1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements convenience types for working with super-vectorization
10 // operations, in particular super-vector loads and stores.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Vector/IR/VectorOps.h"
15 
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/Dialect/Tensor/IR/Tensor.h"
20 #include "mlir/Dialect/Utils/IndexingUtils.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/BlockAndValueMapping.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/BuiltinOps.h"
27 #include "mlir/IR/BuiltinTypes.h"
28 #include "mlir/IR/DialectImplementation.h"
29 #include "mlir/IR/OpImplementation.h"
30 #include "mlir/IR/PatternMatch.h"
31 #include "mlir/IR/TypeUtilities.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/MathExtras.h"
34 #include "llvm/ADT/StringSet.h"
35 #include "llvm/ADT/bit.h"
36 #include <numeric>
37 
38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc"
39 // Pull in all enum type and utility function definitions.
40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc"
41 
42 using namespace mlir;
43 using namespace mlir::vector;
44 
45 /// Helper enum to classify mask value.
46 enum class MaskFormat {
47   AllTrue = 0,
48   AllFalse = 1,
49   Unknown = 2,
50 };
51 
52 /// Helper method to classify a 1-D mask value. Currently, the method
53 /// looks "under the hood" of a constant value with dense attributes
54 /// and a constant mask operation (since the client may be called at
55 /// various stages during progressive lowering).
56 static MaskFormat get1DMaskFormat(Value mask) {
57   if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
58     // Inspect constant dense values. We count up for bits that
59     // are set, count down for bits that are cleared, and bail
60     // when a mix is detected.
61     if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) {
62       int64_t val = 0;
63       for (bool b : denseElts.getValues<bool>())
64         if (b && val >= 0)
65           val++;
66         else if (!b && val <= 0)
67           val--;
68         else
69           return MaskFormat::Unknown;
70       if (val > 0)
71         return MaskFormat::AllTrue;
72       if (val < 0)
73         return MaskFormat::AllFalse;
74     }
75   } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
76     // Inspect constant mask index. If the index exceeds the
77     // dimension size, all bits are set. If the index is zero
78     // or less, no bits are set.
79     ArrayAttr masks = m.getMaskDimSizes();
80     assert(masks.size() == 1);
81     int64_t i = masks[0].cast<IntegerAttr>().getInt();
82     int64_t u = m.getType().getDimSize(0);
83     if (i >= u)
84       return MaskFormat::AllTrue;
85     if (i <= 0)
86       return MaskFormat::AllFalse;
87   }
88   return MaskFormat::Unknown;
89 }
90 
91 // Helper for verifying combining kinds in contractions and reductions.
92 static bool isSupportedCombiningKind(CombiningKind combiningKind,
93                                      Type elementType) {
94   switch (combiningKind) {
95   case CombiningKind::ADD:
96   case CombiningKind::MUL:
97     return elementType.isIntOrIndexOrFloat();
98   case CombiningKind::MINUI:
99   case CombiningKind::MINSI:
100   case CombiningKind::MAXUI:
101   case CombiningKind::MAXSI:
102   case CombiningKind::AND:
103   case CombiningKind::OR:
104   case CombiningKind::XOR:
105     return elementType.isIntOrIndex();
106   case CombiningKind::MINF:
107   case CombiningKind::MAXF:
108     return elementType.isa<FloatType>();
109   }
110   return false;
111 }
112 
113 /// Return true if the last dimension of the MemRefType has unit stride. Also
114 /// return true for memrefs with no strides.
115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) {
116   int64_t offset;
117   SmallVector<int64_t> strides;
118   auto successStrides = getStridesAndOffset(type, strides, offset);
119   return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
120 }
121 
122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
123                                                     VectorType vectorType) {
124   int64_t elementVectorRank = 0;
125   VectorType elementVectorType =
126       shapedType.getElementType().dyn_cast<VectorType>();
127   if (elementVectorType)
128     elementVectorRank += elementVectorType.getRank();
129   // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
130   // TODO: replace once we have 0-d vectors.
131   if (shapedType.getRank() == 0 &&
132       vectorType.getShape() == ArrayRef<int64_t>{1})
133     return AffineMap::get(
134         /*numDims=*/0, /*numSymbols=*/0,
135         getAffineConstantExpr(0, shapedType.getContext()));
136   return AffineMap::getMinorIdentityMap(
137       shapedType.getRank(), vectorType.getRank() - elementVectorRank,
138       shapedType.getContext());
139 }
140 
141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
142                                      vector::TransferReadOp read) {
143   return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() &&
144          !read.getMask() && defWrite.getIndices() == read.getIndices() &&
145          defWrite.getVectorType() == read.getVectorType() &&
146          defWrite.getPermutationMap() == read.getPermutationMap();
147 }
148 
149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
150                                      vector::TransferWriteOp priorWrite) {
151   return priorWrite.getIndices() == write.getIndices() &&
152          priorWrite.getMask() == write.getMask() &&
153          priorWrite.getVectorType() == write.getVectorType() &&
154          priorWrite.getPermutationMap() == write.getPermutationMap();
155 }
156 
157 bool mlir::vector::isDisjointTransferIndices(
158     VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) {
159   // For simplicity only look at transfer of same type.
160   if (transferA.getVectorType() != transferB.getVectorType())
161     return false;
162   unsigned rankOffset = transferA.getLeadingShapedRank();
163   for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) {
164     auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>();
165     auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>();
166     // If any of the indices are dynamic we cannot prove anything.
167     if (!indexA || !indexB)
168       continue;
169 
170     if (i < rankOffset) {
171       // For leading dimensions, if we can prove that index are different we
172       // know we are accessing disjoint slices.
173       if (indexA.getValue().cast<IntegerAttr>().getInt() !=
174           indexB.getValue().cast<IntegerAttr>().getInt())
175         return true;
176     } else {
177       // For this dimension, we slice a part of the memref we need to make sure
178       // the intervals accessed don't overlap.
179       int64_t distance =
180           std::abs(indexA.getValue().cast<IntegerAttr>().getInt() -
181                    indexB.getValue().cast<IntegerAttr>().getInt());
182       if (distance >= transferA.getVectorType().getDimSize(i - rankOffset))
183         return true;
184     }
185   }
186   return false;
187 }
188 
189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
190                                          VectorTransferOpInterface transferB) {
191   if (transferA.source() != transferB.source())
192     return false;
193   return isDisjointTransferIndices(transferA, transferB);
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // CombiningKindAttr
198 //===----------------------------------------------------------------------===//
199 
200 namespace mlir {
201 namespace vector {
202 namespace detail {
203 struct BitmaskEnumStorage : public AttributeStorage {
204   using KeyTy = uint64_t;
205 
206   BitmaskEnumStorage(KeyTy val) : value(val) {}
207 
208   bool operator==(const KeyTy &key) const { return value == key; }
209 
210   static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
211                                        const KeyTy &key) {
212     return new (allocator.allocate<BitmaskEnumStorage>())
213         BitmaskEnumStorage(key);
214   }
215 
216   KeyTy value = 0;
217 };
218 } // namespace detail
219 } // namespace vector
220 } // namespace mlir
221 
222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind,
223                                          MLIRContext *context) {
224   return Base::get(context, static_cast<uint64_t>(kind));
225 }
226 
227 CombiningKind CombiningKindAttr::getKind() const {
228   return static_cast<CombiningKind>(getImpl()->value);
229 }
230 
231 static constexpr const CombiningKind combiningKindsList[] = {
232     // clang-format off
233     CombiningKind::ADD,
234     CombiningKind::MUL,
235     CombiningKind::MINUI,
236     CombiningKind::MINSI,
237     CombiningKind::MINF,
238     CombiningKind::MAXUI,
239     CombiningKind::MAXSI,
240     CombiningKind::MAXF,
241     CombiningKind::AND,
242     CombiningKind::OR,
243     CombiningKind::XOR,
244     // clang-format on
245 };
246 
247 void CombiningKindAttr::print(AsmPrinter &printer) const {
248   printer << "<";
249   auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) {
250     return bitEnumContains(this->getKind(), kind);
251   });
252   llvm::interleaveComma(kinds, printer,
253                         [&](auto kind) { printer << stringifyEnum(kind); });
254   printer << ">";
255 }
256 
257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) {
258   if (failed(parser.parseLess()))
259     return {};
260 
261   StringRef elemName;
262   if (failed(parser.parseKeyword(&elemName)))
263     return {};
264 
265   auto kind = symbolizeCombiningKind(elemName);
266   if (!kind) {
267     parser.emitError(parser.getNameLoc(), "Unknown combining kind: ")
268         << elemName;
269     return {};
270   }
271 
272   if (failed(parser.parseGreater()))
273     return {};
274 
275   return CombiningKindAttr::get(kind.getValue(), parser.getContext());
276 }
277 
278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser,
279                                         Type type) const {
280   StringRef attrKind;
281   if (parser.parseKeyword(&attrKind))
282     return {};
283 
284   if (attrKind == "kind")
285     return CombiningKindAttr::parse(parser, {});
286 
287   parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind;
288   return {};
289 }
290 
291 void VectorDialect::printAttribute(Attribute attr,
292                                    DialectAsmPrinter &os) const {
293   if (auto ck = attr.dyn_cast<CombiningKindAttr>()) {
294     os << "kind";
295     ck.print(os);
296     return;
297   }
298   llvm_unreachable("Unknown attribute type");
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // VectorDialect
303 //===----------------------------------------------------------------------===//
304 
305 void VectorDialect::initialize() {
306   addAttributes<CombiningKindAttr>();
307 
308   addOperations<
309 #define GET_OP_LIST
310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
311       >();
312 }
313 
314 /// Materialize a single constant operation from a given attribute value with
315 /// the desired resultant type.
