 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 578 parser.parseOperand(lhsInfo) || parser.parseComma() || 579 parser.parseOperand(rhsInfo) || parser.parseComma() || 580 parser.parseOperand(accInfo) || 581 parser.parseTrailingOperandList(masksInfo) || 582 parser.parseOptionalAttrDict(result.attributes) || 583 parser.parseColonTypeList(types) || 584 parser.parseKeywordType("into", resultType) || 585 parser.resolveOperand(lhsInfo, types[0], result.operands) || 586 parser.resolveOperand(rhsInfo, types[1], result.operands) || 587 parser.resolveOperand(accInfo, resultType, result.operands) || 588 parser.addTypeToList(resultType, result.types)) 589 return failure(); 590 result.attributes.assign(dictAttr.getValue().begin(), 591 dictAttr.getValue().end()); 592 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 593 result.addAttribute(ContractionOp::getKindAttrStrName(), 594 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 595 result.getContext())); 596 } 597 if (masksInfo.empty()) 598 return success(); 599 if (masksInfo.size() != 2) 600 return parser.emitError(parser.getNameLoc(), 601 "expected zero or exactly 2 vector mask operands"); 602 auto lhsType = types[0].cast<VectorType>(); 603 auto rhsType = types[1].cast<VectorType>(); 604 auto maskElementType = parser.getBuilder().getI1Type(); 605 std::array<Type, 2> maskTypes = { 606 VectorType::Builder(lhsType).setElementType(maskElementType), 607 VectorType::Builder(rhsType).setElementType(maskElementType)}; 608 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 609 return failure(); 610 return success(); 611 } 612 613 void ContractionOp::print(OpAsmPrinter &p) { 614 // TODO: Unify printing code with linalg ops. 615 auto attrNames = getTraitAttrNames(); 616 llvm::StringSet<> traitAttrsSet; 617 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 618 SmallVector<NamedAttribute, 8> attrs; 619 for (auto attr : (*this)->getAttrs()) 620 if (traitAttrsSet.count(attr.getName().strref()) > 0) 621 attrs.push_back(attr); 622 623 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 624 p << " " << dictAttr << " " << getLhs() << ", "; 625 p << getRhs() << ", " << getAcc(); 626 if (getMasks().size() == 2) 627 p << ", " << getMasks(); 628 629 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 630 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 631 << getResultType(); 632 } 633 634 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 635 const std::vector<std::pair<int64_t, int64_t>> &map) { 636 for (auto &dimPair : map) { 637 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 638 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 639 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 640 return false; 641 } 642 return true; 643 } 644 645 static LogicalResult verifyOutputShape( 646 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 647 Type resType, 648 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 649 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 650 DenseSet<int64_t> lhsContractingDimSet; 651 DenseSet<int64_t> rhsContractingDimSet; 652 for (auto &dimPair : contractingDimMap) { 653 lhsContractingDimSet.insert(dimPair.first); 654 rhsContractingDimSet.insert(dimPair.second); 655 } 656 DenseSet<int64_t> rhsBatchDimSet; 657 for (auto &dimPair : batchDimMap) 658 rhsBatchDimSet.insert(dimPair.second); 659 660 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 661 SmallVector<int64_t, 4> expectedResultDims; 662 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 663 if (lhsContractingDimSet.count(i) > 0) 664 continue; 665 expectedResultDims.push_back(lhsType.getDimSize(i)); 666 } 667 668 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 669 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 670 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 671 continue; 672 expectedResultDims.push_back(rhsType.getDimSize(i)); 673 } 674 675 // Verify 'expectedResultDims'. 676 if (expectedResultDims.empty()) { 677 // No batch or free dimension implies a scalar result. 678 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 679 return op.emitOpError("invalid accumulator/result vector shape"); 680 } else { 681 // At least one batch or free dimension implies a vector result. 682 auto resVectorType = resType.dyn_cast<VectorType>(); 683 auto accVectorType = accType.dyn_cast<VectorType>(); 684 if (!resVectorType || !accVectorType) 685 return op.emitOpError("invalid accumulator/result vector shape"); 686 687 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 688 // types fully define the result vector type. This assumes the affine maps 689 // are well-formed, which must have been verified already. 690 MLIRContext *ctx = op.getContext(); 691 AffineMap lhsMap = op.getIndexingMaps()[0]; 692 AffineMap rhsMap = op.getIndexingMaps()[1]; 693 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 694 for (auto pair : 695 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 696 VectorType v = pair.first; 697 auto map = pair.second; 698 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 699 unsigned pos = map.getDimPosition(idx); 700 if (!extents[pos]) 701 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 702 } 703 } 704 assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) && 705 "expected extent along all dimensions."); 706 707 AffineMap resMap = op.getIndexingMaps()[2]; 708 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 709 /*symCount=*/0, extents, ctx); 710 // Compose the resMap with the extentsMap, which is a constant map. 711 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 712 assert(llvm::all_of( 713 expectedMap.getResults(), 714 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 715 "expected constant extent along all dimensions."); 716 // Extract the expected shape and build the type. 717 auto expectedShape = llvm::to_vector<4>( 718 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 719 return e.cast<AffineConstantExpr>().getValue(); 720 })); 721 auto expected = 722 VectorType::get(expectedShape, resVectorType.getElementType()); 723 if (resVectorType != expected || accVectorType != expected) 724 return op.emitOpError( 725 "invalid accumulator/result vector shape, expected: ") 726 << expected; 727 } 728 return success(); 729 } 730 731 LogicalResult ContractionOp::verify() { 732 auto lhsType = getLhsType(); 733 auto rhsType = getRhsType(); 734 auto accType = getAccType(); 735 auto resType = getResultType(); 736 737 // Verify that an indexing map was specified for each vector operand. 738 if (getIndexingMaps().size() != 3) 739 return emitOpError("expected an indexing map for each vector operand"); 740 741 // Verify that each index map has 'numIterators' inputs, no symbols, and 742 // that the number of map outputs equals the rank of its associated 743 // vector operand. 744 unsigned numIterators = getIteratorTypes().getValue().size(); 745 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 746 auto index = it.index(); 747 auto map = it.value(); 748 if (map.getNumSymbols() != 0) 749 return emitOpError("expected indexing map ") 750 << index << " to have no symbols"; 751 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 752 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 753 // Verify that the map has the right number of inputs, outputs, and indices. 754 // This also correctly accounts for (..) -> () for rank-0 results. 755 if (map.getNumDims() != numIterators) 756 return emitOpError("expected indexing map ") 757 << index << " to have " << numIterators << " number of inputs"; 758 if (map.getNumResults() != rank) 759 return emitOpError("expected indexing map ") 760 << index << " to have " << rank << " number of outputs"; 761 if (!map.isProjectedPermutation()) 762 return emitOpError("expected indexing map ") 763 << index << " to be a projected permutation of its inputs"; 764 } 765 766 auto contractingDimMap = getContractingDimMap(); 767 auto batchDimMap = getBatchDimMap(); 768 769 // Verify at least one contracting dimension pair was specified. 770 if (contractingDimMap.empty()) 771 return emitOpError("expected at least one contracting dimension pair"); 772 773 // Verify contracting dimension map was properly constructed. 774 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 775 return emitOpError("invalid contracting dimension map"); 776 777 // Verify batch dimension map was properly constructed. 778 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 779 return emitOpError("invalid batch dimension map"); 780 781 // Verify 'accType' and 'resType' shape. 782 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 783 contractingDimMap, batchDimMap))) 784 return failure(); 785 786 // Verify that either two vector masks are set or none are set. 787 auto lhsMaskType = getLHSVectorMaskType(); 788 auto rhsMaskType = getRHSVectorMaskType(); 789 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 790 return emitOpError("invalid number of vector masks specified"); 791 if (lhsMaskType && rhsMaskType) { 792 // Verify mask rank == argument rank. 793 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 794 rhsMaskType.getShape().size() != rhsType.getShape().size()) 795 return emitOpError("invalid vector mask rank"); 796 } 797 798 // Verify supported combining kind. 799 auto vectorType = resType.dyn_cast<VectorType>(); 800 auto elementType = vectorType ? vectorType.getElementType() : resType; 801 if (!isSupportedCombiningKind(getKind(), elementType)) 802 return emitOpError("unsupported contraction type"); 803 804 return success(); 805 } 806 807 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 808 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 809 ::mlir::getIteratorTypesAttrName(), 810 ContractionOp::getKindAttrStrName()}; 811 return llvm::makeArrayRef(names); 812 } 813 814 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 815 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 816 if (targetExpr == map.getResult(i)) 817 return i; 818 return -1; 819 } 820 821 static std::vector<std::pair<int64_t, int64_t>> 822 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 823 StringRef targetIteratorTypeName, MLIRContext *context) { 824 std::vector<std::pair<int64_t, int64_t>> dimMap; 825 for (const auto &it : llvm::enumerate(iteratorTypes)) { 826 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 827 if (iteratorTypeName != targetIteratorTypeName) 828 continue; 829 // Search lhs/rhs map results for 'targetExpr'. 830 auto targetExpr = getAffineDimExpr(it.index(), context); 831 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 832 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 833 if (lhsDim >= 0 && rhsDim >= 0) 834 dimMap.emplace_back(lhsDim, rhsDim); 835 } 836 return dimMap; 837 } 838 839 void ContractionOp::getIterationBounds( 840 SmallVectorImpl<int64_t> &iterationBounds) { 841 auto lhsShape = getLhsType().getShape(); 842 auto resVectorType = getResultType().dyn_cast<VectorType>(); 843 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 844 SmallVector<int64_t, 2> iterationShape; 845 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 846 // Search lhs/rhs map results for 'targetExpr'. 847 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 848 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 849 if (iteratorTypeName == getReductionIteratorTypeName()) { 850 // Get reduction dim size from lhs shape (same size in rhsShape). 851 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 852 assert(lhsDimIndex >= 0); 853 iterationBounds.push_back(lhsShape[lhsDimIndex]); 854 continue; 855 } 856 // Get parallel dimension size from result shape. 857 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 858 assert(resDimIndex >= 0); 859 assert(resVectorType != nullptr); 860 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 861 } 862 } 863 864 void ContractionOp::getIterationIndexMap( 865 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 866 unsigned numMaps = getIndexingMaps().size(); 867 iterationIndexMap.resize(numMaps); 868 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 869 auto index = it.index(); 870 auto map = it.value(); 871 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 872 auto dim = map.getResult(i).cast<AffineDimExpr>(); 873 iterationIndexMap[index][dim.getPosition()] = i; 874 } 875 } 876 } 877 878 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 879 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 880 return getDimMap(indexingMaps, getIteratorTypes(), 881 getReductionIteratorTypeName(), getContext()); 882 } 883 884 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 885 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 886 return getDimMap(indexingMaps, getIteratorTypes(), 887 getParallelIteratorTypeName(), getContext()); 888 } 889 890 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 891 SmallVector<int64_t, 4> shape; 892 getIterationBounds(shape); 893 return shape; 894 } 895 896 /// Return a fused vector::ContractionOp which represents a patterns such as: 897 /// 898 /// ```mlir 899 /// %c0 = vector.constant 0: ... 900 /// %c = vector.contract %a, %b, %c0: ... 901 /// %e = add %c, %d: ... 902 /// ``` 903 /// 904 /// by: 905 /// 906 /// ```mlir 907 /// %e = vector.contract %a, %b, %d: ... 908 /// ``` 909 /// 910 /// Return null if the canonicalization does not apply. 911 // TODO: This should be a folding of Add into Contract in core but while they 912 // live in different dialects, it is not possible without unnatural 913 // dependencies. 914 template <typename AddOpType> 915 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 916 using OpRewritePattern<AddOpType>::OpRewritePattern; 917 918 LogicalResult matchAndRewrite(AddOpType addOp, 919 PatternRewriter &rewriter) const override { 920 auto canonicalize = [&](Value maybeContraction, 921 Value otherOperand) -> vector::ContractionOp { 922 vector::ContractionOp contractionOp = 923 dyn_cast_or_null<vector::ContractionOp>( 924 maybeContraction.getDefiningOp()); 925 if (!contractionOp) 926 return vector::ContractionOp(); 927 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 928 contractionOp.getAcc().getDefiningOp())) { 929 if (maybeZero.getValue() == 930 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 931 BlockAndValueMapping bvm; 932 bvm.map(contractionOp.getAcc(), otherOperand); 933 auto newContraction = 934 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 935 rewriter.replaceOp(addOp, newContraction.getResult()); 936 return newContraction; 937 } 938 } 939 return vector::ContractionOp(); 940 }; 941 942 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 943 vector::ContractionOp contract = canonicalize(a, b); 944 contract = contract ? contract : canonicalize(b, a); 945 return contract ? success() : failure(); 946 } 947 }; 948 949 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 950 MLIRContext *context) { 951 results.add<CanonicalizeContractAdd<arith::AddIOp>, 952 CanonicalizeContractAdd<arith::AddFOp>>(context); 953 } 954 955 //===----------------------------------------------------------------------===// 956 // ExtractElementOp 957 //===----------------------------------------------------------------------===// 958 959 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 960 Value source) { 961 result.addOperands({source}); 962 result.addTypes(source.getType().cast<VectorType>().getElementType()); 963 } 964 965 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 966 Value source, Value position) { 967 result.addOperands({source, position}); 968 result.addTypes(source.getType().cast<VectorType>().getElementType()); 969 } 970 971 LogicalResult vector::ExtractElementOp::verify() { 972 VectorType vectorType = getVectorType(); 973 if (vectorType.getRank() == 0) { 974 if (getPosition()) 975 return emitOpError("expected position to be empty with 0-D vector"); 976 return success(); 977 } 978 if (vectorType.getRank() != 1) 979 return emitOpError("unexpected >1 vector rank"); 980 if (!getPosition()) 981 return emitOpError("expected position for 1-D vector"); 982 return success(); 983 } 984 985 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) { 986 // Skip the 0-D vector here now. 987 if (operands.size() < 2) 988 return {}; 989 990 Attribute src = operands[0]; 991 Attribute pos = operands[1]; 992 993 // Fold extractelement (splat X) -> X. 994 if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) 995 return splat.getInput(); 996 997 if (!pos || !src) 998 return {}; 999 1000 auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>(); 1001 1002 auto attr = pos.dyn_cast<IntegerAttr>(); 1003 uint64_t posIdx = attr.getInt(); 1004 1005 return srcElements[posIdx]; 1006 } 1007 1008 //===----------------------------------------------------------------------===// 1009 // ExtractOp 1010 //===----------------------------------------------------------------------===// 1011 1012 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1013 Value source, ArrayRef<int64_t> position) { 1014 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 1015 } 1016 1017 // Convenience builder which assumes the values are constant indices. 1018 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1019 Value source, ValueRange position) { 1020 SmallVector<int64_t, 4> positionConstants = 1021 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1022 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1023 })); 1024 build(builder, result, source, positionConstants); 1025 } 1026 1027 LogicalResult 1028 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1029 ValueRange operands, DictionaryAttr attributes, 1030 RegionRange, 1031 SmallVectorImpl<Type> &inferredReturnTypes) { 1032 ExtractOp::Adaptor op(operands, attributes); 1033 auto vectorType = op.getVector().getType().cast<VectorType>(); 1034 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 1035 inferredReturnTypes.push_back(vectorType.getElementType()); 1036 } else { 1037 auto n = 1038 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 1039 inferredReturnTypes.push_back(VectorType::get( 1040 vectorType.getShape().drop_front(n), vectorType.getElementType())); 1041 } 1042 return success(); 1043 } 1044 1045 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 1046 // Allow extracting 1-element vectors instead of scalars. 1047 auto isCompatible = [](TypeRange l, TypeRange r) { 1048 auto vectorType = l.front().dyn_cast<VectorType>(); 1049 return vectorType && vectorType.getShape().equals({1}) && 1050 vectorType.getElementType() == r.front(); 1051 }; 1052 if (l.size() == 1 && r.size() == 1 && 1053 (isCompatible(l, r) || isCompatible(r, l))) 1054 return true; 1055 return l == r; 1056 } 1057 1058 LogicalResult vector::ExtractOp::verify() { 1059 auto positionAttr = getPosition().getValue(); 1060 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1061 return emitOpError( 1062 "expected position attribute of rank smaller than vector rank"); 1063 for (const auto &en : llvm::enumerate(positionAttr)) { 1064 auto attr = en.value().dyn_cast<IntegerAttr>(); 1065 if (!attr || attr.getInt() < 0 || 1066 attr.getInt() >= getVectorType().getDimSize(en.index())) 1067 return emitOpError("expected position attribute #") 1068 << (en.index() + 1) 1069 << " to be a non-negative integer smaller than the corresponding " 1070 "vector dimension"; 1071 } 1072 return success(); 1073 } 1074 1075 template <typename IntType> 1076 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1077 return llvm::to_vector<4>(llvm::map_range( 1078 arrayAttr.getAsRange<IntegerAttr>(), 1079 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1080 } 1081 1082 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1083 /// positions. 1084 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1085 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1086 return failure(); 1087 1088 SmallVector<int64_t, 4> globalPosition; 1089 ExtractOp currentOp = extractOp; 1090 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1091 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1092 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1093 currentOp = nextOp; 1094 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1095 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1096 } 1097 extractOp.setOperand(currentOp.getVector()); 1098 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1099 OpBuilder b(extractOp.getContext()); 1100 std::reverse(globalPosition.begin(), globalPosition.end()); 1101 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1102 b.getI64ArrayAttr(globalPosition)); 1103 return success(); 1104 } 1105 1106 namespace { 1107 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1108 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1109 /// Compose TransposeOp permutations as we walk back. 1110 /// This helper class keeps an updated extraction position `extractPosition` 1111 /// with extra trailing sentinels. 