316 Operation *VectorDialect::materializeConstant(OpBuilder &builder,
317                                               Attribute value, Type type,
318                                               Location loc) {
319   return builder.create<arith::ConstantOp>(loc, type, value);
320 }
321 
322 IntegerType vector::getVectorSubscriptType(Builder &builder) {
323   return builder.getIntegerType(64);
324 }
325 
326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
327                                          ArrayRef<int64_t> values) {
328   return builder.getI64ArrayAttr(values);
329 }
330 
331 //===----------------------------------------------------------------------===//
332 // MultiDimReductionOp
333 //===----------------------------------------------------------------------===//
334 
335 void vector::MultiDimReductionOp::build(OpBuilder &builder,
336                                         OperationState &result, Value source,
337                                         ArrayRef<bool> reductionMask,
338                                         CombiningKind kind) {
339   SmallVector<int64_t> reductionDims;
340   for (const auto &en : llvm::enumerate(reductionMask))
341     if (en.value())
342       reductionDims.push_back(en.index());
343   build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims));
344 }
345 
346 LogicalResult MultiDimReductionOp::inferReturnTypes(
347     MLIRContext *, Optional<Location>, ValueRange operands,
348     DictionaryAttr attributes, RegionRange,
349     SmallVectorImpl<Type> &inferredReturnTypes) {
350   MultiDimReductionOp::Adaptor op(operands, attributes);
351   auto vectorType = op.getSource().getType().cast<VectorType>();
352   SmallVector<int64_t> targetShape;
353   for (auto it : llvm::enumerate(vectorType.getShape()))
354     if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) {
355           return attr.cast<IntegerAttr>().getValue() == it.index();
356         }))
357       targetShape.push_back(it.value());
358   // TODO: update to also allow 0-d vectors when available.
359   if (targetShape.empty())
360     inferredReturnTypes.push_back(vectorType.getElementType());
361   else
362     inferredReturnTypes.push_back(
363         VectorType::get(targetShape, vectorType.getElementType()));
364   return success();
365 }
366 
367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) {
368   // Single parallel dim, this is a noop.
369   if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
370     return getSource();
371   return {};
372 }
373 
374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() {
375   return llvm::to_vector<4>(getSourceVectorType().getShape());
376 }
377 
378 //===----------------------------------------------------------------------===//
379 // ReductionOp
380 //===----------------------------------------------------------------------===//
381 
382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
383                                 CombiningKind kind, Value vector) {
384   build(builder, result, kind, vector, /*acc=*/Value());
385 }
386 
387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
388                                 CombiningKind kind, Value vector, Value acc) {
389   build(builder, result, vector.getType().cast<VectorType>().getElementType(),
390         kind, vector, acc);
391 }
392 
393 LogicalResult ReductionOp::verify() {
394   // Verify for 1-D vector.
395   int64_t rank = getVectorType().getRank();
396   if (rank != 1)
397     return emitOpError("unsupported reduction rank: ") << rank;
398 
399   // Verify supported reduction kind.
400   Type eltType = getDest().getType();
401   if (!isSupportedCombiningKind(getKind(), eltType))
402     return emitOpError("unsupported reduction type '")
403            << eltType << "' for kind '" << stringifyCombiningKind(getKind())
404            << "'";
405 
406   // Verify optional accumulator.
407   if (getAcc()) {
408     if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL)
409       return emitOpError("no accumulator for reduction kind: ")
410              << stringifyCombiningKind(getKind());
411     if (!eltType.isa<FloatType>())
412       return emitOpError("no accumulator for type: ") << eltType;
413   }
414 
415   return success();
416 }
417 
418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) {
419   SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo;
420   Type redType;
421   Type resType;
422   CombiningKindAttr kindAttr;
423   if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind",
424                                               result.attributes) ||
425       parser.parseComma() || parser.parseOperandList(operandsInfo) ||
426       parser.parseColonType(redType) ||
427       parser.parseKeywordType("into", resType) ||
428       (!operandsInfo.empty() &&
429        parser.resolveOperand(operandsInfo[0], redType, result.operands)) ||
430       (operandsInfo.size() > 1 &&
431        parser.resolveOperand(operandsInfo[1], resType, result.operands)) ||
432       parser.addTypeToList(resType, result.types))
433     return failure();
434   if (operandsInfo.empty() || operandsInfo.size() > 2)
435     return parser.emitError(parser.getNameLoc(),
436                             "unsupported number of operands");
437   return success();
438 }
439 
440 void ReductionOp::print(OpAsmPrinter &p) {
441   p << " ";
442   getKindAttr().print(p);
443   p << ", " << getVector();
444   if (getAcc())
445     p << ", " << getAcc();
446   p << " : " << getVector().getType() << " into " << getDest().getType();
447 }
448 
449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
450                                          OpBuilder &builder, Location loc,
451                                          Value vector) {
452   switch (op) {
453   case arith::AtomicRMWKind::addf:
454   case arith::AtomicRMWKind::addi:
455     return builder.create<vector::ReductionOp>(vector.getLoc(),
456                                                CombiningKind::ADD, vector);
457   case arith::AtomicRMWKind::mulf:
458   case arith::AtomicRMWKind::muli:
459     return builder.create<vector::ReductionOp>(vector.getLoc(),
460                                                CombiningKind::MUL, vector);
461   case arith::AtomicRMWKind::minf:
462     return builder.create<vector::ReductionOp>(vector.getLoc(),
463                                                CombiningKind::MINF, vector);
464   case arith::AtomicRMWKind::mins:
465     return builder.create<vector::ReductionOp>(vector.getLoc(),
466                                                CombiningKind::MINSI, vector);
467   case arith::AtomicRMWKind::minu:
468     return builder.create<vector::ReductionOp>(vector.getLoc(),
469                                                CombiningKind::MINUI, vector);
470   case arith::AtomicRMWKind::maxf:
471     return builder.create<vector::ReductionOp>(vector.getLoc(),
472                                                CombiningKind::MAXF, vector);
473   case arith::AtomicRMWKind::maxs:
474     return builder.create<vector::ReductionOp>(vector.getLoc(),
475                                                CombiningKind::MAXSI, vector);
476   case arith::AtomicRMWKind::maxu:
477     return builder.create<vector::ReductionOp>(vector.getLoc(),
478                                                CombiningKind::MAXUI, vector);
479   // TODO: Add remaining reduction operations.
480   default:
481     (void)emitOptionalError(loc, "Reduction operation type not supported");
482     break;
483   }
484   return nullptr;
485 }
486 
487 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
488   return llvm::to_vector<4>(getVectorType().getShape());
489 }
490 
491 //===----------------------------------------------------------------------===//
492 // ContractionOp
493 //===----------------------------------------------------------------------===//
494 
495 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
496                                   Value lhs, Value rhs, Value acc,
497                                   ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
498                                   ArrayRef<StringRef> iteratorTypes) {
499   result.addOperands({lhs, rhs, acc});
500   result.addTypes(acc.getType());
501   result.addAttribute(::mlir::getIndexingMapsAttrName(),
502                       builder.getAffineMapArrayAttr(
503                           AffineMap::inferFromExprList(indexingExprs)));
504   result.addAttribute(::mlir::getIteratorTypesAttrName(),
505                       builder.getStrArrayAttr(iteratorTypes));
506 }
507 
508 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
509                                   Value lhs, Value rhs, Value acc,
510                                   ArrayAttr indexingMaps,
511                                   ArrayAttr iteratorTypes) {
512   build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
513         ContractionOp::getDefaultKind());
514 }
515 
516 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
517                                   Value lhs, Value rhs, Value acc,
518                                   ArrayAttr indexingMaps,
519                                   ArrayAttr iteratorTypes, CombiningKind kind) {
520   result.addOperands({lhs, rhs, acc});
521   result.addTypes(acc.getType());
522   result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps);
523   result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes);
524   result.addAttribute(ContractionOp::getKindAttrStrName(),
525                       CombiningKindAttr::get(kind, builder.getContext()));
526 }
527 
528 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
529   OpAsmParser::UnresolvedOperand lhsInfo;
530   OpAsmParser::UnresolvedOperand rhsInfo;
531   OpAsmParser::UnresolvedOperand accInfo;
532   SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
533   SmallVector<Type, 2> types;
534   Type resultType;
535   auto loc = parser.getCurrentLocation();
536   DictionaryAttr dictAttr;
537   // TODO: Unify linalg op attribute parsing.
538   if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
539       parser.parseOperand(lhsInfo) || parser.parseComma() ||
540       parser.parseOperand(rhsInfo) || parser.parseComma() ||
541       parser.parseOperand(accInfo) ||
542       parser.parseTrailingOperandList(masksInfo) ||
543       parser.parseOptionalAttrDict(result.attributes) ||
544       parser.parseColonTypeList(types) ||
545       parser.parseKeywordType("into", resultType) ||
546       parser.resolveOperand(lhsInfo, types[0], result.operands) ||
547       parser.resolveOperand(rhsInfo, types[1], result.operands) ||
548       parser.resolveOperand(accInfo, resultType, result.operands) ||
549       parser.addTypeToList(resultType, result.types))
550     return failure();
551   result.attributes.assign(dictAttr.getValue().begin(),
552                            dictAttr.getValue().end());
553   if (!result.attributes.get(ContractionOp::getKindAttrStrName())) {
554     result.addAttribute(ContractionOp::getKindAttrStrName(),
555                         CombiningKindAttr::get(ContractionOp::getDefaultKind(),
556                                                result.getContext()));
557   }
558   if (masksInfo.empty())
559     return success();
560   if (masksInfo.size() != 2)
561     return parser.emitError(parser.getNameLoc(),
562                             "expected zero or exactly 2 vector mask operands");
563   auto lhsType = types[0].cast<VectorType>();
564   auto rhsType = types[1].cast<VectorType>();
565   auto maskElementType = parser.getBuilder().getI1Type();
566   std::array<Type, 2> maskTypes = {
567       VectorType::Builder(lhsType).setElementType(maskElementType),
568       VectorType::Builder(rhsType).setElementType(maskElementType)};
569   if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
570     return failure();
571   return success();
572 }
573 
574 void ContractionOp::print(OpAsmPrinter &p) {
575   // TODO: Unify printing code with linalg ops.
576   auto attrNames = getTraitAttrNames();
577   llvm::StringSet<> traitAttrsSet;
578   traitAttrsSet.insert(attrNames.begin(), attrNames.end());
579   SmallVector<NamedAttribute, 8> attrs;
580   for (auto attr : (*this)->getAttrs())
581     if (traitAttrsSet.count(attr.getName().strref()) > 0)
582       attrs.push_back(attr);
583 
584   auto dictAttr = DictionaryAttr::get(getContext(), attrs);
585   p << " " << dictAttr << " " << getLhs() << ", ";
586   p << getRhs() << ", " << getAcc();
587   if (getMasks().size() == 2)
588     p << ", " << getMasks();
589 
590   p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
591   p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
592     << getResultType();
593 }
594 
595 static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
596                          const std::vector<std::pair<int64_t, int64_t>> &map) {
597   for (auto &dimPair : map) {
598     if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
599         dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
600         lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
601       return false;
602   }
603   return true;
604 }
605 
606 static LogicalResult verifyOutputShape(
607     ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
608     Type resType,
609     const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
610     const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
611   DenseSet<int64_t> lhsContractingDimSet;
612   DenseSet<int64_t> rhsContractingDimSet;
613   for (auto &dimPair : contractingDimMap) {
614     lhsContractingDimSet.insert(dimPair.first);
615     rhsContractingDimSet.insert(dimPair.second);
616   }
617   DenseSet<int64_t> rhsBatchDimSet;
618   for (auto &dimPair : batchDimMap)
619     rhsBatchDimSet.insert(dimPair.second);
620 
621   // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
622   SmallVector<int64_t, 4> expectedResultDims;
623   for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
624     if (lhsContractingDimSet.count(i) > 0)
625       continue;
626     expectedResultDims.push_back(lhsType.getDimSize(i));
627   }
628 
629   // Add free dimensions from 'rhsType' to 'expectedResultDims'.
630   for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
631     if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
632       continue;
633     expectedResultDims.push_back(rhsType.getDimSize(i));
634   }
635 
636   // Verify 'expectedResultDims'.
637   if (expectedResultDims.empty()) {
638     // No batch or free dimension implies a scalar result.
639     if (resType.isa<VectorType>() || accType.isa<VectorType>())
640       return op.emitOpError("invalid accumulator/result vector shape");
641   } else {
642     // At least one batch or free dimension implies a vector result.
643     auto resVectorType = resType.dyn_cast<VectorType>();
644     auto accVectorType = accType.dyn_cast<VectorType>();
645     if (!resVectorType || !accVectorType)
646       return op.emitOpError("invalid accumulator/result vector shape");
647 
648     // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
649     // types fully define the result vector type. This assumes the affine maps
650     // are well-formed, which must have been verified already.
651     MLIRContext *ctx = op.getContext();
652     AffineMap lhsMap = op.getIndexingMaps()[0];
653     AffineMap rhsMap = op.getIndexingMaps()[1];
654     SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
655     for (auto pair :
656          {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
657       VectorType v = pair.first;
658       auto map = pair.second;
659       for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
660         unsigned pos = map.getDimPosition(idx);
661         if (!extents[pos])
662           extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
663       }
664     }
665     assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) &&
666            "expected extent along all dimensions.");
667 
668     AffineMap resMap = op.getIndexingMaps()[2];
669     auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
670                                      /*symCount=*/0, extents, ctx);
671     // Compose the resMap with the extentsMap, which is a constant map.
672     AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
673     assert(llvm::all_of(
674                expectedMap.getResults(),
675                [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) &&
676            "expected constant extent along all dimensions.");
677     // Extract the expected shape and build the type.
678     auto expectedShape = llvm::to_vector<4>(
679         llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
680           return e.cast<AffineConstantExpr>().getValue();
681         }));
682     auto expected =
683         VectorType::get(expectedShape, resVectorType.getElementType());
684     if (resVectorType != expected || accVectorType != expected)
685       return op.emitOpError(
686                  "invalid accumulator/result vector shape, expected: ")
687              << expected;
688   }
689   return success();
690 }
691 
692 LogicalResult ContractionOp::verify() {
693   auto lhsType = getLhsType();
694   auto rhsType = getRhsType();
695   auto accType = getAccType();
696   auto resType = getResultType();
697 
698   // Verify that an indexing map was specified for each vector operand.
699   if (getIndexingMaps().size() != 3)
700     return emitOpError("expected an indexing map for each vector operand");
701 
702   // Verify that each index map has 'numIterators' inputs, no symbols, and
703   // that the number of map outputs equals the rank of its associated
704   // vector operand.
705   unsigned numIterators = getIteratorTypes().getValue().size();
706   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
707     auto index = it.index();
708     auto map = it.value();
709     if (map.getNumSymbols() != 0)
710       return emitOpError("expected indexing map ")
711              << index << " to have no symbols";
712     auto vectorType = getOperand(index).getType().dyn_cast<VectorType>();
713     unsigned rank = vectorType ? vectorType.getShape().size() : 0;
714     // Verify that the map has the right number of inputs, outputs, and indices.
715     // This also correctly accounts for (..) -> () for rank-0 results.
716     if (map.getNumDims() != numIterators)
717       return emitOpError("expected indexing map ")
718              << index << " to have " << numIterators << " number of inputs";
719     if (map.getNumResults() != rank)
720       return emitOpError("expected indexing map ")
721              << index << " to have " << rank << " number of outputs";
722     if (!map.isProjectedPermutation())
723       return emitOpError("expected indexing map ")
724              << index << " to be a projected permutation of its inputs";
725   }
726 
727   auto contractingDimMap = getContractingDimMap();
728   auto batchDimMap = getBatchDimMap();
729 
730   // Verify at least one contracting dimension pair was specified.
731   if (contractingDimMap.empty())
732     return emitOpError("expected at least one contracting dimension pair");
733 
734   // Verify contracting dimension map was properly constructed.
735   if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
736     return emitOpError("invalid contracting dimension map");
737 
738   // Verify batch dimension map was properly constructed.
739   if (!verifyDimMap(lhsType, rhsType, batchDimMap))
740     return emitOpError("invalid batch dimension map");
741 
742   // Verify 'accType' and 'resType' shape.
743   if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
744                                contractingDimMap, batchDimMap)))
745     return failure();
746 
747   // Verify that either two vector masks are set or none are set.
748   auto lhsMaskType = getLHSVectorMaskType();
749   auto rhsMaskType = getRHSVectorMaskType();
750   if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
751     return emitOpError("invalid number of vector masks specified");
752   if (lhsMaskType && rhsMaskType) {
753     // Verify mask rank == argument rank.
754     if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
755         rhsMaskType.getShape().size() != rhsType.getShape().size())
756       return emitOpError("invalid vector mask rank");
757   }
758 
759   // Verify supported combining kind.
760   auto vectorType = resType.dyn_cast<VectorType>();
761   auto elementType = vectorType ? vectorType.getElementType() : resType;
762   if (!isSupportedCombiningKind(getKind(), elementType))
763     return emitOpError("unsupported contraction type");
764 
765   return success();
766 }
767 
768 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
769   static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(),
770                                          ::mlir::getIteratorTypesAttrName(),
771                                          ContractionOp::getKindAttrStrName()};
772   return llvm::makeArrayRef(names);
773 }
774 
775 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
776   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
777     if (targetExpr == map.getResult(i))
778       return i;
779   return -1;
780 }
781 
782 static std::vector<std::pair<int64_t, int64_t>>
783 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
784           StringRef targetIteratorTypeName, MLIRContext *context) {
785   std::vector<std::pair<int64_t, int64_t>> dimMap;
786   for (const auto &it : llvm::enumerate(iteratorTypes)) {
787     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
788     if (iteratorTypeName != targetIteratorTypeName)
789       continue;
790     // Search lhs/rhs map results for 'targetExpr'.
791     auto targetExpr = getAffineDimExpr(it.index(), context);
792     int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
793     int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
794     if (lhsDim >= 0 && rhsDim >= 0)
795       dimMap.emplace_back(lhsDim, rhsDim);
796   }
797   return dimMap;
798 }
799 
800 void ContractionOp::getIterationBounds(
801     SmallVectorImpl<int64_t> &iterationBounds) {
802   auto lhsShape = getLhsType().getShape();
803   auto resVectorType = getResultType().dyn_cast<VectorType>();
804   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
805   SmallVector<int64_t, 2> iterationShape;
806   for (const auto &it : llvm::enumerate(getIteratorTypes())) {
807     // Search lhs/rhs map results for 'targetExpr'.
808     auto targetExpr = getAffineDimExpr(it.index(), getContext());
809     auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
810     if (iteratorTypeName == getReductionIteratorTypeName()) {
811       // Get reduction dim size from lhs shape (same size in rhsShape).
812       int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
813       assert(lhsDimIndex >= 0);
814       iterationBounds.push_back(lhsShape[lhsDimIndex]);
815       continue;
816     }
817     // Get parallel dimension size from result shape.