1112 /// The sentinels encode the internal transposition status of the result vector. 1113 /// As we iterate, extractPosition is permuted and updated. 1114 class ExtractFromInsertTransposeChainState { 1115 public: 1116 ExtractFromInsertTransposeChainState(ExtractOp e); 1117 1118 /// Iterate over producing insert and transpose ops until we find a fold. 1119 Value fold(); 1120 1121 private: 1122 /// Return true if the vector at position `a` is contained within the vector 1123 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1124 /// is a prefix of `b`. 1125 template <typename ContainerA, typename ContainerB> 1126 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1127 return a.size() <= b.size() && 1128 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1129 } 1130 1131 /// Return true if the vector at position `a` intersects the vector at 1132 /// position `b`. Under insert/extract semantics, this is the same as equality 1133 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1134 /// Comparison is on the common prefix (i.e. zip). 1135 template <typename ContainerA, typename ContainerB> 1136 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1137 for (auto it : llvm::zip(a, b)) { 1138 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1139 continue; 1140 if (std::get<0>(it) != std::get<1>(it)) 1141 return false; 1142 } 1143 return true; 1144 } 1145 1146 /// Folding is only possible in the absence of an internal permutation in the 1147 /// result vector. 1148 bool canFold() { 1149 return (sentinels == 1150 makeArrayRef(extractPosition).drop_front(extractedRank)); 1151 } 1152 1153 // Helper to get the next defining op of interest. 1154 void updateStateForNextIteration(Value v) { 1155 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1156 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1157 }; 1158 1159 // Case 1. If we hit a transpose, just compose the map and iterate. 1160 // Invariant: insert + transpose do not change rank, we can always compose. 1161 LogicalResult handleTransposeOp(); 1162 1163 // Case 2: the insert position matches extractPosition exactly, early return. 1164 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1165 1166 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1167 /// portion of the source of the insert. 1168 /// Example: 1169 /// ``` 1170 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1171 /// // extractPosition == [1, 2, 3] 1172 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1173 /// // can fold to vector.extract %source[0, 3] 1174 /// %ext = vector.extract %source[3]: vector<5x6> 1175 /// ``` 1176 /// To traverse through %source, we need to set the leading dims to 0 and 1177 /// drop the extra leading dims. 1178 /// This method updates the internal state. 1179 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1180 1181 /// Try to fold in place to extract(source, extractPosition) and return the 1182 /// folded result. Return null if folding is not possible (e.g. due to an 1183 /// internal tranposition in the result). 1184 Value tryToFoldExtractOpInPlace(Value source); 1185 1186 ExtractOp extractOp; 1187 int64_t vectorRank; 1188 int64_t extractedRank; 1189 1190 InsertOp nextInsertOp; 1191 TransposeOp nextTransposeOp; 1192 1193 /// Sentinel values that encode the internal permutation status of the result. 1194 /// They are set to (-1, ... , -k) at the beginning and appended to 1195 /// `extractPosition`. 1196 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1197 /// ensure that there is no internal transposition. 1198 /// Internal transposition cannot be accounted for with a folding pattern. 1199 // TODO: We could relax the internal transposition with an extra transposition 1200 // operation in a future canonicalizer. 1201 SmallVector<int64_t> sentinels; 1202 SmallVector<int64_t> extractPosition; 1203 }; 1204 } // namespace 1205 1206 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1207 ExtractOp e) 1208 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1209 extractedRank(extractOp.getPosition().size()) { 1210 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1211 sentinels.reserve(vectorRank - extractedRank); 1212 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1213 sentinels.push_back(-(i + 1)); 1214 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1215 llvm::append_range(extractPosition, sentinels); 1216 } 1217 1218 // Case 1. If we hit a transpose, just compose the map and iterate. 1219 // Invariant: insert + transpose do not change rank, we can always compose. 1220 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1221 if (!nextTransposeOp) 1222 return failure(); 1223 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1224 AffineMap m = inversePermutation( 1225 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1226 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1227 return success(); 1228 } 1229 1230 // Case 2: the insert position matches extractPosition exactly, early return. 1231 LogicalResult 1232 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1233 Value &res) { 1234 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1235 if (makeArrayRef(insertedPos) != 1236 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1237 return failure(); 1238 // Case 2.a. early-exit fold. 1239 res = nextInsertOp.getSource(); 1240 // Case 2.b. if internal transposition is present, canFold will be false. 1241 return success(); 1242 } 1243 1244 /// Case 3: if inserted position is a prefix of extractPosition, 1245 /// extract a portion of the source of the insertion. 1246 /// This method updates the internal state. 1247 LogicalResult 1248 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1249 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1250 if (!isContainedWithin(insertedPos, extractPosition)) 1251 return failure(); 1252 // Set leading dims to zero. 1253 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1254 // Drop extra leading dims. 1255 extractPosition.erase(extractPosition.begin(), 1256 extractPosition.begin() + insertedPos.size()); 1257 extractedRank = extractPosition.size() - sentinels.size(); 1258 // Case 3.a. early-exit fold (break and delegate to post-while path). 1259 res = nextInsertOp.getSource(); 1260 // Case 3.b. if internal transposition is present, canFold will be false. 1261 return success(); 1262 } 1263 1264 /// Try to fold in place to extract(source, extractPosition) and return the 1265 /// folded result. Return null if folding is not possible (e.g. due to an 1266 /// internal tranposition in the result). 1267 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1268 Value source) { 1269 // If we can't fold (either internal transposition, or nothing to fold), bail. 1270 bool nothingToFold = (source == extractOp.getVector()); 1271 if (nothingToFold || !canFold()) 1272 return Value(); 1273 // Otherwise, fold by updating the op inplace and return its result. 1274 OpBuilder b(extractOp.getContext()); 1275 extractOp->setAttr( 1276 extractOp.getPositionAttrName(), 1277 b.getI64ArrayAttr( 1278 makeArrayRef(extractPosition).take_front(extractedRank))); 1279 extractOp.getVectorMutable().assign(source); 1280 return extractOp.getResult(); 1281 } 1282 1283 /// Iterate over producing insert and transpose ops until we find a fold. 1284 Value ExtractFromInsertTransposeChainState::fold() { 1285 Value valueToExtractFrom = extractOp.getVector(); 1286 updateStateForNextIteration(valueToExtractFrom); 1287 while (nextInsertOp || nextTransposeOp) { 1288 // Case 1. If we hit a transpose, just compose the map and iterate. 1289 // Invariant: insert + transpose do not change rank, we can always compose. 1290 if (succeeded(handleTransposeOp())) { 1291 valueToExtractFrom = nextTransposeOp.getVector(); 1292 updateStateForNextIteration(valueToExtractFrom); 1293 continue; 1294 } 1295 1296 Value result; 1297 // Case 2: the position match exactly. 1298 if (succeeded(handleInsertOpWithMatchingPos(result))) 1299 return result; 1300 1301 // Case 3: if the inserted position is a prefix of extractPosition, we can 1302 // just extract a portion of the source of the insert. 1303 if (succeeded(handleInsertOpWithPrefixPos(result))) 1304 return tryToFoldExtractOpInPlace(result); 1305 1306 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1307 // values. This is a more difficult case and we bail. 1308 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1309 if (isContainedWithin(extractPosition, insertedPos) || 1310 intersectsWhereNonNegative(extractPosition, insertedPos)) 1311 return Value(); 1312 1313 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1314 valueToExtractFrom = nextInsertOp.getDest(); 1315 updateStateForNextIteration(valueToExtractFrom); 1316 } 1317 // If after all this we can fold, go for it. 1318 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1319 } 1320 1321 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1322 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1323 Operation *defOp = extractOp.getVector().getDefiningOp(); 1324 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1325 return Value(); 1326 Value source = defOp->getOperand(0); 1327 if (extractOp.getType() == source.getType()) 1328 return source; 1329 auto getRank = [](Type type) { 1330 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1331 }; 1332 unsigned broadcastSrcRank = getRank(source.getType()); 1333 unsigned extractResultRank = getRank(extractOp.getType()); 1334 if (extractResultRank >= broadcastSrcRank) 1335 return Value(); 1336 // Check that the dimension of the result haven't been broadcasted. 1337 auto extractVecType = extractOp.getType().dyn_cast<VectorType>(); 1338 auto broadcastVecType = source.getType().dyn_cast<VectorType>(); 1339 if (extractVecType && broadcastVecType && 1340 extractVecType.getShape() != 1341 broadcastVecType.getShape().take_back(extractResultRank)) 1342 return Value(); 1343 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1344 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1345 extractPos.erase(extractPos.begin(), 1346 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1347 extractOp.setOperand(source); 1348 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1349 OpBuilder b(extractOp.getContext()); 1350 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1351 b.getI64ArrayAttr(extractPos)); 1352 return extractOp.getResult(); 1353 } 1354 1355 // Fold extractOp with source coming from ShapeCast op. 1356 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1357 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1358 if (!shapeCastOp) 1359 return Value(); 1360 // Get the nth dimension size starting from lowest dimension. 1361 auto getDimReverse = [](VectorType type, int64_t n) { 1362 return type.getShape().take_back(n + 1).front(); 1363 }; 1364 int64_t destinationRank = 1365 extractOp.getType().isa<VectorType>() 1366 ? extractOp.getType().cast<VectorType>().getRank() 1367 : 0; 1368 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1369 return Value(); 1370 if (destinationRank > 0) { 1371 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1372 for (int64_t i = 0; i < destinationRank; i++) { 1373 // The lowest dimension of of the destination must match the lowest 1374 // dimension of the shapecast op source. 1375 // TODO: This case could be support in a canonicalization pattern. 1376 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1377 getDimReverse(destinationType, i)) 1378 return Value(); 1379 } 1380 } 1381 // Extract the strides associated with the extract op vector source. Then use 1382 // this to calculate a linearized position for the extract. 1383 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1384 std::reverse(extractedPos.begin(), extractedPos.end()); 1385 SmallVector<int64_t, 4> strides; 1386 int64_t stride = 1; 1387 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1388 strides.push_back(stride); 1389 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1390 } 1391 1392 int64_t position = linearize(extractedPos, strides); 1393 // Then extract the strides associated to the shapeCast op vector source and 1394 // delinearize the position using those strides. 1395 SmallVector<int64_t, 4> newStrides; 1396 int64_t numDimension = 1397 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1398 stride = 1; 1399 for (int64_t i = 0; i < numDimension; i++) { 1400 newStrides.push_back(stride); 1401 stride *= 1402 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1403 } 1404 std::reverse(newStrides.begin(), newStrides.end()); 1405 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1406 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1407 OpBuilder b(extractOp.getContext()); 1408 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1409 b.getI64ArrayAttr(newPosition)); 1410 extractOp.setOperand(shapeCastOp.getSource()); 1411 return extractOp.getResult(); 1412 } 1413 1414 /// Fold an ExtractOp from ExtractStridedSliceOp. 1415 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1416 auto extractStridedSliceOp = 1417 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1418 if (!extractStridedSliceOp) 1419 return Value(); 1420 // Return if 'extractStridedSliceOp' has non-unit strides. 1421 if (extractStridedSliceOp.hasNonUnitStrides()) 1422 return Value(); 1423 1424 // Trim offsets for dimensions fully extracted. 1425 auto sliceOffsets = 1426 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1427 while (!sliceOffsets.empty()) { 1428 size_t lastOffset = sliceOffsets.size() - 1; 1429 if (sliceOffsets.back() != 0 || 1430 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1431 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1432 break; 1433 sliceOffsets.pop_back(); 1434 } 1435 unsigned destinationRank = 0; 1436 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1437 destinationRank = vecType.getRank(); 1438 // The dimensions of the result need to be untouched by the 1439 // extractStridedSlice op. 1440 if (destinationRank > 1441 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1442 return Value(); 1443 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1444 assert(extractedPos.size() >= sliceOffsets.size()); 1445 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1446 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1447 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1448 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1449 OpBuilder b(extractOp.getContext()); 1450 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1451 b.getI64ArrayAttr(extractedPos)); 1452 return extractOp.getResult(); 1453 } 1454 1455 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1456 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1457 int64_t destinationRank = op.getType().isa<VectorType>() 1458 ? op.getType().cast<VectorType>().getRank() 1459 : 0; 1460 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1461 while (insertOp) { 1462 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1463 insertOp.getSourceVectorType().getRank(); 1464 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1465 return Value(); 1466 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1467 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1468 1469 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1470 return attr.cast<IntegerAttr>().getInt() != 1; 1471 })) 1472 return Value(); 1473 bool disjoint = false; 1474 SmallVector<int64_t, 4> offsetDiffs; 1475 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1476 int64_t start = insertOffsets[dim]; 1477 int64_t size = 1478 (dim < insertRankDiff) 1479 ? 1 1480 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1481 int64_t end = start + size; 1482 int64_t offset = extractOffsets[dim]; 1483 // Check if the start of the extract offset is in the interval inserted. 1484 if (start <= offset && offset < end) { 1485 if (dim >= insertRankDiff) 1486 offsetDiffs.push_back(offset - start); 1487 continue; 1488 } 1489 disjoint = true; 1490 break; 1491 } 1492 // The extract element chunk overlap with the vector inserted. 1493 if (!disjoint) { 1494 // If any of the inner dimensions are only partially inserted we have a 1495 // partial overlap. 1496 int64_t srcRankDiff = 1497 insertOp.getSourceVectorType().getRank() - destinationRank; 1498 for (int64_t i = 0; i < destinationRank; i++) { 1499 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1500 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1501 insertRankDiff)) 1502 return Value(); 1503 } 1504 op.getVectorMutable().assign(insertOp.getSource()); 1505 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1506 OpBuilder b(op.getContext()); 1507 op->setAttr(ExtractOp::getPositionAttrStrName(), 1508 b.getI64ArrayAttr(offsetDiffs)); 1509 return op.getResult(); 1510 } 1511 // If the chunk extracted is disjoint from the chunk inserted, keep 1512 // looking in the insert chain. 1513 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1514 } 1515 return Value(); 1516 } 1517 1518 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1519 if (getPosition().empty()) 1520 return getVector(); 1521 if (succeeded(foldExtractOpFromExtractChain(*this))) 1522 return getResult(); 1523 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1524 return res; 1525 if (auto res = foldExtractFromBroadcast(*this)) 1526 return res; 1527 if (auto res = foldExtractFromShapeCast(*this)) 1528 return res; 1529 if (auto val = foldExtractFromExtractStrided(*this)) 1530 return val; 1531 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1532 return val; 1533 return OpFoldResult(); 1534 } 1535 1536 namespace { 1537 1538 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1539 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1540 public: 1541 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1542 1543 LogicalResult matchAndRewrite(ExtractOp extractOp, 1544 PatternRewriter &rewriter) const override { 1545 Operation *defOp = extractOp.getVector().getDefiningOp(); 1546 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1547 return failure(); 1548 1549 Value source = defOp->getOperand(0); 1550 if (extractOp.getType() == source.getType()) 1551 return failure(); 1552 auto getRank = [](Type type) { 1553 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1554 }; 1555 unsigned broadcastSrcRank = getRank(source.getType()); 1556 unsigned extractResultRank = getRank(extractOp.getType()); 1557 // We only consider the case where the rank of the source is less than or 1558 // equal to the rank of the extract dst. The other cases are handled in the 1559 // folding patterns. 1560 if (extractResultRank < broadcastSrcRank) 1561 return failure(); 1562 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1563 extractOp, extractOp.getType(), source); 1564 return success(); 1565 } 1566 }; 1567 1568 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1569 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1570 public: 1571 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1572 1573 LogicalResult matchAndRewrite(ExtractOp extractOp, 1574 PatternRewriter &rewriter) const override { 1575 // Return if 'extractStridedSliceOp' operand is not defined by a 1576 // ConstantOp. 