818     int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
819     assert(resDimIndex >= 0);
820     assert(resVectorType != nullptr);
821     iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
822   }
823 }
824 
825 void ContractionOp::getIterationIndexMap(
826     std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
827   unsigned numMaps = getIndexingMaps().size();
828   iterationIndexMap.resize(numMaps);
829   for (const auto &it : llvm::enumerate(getIndexingMaps())) {
830     auto index = it.index();
831     auto map = it.value();
832     for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
833       auto dim = map.getResult(i).cast<AffineDimExpr>();
834       iterationIndexMap[index][dim.getPosition()] = i;
835     }
836   }
837 }
838 
839 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
840   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
841   return getDimMap(indexingMaps, getIteratorTypes(),
842                    getReductionIteratorTypeName(), getContext());
843 }
844 
845 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
846   SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
847   return getDimMap(indexingMaps, getIteratorTypes(),
848                    getParallelIteratorTypeName(), getContext());
849 }
850 
851 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
852   SmallVector<int64_t, 4> shape;
853   getIterationBounds(shape);
854   return shape;
855 }
856 
857 /// Return a fused vector::ContractionOp which represents a patterns such as:
858 ///
859 /// ```mlir
860 ///    %c0 = vector.constant 0: ...
861 ///    %c = vector.contract %a, %b, %c0: ...
862 ///    %e = add %c, %d: ...
863 /// ```
864 ///
865 /// by:
866 ///
867 /// ```mlir
868 ///    %e = vector.contract %a, %b, %d: ...
869 /// ```
870 ///
871 /// Return null if the canonicalization does not apply.
872 // TODO: This should be a folding of Add into Contract in core but while they
873 // live in different dialects, it is not possible without unnatural
874 // dependencies.
875 template <typename AddOpType>
876 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
877   using OpRewritePattern<AddOpType>::OpRewritePattern;
878 
879   LogicalResult matchAndRewrite(AddOpType addOp,
880                                 PatternRewriter &rewriter) const override {
881     auto canonicalize = [&](Value maybeContraction,
882                             Value otherOperand) -> vector::ContractionOp {
883       vector::ContractionOp contractionOp =
884           dyn_cast_or_null<vector::ContractionOp>(
885               maybeContraction.getDefiningOp());
886       if (!contractionOp)
887         return vector::ContractionOp();
888       if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
889               contractionOp.getAcc().getDefiningOp())) {
890         if (maybeZero.getValue() ==
891             rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
892           BlockAndValueMapping bvm;
893           bvm.map(contractionOp.getAcc(), otherOperand);
894           auto newContraction =
895               cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
896           rewriter.replaceOp(addOp, newContraction.getResult());
897           return newContraction;
898         }
899       }
900       return vector::ContractionOp();
901     };
902 
903     Value a = addOp->getOperand(0), b = addOp->getOperand(1);
904     vector::ContractionOp contract = canonicalize(a, b);
905     contract = contract ? contract : canonicalize(b, a);
906     return contract ? success() : failure();
907   }
908 };
909 
910 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
911                                                 MLIRContext *context) {
912   results.add<CanonicalizeContractAdd<arith::AddIOp>,
913               CanonicalizeContractAdd<arith::AddFOp>>(context);
914 }
915 
916 //===----------------------------------------------------------------------===//
917 // ExtractElementOp
918 //===----------------------------------------------------------------------===//
919 
920 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
921                                      Value source) {
922   result.addOperands({source});
923   result.addTypes(source.getType().cast<VectorType>().getElementType());
924 }
925 
926 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
927                                      Value source, Value position) {
928   result.addOperands({source, position});
929   result.addTypes(source.getType().cast<VectorType>().getElementType());
930 }
931 
932 LogicalResult vector::ExtractElementOp::verify() {
933   VectorType vectorType = getVectorType();
934   if (vectorType.getRank() == 0) {
935     if (getPosition())
936       return emitOpError("expected position to be empty with 0-D vector");
937     return success();
938   }
939   if (vectorType.getRank() != 1)
940     return emitOpError("unexpected >1 vector rank");
941   if (!getPosition())
942     return emitOpError("expected position for 1-D vector");
943   return success();
944 }
945 
946 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) {
947   // Skip the 0-D vector here now.
948   if (operands.size() < 2)
949     return {};
950 
951   Attribute src = operands[0];
952   Attribute pos = operands[1];
953   if (!src || !pos)
954     return {};
955 
956   auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>();
957 
958   auto attr = pos.dyn_cast<IntegerAttr>();
959   uint64_t posIdx = attr.getInt();
960 
961   return srcElements[posIdx];
962 }
963 
964 //===----------------------------------------------------------------------===//
965 // ExtractOp
966 //===----------------------------------------------------------------------===//
967 
968 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
969                               Value source, ArrayRef<int64_t> position) {
970   build(builder, result, source, getVectorSubscriptAttr(builder, position));
971 }
972 
973 // Convenience builder which assumes the values are constant indices.
974 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
975                               Value source, ValueRange position) {
976   SmallVector<int64_t, 4> positionConstants =
977       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
978         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
979       }));
980   build(builder, result, source, positionConstants);
981 }
982 
983 LogicalResult
984 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>,
985                             ValueRange operands, DictionaryAttr attributes,
986                             RegionRange,
987                             SmallVectorImpl<Type> &inferredReturnTypes) {
988   ExtractOp::Adaptor op(operands, attributes);
989   auto vectorType = op.getVector().getType().cast<VectorType>();
990   if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) {
991     inferredReturnTypes.push_back(vectorType.getElementType());
992   } else {
993     auto n =
994         std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1);
995     inferredReturnTypes.push_back(VectorType::get(
996         vectorType.getShape().drop_front(n), vectorType.getElementType()));
997   }
998   return success();
999 }
1000 
1001 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
1002   // Allow extracting 1-element vectors instead of scalars.
1003   auto isCompatible = [](TypeRange l, TypeRange r) {
1004     auto vectorType = l.front().dyn_cast<VectorType>();
1005     return vectorType && vectorType.getShape().equals({1}) &&
1006            vectorType.getElementType() == r.front();
1007   };
1008   if (l.size() == 1 && r.size() == 1 &&
1009       (isCompatible(l, r) || isCompatible(r, l)))
1010     return true;
1011   return l == r;
1012 }
1013 
1014 LogicalResult vector::ExtractOp::verify() {
1015   auto positionAttr = getPosition().getValue();
1016   if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank()))
1017     return emitOpError(
1018         "expected position attribute of rank smaller than vector rank");
1019   for (const auto &en : llvm::enumerate(positionAttr)) {
1020     auto attr = en.value().dyn_cast<IntegerAttr>();
1021     if (!attr || attr.getInt() < 0 ||
1022         attr.getInt() >= getVectorType().getDimSize(en.index()))
1023       return emitOpError("expected position attribute #")
1024              << (en.index() + 1)
1025              << " to be a non-negative integer smaller than the corresponding "
1026                 "vector dimension";
1027   }
1028   return success();
1029 }
1030 
1031 template <typename IntType>
1032 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
1033   return llvm::to_vector<4>(llvm::map_range(
1034       arrayAttr.getAsRange<IntegerAttr>(),
1035       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
1036 }
1037 
1038 /// Fold the result of chains of ExtractOp in place by simply concatenating the
1039 /// positions.
1040 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
1041   if (!extractOp.getVector().getDefiningOp<ExtractOp>())
1042     return failure();
1043 
1044   SmallVector<int64_t, 4> globalPosition;
1045   ExtractOp currentOp = extractOp;
1046   auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1047   globalPosition.append(extrPos.rbegin(), extrPos.rend());
1048   while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
1049     currentOp = nextOp;
1050     auto extrPos = extractVector<int64_t>(currentOp.getPosition());
1051     globalPosition.append(extrPos.rbegin(), extrPos.rend());
1052   }
1053   extractOp.setOperand(currentOp.getVector());
1054   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1055   OpBuilder b(extractOp.getContext());
1056   std::reverse(globalPosition.begin(), globalPosition.end());
1057   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1058                      b.getI64ArrayAttr(globalPosition));
1059   return success();
1060 }
1061 
1062 namespace {
1063 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
1064 /// Walk back a chain of InsertOp/TransposeOp until we hit a match.
1065 /// Compose TransposeOp permutations as we walk back.
1066 /// This helper class keeps an updated extraction position `extractPosition`
1067 /// with extra trailing sentinels.
1068 /// The sentinels encode the internal transposition status of the result vector.
1069 /// As we iterate, extractPosition is permuted and updated.
1070 class ExtractFromInsertTransposeChainState {
1071 public:
1072   ExtractFromInsertTransposeChainState(ExtractOp e);
1073 
1074   /// Iterate over producing insert and transpose ops until we find a fold.
1075   Value fold();
1076 
1077 private:
1078   /// Return true if the vector at position `a` is contained within the vector
1079   /// at position `b`. Under insert/extract semantics, this is the same as `a`
1080   /// is a prefix of `b`.
1081   template <typename ContainerA, typename ContainerB>
1082   bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
1083     return a.size() <= b.size() &&
1084            std::equal(a.begin(), a.begin() + a.size(), b.begin());
1085   }
1086 
1087   /// Return true if the vector at position `a` intersects the vector at
1088   /// position `b`. Under insert/extract semantics, this is the same as equality
1089   /// of all entries of `a` that are >=0 with the corresponding entries of b.
1090   /// Comparison is on the common prefix (i.e. zip).
1091   template <typename ContainerA, typename ContainerB>
1092   bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
1093     for (auto it : llvm::zip(a, b)) {
1094       if (std::get<0>(it) < 0 || std::get<0>(it) < 0)
1095         continue;
1096       if (std::get<0>(it) != std::get<1>(it))
1097         return false;
1098     }
1099     return true;
1100   }
1101 
1102   /// Folding is only possible in the absence of an internal permutation in the
1103   /// result vector.
1104   bool canFold() {
1105     return (sentinels ==
1106             makeArrayRef(extractPosition).drop_front(extractedRank));
1107   }
1108 
1109   // Helper to get the next defining op of interest.
1110   void updateStateForNextIteration(Value v) {
1111     nextInsertOp = v.getDefiningOp<vector::InsertOp>();
1112     nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
1113   };
1114 
1115   // Case 1. If we hit a transpose, just compose the map and iterate.
1116   // Invariant: insert + transpose do not change rank, we can always compose.
1117   LogicalResult handleTransposeOp();
1118 
1119   // Case 2: the insert position matches extractPosition exactly, early return.
1120   LogicalResult handleInsertOpWithMatchingPos(Value &res);
1121 
1122   /// Case 3: if the insert position is a prefix of extractPosition, extract a
1123   /// portion of the source of the insert.
1124   /// Example:
1125   /// ```
1126   /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
1127   /// // extractPosition == [1, 2, 3]
1128   /// %ext = vector.extract %ins[1, 0]: vector<3x4x5>
1129   /// // can fold to vector.extract %source[0, 3]
1130   /// %ext = vector.extract %source[3]: vector<5x6>
1131   /// ```
1132   /// To traverse through %source, we need to set the leading dims to 0 and
1133   /// drop the extra leading dims.
1134   /// This method updates the internal state.
1135   LogicalResult handleInsertOpWithPrefixPos(Value &res);
1136 
1137   /// Try to fold in place to extract(source, extractPosition) and return the
1138   /// folded result. Return null if folding is not possible (e.g. due to an
1139   /// internal tranposition in the result).
1140   Value tryToFoldExtractOpInPlace(Value source);
1141 
1142   ExtractOp extractOp;
1143   int64_t vectorRank;
1144   int64_t extractedRank;
1145 
1146   InsertOp nextInsertOp;
1147   TransposeOp nextTransposeOp;
1148 
1149   /// Sentinel values that encode the internal permutation status of the result.
1150   /// They are set to (-1, ... , -k) at the beginning and appended to
1151   /// `extractPosition`.
1152   /// In the end, the tail of `extractPosition` must be exactly `sentinels` to
1153   /// ensure that there is no internal transposition.
1154   /// Internal transposition cannot be accounted for with a folding pattern.
1155   // TODO: We could relax the internal transposition with an extra transposition
1156   // operation in a future canonicalizer.
1157   SmallVector<int64_t> sentinels;
1158   SmallVector<int64_t> extractPosition;
1159 };
1160 } // namespace
1161 
1162 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
1163     ExtractOp e)
1164     : extractOp(e), vectorRank(extractOp.getVectorType().getRank()),
1165       extractedRank(extractOp.getPosition().size()) {
1166   assert(vectorRank >= extractedRank && "extracted pos overflow");
1167   sentinels.reserve(vectorRank - extractedRank);
1168   for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
1169     sentinels.push_back(-(i + 1));
1170   extractPosition = extractVector<int64_t>(extractOp.getPosition());
1171   llvm::append_range(extractPosition, sentinels);
1172 }
1173 
1174 // Case 1. If we hit a transpose, just compose the map and iterate.
1175 // Invariant: insert + transpose do not change rank, we can always compose.
1176 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
1177   if (!nextTransposeOp)
1178     return failure();
1179   auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp());
1180   AffineMap m = inversePermutation(
1181       AffineMap::getPermutationMap(permutation, extractOp.getContext()));
1182   extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition));
1183   return success();
1184 }
1185 
1186 // Case 2: the insert position matches extractPosition exactly, early return.
1187 LogicalResult
1188 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
1189     Value &res) {
1190   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1191   if (makeArrayRef(insertedPos) !=
1192       llvm::makeArrayRef(extractPosition).take_front(extractedRank))
1193     return failure();
1194   // Case 2.a. early-exit fold.
1195   res = nextInsertOp.getSource();
1196   // Case 2.b. if internal transposition is present, canFold will be false.
1197   return success();
1198 }
1199 
1200 /// Case 3: if inserted position is a prefix of extractPosition,
1201 /// extract a portion of the source of the insertion.
1202 /// This method updates the internal state.
1203 LogicalResult
1204 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
1205   auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1206   if (!isContainedWithin(insertedPos, extractPosition))
1207     return failure();
1208   // Set leading dims to zero.
1209   std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
1210   // Drop extra leading dims.
1211   extractPosition.erase(extractPosition.begin(),
1212                         extractPosition.begin() + insertedPos.size());
1213   extractedRank = extractPosition.size() - sentinels.size();
1214   // Case 3.a. early-exit fold (break and delegate to post-while path).
1215   res = nextInsertOp.getSource();
1216   // Case 3.b. if internal transposition is present, canFold will be false.
1217   return success();
1218 }
1219 
1220 /// Try to fold in place to extract(source, extractPosition) and return the
1221 /// folded result. Return null if folding is not possible (e.g. due to an
1222 /// internal tranposition in the result).
1223 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
1224     Value source) {
1225   // If we can't fold (either internal transposition, or nothing to fold), bail.
1226   bool nothingToFold = (source == extractOp.getVector());
1227   if (nothingToFold || !canFold())
1228     return Value();
1229   // Otherwise, fold by updating the op inplace and return its result.
1230   OpBuilder b(extractOp.getContext());
1231   extractOp->setAttr(
1232       extractOp.getPositionAttrName(),
1233       b.getI64ArrayAttr(
1234           makeArrayRef(extractPosition).take_front(extractedRank)));
1235   extractOp.getVectorMutable().assign(source);
1236   return extractOp.getResult();
1237 }
1238 
1239 /// Iterate over producing insert and transpose ops until we find a fold.
1240 Value ExtractFromInsertTransposeChainState::fold() {
1241   Value valueToExtractFrom = extractOp.getVector();
1242   updateStateForNextIteration(valueToExtractFrom);
1243   while (nextInsertOp || nextTransposeOp) {
1244     // Case 1. If we hit a transpose, just compose the map and iterate.
1245     // Invariant: insert + transpose do not change rank, we can always compose.
1246     if (succeeded(handleTransposeOp())) {
1247       valueToExtractFrom = nextTransposeOp.getVector();
1248       updateStateForNextIteration(valueToExtractFrom);
1249       continue;
1250     }
1251 
1252     Value result;
1253     // Case 2: the position match exactly.
1254     if (succeeded(handleInsertOpWithMatchingPos(result)))
1255       return result;
1256 
1257     // Case 3: if the inserted position is a prefix of extractPosition, we can
1258     // just extract a portion of the source of the insert.
1259     if (succeeded(handleInsertOpWithPrefixPos(result)))
1260       return tryToFoldExtractOpInPlace(result);
1261 
1262     // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
1263     // values. This is a more difficult case and we bail.
1264     auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition());
1265     if (isContainedWithin(extractPosition, insertedPos) ||
1266         intersectsWhereNonNegative(extractPosition, insertedPos))
1267       return Value();
1268 
1269     // Case 5: No intersection, we forward the extract to insertOp.dest().
1270     valueToExtractFrom = nextInsertOp.getDest();
1271     updateStateForNextIteration(valueToExtractFrom);
1272   }
1273   // If after all this we can fold, go for it.
1274   return tryToFoldExtractOpInPlace(valueToExtractFrom);
1275 }
1276 
1277 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp.
1278 static Value foldExtractFromBroadcast(ExtractOp extractOp) {
1279   Operation *defOp = extractOp.getVector().getDefiningOp();
1280   if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1281     return Value();
1282   Value source = defOp->getOperand(0);
1283   if (extractOp.getType() == source.getType())
1284     return source;
1285   auto getRank = [](Type type) {
1286     return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1287   };
1288   unsigned broadcastSrcRank = getRank(source.getType());
1289   unsigned extractResultRank = getRank(extractOp.getType());
1290   if (extractResultRank < broadcastSrcRank) {
1291     auto extractPos = extractVector<int64_t>(extractOp.getPosition());
1292     unsigned rankDiff = broadcastSrcRank - extractResultRank;
1293     extractPos.erase(
1294         extractPos.begin(),
1295         std::next(extractPos.begin(), extractPos.size() - rankDiff));
1296     extractOp.setOperand(source);
1297     // OpBuilder is only used as a helper to build an I64ArrayAttr.
1298     OpBuilder b(extractOp.getContext());
1299     extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1300                        b.getI64ArrayAttr(extractPos));
1301     return extractOp.getResult();
1302   }
1303   return Value();
1304 }
1305 
1306 // Fold extractOp with source coming from ShapeCast op.
1307 static Value foldExtractFromShapeCast(ExtractOp extractOp) {
1308   auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
1309   if (!shapeCastOp)
1310     return Value();
1311   // Get the nth dimension size starting from lowest dimension.
1312   auto getDimReverse = [](VectorType type, int64_t n) {
1313     return type.getShape().take_back(n + 1).front();
1314   };
1315   int64_t destinationRank =
1316       extractOp.getType().isa<VectorType>()
1317           ? extractOp.getType().cast<VectorType>().getRank()
1318           : 0;
1319   if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
1320     return Value();
1321   if (destinationRank > 0) {
1322     auto destinationType = extractOp.getResult().getType().cast<VectorType>();
1323     for (int64_t i = 0; i < destinationRank; i++) {
1324       // The lowest dimension of of the destination must match the lowest
1325       // dimension of the shapecast op source.