1577 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1578 if (!constantOp) 1579 return failure(); 1580 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1581 if (!dense) 1582 return failure(); 1583 Attribute newAttr = dense.getSplatValue<Attribute>(); 1584 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1585 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1586 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1587 return success(); 1588 } 1589 }; 1590 1591 } // namespace 1592 1593 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1594 MLIRContext *context) { 1595 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1596 } 1597 1598 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1599 SmallVectorImpl<int64_t> &results) { 1600 for (auto attr : arrayAttr) 1601 results.push_back(attr.cast<IntegerAttr>().getInt()); 1602 } 1603 1604 //===----------------------------------------------------------------------===// 1605 // ExtractMapOp 1606 //===----------------------------------------------------------------------===// 1607 1608 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1609 Value vector, ValueRange ids, 1610 ArrayRef<int64_t> multiplicity, 1611 AffineMap permutationMap) { 1612 assert(ids.size() == multiplicity.size() && 1613 ids.size() == permutationMap.getNumResults()); 1614 assert(permutationMap.isProjectedPermutation()); 1615 VectorType type = vector.getType().cast<VectorType>(); 1616 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1617 type.getShape().end()); 1618 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1619 AffineExpr expr = permutationMap.getResult(i); 1620 auto dim = expr.cast<AffineDimExpr>(); 1621 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1622 } 1623 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1624 ExtractMapOp::build(builder, result, resultType, vector, ids); 1625 } 1626 1627 LogicalResult ExtractMapOp::verify() { 1628 if (getSourceVectorType().getRank() != getResultType().getRank()) 1629 return emitOpError("expected source and destination vectors of same rank"); 1630 unsigned numId = 0; 1631 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1632 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1633 0) 1634 return emitOpError("source vector dimensions must be a multiple of " 1635 "destination vector dimensions"); 1636 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1637 numId++; 1638 } 1639 if (numId != getIds().size()) 1640 return emitOpError("expected number of ids must match the number of " 1641 "dimensions distributed"); 1642 return success(); 1643 } 1644 1645 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1646 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1647 if (insert == nullptr || getType() != insert.getVector().getType() || 1648 getIds() != insert.getIds()) 1649 return {}; 1650 return insert.getVector(); 1651 } 1652 1653 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1654 assert(multiplicity.empty()); 1655 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1656 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1657 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1658 getResultType().getDimSize(i)); 1659 } 1660 } 1661 1662 template <typename MapOp> 1663 AffineMap calculateImplicitMap(MapOp op) { 1664 SmallVector<AffineExpr, 4> perm; 1665 // Check which dimension have a multiplicity greater than 1 and associated 1666 // them to the IDs in order. 1667 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1668 if (op.getSourceVectorType().getDimSize(i) != 1669 op.getResultType().getDimSize(i)) 1670 perm.push_back(getAffineDimExpr(i, op.getContext())); 1671 } 1672 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1673 op.getContext()); 1674 return map; 1675 } 1676 1677 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1678 1679 //===----------------------------------------------------------------------===// 1680 // FmaOp 1681 //===----------------------------------------------------------------------===// 1682 1683 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1684 return llvm::to_vector<4>(getVectorType().getShape()); 1685 } 1686 1687 //===----------------------------------------------------------------------===// 1688 // BroadcastOp 1689 //===----------------------------------------------------------------------===// 1690 1691 BroadcastableToResult 1692 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1693 std::pair<int, int> *mismatchingDims) { 1694 // Broadcast scalar to vector of the same element type. 1695 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1696 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1697 return BroadcastableToResult::Success; 1698 // From now on, only vectors broadcast. 1699 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1700 if (!srcVectorType) 1701 return BroadcastableToResult::SourceTypeNotAVector; 1702 1703 int64_t srcRank = srcVectorType.getRank(); 1704 int64_t dstRank = dstVectorType.getRank(); 1705 if (srcRank > dstRank) 1706 return BroadcastableToResult::SourceRankHigher; 1707 // Source has an exact match or singleton value for all trailing dimensions 1708 // (all leading dimensions are simply duplicated). 1709 int64_t lead = dstRank - srcRank; 1710 for (int64_t r = 0; r < srcRank; ++r) { 1711 int64_t srcDim = srcVectorType.getDimSize(r); 1712 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1713 if (srcDim != 1 && srcDim != dstDim) { 1714 if (mismatchingDims) { 1715 mismatchingDims->first = srcDim; 1716 mismatchingDims->second = dstDim; 1717 } 1718 return BroadcastableToResult::DimensionMismatch; 1719 } 1720 } 1721 1722 return BroadcastableToResult::Success; 1723 } 1724 1725 LogicalResult BroadcastOp::verify() { 1726 std::pair<int, int> mismatchingDims; 1727 BroadcastableToResult res = 1728 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1729 if (res == BroadcastableToResult::Success) 1730 return success(); 1731 if (res == BroadcastableToResult::SourceRankHigher) 1732 return emitOpError("source rank higher than destination rank"); 1733 if (res == BroadcastableToResult::DimensionMismatch) 1734 return emitOpError("dimension mismatch (") 1735 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1736 if (res == BroadcastableToResult::SourceTypeNotAVector) 1737 return emitOpError("source type is not a vector"); 1738 llvm_unreachable("unexpected vector.broadcast op error"); 1739 } 1740 1741 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1742 if (getSourceType() == getVectorType()) 1743 return getSource(); 1744 if (!operands[0]) 1745 return {}; 1746 auto vectorType = getVectorType(); 1747 if (operands[0].getType().isIntOrIndexOrFloat()) 1748 return DenseElementsAttr::get(vectorType, operands[0]); 1749 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1750 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1751 return {}; 1752 } 1753 1754 namespace { 1755 1756 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1757 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1758 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1759 1760 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1761 PatternRewriter &rewriter) const override { 1762 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1763 if (!srcBroadcast) 1764 return failure(); 1765 rewriter.replaceOpWithNewOp<BroadcastOp>( 1766 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1767 return success(); 1768 } 1769 }; 1770 } // namespace 1771 1772 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1773 MLIRContext *context) { 1774 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1775 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1776 results.add<BroadcastFolder>(context); 1777 } 1778 1779 //===----------------------------------------------------------------------===// 1780 // ShuffleOp 1781 //===----------------------------------------------------------------------===// 1782 1783 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1784 Value v2, ArrayRef<int64_t> mask) { 1785 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1786 } 1787 1788 LogicalResult ShuffleOp::verify() { 1789 VectorType resultType = getVectorType(); 1790 VectorType v1Type = getV1VectorType(); 1791 VectorType v2Type = getV2VectorType(); 1792 // Verify ranks. 1793 int64_t resRank = resultType.getRank(); 1794 int64_t v1Rank = v1Type.getRank(); 1795 int64_t v2Rank = v2Type.getRank(); 1796 if (resRank != v1Rank || v1Rank != v2Rank) 1797 return emitOpError("rank mismatch"); 1798 // Verify all but leading dimension sizes. 1799 for (int64_t r = 1; r < v1Rank; ++r) { 1800 int64_t resDim = resultType.getDimSize(r); 1801 int64_t v1Dim = v1Type.getDimSize(r); 1802 int64_t v2Dim = v2Type.getDimSize(r); 1803 if (resDim != v1Dim || v1Dim != v2Dim) 1804 return emitOpError("dimension mismatch"); 1805 } 1806 // Verify mask length. 1807 auto maskAttr = getMask().getValue(); 1808 int64_t maskLength = maskAttr.size(); 1809 if (maskLength <= 0) 1810 return emitOpError("invalid mask length"); 1811 if (maskLength != resultType.getDimSize(0)) 1812 return emitOpError("mask length mismatch"); 1813 // Verify all indices. 1814 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1815 for (const auto &en : llvm::enumerate(maskAttr)) { 1816 auto attr = en.value().dyn_cast<IntegerAttr>(); 1817 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1818 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1819 } 1820 return success(); 1821 } 1822 1823 LogicalResult 1824 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1825 ValueRange operands, DictionaryAttr attributes, 1826 RegionRange, 1827 SmallVectorImpl<Type> &inferredReturnTypes) { 1828 ShuffleOp::Adaptor op(operands, attributes); 1829 auto v1Type = op.getV1().getType().cast<VectorType>(); 1830 // Construct resulting type: leading dimension matches mask length, 1831 // all trailing dimensions match the operands. 1832 SmallVector<int64_t, 4> shape; 1833 shape.reserve(v1Type.getRank()); 1834 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1835 llvm::append_range(shape, v1Type.getShape().drop_front()); 1836 inferredReturnTypes.push_back( 1837 VectorType::get(shape, v1Type.getElementType())); 1838 return success(); 1839 } 1840 1841 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { 1842 uint64_t expected = begin; 1843 return idxArr.size() == width && 1844 llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), 1845 [&expected](auto attr) { 1846 return attr.getZExtValue() == expected++; 1847 }); 1848 } 1849 1850 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1851 // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 1852 if (!getV1VectorType().isScalable() && 1853 isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0))) 1854 return getV1(); 1855 // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 1856 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && 1857 isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), 1858 getV2VectorType().getDimSize(0))) 1859 return getV2(); 1860 1861 Attribute lhs = operands.front(), rhs = operands.back(); 1862 if (!lhs || !rhs) 1863 return {}; 1864 1865 auto lhsType = lhs.getType().cast<VectorType>(); 1866 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1867 // manipulation. 1868 if (lhsType.getRank() != 1) 1869 return {}; 1870 int64_t lhsSize = lhsType.getDimSize(0); 1871 1872 SmallVector<Attribute> results; 1873 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1874 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1875 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1876 int64_t i = index.getZExtValue(); 1877 if (i >= lhsSize) { 1878 results.push_back(rhsElements[i - lhsSize]); 1879 } else { 1880 results.push_back(lhsElements[i]); 1881 } 1882 } 1883 1884 return DenseElementsAttr::get(getVectorType(), results); 1885 } 1886 1887 //===----------------------------------------------------------------------===// 1888 // InsertElementOp 1889 //===----------------------------------------------------------------------===// 1890 1891 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1892 Value source, Value dest) { 1893 build(builder, result, source, dest, {}); 1894 } 1895 1896 LogicalResult InsertElementOp::verify() { 1897 auto dstVectorType = getDestVectorType(); 1898 if (dstVectorType.getRank() == 0) { 1899 if (getPosition()) 1900 return emitOpError("expected position to be empty with 0-D vector"); 1901 return success(); 1902 } 1903 if (dstVectorType.getRank() != 1) 1904 return emitOpError("unexpected >1 vector rank"); 1905 if (!getPosition()) 1906 return emitOpError("expected position for 1-D vector"); 1907 return success(); 1908 } 1909 1910 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) { 1911 // Skip the 0-D vector here. 1912 if (operands.size() < 3) 1913 return {}; 1914 1915 Attribute src = operands[0]; 1916 Attribute dst = operands[1]; 1917 Attribute pos = operands[2]; 1918 if (!src || !dst || !pos) 1919 return {}; 1920 1921 auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>(); 1922 1923 SmallVector<Attribute> results(dstElements); 1924 1925 auto attr = pos.dyn_cast<IntegerAttr>(); 1926 uint64_t posIdx = attr.getInt(); 1927 1928 results[posIdx] = src; 1929 1930 return DenseElementsAttr::get(getDestVectorType(), results); 1931 } 1932 1933 //===----------------------------------------------------------------------===// 1934 // InsertOp 1935 //===----------------------------------------------------------------------===// 1936 1937 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1938 Value dest, ArrayRef<int64_t> position) { 1939 result.addOperands({source, dest}); 1940 auto positionAttr = getVectorSubscriptAttr(builder, position); 1941 result.addTypes(dest.getType()); 1942 result.addAttribute(getPositionAttrStrName(), positionAttr); 1943 } 1944 1945 // Convenience builder which assumes the values are constant indices. 1946 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1947 Value dest, ValueRange position) { 1948 SmallVector<int64_t, 4> positionConstants = 1949 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1950 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1951 })); 1952 build(builder, result, source, dest, positionConstants); 1953 } 1954 1955 LogicalResult InsertOp::verify() { 1956 auto positionAttr = getPosition().getValue(); 1957 auto destVectorType = getDestVectorType(); 1958 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1959 return emitOpError( 1960 "expected position attribute of rank smaller than dest vector rank"); 1961 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1962 if (srcVectorType && 1963 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1964 static_cast<unsigned>(destVectorType.getRank()))) 1965 return emitOpError("expected position attribute rank + source rank to " 1966 "match dest vector rank"); 1967 if (!srcVectorType && 1968 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1969 return emitOpError( 1970 "expected position attribute rank to match the dest vector rank"); 1971 for (const auto &en : llvm::enumerate(positionAttr)) { 1972 auto attr = en.value().dyn_cast<IntegerAttr>(); 1973 if (!attr || attr.getInt() < 0 || 1974 attr.getInt() >= destVectorType.getDimSize(en.index())) 1975 return emitOpError("expected position attribute #") 1976 << (en.index() + 1) 1977 << " to be a non-negative integer smaller than the corresponding " 1978 "dest vector dimension"; 1979 } 1980 return success(); 1981 } 1982 1983 namespace { 1984 1985 // If insertOp is only inserting unit dimensions it can be transformed to a 1986 // broadcast. 1987 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1988 public: 1989 using OpRewritePattern<InsertOp>::OpRewritePattern; 1990 1991 LogicalResult matchAndRewrite(InsertOp insertOp, 1992 PatternRewriter &rewriter) const override { 1993 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1994 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1995 srcVecType.getNumElements()) 1996 return failure(); 1997 rewriter.replaceOpWithNewOp<BroadcastOp>( 1998 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 1999 return success(); 2000 } 2001 }; 2002 2003 } // namespace 2004 2005 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 2006 MLIRContext *context) { 2007 results.add<InsertToBroadcast, BroadcastFolder>(context); 2008 } 2009 2010 // Eliminates insert operations that produce values identical to their source 2011 // value. This happens when the source and destination vectors have identical 2012 // sizes. 2013 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 2014 if (getPosition().empty()) 2015 return getSource(); 2016 return {}; 2017 } 2018 2019 //===----------------------------------------------------------------------===// 2020 // InsertMapOp 2021 //===----------------------------------------------------------------------===// 2022 2023 LogicalResult InsertMapOp::verify() { 2024 if (getSourceVectorType().getRank() != getResultType().getRank()) 2025 return emitOpError("expected source and destination vectors of same rank"); 2026 unsigned numId = 0; 2027 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 2028 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 2029 0) 2030 return emitOpError( 2031 "destination vector size must be a multiple of source vector size"); 2032 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 2033 numId++; 2034 } 2035 if (numId != getIds().size()) 2036 return emitOpError("expected number of ids must match the number of " 2037 "dimensions distributed"); 2038 return success(); 2039 } 2040 2041 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 2042 2043 //===----------------------------------------------------------------------===// 2044 // InsertStridedSliceOp 2045 //===----------------------------------------------------------------------===// 2046 2047 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2048 Value source, Value dest, 2049 ArrayRef<int64_t> offsets, 2050 ArrayRef<int64_t> strides) { 2051 result.addOperands({source, dest}); 2052 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2053 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2054 result.addTypes(dest.getType()); 2055 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2056 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2057 } 2058 2059 // TODO: Should be moved to Tablegen Confined attributes. 2060 template <typename OpType> 2061 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2062 ArrayAttr arrayAttr, 2063 ArrayRef<int64_t> shape, 2064 StringRef attrName) { 2065 if (arrayAttr.size() > shape.size()) 2066 return op.emitOpError("expected ") 2067 << attrName << " attribute of rank smaller than vector rank"; 2068 return success(); 2069 } 2070 2071 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2072 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2073 // Otherwise, the admissible interval is [min, max]. 2074 template <typename OpType> 2075 static LogicalResult 2076 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2077 int64_t max, StringRef attrName, 2078 bool halfOpen = true) { 2079 for (auto attr : arrayAttr) { 2080 auto val = attr.cast<IntegerAttr>().getInt(); 2081 auto upper = max; 2082 if (!halfOpen) 2083 upper += 1; 2084 if (val < min || val >= upper) 2085 return op.emitOpError("expected ") << attrName << " to be confined to [" 2086 << min << ", " << upper << ")"; 2087 } 2088 return success(); 2089 } 2090 2091 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2092 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2093 // Otherwise, the admissible interval is [min, max]. 2094 template <typename OpType> 2095 static LogicalResult 2096 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2097 ArrayRef<int64_t> shape, StringRef attrName, 2098 bool halfOpen = true, int64_t min = 0) { 2099 assert(arrayAttr.size() <= shape.size()); 2100 unsigned index = 0; 2101 for (auto it : llvm::zip(arrayAttr, shape)) { 2102 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2103 auto max = std::get<1>(it); 2104 if (!halfOpen) 2105 max += 1; 2106 if (val < min || val >= max) 2107 return op.emitOpError("expected ") 2108 << attrName << " dimension " << index << " to be confined to [" 2109 << min << ", " << max << ")"; 2110 ++index; 2111 } 2112 return success(); 2113 } 2114 2115 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2116 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2117 // Otherwise, the admissible interval is [min, max]. 2118 template <typename OpType> 2119 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2120 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2121 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2122 bool halfOpen = true, int64_t min = 1) { 2123 assert(arrayAttr1.size() <= shape.size()); 2124 assert(arrayAttr2.size() <= shape.size()); 2125 unsigned index = 0; 2126 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2127 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2128 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2129 auto max = std::get<2>(it); 2130 if (!halfOpen) 2131 max += 1; 2132 if (val1 + val2 < 0 || val1 + val2 >= max) 2133 return op.emitOpError("expected sum(") 2134 << attrName1 << ", " << attrName2 << ") dimension " << index 2135 << " to be confined to [" << min << ", " << max << ")"; 2136 ++index; 2137 } 2138 return success(); 2139 } 2140 2141 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2142 MLIRContext *context) { 2143 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2144 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2145 }); 2146 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2147 } 2148 2149 LogicalResult InsertStridedSliceOp::verify() { 2150 auto sourceVectorType = getSourceVectorType(); 2151 auto destVectorType = getDestVectorType(); 2152 auto offsets = getOffsetsAttr(); 2153 auto strides = getStridesAttr(); 2154 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2155 return emitOpError( 2156 "expected offsets of same size as destination vector rank"); 2157 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2158 return emitOpError("expected strides of same size as source vector rank"); 2159 if (sourceVectorType.getRank() > destVectorType.getRank()) 2160 return emitOpError( 2161 "expected source rank to be smaller than destination rank"); 2162 2163 auto sourceShape = sourceVectorType.getShape(); 2164 auto destShape = destVectorType.getShape(); 2165 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2166 destShape.size() - sourceShape.size(), 0); 2167 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2168 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2169 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2170 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2171 offName)) || 2172 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2173 stridesName, 2174 /*halfOpen=*/false)) || 2175 failed(isSumOfIntegerArrayAttrConfinedToShape( 2176 *this, offsets, 2177 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2178 offName, "source vector shape", 2179 /*halfOpen=*/false, /*min=*/1))) 2180 return failure(); 2181 2182 return success(); 2183 } 2184 2185 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2186 if (getSourceVectorType() == getDestVectorType()) 2187 return getSource(); 2188 return {}; 2189 } 2190 2191 //===----------------------------------------------------------------------===// 2192 // OuterProductOp 2193 //===----------------------------------------------------------------------===// 2194 2195 /// Build an op without mask, use the type of `acc` as the return type. 2196 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2197 Value lhs, Value rhs, Value acc) { 2198 result.addOperands({lhs, rhs, acc}); 2199 result.addTypes(acc.getType()); 2200 } 2201 2202 void OuterProductOp::print(OpAsmPrinter &p) { 2203 p << " " << getLhs() << ", " << getRhs(); 2204 if (!getAcc().empty()) { 2205 p << ", " << getAcc(); 2206 p.printOptionalAttrDict((*this)->getAttrs()); 2207 } 2208 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2209 } 2210 2211 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2212 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2213 Type tLHS, tRHS; 2214 if (parser.parseOperandList(operandsInfo) || 2215 parser.parseOptionalAttrDict(result.attributes) || 2216 parser.parseColonType(tLHS) || parser.parseComma() || 2217 parser.parseType(tRHS)) 2218 return failure(); 2219 if (operandsInfo.size() < 2) 2220 return parser.emitError(parser.getNameLoc(), 2221 "expected at least 2 operands"); 2222 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2223 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2224 if (!vLHS) 2225 return parser.emitError(parser.getNameLoc(), 2226 "expected vector type for operand #1"); 2227 VectorType resType = 2228 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2229 vLHS.getElementType()) 2230 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2231 2232 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2233 result.attributes.append( 2234 OuterProductOp::getKindAttrStrName(), 2235 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2236 result.getContext())); 2237 } 2238 2239 return failure( 2240 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2241 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2242 (operandsInfo.size() > 2 && 2243 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2244 parser.addTypeToList(resType, result.types)); 2245 } 2246 2247 LogicalResult OuterProductOp::verify() { 2248 Type tRHS = getOperandTypeRHS(); 2249 VectorType vLHS = getOperandVectorTypeLHS(), 2250 vRHS = tRHS.dyn_cast<VectorType>(), 2251 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2252 2253 if (vLHS.getRank() != 1) 2254 return emitOpError("expected 1-d vector for operand #1"); 2255 2256 if (vRHS) { 2257 // Proper OUTER operation. 2258 if (vRHS.getRank() != 1) 2259 return emitOpError("expected 1-d vector for operand #2"); 2260 if (vRES.getRank() != 2) 2261 return emitOpError("expected 2-d vector result"); 2262 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2263 return emitOpError("expected #1 operand dim to match result dim #1"); 2264 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2265 return emitOpError("expected #2 operand dim to match result dim #2"); 2266 } else { 2267 // An AXPY operation. 2268 if (vRES.getRank() != 1) 2269 return emitOpError("expected 1-d vector result"); 2270 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2271 return emitOpError("expected #1 operand dim to match result dim #1"); 2272 } 2273 2274 if (vACC && vACC != vRES) 2275 return emitOpError("expected operand #3 of same type as result type"); 2276 2277 // Verify supported combining kind. 2278 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2279 return emitOpError("unsupported outerproduct type"); 2280 2281 return success(); 2282 } 2283 2284 //===----------------------------------------------------------------------===// 2285 // ReshapeOp 2286 //===----------------------------------------------------------------------===// 2287 2288 LogicalResult ReshapeOp::verify() { 2289 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2290 auto inputVectorType = getInputVectorType(); 2291 auto outputVectorType = getOutputVectorType(); 2292 int64_t inputShapeRank = getNumInputShapeSizes(); 2293 int64_t outputShapeRank = getNumOutputShapeSizes(); 2294 SmallVector<int64_t, 4> fixedVectorSizes; 2295 getFixedVectorSizes(fixedVectorSizes); 2296 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2297 2298 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2299 return emitError("invalid input shape for vector type ") 2300 << inputVectorType; 2301 2302 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2303 return emitError("invalid output shape for vector type ") 2304 << outputVectorType; 2305 2306 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2307 // suffix. 2308 unsigned inputVectorRank = inputVectorType.getRank(); 2309 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2310 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2311 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2312 return emitError("fixed vector size must match input vector for dim ") 2313 << i; 2314 } 2315 2316 unsigned outputVectorRank = outputVectorType.getRank(); 2317 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2318 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2319 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2320 return emitError("fixed vector size must match output vector for dim ") 2321 << i; 2322 } 2323 2324 // If all shape operands are produced by constant ops, verify that product 2325 // of dimensions for input/output shape match. 2326 auto isDefByConstant = [](Value operand) { 2327 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2328 }; 2329 if (llvm::all_of(getInputShape(), isDefByConstant) && 2330 llvm::all_of(getOutputShape(), isDefByConstant)) { 2331 int64_t numInputElements = 1; 2332 for (auto operand : getInputShape()) 2333 numInputElements *= 2334 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2335 int64_t numOutputElements = 1; 2336 for (auto operand : getOutputShape()) 2337 numOutputElements *= 2338 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2339 if (numInputElements != numOutputElements) 2340 return emitError("product of input and output shape sizes must match"); 2341 } 2342 return success(); 2343 } 2344 2345 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2346 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2347 } 2348 2349 //===----------------------------------------------------------------------===// 2350 // ExtractStridedSliceOp 2351 //===----------------------------------------------------------------------===// 2352 2353 // Inference works as follows: 2354 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2355 // 2. Add sizes from 'vectorType' for remaining dims. 2356 static Type inferStridedSliceOpResultType(VectorType vectorType, 2357 ArrayAttr offsets, ArrayAttr sizes, 2358 ArrayAttr strides) { 2359 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2360 SmallVector<int64_t, 4> shape; 2361 shape.reserve(vectorType.getRank()); 2362 unsigned idx = 0; 2363 for (unsigned e = offsets.size(); idx < e; ++idx) 2364 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2365 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2366 shape.push_back(vectorType.getShape()[idx]); 2367 2368 return VectorType::get(shape, vectorType.getElementType()); 2369 } 2370 2371 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2372 Value source, ArrayRef<int64_t> offsets, 2373 ArrayRef<int64_t> sizes, 2374 ArrayRef<int64_t> strides) { 2375 result.addOperands(source); 2376 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2377 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2378 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2379 result.addTypes( 2380 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2381 offsetsAttr, sizesAttr, stridesAttr)); 2382 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2383 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2384 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2385 } 2386 2387 LogicalResult ExtractStridedSliceOp::verify() { 2388 auto type = getVectorType(); 2389 auto offsets = getOffsetsAttr(); 2390 auto sizes = getSizesAttr(); 2391 auto strides = getStridesAttr(); 2392 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2393 return emitOpError("expected offsets, sizes and strides attributes of same size"); 2394 2395 auto shape = type.getShape(); 2396 auto offName = getOffsetsAttrName(); 2397 auto sizesName = getSizesAttrName(); 2398 auto stridesName = getStridesAttrName(); 2399 if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2400 failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2401 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2402 stridesName)) || 2403 failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2404 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2405 /*halfOpen=*/false, 2406 /*min=*/1)) || 2407 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName, 2408 /*halfOpen=*/false)) || 2409 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape, 2410 offName, sizesName, 2411 /*halfOpen=*/false))) 2412 return failure(); 2413 2414 auto resultType = 2415 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2416 if (getResult().getType() != resultType) 2417 return emitOpError("expected result type to be ") << resultType; 2418 2419 return success(); 2420 } 2421 2422 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2423 // to use the source of the InsertStrided ops if we can detect that the 2424 // extracted vector is a subset of one of the vector inserted. 2425 static LogicalResult 2426 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2427 // Helper to extract integer out of ArrayAttr. 2428 auto getElement = [](ArrayAttr array, int idx) { 2429 return array[idx].cast<IntegerAttr>().getInt(); 2430 }; 2431 ArrayAttr extractOffsets = op.getOffsets(); 2432 ArrayAttr extractStrides = op.getStrides(); 2433 ArrayAttr extractSizes = op.getSizes(); 2434 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2435 while (insertOp) { 2436 if (op.getVectorType().getRank() != 2437 insertOp.getSourceVectorType().getRank()) 2438 return failure(); 2439 ArrayAttr insertOffsets = insertOp.getOffsets(); 2440 ArrayAttr insertStrides = insertOp.getStrides(); 2441 // If the rank of extract is greater than the rank of insert, we are likely 2442 // extracting a partial chunk of the vector inserted. 2443 if (extractOffsets.size() > insertOffsets.size()) 2444 return failure(); 2445 bool patialoverlap = false; 2446 bool disjoint = false; 2447 SmallVector<int64_t, 4> offsetDiffs; 2448 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2449 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2450 return failure(); 2451 int64_t start = getElement(insertOffsets, dim); 2452 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2453 int64_t offset = getElement(extractOffsets, dim); 2454 int64_t size = getElement(extractSizes, dim); 2455 // Check if the start of the extract offset is in the interval inserted. 2456 if (start <= offset && offset < end) { 2457 // If the extract interval overlaps but is not fully included we may 2458 // have a partial overlap that will prevent any folding. 2459 if (offset + size > end) 2460 patialoverlap = true; 2461 offsetDiffs.push_back(offset - start); 2462 continue; 2463 } 2464 disjoint = true; 2465 break; 2466 } 2467 // The extract element chunk is a subset of the insert element. 2468 if (!disjoint && !patialoverlap) { 2469 op.setOperand(insertOp.getSource()); 2470 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2471 OpBuilder b(op.getContext()); 2472 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2473 b.getI64ArrayAttr(offsetDiffs)); 2474 return success(); 2475 } 2476 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2477 // in the insert chain. 2478 if (disjoint) 2479 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2480 else { 2481 // The extracted vector partially overlap the inserted vector, we cannot 2482 // fold. 2483 return failure(); 2484 } 2485 } 2486 return failure(); 2487 } 2488 2489 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2490 if (getVectorType() == getResult().getType()) 2491 return getVector(); 2492 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2493 return getResult(); 2494 return {}; 2495 } 2496 2497 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2498 populateFromInt64AttrArray(getOffsets(), results); 2499 } 2500 2501 namespace { 2502 2503 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2504 // ConstantMaskOp. 2505 class StridedSliceConstantMaskFolder final 2506 : public OpRewritePattern<ExtractStridedSliceOp> { 2507 public: 2508 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2509 2510 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2511 PatternRewriter &rewriter) const override { 2512 // Return if 'extractStridedSliceOp' operand is not defined by a 2513 // ConstantMaskOp. 2514 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2515 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2516 if (!constantMaskOp) 2517 return failure(); 2518 // Return if 'extractStridedSliceOp' has non-unit strides. 2519 if (extractStridedSliceOp.hasNonUnitStrides()) 2520 return failure(); 2521 // Gather constant mask dimension sizes. 2522 SmallVector<int64_t, 4> maskDimSizes; 2523 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2524 // Gather strided slice offsets and sizes. 2525 SmallVector<int64_t, 4> sliceOffsets; 2526 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2527 sliceOffsets); 2528 SmallVector<int64_t, 4> sliceSizes; 2529 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2530 2531 // Compute slice of vector mask region. 2532 SmallVector<int64_t, 4> sliceMaskDimSizes; 2533 assert(sliceOffsets.size() == maskDimSizes.size()); 2534 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2535 int64_t maskDimSize = std::get<0>(it); 2536 int64_t sliceOffset = std::get<1>(it); 2537 int64_t sliceSize = std::get<2>(it); 2538 int64_t sliceMaskDimSize = std::max( 2539 static_cast<int64_t>(0), 2540 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2541 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2542 } 2543 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2544 // region is a conjunction of mask dim intervals). 2545 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2546 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2547 2548 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2549 // region. 2550 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2551 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2552 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2553 return success(); 2554 } 2555 }; 2556 2557 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2558 class StridedSliceConstantFolder final 2559 : public OpRewritePattern<ExtractStridedSliceOp> { 2560 public: 2561 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2562 2563 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2564 PatternRewriter &rewriter) const override { 2565 // Return if 'extractStridedSliceOp' operand is not defined by a 2566 // ConstantOp. 2567 auto constantOp = 2568 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2569 if (!constantOp) 2570 return failure(); 2571 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2572 if (!dense) 2573 return failure(); 2574 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2575 dense.getSplatValue<Attribute>()); 2576 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2577 newAttr); 2578 return success(); 2579 } 2580 }; 2581 2582 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2583 // BroadcastOp(ExtractStrideSliceOp). 2584 class StridedSliceBroadcast final 2585 : public OpRewritePattern<ExtractStridedSliceOp> { 2586 public: 2587 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2588 2589 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2590 PatternRewriter &rewriter) const override { 2591 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2592 if (!broadcast) 2593 return failure(); 2594 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2595 unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; 2596 auto dstVecType = op.getType().cast<VectorType>(); 2597 unsigned dstRank = dstVecType.getRank(); 2598 unsigned rankDiff = dstRank - srcRank; 2599 // Check if the most inner dimensions of the source of the broadcast are the 2600 // same as the destination of the extract. If this is the case we can just 2601 // use a broadcast as the original dimensions are untouched. 2602 bool lowerDimMatch = true; 2603 for (unsigned i = 0; i < srcRank; i++) { 2604 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2605 lowerDimMatch = false; 2606 break; 2607 } 2608 } 2609 Value source = broadcast.getSource(); 2610 // If the inner dimensions don't match, it means we need to extract from the 2611 // source of the orignal broadcast and then broadcast the extracted value. 2612 // We also need to handle degenerated cases where the source is effectively 2613 // just a single scalar. 2614 bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); 2615 if (!lowerDimMatch && !isScalarSrc) { 2616 source = rewriter.create<ExtractStridedSliceOp>( 2617 op->getLoc(), source, 2618 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2619 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2620 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2621 } 2622 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2623 return success(); 2624 } 2625 }; 2626 2627 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2628 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2629 public: 2630 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2631 2632 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2633 PatternRewriter &rewriter) const override { 2634 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2635 if (!splat) 2636 return failure(); 2637 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2638 return success(); 2639 } 2640 }; 2641 2642 } // namespace 2643 2644 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2645 RewritePatternSet &results, MLIRContext *context) { 2646 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2647 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2648 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2649 StridedSliceBroadcast, StridedSliceSplat>(context); 2650 } 2651 2652 //===----------------------------------------------------------------------===// 2653 // TransferReadOp 2654 //===----------------------------------------------------------------------===// 2655 2656 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2657 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2658 VectorType vectorType, Value source, 2659 ValueRange indices, AffineMapAttr permutationMapAttr, 2660 /*optional*/ ArrayAttr inBoundsAttr) { 2661 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2662 Value padding = builder.create<arith::ConstantOp>( 2663 result.location, elemType, builder.getZeroAttr(elemType)); 2664 build(builder, result, vectorType, source, indices, permutationMapAttr, 2665 padding, /*mask=*/Value(), inBoundsAttr); 2666 } 2667 2668 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2669 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2670 VectorType vectorType, Value source, 2671 ValueRange indices, AffineMap permutationMap, 2672 Optional<ArrayRef<bool>> inBounds) { 2673 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2674 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2675 ? builder.getBoolArrayAttr(inBounds.getValue()) 2676 : ArrayAttr(); 2677 build(builder, result, vectorType, source, indices, permutationMapAttr, 2678 inBoundsAttr); 2679 } 2680 2681 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2682 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2683 VectorType vectorType, Value source, 2684 ValueRange indices, Value padding, 2685 Optional<ArrayRef<bool>> inBounds) { 2686 AffineMap permutationMap = getTransferMinorIdentityMap( 2687 source.getType().cast<ShapedType>(), vectorType); 2688 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2689 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2690 ? builder.getBoolArrayAttr(inBounds.getValue()) 2691 : ArrayAttr(); 2692 build(builder, result, vectorType, source, indices, permutationMapAttr, 2693 padding, 2694 /*mask=*/Value(), inBoundsAttr); 2695 } 2696 2697 /// 4. Builder that sets padding to zero and permutation map to 2698 /// 'getMinorIdentityMap'. 