1326       // TODO: This case could be support in a canonicalization pattern.
1327       if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
1328           getDimReverse(destinationType, i))
1329         return Value();
1330     }
1331   }
1332   // Extract the strides associated with the extract op vector source. Then use
1333   // this to calculate a linearized position for the extract.
1334   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1335   std::reverse(extractedPos.begin(), extractedPos.end());
1336   SmallVector<int64_t, 4> strides;
1337   int64_t stride = 1;
1338   for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
1339     strides.push_back(stride);
1340     stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank);
1341   }
1342 
1343   int64_t position = linearize(extractedPos, strides);
1344   // Then extract the strides associated to the shapeCast op vector source and
1345   // delinearize the position using those strides.
1346   SmallVector<int64_t, 4> newStrides;
1347   int64_t numDimension =
1348       shapeCastOp.getSourceVectorType().getRank() - destinationRank;
1349   stride = 1;
1350   for (int64_t i = 0; i < numDimension; i++) {
1351     newStrides.push_back(stride);
1352     stride *=
1353         getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
1354   }
1355   std::reverse(newStrides.begin(), newStrides.end());
1356   SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position);
1357   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1358   OpBuilder b(extractOp.getContext());
1359   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1360                      b.getI64ArrayAttr(newPosition));
1361   extractOp.setOperand(shapeCastOp.getSource());
1362   return extractOp.getResult();
1363 }
1364 
1365 /// Fold an ExtractOp from ExtractStridedSliceOp.
1366 static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
1367   auto extractStridedSliceOp =
1368       extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
1369   if (!extractStridedSliceOp)
1370     return Value();
1371   // Return if 'extractStridedSliceOp' has non-unit strides.
1372   if (extractStridedSliceOp.hasNonUnitStrides())
1373     return Value();
1374 
1375   // Trim offsets for dimensions fully extracted.
1376   auto sliceOffsets =
1377       extractVector<int64_t>(extractStridedSliceOp.getOffsets());
1378   while (!sliceOffsets.empty()) {
1379     size_t lastOffset = sliceOffsets.size() - 1;
1380     if (sliceOffsets.back() != 0 ||
1381         extractStridedSliceOp.getType().getDimSize(lastOffset) !=
1382             extractStridedSliceOp.getVectorType().getDimSize(lastOffset))
1383       break;
1384     sliceOffsets.pop_back();
1385   }
1386   unsigned destinationRank = 0;
1387   if (auto vecType = extractOp.getType().dyn_cast<VectorType>())
1388     destinationRank = vecType.getRank();
1389   // The dimensions of the result need to be untouched by the
1390   // extractStridedSlice op.
1391   if (destinationRank >
1392       extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size())
1393     return Value();
1394   auto extractedPos = extractVector<int64_t>(extractOp.getPosition());
1395   assert(extractedPos.size() >= sliceOffsets.size());
1396   for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
1397     extractedPos[i] = extractedPos[i] + sliceOffsets[i];
1398   extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
1399   // OpBuilder is only used as a helper to build an I64ArrayAttr.
1400   OpBuilder b(extractOp.getContext());
1401   extractOp->setAttr(ExtractOp::getPositionAttrStrName(),
1402                      b.getI64ArrayAttr(extractedPos));
1403   return extractOp.getResult();
1404 }
1405 
1406 /// Fold extract_op fed from a chain of insertStridedSlice ops.
1407 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) {
1408   int64_t destinationRank = op.getType().isa<VectorType>()
1409                                 ? op.getType().cast<VectorType>().getRank()
1410                                 : 0;
1411   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
1412   while (insertOp) {
1413     int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
1414                              insertOp.getSourceVectorType().getRank();
1415     if (destinationRank > insertOp.getSourceVectorType().getRank())
1416       return Value();
1417     auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
1418     auto extractOffsets = extractVector<int64_t>(op.getPosition());
1419 
1420     if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
1421           return attr.cast<IntegerAttr>().getInt() != 1;
1422         }))
1423       return Value();
1424     bool disjoint = false;
1425     SmallVector<int64_t, 4> offsetDiffs;
1426     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
1427       int64_t start = insertOffsets[dim];
1428       int64_t size =
1429           (dim < insertRankDiff)
1430               ? 1
1431               : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
1432       int64_t end = start + size;
1433       int64_t offset = extractOffsets[dim];
1434       // Check if the start of the extract offset is in the interval inserted.
1435       if (start <= offset && offset < end) {
1436         if (dim >= insertRankDiff)
1437           offsetDiffs.push_back(offset - start);
1438         continue;
1439       }
1440       disjoint = true;
1441       break;
1442     }
1443     // The extract element chunk overlap with the vector inserted.
1444     if (!disjoint) {
1445       // If any of the inner dimensions are only partially inserted we have a
1446       // partial overlap.
1447       int64_t srcRankDiff =
1448           insertOp.getSourceVectorType().getRank() - destinationRank;
1449       for (int64_t i = 0; i < destinationRank; i++) {
1450         if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
1451             insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
1452                                                     insertRankDiff))
1453           return Value();
1454       }
1455       op.getVectorMutable().assign(insertOp.getSource());
1456       // OpBuilder is only used as a helper to build an I64ArrayAttr.
1457       OpBuilder b(op.getContext());
1458       op->setAttr(ExtractOp::getPositionAttrStrName(),
1459                   b.getI64ArrayAttr(offsetDiffs));
1460       return op.getResult();
1461     }
1462     // If the chunk extracted is disjoint from the chunk inserted, keep
1463     // looking in the insert chain.
1464     insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
1465   }
1466   return Value();
1467 }
1468 
1469 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) {
1470   if (getPosition().empty())
1471     return getVector();
1472   if (succeeded(foldExtractOpFromExtractChain(*this)))
1473     return getResult();
1474   if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
1475     return res;
1476   if (auto res = foldExtractFromBroadcast(*this))
1477     return res;
1478   if (auto res = foldExtractFromShapeCast(*this))
1479     return res;
1480   if (auto val = foldExtractFromExtractStrided(*this))
1481     return val;
1482   if (auto val = foldExtractStridedOpFromInsertChain(*this))
1483     return val;
1484   return OpFoldResult();
1485 }
1486 
1487 namespace {
1488 
1489 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
1490 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
1491 public:
1492   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1493 
1494   LogicalResult matchAndRewrite(ExtractOp extractOp,
1495                                 PatternRewriter &rewriter) const override {
1496     Operation *defOp = extractOp.getVector().getDefiningOp();
1497     if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp))
1498       return failure();
1499 
1500     Value source = defOp->getOperand(0);
1501     if (extractOp.getType() == source.getType())
1502       return failure();
1503     auto getRank = [](Type type) {
1504       return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0;
1505     };
1506     unsigned broadcastSrcRank = getRank(source.getType());
1507     unsigned extractResultRank = getRank(extractOp.getType());
1508     // We only consider the case where the rank of the source is less than or
1509     // equal to the rank of the extract dst. The other cases are handled in the
1510     // folding patterns.
1511     if (extractResultRank < broadcastSrcRank)
1512       return failure();
1513     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1514         extractOp, extractOp.getType(), source);
1515     return success();
1516   }
1517 };
1518 
1519 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp.
1520 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> {
1521 public:
1522   using OpRewritePattern<ExtractOp>::OpRewritePattern;
1523 
1524   LogicalResult matchAndRewrite(ExtractOp extractOp,
1525                                 PatternRewriter &rewriter) const override {
1526     // Return if 'extractStridedSliceOp' operand is not defined by a
1527     // ConstantOp.
1528     auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>();
1529     if (!constantOp)
1530       return failure();
1531     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
1532     if (!dense)
1533       return failure();
1534     Attribute newAttr = dense.getSplatValue<Attribute>();
1535     if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>())
1536       newAttr = DenseElementsAttr::get(vecDstType, newAttr);
1537     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr);
1538     return success();
1539   }
1540 };
1541 
1542 } // namespace
1543 
1544 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
1545                                             MLIRContext *context) {
1546   results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context);
1547 }
1548 
1549 static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
1550                                        SmallVectorImpl<int64_t> &results) {
1551   for (auto attr : arrayAttr)
1552     results.push_back(attr.cast<IntegerAttr>().getInt());
1553 }
1554 
1555 //===----------------------------------------------------------------------===//
1556 // ExtractMapOp
1557 //===----------------------------------------------------------------------===//
1558 
1559 void ExtractMapOp::build(OpBuilder &builder, OperationState &result,
1560                          Value vector, ValueRange ids,
1561                          ArrayRef<int64_t> multiplicity,
1562                          AffineMap permutationMap) {
1563   assert(ids.size() == multiplicity.size() &&
1564          ids.size() == permutationMap.getNumResults());
1565   assert(permutationMap.isProjectedPermutation());
1566   VectorType type = vector.getType().cast<VectorType>();
1567   SmallVector<int64_t, 4> newShape(type.getShape().begin(),
1568                                    type.getShape().end());
1569   for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) {
1570     AffineExpr expr = permutationMap.getResult(i);
1571     auto dim = expr.cast<AffineDimExpr>();
1572     newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i];
1573   }
1574   VectorType resultType = VectorType::get(newShape, type.getElementType());
1575   ExtractMapOp::build(builder, result, resultType, vector, ids);
1576 }
1577 
1578 LogicalResult ExtractMapOp::verify() {
1579   if (getSourceVectorType().getRank() != getResultType().getRank())
1580     return emitOpError("expected source and destination vectors of same rank");
1581   unsigned numId = 0;
1582   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) {
1583     if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) !=
1584         0)
1585       return emitOpError("source vector dimensions must be a multiple of "
1586                          "destination vector dimensions");
1587     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1588       numId++;
1589   }
1590   if (numId != getIds().size())
1591     return emitOpError("expected number of ids must match the number of "
1592                        "dimensions distributed");
1593   return success();
1594 }
1595 
1596 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) {
1597   auto insert = getVector().getDefiningOp<vector::InsertMapOp>();
1598   if (insert == nullptr || getType() != insert.getVector().getType() ||
1599       getIds() != insert.getIds())
1600     return {};
1601   return insert.getVector();
1602 }
1603 
1604 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) {
1605   assert(multiplicity.empty());
1606   for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) {
1607     if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i))
1608       multiplicity.push_back(getSourceVectorType().getDimSize(i) /
1609                              getResultType().getDimSize(i));
1610   }
1611 }
1612 
1613 template <typename MapOp>
1614 AffineMap calculateImplicitMap(MapOp op) {
1615   SmallVector<AffineExpr, 4> perm;
1616   // Check which dimension have a multiplicity greater than 1 and associated
1617   // them to the IDs in order.