2699 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2700 VectorType vectorType, Value source, 2701 ValueRange indices, 2702 Optional<ArrayRef<bool>> inBounds) { 2703 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2704 Value padding = builder.create<arith::ConstantOp>( 2705 result.location, elemType, builder.getZeroAttr(elemType)); 2706 build(builder, result, vectorType, source, indices, padding, inBounds); 2707 } 2708 2709 template <typename EmitFun> 2710 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2711 EmitFun emitOpError) { 2712 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2713 for (auto expr : permutationMap.getResults()) { 2714 auto dim = expr.dyn_cast<AffineDimExpr>(); 2715 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2716 if (zero) { 2717 if (zero.getValue() != 0) { 2718 return emitOpError( 2719 "requires a projected permutation_map (at most one dim or the zero " 2720 "constant can appear in each result)"); 2721 } 2722 continue; 2723 } 2724 if (!dim) { 2725 return emitOpError("requires a projected permutation_map (at most one " 2726 "dim or the zero constant can appear in each result)"); 2727 } 2728 if (seen[dim.getPosition()]) { 2729 return emitOpError( 2730 "requires a permutation_map that is a permutation (found one dim " 2731 "used more than once)"); 2732 } 2733 seen[dim.getPosition()] = true; 2734 } 2735 return success(); 2736 } 2737 2738 static LogicalResult 2739 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2740 VectorType vectorType, VectorType maskType, 2741 AffineMap permutationMap, ArrayAttr inBounds) { 2742 if (op->hasAttr("masked")) { 2743 return op->emitOpError("masked attribute has been removed. " 2744 "Use in_bounds instead."); 2745 } 2746 2747 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2748 return op->emitOpError( 2749 "requires source to be a memref or ranked tensor type"); 2750 2751 auto elementType = shapedType.getElementType(); 2752 DataLayout dataLayout = DataLayout::closest(op); 2753 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2754 // Memref or tensor has vector element type. 2755 unsigned sourceVecSize = 2756 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2757 vectorElementType.getShape().back(); 2758 unsigned resultVecSize = 2759 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2760 vectorType.getShape().back(); 2761 if (resultVecSize % sourceVecSize != 0) 2762 return op->emitOpError( 2763 "requires the bitwidth of the minor 1-D vector to be an integral " 2764 "multiple of the bitwidth of the minor 1-D vector of the source"); 2765 2766 unsigned sourceVecEltRank = vectorElementType.getRank(); 2767 unsigned resultVecRank = vectorType.getRank(); 2768 if (sourceVecEltRank > resultVecRank) 2769 return op->emitOpError( 2770 "requires source vector element and vector result ranks to match."); 2771 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2772 // Check that permutation map results match 'rankOffset' of vector type. 2773 if (permutationMap.getNumResults() != rankOffset) 2774 return op->emitOpError("requires a permutation_map with result dims of " 2775 "the same rank as the vector type"); 2776 2777 if (maskType) 2778 return op->emitOpError("does not support masks with vector element type"); 2779 } else { 2780 // Memref or tensor has scalar element type. 2781 unsigned minorSize = 2782 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2783 unsigned resultVecSize = 2784 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2785 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2786 return op->emitOpError( 2787 "requires the bitwidth of the minor 1-D vector to be an integral " 2788 "multiple of the bitwidth of the source element type"); 2789 2790 // Check that permutation map results match rank of vector type. 2791 if (permutationMap.getNumResults() != vectorType.getRank()) 2792 return op->emitOpError("requires a permutation_map with result dims of " 2793 "the same rank as the vector type"); 2794 2795 VectorType expectedMaskType = 2796 vector::detail::transferMaskType(vectorType, permutationMap); 2797 if (maskType && expectedMaskType != maskType) 2798 return op->emitOpError("expects mask type consistent with permutation " 2799 "map: ") 2800 << maskType; 2801 } 2802 2803 if (permutationMap.getNumSymbols() != 0) 2804 return op->emitOpError("requires permutation_map without symbols"); 2805 2806 if (permutationMap.getNumInputs() != shapedType.getRank()) 2807 return op->emitOpError("requires a permutation_map with input dims of the " 2808 "same rank as the source type"); 2809 2810 if (inBounds) { 2811 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2812 return op->emitOpError("expects the optional in_bounds attr of same rank " 2813 "as permutation_map results: ") 2814 << AffineMapAttr::get(permutationMap) 2815 << " vs inBounds of size: " << inBounds.size(); 2816 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2817 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2818 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2819 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2820 } 2821 2822 return success(); 2823 } 2824 2825 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2826 SmallVector<StringRef, 3> elidedAttrs; 2827 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2828 if (op.permutation_map().isMinorIdentity()) 2829 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2830 bool elideInBounds = true; 2831 if (auto inBounds = op.in_bounds()) { 2832 for (auto attr : *inBounds) { 2833 if (attr.template cast<BoolAttr>().getValue()) { 2834 elideInBounds = false; 2835 break; 2836 } 2837 } 2838 } 2839 if (elideInBounds) 2840 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2841 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2842 } 2843 2844 void TransferReadOp::print(OpAsmPrinter &p) { 2845 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2846 if (getMask()) 2847 p << ", " << getMask(); 2848 printTransferAttrs(p, *this); 2849 p << " : " << getShapedType() << ", " << getVectorType(); 2850 } 2851 2852 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2853 auto &builder = parser.getBuilder(); 2854 SMLoc typesLoc; 2855 OpAsmParser::UnresolvedOperand sourceInfo; 2856 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2857 OpAsmParser::UnresolvedOperand paddingInfo; 2858 SmallVector<Type, 2> types; 2859 OpAsmParser::UnresolvedOperand maskInfo; 2860 // Parsing with support for paddingValue. 2861 if (parser.parseOperand(sourceInfo) || 2862 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2863 parser.parseComma() || parser.parseOperand(paddingInfo)) 2864 return failure(); 2865 ParseResult hasMask = parser.parseOptionalComma(); 2866 if (hasMask.succeeded()) { 2867 parser.parseOperand(maskInfo); 2868 } 2869 if (parser.parseOptionalAttrDict(result.attributes) || 2870 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2871 return failure(); 2872 if (types.size() != 2) 2873 return parser.emitError(typesLoc, "requires two types"); 2874 auto indexType = builder.getIndexType(); 2875 auto shapedType = types[0].dyn_cast<ShapedType>(); 2876 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2877 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2878 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2879 if (!vectorType) 2880 return parser.emitError(typesLoc, "requires vector type"); 2881 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2882 Attribute mapAttr = result.attributes.get(permutationAttrName); 2883 if (!mapAttr) { 2884 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2885 // Update `mapAttr` that is used later to determine mask type. 2886 mapAttr = AffineMapAttr::get(permMap); 2887 result.attributes.set(permutationAttrName, mapAttr); 2888 } 2889 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2890 parser.resolveOperands(indexInfo, indexType, result.operands) || 2891 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2892 result.operands)) 2893 return failure(); 2894 if (hasMask.succeeded()) { 2895 if (shapedType.getElementType().dyn_cast<VectorType>()) 2896 return parser.emitError( 2897 maskInfo.location, "does not support masks with vector element type"); 2898 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2899 // Instead of adding the mask type as an op type, compute it based on the 2900 // vector type and the permutation map (to keep the type signature small). 2901 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2902 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2903 return failure(); 2904 } 2905 result.addAttribute( 2906 TransferReadOp::getOperandSegmentSizeAttr(), 2907 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2908 static_cast<int32_t>(hasMask.succeeded())})); 2909 return parser.addTypeToList(vectorType, result.types); 2910 } 2911 2912 LogicalResult TransferReadOp::verify() { 2913 // Consistency of elemental types in source and vector. 2914 ShapedType shapedType = getShapedType(); 2915 VectorType vectorType = getVectorType(); 2916 VectorType maskType = getMaskType(); 2917 auto paddingType = getPadding().getType(); 2918 auto permutationMap = getPermutationMap(); 2919 auto sourceElementType = shapedType.getElementType(); 2920 2921 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 2922 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2923 2924 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2925 shapedType, vectorType, maskType, permutationMap, 2926 getInBounds() ? *getInBounds() : ArrayAttr()))) 2927 return failure(); 2928 2929 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2930 // Source has vector element type. 2931 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2932 if (sourceVectorElementType != paddingType) 2933 return emitOpError( 2934 "requires source element type and padding type to match."); 2935 2936 } else { 2937 // Check that 'paddingType' is valid to store in a vector type. 2938 if (!VectorType::isValidElementType(paddingType)) 2939 return emitOpError("requires valid padding vector elemental type"); 2940 2941 // Check that padding type and vector element types match. 2942 if (paddingType != sourceElementType) 2943 return emitOpError( 2944 "requires formal padding and source of the same elemental type"); 2945 } 2946 2947 return verifyPermutationMap(permutationMap, 2948 [&](Twine t) { return emitOpError(t); }); 2949 } 2950 2951 /// This is a common class used for patterns of the form 2952 /// ``` 2953 /// someop(memrefcast) -> someop 2954 /// ``` 2955 /// It folds the source of the memref.cast into the root operation directly. 2956 static LogicalResult foldMemRefCast(Operation *op) { 2957 bool folded = false; 2958 for (OpOperand &operand : op->getOpOperands()) { 2959 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2960 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2961 operand.set(castOp.getOperand()); 2962 folded = true; 2963 } 2964 } 2965 return success(folded); 2966 } 2967 2968 static LogicalResult foldTensorCast(Operation *op) { 2969 bool folded = false; 2970 for (OpOperand &operand : op->getOpOperands()) { 2971 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2972 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2973 operand.set(castOp.getOperand()); 2974 folded = true; 2975 } 2976 } 2977 return success(folded); 2978 } 2979 2980 template <typename TransferOp> 2981 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2982 // TODO: support more aggressive createOrFold on: 2983 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2984 if (op.getShapedType().isDynamicDim(indicesIdx)) 2985 return false; 2986 Value index = op.getIndices()[indicesIdx]; 2987 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2988 if (!cstOp) 2989 return false; 2990 2991 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2992 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 2993 2994 return cstOp.value() + vectorSize <= sourceSize; 2995 } 2996 2997 template <typename TransferOp> 2998 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 2999 // TODO: support 0-d corner case. 3000 // TODO: Be less conservative. 3001 if (op.getTransferRank() == 0) 3002 return failure(); 3003 AffineMap permutationMap = op.getPermutationMap(); 3004 bool changed = false; 3005 SmallVector<bool, 4> newInBounds; 3006 newInBounds.reserve(op.getTransferRank()); 3007 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 3008 // Already marked as in-bounds, nothing to see here. 3009 if (op.isDimInBounds(i)) { 3010 newInBounds.push_back(true); 3011 continue; 3012 } 3013 // Currently out-of-bounds, check whether we can statically determine it is 3014 // inBounds. 3015 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 3016 assert(dimExpr && "Broadcast dims must be in-bounds"); 3017 auto inBounds = 3018 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 3019 newInBounds.push_back(inBounds); 3020 // We commit the pattern if it is "more inbounds". 3021 changed |= inBounds; 3022 } 3023 if (!changed) 3024 return failure(); 3025 // OpBuilder is only used as a helper to build an I64ArrayAttr. 3026 OpBuilder b(op.getContext()); 3027 op->setAttr(TransferOp::getInBoundsAttrStrName(), 3028 b.getBoolArrayAttr(newInBounds)); 3029 return success(); 3030 } 3031 3032 /// ``` 3033 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3034 /// : vector<1x4xf32>, tensor<4x4xf32> 3035 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 3036 /// : tensor<4x4xf32>, vector<1x4xf32> 3037 /// ``` 3038 /// -> Folds into 3039 /// ``` 3040 /// %v0 3041 /// ``` 3042 static Value foldRAW(TransferReadOp readOp) { 3043 if (!readOp.getShapedType().isa<RankedTensorType>()) 3044 return {}; 3045 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3046 while (defWrite) { 3047 if (checkSameValueRAW(defWrite, readOp)) 3048 return defWrite.getVector(); 3049 if (!isDisjointTransferIndices( 3050 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3051 cast<VectorTransferOpInterface>(readOp.getOperation()))) 3052 break; 3053 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3054 } 3055 return {}; 3056 } 3057 3058 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 3059 if (Value vec = foldRAW(*this)) 3060 return vec; 3061 /// transfer_read(memrefcast) -> transfer_read 3062 if (succeeded(foldTransferInBoundsAttribute(*this))) 3063 return getResult(); 3064 if (succeeded(foldMemRefCast(*this))) 3065 return getResult(); 3066 if (succeeded(foldTensorCast(*this))) 3067 return getResult(); 3068 return OpFoldResult(); 3069 } 3070 3071 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3072 return llvm::to_vector<4>(getVectorType().getShape()); 3073 } 3074 3075 void TransferReadOp::getEffects( 3076 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3077 &effects) { 3078 if (getShapedType().isa<MemRefType>()) 3079 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 3080 SideEffects::DefaultResource::get()); 3081 } 3082 3083 namespace { 3084 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3085 /// 3086 /// ``` 3087 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3088 /// : tensor<?x?xf32> to tensor<?x?xf32> 3089 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3090 /// : tensor<?x?xf32>, vector<4x5xf32> 3091 /// ``` 3092 /// is rewritten to: 3093 /// ``` 3094 /// %p0 = arith.addi %a, %e : index 3095 /// %p1 = arith.addi %b, %f : index 3096 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3097 /// : tensor<?x?xf32>, vector<4x5xf32> 3098 /// ``` 3099 struct FoldExtractSliceIntoTransferRead 3100 : public OpRewritePattern<TransferReadOp> { 3101 public: 3102 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3103 3104 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3105 PatternRewriter &rewriter) const override { 3106 // TODO: support 0-d corner case. 3107 if (xferOp.getTransferRank() == 0) 3108 return failure(); 3109 if (xferOp.hasOutOfBoundsDim()) 3110 return failure(); 3111 if (!xferOp.getPermutationMap().isIdentity()) 3112 return failure(); 3113 if (xferOp.getMask()) 3114 return failure(); 3115 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3116 if (!extractOp) 3117 return failure(); 3118 if (!extractOp.hasUnitStride()) 3119 return failure(); 3120 3121 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3122 // dims are exactly the leading dims. I.e. the following is illegal: 3123 // ``` 3124 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3125 // tensor<2x1x4xf32> to tensor<2x4xf32> 3126 // %1 = vector.transfer_read %0[0,0], %cst : 3127 // tensor<2x4xf32>, vector<2x4xf32> 3128 // ``` 3129 // 3130 // Cannot fold into: 3131 // ``` 3132 // %0 = vector.transfer_read %t[0,0,0], %cst : 3133 // tensor<2x1x4xf32>, vector<2x4xf32> 3134 // ``` 3135 // For this, check the trailing `vectorRank` dims of the extract_slice 3136 // result tensor match the trailing dims of the inferred result tensor. 3137 int64_t rankReduced = 3138 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3139 int64_t vectorRank = xferOp.getVectorType().getRank(); 3140 RankedTensorType inferredDestTensorType = 3141 tensor::ExtractSliceOp::inferResultType( 3142 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3143 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3144 auto actualDestTensorShape = extractOp.getType().getShape(); 3145 if (rankReduced > 0 && 3146 actualDestTensorShape.take_back(vectorRank) != 3147 inferredDestTensorType.getShape().take_back(vectorRank)) 3148 return failure(); 3149 3150 SmallVector<Value> newIndices; 3151 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3152 // indices first. 3153 for (int64_t i = 0; i < rankReduced; ++i) { 3154 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3155 newIndices.push_back(getValueOrCreateConstantIndexOp( 3156 rewriter, extractOp.getLoc(), offset)); 3157 } 3158 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3159 OpFoldResult offset = 3160 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3161 newIndices.push_back(rewriter.create<arith::AddIOp>( 3162 xferOp->getLoc(), it.value(), 3163 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3164 offset))); 3165 } 3166 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3167 rewriter.replaceOpWithNewOp<TransferReadOp>( 3168 xferOp, xferOp.getVectorType(), extractOp.source(), newIndices, 3169 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3170 3171 return success(); 3172 } 3173 }; 3174 } // namespace 3175 3176 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3177 MLIRContext *context) { 3178 results.add<FoldExtractSliceIntoTransferRead>(context); 3179 } 3180 3181 //===----------------------------------------------------------------------===// 3182 // TransferWriteOp 3183 //===----------------------------------------------------------------------===// 3184 3185 /// 1. Builder with type inference. 3186 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3187 Value vector, Value dest, ValueRange indices, 3188 AffineMapAttr permutationMapAttr, 3189 /*optional*/ Value mask, 3190 /*optional*/ ArrayAttr inBoundsAttr) { 3191 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3192 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3193 mask, inBoundsAttr); 3194 } 3195 3196 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3197 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3198 Value vector, Value dest, ValueRange indices, 3199 AffineMapAttr permutationMapAttr, 3200 /*optional*/ ArrayAttr inBoundsAttr) { 3201 build(builder, result, vector, dest, indices, permutationMapAttr, 3202 /*mask=*/Value(), inBoundsAttr); 3203 } 3204 3205 /// 3. Builder with type inference that sets an empty mask (variant without 3206 /// attrs) 3207 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3208 Value vector, Value dest, ValueRange indices, 3209 AffineMap permutationMap, 3210 Optional<ArrayRef<bool>> inBounds) { 3211 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3212 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3213 ? builder.getBoolArrayAttr(inBounds.getValue()) 3214 : ArrayAttr(); 3215 build(builder, result, vector, dest, indices, permutationMapAttr, 3216 /*mask=*/Value(), inBoundsAttr); 3217 } 3218 3219 /// 4. Builder with type inference that sets an empty mask and sets permutation 3220 /// map to 'getMinorIdentityMap'. 3221 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3222 Value vector, Value dest, ValueRange indices, 3223 Optional<ArrayRef<bool>> inBounds) { 3224 auto vectorType = vector.getType().cast<VectorType>(); 3225 AffineMap permutationMap = getTransferMinorIdentityMap( 3226 dest.getType().cast<ShapedType>(), vectorType); 3227 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3228 } 3229 3230 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3231 OperationState &result) { 3232 auto &builder = parser.getBuilder(); 3233 SMLoc typesLoc; 3234 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3235 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3236 SmallVector<Type, 2> types; 3237 OpAsmParser::UnresolvedOperand maskInfo; 3238 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3239 parser.parseOperand(sourceInfo) || 3240 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3241 return failure(); 3242 ParseResult hasMask = parser.parseOptionalComma(); 3243 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3244 return failure(); 3245 if (parser.parseOptionalAttrDict(result.attributes) || 3246 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3247 return failure(); 3248 if (types.size() != 2) 3249 return parser.emitError(typesLoc, "requires two types"); 3250 auto indexType = builder.getIndexType(); 3251 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3252 if (!vectorType) 3253 return parser.emitError(typesLoc, "requires vector type"); 3254 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3255 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3256 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3257 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3258 auto attr = result.attributes.get(permutationAttrName); 3259 if (!attr) { 3260 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3261 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3262 } 3263 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3264 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3265 parser.resolveOperands(indexInfo, indexType, result.operands)) 3266 return failure(); 3267 if (hasMask.succeeded()) { 3268 if (shapedType.getElementType().dyn_cast<VectorType>()) 3269 return parser.emitError( 3270 maskInfo.location, "does not support masks with vector element type"); 3271 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3272 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3273 return failure(); 3274 } 3275 result.addAttribute( 3276 TransferWriteOp::getOperandSegmentSizeAttr(), 3277 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3278 static_cast<int32_t>(hasMask.succeeded())})); 3279 return failure(shapedType.isa<RankedTensorType>() && 3280 parser.addTypeToList(shapedType, result.types)); 3281 } 3282 3283 void TransferWriteOp::print(OpAsmPrinter &p) { 3284 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3285 if (getMask()) 3286 p << ", " << getMask(); 3287 printTransferAttrs(p, *this); 3288 p << " : " << getVectorType() << ", " << getShapedType(); 3289 } 3290 3291 LogicalResult TransferWriteOp::verify() { 3292 // Consistency of elemental types in shape and vector. 3293 ShapedType shapedType = getShapedType(); 3294 VectorType vectorType = getVectorType(); 3295 VectorType maskType = getMaskType(); 3296 auto permutationMap = getPermutationMap(); 3297 3298 if (llvm::size(getIndices()) != shapedType.getRank()) 3299 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3300 3301 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3302 // as the semantics is unclear. This can be revisited later if necessary. 3303 if (hasBroadcastDim()) 3304 return emitOpError("should not have broadcast dimensions"); 3305 3306 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3307 shapedType, vectorType, maskType, permutationMap, 3308 getInBounds() ? *getInBounds() : ArrayAttr()))) 3309 return failure(); 3310 3311 return verifyPermutationMap(permutationMap, 3312 [&](Twine t) { return emitOpError(t); }); 3313 } 3314 3315 /// Fold: 3316 /// ``` 3317 /// %t1 = ... 3318 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3319 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3320 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3321 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3322 /// ``` 3323 /// 3324 /// into: 3325 /// 3326 /// ``` 3327 /// %t0 3328 /// ``` 3329 /// 3330 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3331 /// block argument or has side effects. 3332 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3333 ArrayRef<Attribute>, 3334 SmallVectorImpl<OpFoldResult> &results) { 3335 // TODO: support 0-d corner case. 3336 if (write.getTransferRank() == 0) 3337 return failure(); 3338 auto rankedTensorType = 3339 write.getSource().getType().dyn_cast<RankedTensorType>(); 3340 // If not operating on tensors, bail. 3341 if (!rankedTensorType) 3342 return failure(); 3343 // If no read, bail. 3344 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3345 if (!read) 3346 return failure(); 3347 // TODO: support 0-d corner case. 3348 if (read.getTransferRank() == 0) 3349 return failure(); 3350 // For now, only accept minor identity. Future: composition is minor identity. 3351 if (!read.getPermutationMap().isMinorIdentity() || 3352 !write.getPermutationMap().isMinorIdentity()) 3353 return failure(); 3354 // Bail on mismatching ranks. 3355 if (read.getTransferRank() != write.getTransferRank()) 3356 return failure(); 3357 // Bail on potential out-of-bounds accesses. 3358 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3359 return failure(); 3360 // Tensor types must be the same. 3361 if (read.getSource().getType() != rankedTensorType) 3362 return failure(); 3363 // Vector types must be the same. 3364 if (read.getVectorType() != write.getVectorType()) 3365 return failure(); 3366 // Vector and Tensor shapes must match. 3367 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3368 return failure(); 3369 // If any index is nonzero. 3370 auto isNotConstantZero = [](Value v) { 3371 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3372 return !cstOp || cstOp.value() != 0; 3373 }; 3374 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3375 llvm::any_of(write.getIndices(), isNotConstantZero)) 3376 return failure(); 3377 // Success. 3378 results.push_back(read.getSource()); 3379 return success(); 3380 } 3381 3382 static bool checkSameValueWAR(vector::TransferReadOp read, 3383 vector::TransferWriteOp write) { 3384 return read.getSource() == write.getSource() && 3385 read.getIndices() == write.getIndices() && 3386 read.getPermutationMap() == write.getPermutationMap() && 3387 read.getVectorType() == write.getVectorType() && !read.getMask() && 3388 !write.getMask(); 3389 } 3390 /// Fold transfer_write write after read: 3391 /// ``` 3392 /// %t0 = ... 3393 /// %v = vector.transfer_read %t0[%c0...] : 3394 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3395 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3396 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3397 /// ``` 3398 /// 3399 /// into: 3400 /// 3401 /// ``` 3402 /// %t0 3403 /// ``` 3404 static LogicalResult foldWAR(TransferWriteOp write, 3405 SmallVectorImpl<OpFoldResult> &results) { 3406 if (!write.getSource().getType().isa<RankedTensorType>()) 3407 return failure(); 3408 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3409 if (!read) 3410 return failure(); 3411 3412 if (!checkSameValueWAR(read, write)) 3413 return failure(); 3414 results.push_back(read.getSource()); 3415 return success(); 3416 } 3417 3418 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3419 SmallVectorImpl<OpFoldResult> &results) { 3420 if (succeeded(foldReadInitWrite(*this, operands, results))) 3421 return success(); 3422 if (succeeded(foldWAR(*this, results))) 3423 return success(); 3424 if (succeeded(foldTransferInBoundsAttribute(*this))) 3425 return success(); 3426 return foldMemRefCast(*this); 3427 } 3428 3429 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3430 return llvm::to_vector<4>(getVectorType().getShape()); 3431 } 3432 3433 void TransferWriteOp::getEffects( 3434 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3435 &effects) { 3436 if (getShapedType().isa<MemRefType>()) 3437 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3438 SideEffects::DefaultResource::get()); 3439 } 3440 3441 namespace { 3442 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3443 /// DCE 3444 /// ``` 3445 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3446 /// : vector<1x4xf32>, tensor<4x4xf32> 3447 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3448 /// : vector<1x4xf32>, tensor<4x4xf32> 3449 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3450 /// : vector<1x4xf32>, tensor<4x4xf32> 3451 /// ``` 3452 /// 3453 /// into: 3454 /// 3455 /// ``` 3456 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3457 /// : vector<1x4xf32>, tensor<4x4xf32> 3458 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3459 /// : vector<1x4xf32>, tensor<4x4xf32> 3460 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3461 /// : vector<1x4xf32>, tensor<4x4xf32> 3462 /// ``` 3463 /// 3464 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3465 /// any other uses. 3466 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3467 public: 3468 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3469 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3470 PatternRewriter &rewriter) const override { 3471 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3472 return failure(); 3473 vector::TransferWriteOp writeToModify = writeOp; 3474 3475 auto defWrite = 3476 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3477 while (defWrite) { 3478 if (checkSameValueWAW(writeOp, defWrite)) { 3479 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3480 return success(); 3481 } 3482 if (!isDisjointTransferIndices( 3483 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3484 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3485 break; 3486 // If the previous write op doesn't have any other use we an safely look 3487 // at the previous store to see if it can be removed. 3488 if (!defWrite->hasOneUse()) 3489 break; 3490 writeToModify = defWrite; 3491 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3492 } 3493 return failure(); 3494 } 3495 }; 3496 3497 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3498 /// could directly write to the insert_slice's destination. E.g.: 3499 /// 3500 /// ``` 3501 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3502 /// : vector<4x5xf32>, tensor<4x5xf32> 3503 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3504 /// : tensor<4x5xf32> into tensor<?x?xf32> 3505 /// ``` 3506 /// is rewritten to: 3507 /// ``` 3508 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3509 /// : vector<4x5xf32>, tensor<?x?xf32> 3510 /// ``` 3511 struct FoldInsertSliceIntoTransferWrite 3512 : public OpRewritePattern<tensor::InsertSliceOp> { 3513 public: 3514 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3515 3516 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3517 PatternRewriter &rewriter) const override { 3518 if (!insertOp.hasUnitStride()) 3519 return failure(); 3520 3521 auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>(); 3522 if (!xferOp) 3523 return failure(); 3524 // TODO: support 0-d corner case. 3525 if (xferOp.getTransferRank() == 0) 3526 return failure(); 3527 3528 if (xferOp.hasOutOfBoundsDim()) 3529 return failure(); 3530 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3531 return failure(); 3532 if (xferOp.getMask()) 3533 return failure(); 3534 // Fold only if the TransferWriteOp completely overwrites the `source` with 3535 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3536 // content is the data of the vector. 3537 if (!llvm::equal(xferOp.getVectorType().getShape(), 3538 xferOp.getShapedType().getShape())) 3539 return failure(); 3540 if (!xferOp.getPermutationMap().isIdentity()) 3541 return failure(); 3542 3543 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3544 // dims are exactly the leading dims. I.e. the following is illegal: 3545 // ``` 3546 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3547 // vector<2x4xf32>, tensor<2x4xf32> 3548 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3549 // tensor<2x4xf32> into tensor<2x1x4xf32> 3550 // ``` 3551 // 3552 // Cannot fold into: 3553 // ``` 3554 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3555 // vector<2x4xf32>, tensor<2x1x4xf32> 3556 // ``` 3557 // For this, check the trailing `vectorRank` dims of the insert_slice result 3558 // tensor match the trailing dims of the inferred result tensor. 3559 int64_t rankReduced = 3560 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3561 int64_t vectorRank = xferOp.getVectorType().getRank(); 3562 RankedTensorType inferredSourceTensorType = 3563 tensor::ExtractSliceOp::inferResultType( 3564 insertOp.getType(), insertOp.getMixedOffsets(), 3565 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3566 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3567 if (rankReduced > 0 && 3568 actualSourceTensorShape.take_back(vectorRank) != 3569 inferredSourceTensorType.getShape().take_back(vectorRank)) 3570 return failure(); 3571 3572 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3573 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3574 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3575 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3576 insertOp.dest(), indices, 3577 ArrayRef<bool>{inBounds}); 3578 return success(); 3579 } 3580 }; 3581 3582 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to 3583 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is 3584 /// overwritten and inserted into another tensor. After this rewrite, the 3585 /// operations bufferize in-place since all of them work on the same slice. 3586 /// 3587 /// For example: 3588 /// ```mlir 3589 /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] 3590 /// : vector<8x16xf32>, tensor<8x16xf32> 3591 /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] 3592 /// : tensor<8x16xf32> to tensor<?x?xf32> 3593 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3594 /// : tensor<?x?xf32> into tensor<27x37xf32> 3595 /// ``` 3596 /// folds to 3597 /// ```mlir 3598 /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3599 /// : tensor<27x37xf32> to tensor<?x?xf32> 3600 /// %1 = vector.transfer_write %vec, %0[%c0, %c0] 3601 /// : vector<8x16xf32>, tensor<?x?xf32> 3602 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3603 /// : tensor<?x?xf32> into tensor<27x37xf32> 3604 /// ``` 3605 struct SwapExtractSliceOfTransferWrite 3606 : public OpRewritePattern<tensor::InsertSliceOp> { 3607 public: 3608 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3609 3610 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3611 PatternRewriter &rewriter) const override { 3612 if (!insertOp.hasUnitStride()) 3613 return failure(); 3614 auto extractOp = insertOp.source().getDefiningOp<tensor::ExtractSliceOp>(); 3615 if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) 3616 return failure(); 3617 auto transferOp = extractOp.source().getDefiningOp<TransferWriteOp>(); 3618 if (!transferOp || !transferOp->hasOneUse()) 3619 return failure(); 3620 3621 // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is 3622 // rank-reducing. 3623 if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { 3624 return rewriter.notifyMatchFailure(insertOp, 3625 "use-def chain is rank-reducing"); 3626 } 3627 3628 // Fail if tensor::ExtractSliceOp has non-zero offset. 3629 if (!extractOp.hasZeroOffset()) { 3630 return rewriter.notifyMatchFailure(insertOp, 3631 "ExtractSliceOp has non-zero offset"); 3632 } 3633 3634 // Fail if tensor::TransferWriteOp has non-zero offset. 3635 if (!llvm::all_of(transferOp.getIndices(), [](Value value) { 3636 return getConstantIntValue(value) == static_cast<int64_t>(0); 3637 })) { 3638 return rewriter.notifyMatchFailure(insertOp, 3639 "TranferWriteOp has non-zero offset"); 3640 } 3641 3642 // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. 3643 for (const auto &it : 3644 llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { 3645 if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) { 3646 return rewriter.notifyMatchFailure( 3647 insertOp, "InsertSliceOp and ExtractSliceOp sizes differ"); 3648 } 3649 } 3650 3651 // Fail if the vector::TransferWriteOp may not overwrite the full tensor. 3652 assert(transferOp.getVectorType().hasStaticShape() && 3653 "expected vector to have a static shape"); 3654 ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape(); 3655 SmallVector<int64_t> resultShape = applyPermutationMap( 3656 transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); 3657 if (transferOp.getMask() || !vectorShape.equals(resultShape)) { 3658 return rewriter.notifyMatchFailure( 3659 insertOp, "TransferWriteOp may not write the full tensor."); 3660 } 3661 3662 // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. 3663 SmallVector<int64_t> newResultShape = applyPermutationMap( 3664 transferOp.getPermutationMap(), insertOp.getSourceType().getShape()); 3665 SmallVector<bool> newInBounds; 3666 for (const auto &en : enumerate(newResultShape)) 3667 newInBounds.push_back(en.value() == vectorShape[en.index()]); 3668 auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>( 3669 extractOp.getLoc(), insertOp.getSourceType(), insertOp.dest(), 3670 insertOp.getMixedOffsets(), insertOp.getMixedSizes(), 3671 insertOp.getMixedStrides()); 3672 auto newTransferWriteOp = rewriter.create<TransferWriteOp>( 3673 transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), 3674 transferOp.getIndices(), transferOp.getPermutationMapAttr(), 3675 rewriter.getBoolArrayAttr(newInBounds)); 3676 rewriter.updateRootInPlace(insertOp, [&]() { 3677 insertOp.sourceMutable().assign(newTransferWriteOp.getResult()); 3678 }); 3679 return success(); 3680 } 3681 }; 3682 3683 } // namespace 3684 3685 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3686 MLIRContext *context) { 3687 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite, 3688 SwapExtractSliceOfTransferWrite>(context); 3689 } 3690 3691 //===----------------------------------------------------------------------===// 3692 // LoadOp 3693 //===----------------------------------------------------------------------===// 3694 3695 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3696 MemRefType memRefTy) { 3697 if (!isLastMemrefDimUnitStride(memRefTy)) 3698 return op->emitOpError("most minor memref dim must have unit stride"); 3699 return success(); 3700 } 3701 3702 LogicalResult vector::LoadOp::verify() { 3703 VectorType resVecTy = getVectorType(); 3704 MemRefType memRefTy = getMemRefType(); 3705 3706 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3707 return failure(); 3708 3709 // Checks for vector memrefs. 3710 Type memElemTy = memRefTy.getElementType(); 3711 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3712 if (memVecTy != resVecTy) 3713 return emitOpError("base memref and result vector types should match"); 3714 memElemTy = memVecTy.getElementType(); 3715 } 3716 3717 if (resVecTy.getElementType() != memElemTy) 3718 return emitOpError("base and result element types should match"); 3719 if (llvm::size(getIndices()) != memRefTy.getRank()) 3720 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3721 return success(); 3722 } 3723 3724 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3725 if (succeeded(foldMemRefCast(*this))) 3726 return getResult(); 3727 return OpFoldResult(); 3728 } 3729 3730 //===----------------------------------------------------------------------===// 3731 // StoreOp 3732 //===----------------------------------------------------------------------===// 3733 3734 LogicalResult vector::StoreOp::verify() { 3735 VectorType valueVecTy = getVectorType(); 3736 MemRefType memRefTy = getMemRefType(); 3737 3738 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3739 return failure(); 3740 3741 // Checks for vector memrefs. 