1618   for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) {
1619     if (op.getSourceVectorType().getDimSize(i) !=
1620         op.getResultType().getDimSize(i))
1621       perm.push_back(getAffineDimExpr(i, op.getContext()));
1622   }
1623   auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm,
1624                             op.getContext());
1625   return map;
1626 }
1627 
1628 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); }
1629 
1630 //===----------------------------------------------------------------------===//
1631 // FmaOp
1632 //===----------------------------------------------------------------------===//
1633 
1634 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
1635   return llvm::to_vector<4>(getVectorType().getShape());
1636 }
1637 
1638 //===----------------------------------------------------------------------===//
1639 // BroadcastOp
1640 //===----------------------------------------------------------------------===//
1641 
1642 BroadcastableToResult
1643 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType,
1644                                 std::pair<int, int> *mismatchingDims) {
1645   // Broadcast scalar to vector of the same element type.
1646   if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
1647       getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
1648     return BroadcastableToResult::Success;
1649   // From now on, only vectors broadcast.
1650   VectorType srcVectorType = srcType.dyn_cast<VectorType>();
1651   if (!srcVectorType)
1652     return BroadcastableToResult::SourceTypeNotAVector;
1653 
1654   int64_t srcRank = srcVectorType.getRank();
1655   int64_t dstRank = dstVectorType.getRank();
1656   if (srcRank > dstRank)
1657     return BroadcastableToResult::SourceRankHigher;
1658   // Source has an exact match or singleton value for all trailing dimensions
1659   // (all leading dimensions are simply duplicated).
1660   int64_t lead = dstRank - srcRank;
1661   for (int64_t r = 0; r < srcRank; ++r) {
1662     int64_t srcDim = srcVectorType.getDimSize(r);
1663     int64_t dstDim = dstVectorType.getDimSize(lead + r);
1664     if (srcDim != 1 && srcDim != dstDim) {
1665       if (mismatchingDims) {
1666         mismatchingDims->first = srcDim;
1667         mismatchingDims->second = dstDim;
1668       }
1669       return BroadcastableToResult::DimensionMismatch;
1670     }
1671   }
1672 
1673   return BroadcastableToResult::Success;
1674 }
1675 
1676 LogicalResult BroadcastOp::verify() {
1677   std::pair<int, int> mismatchingDims;
1678   BroadcastableToResult res =
1679       isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims);
1680   if (res == BroadcastableToResult::Success)
1681     return success();
1682   if (res == BroadcastableToResult::SourceRankHigher)
1683     return emitOpError("source rank higher than destination rank");
1684   if (res == BroadcastableToResult::DimensionMismatch)
1685     return emitOpError("dimension mismatch (")
1686            << mismatchingDims.first << " vs. " << mismatchingDims.second << ")";
1687   if (res == BroadcastableToResult::SourceTypeNotAVector)
1688     return emitOpError("source type is not a vector");
1689   llvm_unreachable("unexpected vector.broadcast op error");
1690 }
1691 
1692 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
1693   if (getSourceType() == getVectorType())
1694     return getSource();
1695   if (!operands[0])
1696     return {};
1697   auto vectorType = getVectorType();
1698   if (operands[0].getType().isIntOrIndexOrFloat())
1699     return DenseElementsAttr::get(vectorType, operands[0]);
1700   if (auto attr = operands[0].dyn_cast<SplatElementsAttr>())
1701     return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
1702   return {};
1703 }
1704 
1705 namespace {
1706 
1707 // Fold broadcast1(broadcast2(x)) into broadcast1(x).
1708 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
1709   using OpRewritePattern<BroadcastOp>::OpRewritePattern;
1710 
1711   LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
1712                                 PatternRewriter &rewriter) const override {
1713     auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
1714     if (!srcBroadcast)
1715       return failure();
1716     rewriter.replaceOpWithNewOp<BroadcastOp>(
1717         broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource());
1718     return success();
1719   }
1720 };
1721 } // namespace
1722 
1723 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
1724                                               MLIRContext *context) {
1725   // BroadcastToShapeCast is not a default canonicalization, it is opt-in by
1726   // calling `populateCastAwayVectorLeadingOneDimPatterns`
1727   results.add<BroadcastFolder>(context);
1728 }
1729 
1730 //===----------------------------------------------------------------------===//
1731 // ShuffleOp
1732 //===----------------------------------------------------------------------===//
1733 
1734 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1,
1735                       Value v2, ArrayRef<int64_t> mask) {
1736   build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask));
1737 }
1738 
1739 LogicalResult ShuffleOp::verify() {
1740   VectorType resultType = getVectorType();
1741   VectorType v1Type = getV1VectorType();
1742   VectorType v2Type = getV2VectorType();
1743   // Verify ranks.
1744   int64_t resRank = resultType.getRank();
1745   int64_t v1Rank = v1Type.getRank();
1746   int64_t v2Rank = v2Type.getRank();
1747   if (resRank != v1Rank || v1Rank != v2Rank)
1748     return emitOpError("rank mismatch");
1749   // Verify all but leading dimension sizes.
1750   for (int64_t r = 1; r < v1Rank; ++r) {
1751     int64_t resDim = resultType.getDimSize(r);
1752     int64_t v1Dim = v1Type.getDimSize(r);
1753     int64_t v2Dim = v2Type.getDimSize(r);
1754     if (resDim != v1Dim || v1Dim != v2Dim)
1755       return emitOpError("dimension mismatch");
1756   }
1757   // Verify mask length.
1758   auto maskAttr = getMask().getValue();
1759   int64_t maskLength = maskAttr.size();
1760   if (maskLength <= 0)
1761     return emitOpError("invalid mask length");
1762   if (maskLength != resultType.getDimSize(0))
1763     return emitOpError("mask length mismatch");
1764   // Verify all indices.
1765   int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
1766   for (const auto &en : llvm::enumerate(maskAttr)) {
1767     auto attr = en.value().dyn_cast<IntegerAttr>();
1768     if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
1769       return emitOpError("mask index #") << (en.index() + 1) << " out of range";
1770   }
1771   return success();
1772 }
1773 
1774 LogicalResult
1775 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>,
1776                             ValueRange operands, DictionaryAttr attributes,
1777                             RegionRange,
1778                             SmallVectorImpl<Type> &inferredReturnTypes) {
1779   ShuffleOp::Adaptor op(operands, attributes);
1780   auto v1Type = op.getV1().getType().cast<VectorType>();
1781   // Construct resulting type: leading dimension matches mask length,
1782   // all trailing dimensions match the operands.
1783   SmallVector<int64_t, 4> shape;
1784   shape.reserve(v1Type.getRank());
1785   shape.push_back(std::max<size_t>(1, op.getMask().size()));
1786   llvm::append_range(shape, v1Type.getShape().drop_front());
1787   inferredReturnTypes.push_back(
1788       VectorType::get(shape, v1Type.getElementType()));
1789   return success();
1790 }
1791 
1792 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) {
1793   uint64_t expected = begin;
1794   return idxArr.size() == width &&
1795          llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(),
1796                       [&expected](auto attr) {
1797                         return attr.getZExtValue() == expected++;
1798                       });
1799 }
1800 
1801 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) {
1802   // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1
1803   if (!getV1VectorType().isScalable() &&
1804       isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0)))
1805     return getV1();
1806   // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2
1807   if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() &&
1808       isStepIndexArray(getMask(), getV1VectorType().getDimSize(0),
1809                        getV2VectorType().getDimSize(0)))
1810     return getV2();
1811 
1812   Attribute lhs = operands.front(), rhs = operands.back();
1813   if (!lhs || !rhs)
1814     return {};
1815 
1816   auto lhsType = lhs.getType().cast<VectorType>();
1817   // Only support 1-D for now to avoid complicated n-D DenseElementsAttr
1818   // manipulation.
1819   if (lhsType.getRank() != 1)
1820     return {};
1821   int64_t lhsSize = lhsType.getDimSize(0);
1822 
1823   SmallVector<Attribute> results;
1824   auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>();
1825   auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>();
1826   for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) {
1827     int64_t i = index.getZExtValue();
1828     if (i >= lhsSize) {
1829       results.push_back(rhsElements[i - lhsSize]);
1830     } else {
1831       results.push_back(lhsElements[i]);
1832     }
1833   }
1834 
1835   return DenseElementsAttr::get(getVectorType(), results);
1836 }
1837 
1838 //===----------------------------------------------------------------------===//
1839 // InsertElementOp
1840 //===----------------------------------------------------------------------===//
1841 
1842 void InsertElementOp::build(OpBuilder &builder, OperationState &result,
1843                             Value source, Value dest) {
1844   build(builder, result, source, dest, {});
1845 }
1846 
1847 LogicalResult InsertElementOp::verify() {
1848   auto dstVectorType = getDestVectorType();
1849   if (dstVectorType.getRank() == 0) {
1850     if (getPosition())
1851       return emitOpError("expected position to be empty with 0-D vector");
1852     return success();
1853   }
1854   if (dstVectorType.getRank() != 1)
1855     return emitOpError("unexpected >1 vector rank");
1856   if (!getPosition())
1857     return emitOpError("expected position for 1-D vector");
1858   return success();
1859 }
1860 
1861 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) {
1862   // Skip the 0-D vector here.