3742 Type memElemTy = memRefTy.getElementType(); 3743 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3744 if (memVecTy != valueVecTy) 3745 return emitOpError( 3746 "base memref and valueToStore vector types should match"); 3747 memElemTy = memVecTy.getElementType(); 3748 } 3749 3750 if (valueVecTy.getElementType() != memElemTy) 3751 return emitOpError("base and valueToStore element type should match"); 3752 if (llvm::size(getIndices()) != memRefTy.getRank()) 3753 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3754 return success(); 3755 } 3756 3757 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3758 SmallVectorImpl<OpFoldResult> &results) { 3759 return foldMemRefCast(*this); 3760 } 3761 3762 //===----------------------------------------------------------------------===// 3763 // MaskedLoadOp 3764 //===----------------------------------------------------------------------===// 3765 3766 LogicalResult MaskedLoadOp::verify() { 3767 VectorType maskVType = getMaskVectorType(); 3768 VectorType passVType = getPassThruVectorType(); 3769 VectorType resVType = getVectorType(); 3770 MemRefType memType = getMemRefType(); 3771 3772 if (resVType.getElementType() != memType.getElementType()) 3773 return emitOpError("base and result element type should match"); 3774 if (llvm::size(getIndices()) != memType.getRank()) 3775 return emitOpError("requires ") << memType.getRank() << " indices"; 3776 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3777 return emitOpError("expected result dim to match mask dim"); 3778 if (resVType != passVType) 3779 return emitOpError("expected pass_thru of same type as result type"); 3780 return success(); 3781 } 3782 3783 namespace { 3784 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3785 public: 3786 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3787 LogicalResult matchAndRewrite(MaskedLoadOp load, 3788 PatternRewriter &rewriter) const override { 3789 switch (get1DMaskFormat(load.getMask())) { 3790 case MaskFormat::AllTrue: 3791 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3792 load, load.getType(), load.getBase(), load.getIndices()); 3793 return success(); 3794 case MaskFormat::AllFalse: 3795 rewriter.replaceOp(load, load.getPassThru()); 3796 return success(); 3797 case MaskFormat::Unknown: 3798 return failure(); 3799 } 3800 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3801 } 3802 }; 3803 } // namespace 3804 3805 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3806 MLIRContext *context) { 3807 results.add<MaskedLoadFolder>(context); 3808 } 3809 3810 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3811 if (succeeded(foldMemRefCast(*this))) 3812 return getResult(); 3813 return OpFoldResult(); 3814 } 3815 3816 //===----------------------------------------------------------------------===// 3817 // MaskedStoreOp 3818 //===----------------------------------------------------------------------===// 3819 3820 LogicalResult MaskedStoreOp::verify() { 3821 VectorType maskVType = getMaskVectorType(); 3822 VectorType valueVType = getVectorType(); 3823 MemRefType memType = getMemRefType(); 3824 3825 if (valueVType.getElementType() != memType.getElementType()) 3826 return emitOpError("base and valueToStore element type should match"); 3827 if (llvm::size(getIndices()) != memType.getRank()) 3828 return emitOpError("requires ") << memType.getRank() << " indices"; 3829 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3830 return emitOpError("expected valueToStore dim to match mask dim"); 3831 return success(); 3832 } 3833 3834 namespace { 3835 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3836 public: 3837 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3838 LogicalResult matchAndRewrite(MaskedStoreOp store, 3839 PatternRewriter &rewriter) const override { 3840 switch (get1DMaskFormat(store.getMask())) { 3841 case MaskFormat::AllTrue: 3842 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3843 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3844 return success(); 3845 case MaskFormat::AllFalse: 3846 rewriter.eraseOp(store); 3847 return success(); 3848 case MaskFormat::Unknown: 3849 return failure(); 3850 } 3851 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3852 } 3853 }; 3854 } // namespace 3855 3856 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3857 MLIRContext *context) { 3858 results.add<MaskedStoreFolder>(context); 3859 } 3860 3861 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3862 SmallVectorImpl<OpFoldResult> &results) { 3863 return foldMemRefCast(*this); 3864 } 3865 3866 //===----------------------------------------------------------------------===// 3867 // GatherOp 3868 //===----------------------------------------------------------------------===// 3869 3870 LogicalResult GatherOp::verify() { 3871 VectorType indVType = getIndexVectorType(); 3872 VectorType maskVType = getMaskVectorType(); 3873 VectorType resVType = getVectorType(); 3874 MemRefType memType = getMemRefType(); 3875 3876 if (resVType.getElementType() != memType.getElementType()) 3877 return emitOpError("base and result element type should match"); 3878 if (llvm::size(getIndices()) != memType.getRank()) 3879 return emitOpError("requires ") << memType.getRank() << " indices"; 3880 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3881 return emitOpError("expected result dim to match indices dim"); 3882 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3883 return emitOpError("expected result dim to match mask dim"); 3884 if (resVType != getPassThruVectorType()) 3885 return emitOpError("expected pass_thru of same type as result type"); 3886 return success(); 3887 } 3888 3889 namespace { 3890 class GatherFolder final : public OpRewritePattern<GatherOp> { 3891 public: 3892 using OpRewritePattern<GatherOp>::OpRewritePattern; 3893 LogicalResult matchAndRewrite(GatherOp gather, 3894 PatternRewriter &rewriter) const override { 3895 switch (get1DMaskFormat(gather.getMask())) { 3896 case MaskFormat::AllTrue: 3897 return failure(); // no unmasked equivalent 3898 case MaskFormat::AllFalse: 3899 rewriter.replaceOp(gather, gather.getPassThru()); 3900 return success(); 3901 case MaskFormat::Unknown: 3902 return failure(); 3903 } 3904 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3905 } 3906 }; 3907 } // namespace 3908 3909 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3910 MLIRContext *context) { 3911 results.add<GatherFolder>(context); 3912 } 3913 3914 //===----------------------------------------------------------------------===// 3915 // ScatterOp 3916 //===----------------------------------------------------------------------===// 3917 3918 LogicalResult ScatterOp::verify() { 3919 VectorType indVType = getIndexVectorType(); 3920 VectorType maskVType = getMaskVectorType(); 3921 VectorType valueVType = getVectorType(); 3922 MemRefType memType = getMemRefType(); 3923 3924 if (valueVType.getElementType() != memType.getElementType()) 3925 return emitOpError("base and valueToStore element type should match"); 3926 if (llvm::size(getIndices()) != memType.getRank()) 3927 return emitOpError("requires ") << memType.getRank() << " indices"; 3928 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3929 return emitOpError("expected valueToStore dim to match indices dim"); 3930 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3931 return emitOpError("expected valueToStore dim to match mask dim"); 3932 return success(); 3933 } 3934 3935 namespace { 3936 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3937 public: 3938 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3939 LogicalResult matchAndRewrite(ScatterOp scatter, 3940 PatternRewriter &rewriter) const override { 3941 switch (get1DMaskFormat(scatter.getMask())) { 3942 case MaskFormat::AllTrue: 3943 return failure(); // no unmasked equivalent 3944 case MaskFormat::AllFalse: 3945 rewriter.eraseOp(scatter); 3946 return success(); 3947 case MaskFormat::Unknown: 3948 return failure(); 3949 } 3950 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3951 } 3952 }; 3953 } // namespace 3954 3955 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3956 MLIRContext *context) { 3957 results.add<ScatterFolder>(context); 3958 } 3959 3960 //===----------------------------------------------------------------------===// 3961 // ExpandLoadOp 3962 //===----------------------------------------------------------------------===// 3963 3964 LogicalResult ExpandLoadOp::verify() { 3965 VectorType maskVType = getMaskVectorType(); 3966 VectorType passVType = getPassThruVectorType(); 3967 VectorType resVType = getVectorType(); 3968 MemRefType memType = getMemRefType(); 3969 3970 if (resVType.getElementType() != memType.getElementType()) 3971 return emitOpError("base and result element type should match"); 3972 if (llvm::size(getIndices()) != memType.getRank()) 3973 return emitOpError("requires ") << memType.getRank() << " indices"; 3974 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3975 return emitOpError("expected result dim to match mask dim"); 3976 if (resVType != passVType) 3977 return emitOpError("expected pass_thru of same type as result type"); 3978 return success(); 3979 } 3980 3981 namespace { 3982 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3983 public: 3984 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3985 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3986 PatternRewriter &rewriter) const override { 3987 switch (get1DMaskFormat(expand.getMask())) { 3988 case MaskFormat::AllTrue: 3989 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3990 expand, expand.getType(), expand.getBase(), expand.getIndices()); 3991 return success(); 3992 case MaskFormat::AllFalse: 3993 rewriter.replaceOp(expand, expand.getPassThru()); 3994 return success(); 3995 case MaskFormat::Unknown: 3996 return failure(); 3997 } 3998 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 3999 } 4000 }; 4001 } // namespace 4002 4003 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 4004 MLIRContext *context) { 4005 results.add<ExpandLoadFolder>(context); 4006 } 4007 4008 //===----------------------------------------------------------------------===// 4009 // CompressStoreOp 4010 //===----------------------------------------------------------------------===// 4011 4012 LogicalResult CompressStoreOp::verify() { 4013 VectorType maskVType = getMaskVectorType(); 4014 VectorType valueVType = getVectorType(); 4015 MemRefType memType = getMemRefType(); 4016 4017 if (valueVType.getElementType() != memType.getElementType()) 4018 return emitOpError("base and valueToStore element type should match"); 4019 if (llvm::size(getIndices()) != memType.getRank()) 4020 return emitOpError("requires ") << memType.getRank() << " indices"; 4021 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 4022 return emitOpError("expected valueToStore dim to match mask dim"); 4023 return success(); 4024 } 4025 4026 namespace { 4027 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 4028 public: 4029 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 4030 LogicalResult matchAndRewrite(CompressStoreOp compress, 4031 PatternRewriter &rewriter) const override { 4032 switch (get1DMaskFormat(compress.getMask())) { 4033 case MaskFormat::AllTrue: 4034 rewriter.replaceOpWithNewOp<vector::StoreOp>( 4035 compress, compress.getValueToStore(), compress.getBase(), 4036 compress.getIndices()); 4037 return success(); 4038 case MaskFormat::AllFalse: 4039 rewriter.eraseOp(compress); 4040 return success(); 4041 case MaskFormat::Unknown: 4042 return failure(); 4043 } 4044 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 4045 } 4046 }; 4047 } // namespace 4048 4049 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 4050 MLIRContext *context) { 4051 results.add<CompressStoreFolder>(context); 4052 } 4053 4054 //===----------------------------------------------------------------------===// 4055 // ShapeCastOp 4056 //===----------------------------------------------------------------------===// 4057 4058 /// Returns true if each element of 'a' is equal to the product of a contiguous 4059 /// sequence of the elements of 'b'. Returns false otherwise. 4060 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 4061 unsigned rankA = a.size(); 4062 unsigned rankB = b.size(); 4063 assert(rankA < rankB); 4064 4065 unsigned i = 0; 4066 unsigned j = 0; 4067 while (i < rankA && j < rankB) { 4068 int64_t dimA = a[i]; 4069 int64_t dimB = 1; 4070 while (dimB < dimA && j < rankB) 4071 dimB *= b[j++]; 4072 if (dimA != dimB) 4073 break; 4074 ++i; 4075 4076 // Handle the case when trailing dimensions are of size 1. 4077 // Include them into the contiguous sequence. 4078 auto isOne = [](int64_t v) { return v == 1; }; 4079 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 4080 i = rankA; 4081 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 4082 j = rankB; 4083 } 4084 4085 return i == rankA && j == rankB; 4086 } 4087 4088 static LogicalResult verifyVectorShapeCast(Operation *op, 4089 VectorType sourceVectorType, 4090 VectorType resultVectorType) { 4091 // Check that element type is the same. 4092 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 4093 return op->emitOpError("source/result vectors must have same element type"); 4094 auto sourceShape = sourceVectorType.getShape(); 4095 auto resultShape = resultVectorType.getShape(); 4096 4097 // Check that product of source dim sizes matches product of result dim sizes. 4098 int64_t sourceDimProduct = std::accumulate( 4099 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 4100 int64_t resultDimProduct = std::accumulate( 4101 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 4102 if (sourceDimProduct != resultDimProduct) 4103 return op->emitOpError("source/result number of elements must match"); 4104 4105 // Check that expanding/contracting rank cases. 4106 unsigned sourceRank = sourceVectorType.getRank(); 4107 unsigned resultRank = resultVectorType.getRank(); 4108 if (sourceRank < resultRank) { 4109 if (!isValidShapeCast(sourceShape, resultShape)) 4110 return op->emitOpError("invalid shape cast"); 4111 } else if (sourceRank > resultRank) { 4112 if (!isValidShapeCast(resultShape, sourceShape)) 4113 return op->emitOpError("invalid shape cast"); 4114 } 4115 return success(); 4116 } 4117 4118 LogicalResult ShapeCastOp::verify() { 4119 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 4120 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 4121 4122 // Check if source/result are of vector type. 4123 if (sourceVectorType && resultVectorType) 4124 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 4125 4126 return success(); 4127 } 4128 4129 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 4130 // No-op shape cast. 4131 if (getSource().getType() == getResult().getType()) 4132 return getSource(); 4133 4134 // Canceling shape casts. 4135 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 4136 if (getResult().getType() == otherOp.getSource().getType()) 4137 return otherOp.getSource(); 4138 4139 // Only allows valid transitive folding. 4140 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 4141 VectorType resultType = getResult().getType().cast<VectorType>(); 4142 if (srcType.getRank() < resultType.getRank()) { 4143 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 4144 return {}; 4145 } else if (srcType.getRank() > resultType.getRank()) { 4146 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 4147 return {}; 4148 } else { 4149 return {}; 4150 } 4151 4152 setOperand(otherOp.getSource()); 4153 return getResult(); 4154 } 4155 4156 // Cancelling broadcast and shape cast ops. 4157 if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) { 4158 if (bcastOp.getSourceType() == getType()) 4159 return bcastOp.getSource(); 4160 } 4161 4162 return {}; 4163 } 4164 4165 namespace { 4166 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 4167 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 4168 public: 4169 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4170 4171 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4172 PatternRewriter &rewriter) const override { 4173 auto constantOp = 4174 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 4175 if (!constantOp) 4176 return failure(); 4177 // Only handle splat for now. 4178 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4179 if (!dense) 4180 return failure(); 4181 auto newAttr = 4182 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4183 dense.getSplatValue<Attribute>()); 4184 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4185 return success(); 4186 } 4187 }; 4188 4189 } // namespace 4190 4191 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4192 MLIRContext *context) { 4193 // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp. 4194 results.add<ShapeCastConstantFolder>(context); 4195 } 4196 4197 //===----------------------------------------------------------------------===// 4198 // VectorBitCastOp 4199 //===----------------------------------------------------------------------===// 4200 4201 LogicalResult BitCastOp::verify() { 4202 auto sourceVectorType = getSourceVectorType(); 4203 auto resultVectorType = getResultVectorType(); 4204 4205 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4206 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4207 return emitOpError("dimension size mismatch at: ") << i; 4208 } 4209 4210 DataLayout dataLayout = DataLayout::closest(*this); 4211 auto sourceElementBits = 4212 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4213 auto resultElementBits = 4214 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4215 4216 if (sourceVectorType.getRank() == 0) { 4217 if (sourceElementBits != resultElementBits) 4218 return emitOpError("source/result bitwidth of the 0-D vector element " 4219 "types must be equal"); 4220 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4221 resultElementBits * resultVectorType.getShape().back()) { 4222 return emitOpError( 4223 "source/result bitwidth of the minor 1-D vectors must be equal"); 4224 } 4225 4226 return success(); 4227 } 4228 4229 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4230 // Nop cast. 4231 if (getSource().getType() == getResult().getType()) 4232 return getSource(); 4233 4234 // Canceling bitcasts. 4235 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) 4236 if (getResult().getType() == otherOp.getSource().getType()) 4237 return otherOp.getSource(); 4238 4239 Attribute sourceConstant = operands.front(); 4240 if (!sourceConstant) 4241 return {}; 4242 4243 Type srcElemType = getSourceVectorType().getElementType(); 4244 Type dstElemType = getResultVectorType().getElementType(); 4245 4246 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4247 if (floatPack.isSplat()) { 4248 auto splat = floatPack.getSplatValue<FloatAttr>(); 4249 4250 // Casting fp16 into fp32. 4251 if (srcElemType.isF16() && dstElemType.isF32()) { 4252 uint32_t bits = static_cast<uint32_t>( 4253 splat.getValue().bitcastToAPInt().getZExtValue()); 4254 // Duplicate the 16-bit pattern. 4255 bits = (bits << 16) | (bits & 0xffff); 4256 APInt intBits(32, bits); 4257 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4258 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4259 } 4260 } 4261 } 4262 4263 return {}; 4264 } 4265 4266 //===----------------------------------------------------------------------===// 4267 // TypeCastOp 4268 //===----------------------------------------------------------------------===// 4269 4270 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4271 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4272 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4273 memRefType.getShape().end()); 4274 if (vectorType) 4275 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4276 return res; 4277 } 4278 4279 /// Build the canonical memRefType with a single vector. 4280 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4281 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4282 Value source) { 4283 result.addOperands(source); 4284 MemRefType memRefType = source.getType().cast<MemRefType>(); 4285 VectorType vectorType = 4286 VectorType::get(extractShape(memRefType), 4287 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4288 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4289 memRefType.getMemorySpace())); 4290 } 4291 4292 LogicalResult TypeCastOp::verify() { 4293 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4294 if (!canonicalType.getLayout().isIdentity()) 4295 return emitOpError("expects operand to be a memref with identity layout"); 4296 if (!getResultMemRefType().getLayout().isIdentity()) 4297 return emitOpError("expects result to be a memref with identity layout"); 4298 if (getResultMemRefType().getMemorySpace() != 4299 getMemRefType().getMemorySpace()) 4300 return emitOpError("expects result in same memory space"); 4301 4302 auto sourceType = getMemRefType(); 4303 auto resultType = getResultMemRefType(); 4304 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4305 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4306 return emitOpError( 4307 "expects result and operand with same underlying scalar type: ") 4308 << resultType; 4309 if (extractShape(sourceType) != extractShape(resultType)) 4310 return emitOpError( 4311 "expects concatenated result and operand shapes to be equal: ") 4312 << resultType; 4313 return success(); 4314 } 4315 4316 //===----------------------------------------------------------------------===// 4317 // TransposeOp 4318 //===----------------------------------------------------------------------===// 4319 4320 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4321 Value vector, ArrayRef<int64_t> transp) { 4322 VectorType vt = vector.getType().cast<VectorType>(); 4323 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4324 for (unsigned i = 0; i < transp.size(); ++i) 4325 transposedShape[i] = vt.getShape()[transp[i]]; 4326 4327 result.addOperands(vector); 4328 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4329 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4330 } 4331 4332 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4333 // Eliminate splat constant transpose ops. 4334 if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>()) 4335 if (attr.isSplat()) 4336 return attr.reshape(getResultType()); 4337 4338 // Eliminate identity transpose ops. This happens when the dimensions of the 4339 // input vector remain in their original order after the transpose operation. 4340 SmallVector<int64_t, 4> transp; 4341 getTransp(transp); 4342 4343 // Check if the permutation of the dimensions contains sequential values: 4344 // {0, 1, 2, ...}. 4345 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4346 if (transp[i] != i) 4347 return {}; 4348 } 4349 4350 return getVector(); 4351 } 4352 4353 LogicalResult vector::TransposeOp::verify() { 4354 VectorType vectorType = getVectorType(); 4355 VectorType resultType = getResultType(); 4356 int64_t rank = resultType.getRank(); 4357 if (vectorType.getRank() != rank) 4358 return emitOpError("vector result rank mismatch: ") << rank; 4359 // Verify transposition array. 4360 auto transpAttr = getTransp().getValue(); 4361 int64_t size = transpAttr.size(); 4362 if (rank != size) 4363 return emitOpError("transposition length mismatch: ") << size; 4364 SmallVector<bool, 8> seen(rank, false); 4365 for (const auto &ta : llvm::enumerate(transpAttr)) { 4366 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4367 if (i < 0 || i >= rank) 4368 return emitOpError("transposition index out of range: ") << i; 4369 if (seen[i]) 4370 return emitOpError("duplicate position index: ") << i; 4371 seen[i] = true; 4372 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4373 return emitOpError("dimension size mismatch at: ") << i; 4374 } 4375 return success(); 4376 } 4377 4378 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() { 4379 return llvm::to_vector<4>(getResultType().getShape()); 4380 } 4381 4382 namespace { 4383 4384 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4385 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4386 public: 4387 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4388 4389 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4390 PatternRewriter &rewriter) const override { 4391 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4392 auto getPermutation = [](vector::TransposeOp transpose) { 4393 SmallVector<int64_t, 4> permutation; 4394 transpose.getTransp(permutation); 4395 return permutation; 4396 }; 4397 4398 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4399 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4400 ArrayRef<int64_t> permutation2) { 4401 SmallVector<int64_t, 4> result; 4402 for (auto index : permutation2) 4403 result.push_back(permutation1[index]); 4404 return result; 4405 }; 4406 4407 // Return if the input of 'transposeOp' is not defined by another transpose. 4408 vector::TransposeOp parentTransposeOp = 4409 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4410 if (!parentTransposeOp) 4411 return failure(); 4412 4413 SmallVector<int64_t, 4> permutation = composePermutations( 4414 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4415 // Replace 'transposeOp' with a new transpose operation. 4416 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4417 transposeOp, transposeOp.getResult().getType(), 4418 parentTransposeOp.getVector(), 4419 vector::getVectorSubscriptAttr(rewriter, permutation)); 4420 return success(); 4421 } 4422 }; 4423 4424 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). 4425 struct FoldTransposedScalarBroadcast final 4426 : public OpRewritePattern<vector::TransposeOp> { 4427 using OpRewritePattern::OpRewritePattern; 4428 4429 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4430 PatternRewriter &rewriter) const override { 4431 auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); 4432 if (!bcastOp) 4433 return failure(); 4434 4435 auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>(); 4436 if (!srcVectorType || srcVectorType.getNumElements() == 1) { 4437 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4438 transposeOp, transposeOp.getResultType(), bcastOp.getSource()); 4439 return success(); 4440 } 4441 4442 return failure(); 4443 } 4444 }; 4445 4446 // Folds transpose(splat x : src_type) : res_type into splat x : res_type. 4447 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> { 4448 public: 4449 using OpRewritePattern<TransposeOp>::OpRewritePattern; 4450 4451 LogicalResult matchAndRewrite(TransposeOp transposeOp, 4452 PatternRewriter &rewriter) const override { 4453 auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>(); 4454 if (!splatOp) 4455 return failure(); 4456 4457 rewriter.replaceOpWithNewOp<vector::SplatOp>( 4458 transposeOp, transposeOp.getResultType(), splatOp.getInput()); 4459 return success(); 4460 } 4461 }; 4462 4463 } // namespace 4464 4465 void vector::TransposeOp::getCanonicalizationPatterns( 4466 RewritePatternSet &results, MLIRContext *context) { 4467 results 4468 .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>( 4469 context); 4470 } 4471 4472 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4473 populateFromInt64AttrArray(getTransp(), results); 4474 } 4475 4476 //===----------------------------------------------------------------------===// 4477 // ConstantMaskOp 4478 //===----------------------------------------------------------------------===// 4479 4480 LogicalResult ConstantMaskOp::verify() { 4481 auto resultType = getResult().getType().cast<VectorType>(); 4482 // Check the corner case of 0-D vectors first. 4483 if (resultType.getRank() == 0) { 4484 if (getMaskDimSizes().size() != 1) 4485 return emitError("array attr must have length 1 for 0-D vectors"); 4486 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4487 if (dim != 0 && dim != 1) 4488 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4489 return success(); 4490 } 4491 4492 // Verify that array attr size matches the rank of the vector result. 4493 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4494 return emitOpError( 4495 "must specify array attr of size equal vector result rank"); 4496 // Verify that each array attr element is in bounds of corresponding vector 4497 // result dimension size. 4498 auto resultShape = resultType.getShape(); 4499 SmallVector<int64_t, 4> maskDimSizes; 4500 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4501 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4502 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4503 return emitOpError( 4504 "array attr of size out of bounds of vector result dimension size"); 4505 maskDimSizes.push_back(attrValue); 4506 } 4507 // Verify that if one mask dim size is zero, they all should be zero (because 4508 // the mask region is a conjunction of each mask dimension interval). 4509 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4510 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4511 if (anyZeros && !allZeros) 4512 return emitOpError("expected all mask dim sizes to be zeros, " 4513 "as a result of conjunction with zero mask dim"); 4514 // Verify that if the mask type is scalable, dimensions should be zero because 4515 // constant scalable masks can only be defined for the "none set" or "all set" 4516 // cases, and there is no VLA way to define an "all set" case for 4517 // `vector.constant_mask`. In the future, a convention could be established 4518 // to decide if a specific dimension value could be considered as "all set". 4519 if (resultType.isScalable() && 4520 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4521 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4522 return success(); 4523 } 4524 4525 //===----------------------------------------------------------------------===// 4526 // CreateMaskOp 4527 //===----------------------------------------------------------------------===// 4528 4529 LogicalResult CreateMaskOp::verify() { 4530 auto vectorType = getResult().getType().cast<VectorType>(); 4531 // Verify that an operand was specified for each result vector each dimension. 4532 if (vectorType.getRank() == 0) { 4533 if (getNumOperands() != 1) 4534 return emitOpError( 4535 "must specify exactly one operand for 0-D create_mask"); 4536 } else if (getNumOperands() != 4537 getResult().getType().cast<VectorType>().getRank()) { 4538 return emitOpError( 4539 "must specify an operand for each result vector dimension"); 4540 } 4541 return success(); 4542 } 4543 4544 namespace { 4545 4546 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4547 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4548 public: 4549 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4550 4551 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4552 PatternRewriter &rewriter) const override { 4553 // Return if any of 'createMaskOp' operands are not defined by a constant. 4554 auto isNotDefByConstant = [](Value operand) { 4555 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4556 }; 4557 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4558 return failure(); 4559 4560 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4561 // are negative or zero. 4562 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4563 if (vType.isScalable()) 4564 for (auto opDim : createMaskOp.getOperands()) { 4565 APInt intVal; 4566 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4567 intVal.isStrictlyPositive()) 4568 return failure(); 4569 } 4570 } 4571 4572 // Gather constant mask dimension sizes. 4573 SmallVector<int64_t, 4> maskDimSizes; 4574 for (auto it : llvm::zip(createMaskOp.operands(), 4575 createMaskOp.getType().getShape())) { 4576 auto *defOp = std::get<0>(it).getDefiningOp(); 4577 int64_t maxDimSize = std::get<1>(it); 4578 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4579 dimSize = std::min(dimSize, maxDimSize); 4580 // If one of dim sizes is zero, set all dims to zero. 4581 if (dimSize <= 0) { 4582 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4583 break; 4584 } 4585 maskDimSizes.push_back(dimSize); 4586 } 4587 // Replace 'createMaskOp' with ConstantMaskOp. 4588 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4589 createMaskOp, createMaskOp.getResult().getType(), 4590 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4591 return success(); 4592 } 4593 }; 4594 4595 } // namespace 4596 4597 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4598 MLIRContext *context) { 4599 results.add<CreateMaskFolder>(context); 4600 } 4601 4602 //===----------------------------------------------------------------------===// 4603 // ScanOp 4604 //===----------------------------------------------------------------------===// 4605 4606 LogicalResult ScanOp::verify() { 4607 VectorType srcType = getSourceType(); 4608 VectorType initialType = getInitialValueType(); 4609 // Check reduction dimension < rank. 4610 int64_t srcRank = srcType.getRank(); 4611 int64_t reductionDim = getReductionDim(); 4612 if (reductionDim >= srcRank) 4613 return emitOpError("reduction dimension ") 4614 << reductionDim << " has to be less than " << srcRank; 4615 4616 // Check that rank(initial_value) = rank(src) - 1. 4617 int64_t initialValueRank = initialType.getRank(); 4618 if (initialValueRank != srcRank - 1) 4619 return emitOpError("initial value rank ") 4620 << initialValueRank << " has to be equal to " << srcRank - 1; 4621 4622 // Check shapes of initial value and src. 4623 ArrayRef<int64_t> srcShape = srcType.getShape(); 4624 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4625 SmallVector<int64_t> expectedShape; 4626 for (int i = 0; i < srcRank; i++) { 4627 if (i != reductionDim) 4628 expectedShape.push_back(srcShape[i]); 4629 } 4630 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4631 [](std::tuple<int64_t, int64_t> s) { 4632 return std::get<0>(s) != std::get<1>(s); 4633 })) { 4634 return emitOpError("incompatible input/initial value shapes"); 4635 } 4636 4637 // Verify supported reduction kind. 4638 Type eltType = getDestType().getElementType(); 4639 if (!isSupportedCombiningKind(getKind(), eltType)) 4640 return emitOpError("unsupported reduction type ") 4641 << eltType << " for kind '" << stringifyCombiningKind(getKind()) 4642 << "'"; 4643 4644 return success(); 4645 } 4646 4647 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4648 RewritePatternSet &patterns) { 4649 patterns 4650 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4651 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4652 StridedSliceConstantMaskFolder, TransposeFolder>( 4653 patterns.getContext()); 4654 } 4655 4656 //===----------------------------------------------------------------------===// 4657 // SplatOp 4658 //===----------------------------------------------------------------------===// 4659 4660 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4661 auto constOperand = operands.front(); 4662 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4663 return {}; 4664 4665 // SplatElementsAttr::get treats single value for second arg as being a splat. 4666 return SplatElementsAttr::get(getType(), {constOperand}); 4667 } 4668 4669 //===----------------------------------------------------------------------===// 4670 // WarpExecuteOnLane0Op 4671 //===----------------------------------------------------------------------===// 4672 4673 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) { 4674 p << "(" << getLaneid() << ")"; 4675 4676 SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()}; 4677 auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName()); 4678 p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]"; 4679 4680 if (!getArgs().empty()) 4681 p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")"; 4682 if (!getResults().empty()) 4683 p << " -> (" << getResults().getTypes() << ')'; 4684 p << " "; 4685 p.printRegion(getRegion(), 4686 /*printEntryBlockArgs=*/true, 4687 /*printBlockTerminators=*/!getResults().empty()); 4688 p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr); 4689 } 4690 4691 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser, 4692 OperationState &result) { 4693 // Create the region. 4694 result.regions.reserve(1); 4695 Region *warpRegion = result.addRegion(); 4696 4697 auto &builder = parser.getBuilder(); 4698 OpAsmParser::UnresolvedOperand laneId; 4699 4700 // Parse predicate operand. 4701 if (parser.parseLParen() || 4702 parser.parseOperand(laneId, /*allowResultNumber=*/false) || 4703 parser.parseRParen()) 4704 return failure(); 4705 4706 int64_t warpSize; 4707 if (parser.parseLSquare() || parser.parseInteger(warpSize) || 4708 parser.parseRSquare()) 4709 return failure(); 4710 result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(), 4711 builder.getContext())), 4712 builder.getI64IntegerAttr(warpSize)); 4713 4714 if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands)) 4715 return failure(); 4716 4717 llvm::SMLoc inputsOperandsLoc; 4718 SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands; 4719 SmallVector<Type> inputTypes; 4720 if (succeeded(parser.parseOptionalKeyword("args"))) { 4721 if (parser.parseLParen()) 4722 return failure(); 4723 4724 inputsOperandsLoc = parser.getCurrentLocation(); 4725 if (parser.parseOperandList(inputsOperands) || 4726 parser.parseColonTypeList(inputTypes) || parser.parseRParen()) 4727 return failure(); 4728 } 4729 if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc, 4730 result.operands)) 4731 return failure(); 4732 4733 // Parse optional results type list. 4734 if (parser.parseOptionalArrowTypeList(result.types)) 4735 return failure(); 4736 // Parse the region. 4737 if (parser.parseRegion(*warpRegion, /*arguments=*/{}, 4738 /*argTypes=*/{})) 4739 return failure(); 4740 WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location); 4741 4742 // Parse the optional attribute list. 4743 if (parser.parseOptionalAttrDict(result.attributes)) 4744 return failure(); 4745 return success(); 4746 } 4747 4748 void WarpExecuteOnLane0Op::getSuccessorRegions( 4749 Optional<unsigned> index, ArrayRef<Attribute> operands, 4750 SmallVectorImpl<RegionSuccessor> ®ions) { 4751 if (index.hasValue()) { 4752 regions.push_back(RegionSuccessor(getResults())); 4753 return; 4754 } 4755 4756 // The warp region is always executed 4757 regions.push_back(RegionSuccessor(&getWarpRegion())); 4758 } 4759 4760 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4761 TypeRange resultTypes, Value laneId, 4762 int64_t warpSize) { 4763 build(builder, result, resultTypes, laneId, warpSize, 4764 /*operands=*/llvm::None, /*argTypes=*/llvm::None); 4765 } 4766 4767 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4768 TypeRange resultTypes, Value laneId, 4769 int64_t warpSize, ValueRange args, 4770 TypeRange blockArgTypes) { 4771 result.addOperands(laneId); 4772 result.addAttribute(getAttributeNames()[0], 4773 builder.getI64IntegerAttr(warpSize)); 4774 result.addTypes(resultTypes); 4775 result.addOperands(args); 4776 assert(args.size() == blockArgTypes.size()); 4777 OpBuilder::InsertionGuard guard(builder); 4778 Region *warpRegion = result.addRegion(); 4779 Block *block = builder.createBlock(warpRegion); 4780 for (auto it : llvm::zip(blockArgTypes, args)) 4781 block->addArgument(std::get<0>(it), std::get<1>(it).getLoc()); 4782 } 4783 4784 /// Helper check if the distributed vector type is consistent with the expanded 4785 /// type and distributed size. 4786 static LogicalResult verifyDistributedType(Type expanded, Type distributed, 4787 int64_t warpSize, Operation *op) { 4788 // If the types matches there is no distribution. 4789 if (expanded == distributed) 4790 return success(); 4791 auto expandedVecType = expanded.dyn_cast<VectorType>(); 4792 auto distributedVecType = distributed.dyn_cast<VectorType>(); 4793 if (!expandedVecType || !distributedVecType) 4794 return op->emitOpError("expected vector type for distributed operands."); 4795 if (expandedVecType.getRank() != distributedVecType.getRank() || 4796 expandedVecType.getElementType() != distributedVecType.getElementType()) 4797 return op->emitOpError( 4798 "expected distributed vectors to have same rank and element type."); 4799 bool foundDistributedDim = false; 4800 for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) { 4801 if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i)) 4802 continue; 4803 if (expandedVecType.getDimSize(i) == 4804 distributedVecType.getDimSize(i) * warpSize) { 4805 if (foundDistributedDim) 4806 return op->emitOpError() 4807 << "expected only one dimension to be distributed from " 4808 << expandedVecType << " to " << distributedVecType; 4809 foundDistributedDim = true; 4810 continue; 4811 } 4812 return op->emitOpError() << "incompatible distribution dimensions from " 4813 << expandedVecType << " to " << distributedVecType; 4814 } 4815 return success(); 4816 } 4817 4818 LogicalResult WarpExecuteOnLane0Op::verify() { 4819 if (getArgs().size() != getWarpRegion().getNumArguments()) 4820 return emitOpError( 4821 "expected same number op arguments and block arguments."); 4822 auto yield = 4823 cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator()); 4824 if (yield.getNumOperands() != getNumResults()) 4825 return emitOpError( 4826 "expected same number of yield operands and return values."); 4827 int64_t warpSize = getWarpSize(); 4828 for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) { 4829 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4830 std::get<1>(it).getType(), warpSize, 4831 getOperation()))) 4832 return failure(); 4833 } 4834 for (auto it : llvm::zip(yield.getOperands(), getResults())) { 4835 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4836 std::get<1>(it).getType(), warpSize, 4837 getOperation()))) 4838 return failure(); 4839 } 4840 return success(); 4841 } 4842 4843 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) { 4844 return succeeded( 4845 verifyDistributedType(lhs, rhs, getWarpSize(), getOperation())); 4846 } 4847 4848 //===----------------------------------------------------------------------===// 4849 // TableGen'd op method definitions 4850 //===----------------------------------------------------------------------===// 4851 4852 #define GET_OP_CLASSES 4853 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4854