1863   if (operands.size() < 3)
1864     return {};
1865 
1866   Attribute src = operands[0];
1867   Attribute dst = operands[1];
1868   Attribute pos = operands[2];
1869   if (!src || !dst || !pos)
1870     return {};
1871 
1872   auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>();
1873 
1874   SmallVector<Attribute> results(dstElements);
1875 
1876   auto attr = pos.dyn_cast<IntegerAttr>();
1877   uint64_t posIdx = attr.getInt();
1878 
1879   results[posIdx] = src;
1880 
1881   return DenseElementsAttr::get(getDestVectorType(), results);
1882 }
1883 
1884 //===----------------------------------------------------------------------===//
1885 // InsertOp
1886 //===----------------------------------------------------------------------===//
1887 
1888 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1889                      Value dest, ArrayRef<int64_t> position) {
1890   result.addOperands({source, dest});
1891   auto positionAttr = getVectorSubscriptAttr(builder, position);
1892   result.addTypes(dest.getType());
1893   result.addAttribute(getPositionAttrStrName(), positionAttr);
1894 }
1895 
1896 // Convenience builder which assumes the values are constant indices.
1897 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source,
1898                      Value dest, ValueRange position) {
1899   SmallVector<int64_t, 4> positionConstants =
1900       llvm::to_vector<4>(llvm::map_range(position, [](Value pos) {
1901         return pos.getDefiningOp<arith::ConstantIndexOp>().value();
1902       }));
1903   build(builder, result, source, dest, positionConstants);
1904 }
1905 
1906 LogicalResult InsertOp::verify() {
1907   auto positionAttr = getPosition().getValue();
1908   auto destVectorType = getDestVectorType();
1909   if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
1910     return emitOpError(
1911         "expected position attribute of rank smaller than dest vector rank");
1912   auto srcVectorType = getSourceType().dyn_cast<VectorType>();
1913   if (srcVectorType &&
1914       (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
1915        static_cast<unsigned>(destVectorType.getRank())))
1916     return emitOpError("expected position attribute rank + source rank to "
1917                           "match dest vector rank");
1918   if (!srcVectorType &&
1919       (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank())))
1920     return emitOpError(
1921         "expected position attribute rank to match the dest vector rank");
1922   for (const auto &en : llvm::enumerate(positionAttr)) {
1923     auto attr = en.value().dyn_cast<IntegerAttr>();
1924     if (!attr || attr.getInt() < 0 ||
1925         attr.getInt() >= destVectorType.getDimSize(en.index()))
1926       return emitOpError("expected position attribute #")
1927              << (en.index() + 1)
1928              << " to be a non-negative integer smaller than the corresponding "
1929                 "dest vector dimension";
1930   }
1931   return success();
1932 }
1933 
1934 namespace {
1935 
1936 // If insertOp is only inserting unit dimensions it can be transformed to a
1937 // broadcast.
1938 class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
1939 public:
1940   using OpRewritePattern<InsertOp>::OpRewritePattern;
1941 
1942   LogicalResult matchAndRewrite(InsertOp insertOp,
1943                                 PatternRewriter &rewriter) const override {
1944     auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>();
1945     if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
1946                            srcVecType.getNumElements())
1947       return failure();
1948     rewriter.replaceOpWithNewOp<BroadcastOp>(
1949         insertOp, insertOp.getDestVectorType(), insertOp.getSource());
1950     return success();
1951   }
1952 };
1953 
1954 } // namespace
1955 
1956 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
1957                                            MLIRContext *context) {
1958   results.add<InsertToBroadcast, BroadcastFolder>(context);
1959 }
1960 
1961 // Eliminates insert operations that produce values identical to their source
1962 // value. This happens when the source and destination vectors have identical
1963 // sizes.
1964 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) {
1965   if (getPosition().empty())
1966     return getSource();
1967   return {};
1968 }
1969 
1970 //===----------------------------------------------------------------------===//
1971 // InsertMapOp
1972 //===----------------------------------------------------------------------===//
1973 
1974 LogicalResult InsertMapOp::verify() {
1975   if (getSourceVectorType().getRank() != getResultType().getRank())
1976     return emitOpError("expected source and destination vectors of same rank");
1977   unsigned numId = 0;
1978   for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) {
1979     if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) !=
1980         0)
1981       return emitOpError(
1982           "destination vector size must be a multiple of source vector size");
1983     if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i))
1984       numId++;
1985   }
1986   if (numId != getIds().size())
1987     return emitOpError("expected number of ids must match the number of "
1988                        "dimensions distributed");
1989   return success();
1990 }
1991 
1992 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); }
1993 
1994 //===----------------------------------------------------------------------===//
1995 // InsertStridedSliceOp
1996 //===----------------------------------------------------------------------===//
1997 
1998 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
1999                                  Value source, Value dest,
2000                                  ArrayRef<int64_t> offsets,
2001                                  ArrayRef<int64_t> strides) {
2002   result.addOperands({source, dest});
2003   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2004   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2005   result.addTypes(dest.getType());
2006   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2007   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2008 }
2009 
2010 // TODO: Should be moved to Tablegen Confined attributes.
2011 template <typename OpType>
2012 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
2013                                                         ArrayAttr arrayAttr,
2014                                                         ArrayRef<int64_t> shape,
2015                                                         StringRef attrName) {
2016   if (arrayAttr.size() > shape.size())
2017     return op.emitOpError("expected ")
2018            << attrName << " attribute of rank smaller than vector rank";
2019   return success();
2020 }
2021 
2022 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2023 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2024 // Otherwise, the admissible interval is [min, max].
2025 template <typename OpType>
2026 static LogicalResult
2027 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
2028                                   int64_t max, StringRef attrName,
2029                                   bool halfOpen = true) {
2030   for (auto attr : arrayAttr) {
2031     auto val = attr.cast<IntegerAttr>().getInt();
2032     auto upper = max;
2033     if (!halfOpen)
2034       upper += 1;
2035     if (val < min || val >= upper)
2036       return op.emitOpError("expected ") << attrName << " to be confined to ["
2037                                          << min << ", " << upper << ")";
2038   }
2039   return success();
2040 }
2041 
2042 // Returns true if all integers in `arrayAttr` are in the half-open [min, max}
2043 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2044 // Otherwise, the admissible interval is [min, max].
2045 template <typename OpType>
2046 static LogicalResult
2047 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
2048                                   ArrayRef<int64_t> shape, StringRef attrName,
2049                                   bool halfOpen = true, int64_t min = 0) {
2050   assert(arrayAttr.size() <= shape.size());
2051   unsigned index = 0;
2052   for (auto it : llvm::zip(arrayAttr, shape)) {
2053     auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
2054     auto max = std::get<1>(it);
2055     if (!halfOpen)
2056       max += 1;
2057     if (val < min || val >= max)
2058       return op.emitOpError("expected ")
2059              << attrName << " dimension " << index << " to be confined to ["
2060              << min << ", " << max << ")";
2061     ++index;
2062   }
2063   return success();
2064 }
2065 
2066 // Returns true if all integers in `arrayAttr` are in the interval [min, max}.
2067 // interval. If `halfOpen` is true then the admissible interval is [min, max).
2068 // Otherwise, the admissible interval is [min, max].
2069 template <typename OpType>
2070 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
2071     OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
2072     ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
2073     bool halfOpen = true, int64_t min = 1) {
2074   assert(arrayAttr1.size() <= shape.size());
2075   assert(arrayAttr2.size() <= shape.size());
2076   unsigned index = 0;
2077   for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
2078     auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
2079     auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
2080     auto max = std::get<2>(it);
2081     if (!halfOpen)
2082       max += 1;
2083     if (val1 + val2 < 0 || val1 + val2 >= max)
2084       return op.emitOpError("expected sum(")
2085              << attrName1 << ", " << attrName2 << ") dimension " << index
2086              << " to be confined to [" << min << ", " << max << ")";
2087     ++index;
2088   }
2089   return success();
2090 }
2091 
2092 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
2093                                   MLIRContext *context) {
2094   auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
2095     return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
2096   });
2097   return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
2098 }
2099 
2100 LogicalResult InsertStridedSliceOp::verify() {
2101   auto sourceVectorType = getSourceVectorType();
2102   auto destVectorType = getDestVectorType();
2103   auto offsets = getOffsetsAttr();
2104   auto strides = getStridesAttr();
2105   if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
2106     return emitOpError(
2107         "expected offsets of same size as destination vector rank");
2108   if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
2109     return emitOpError("expected strides of same size as source vector rank");
2110   if (sourceVectorType.getRank() > destVectorType.getRank())
2111     return emitOpError(
2112         "expected source rank to be smaller than destination rank");
2113 
2114   auto sourceShape = sourceVectorType.getShape();
2115   auto destShape = destVectorType.getShape();
2116   SmallVector<int64_t, 4> sourceShapeAsDestShape(
2117       destShape.size() - sourceShape.size(), 0);
2118   sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
2119   auto offName = InsertStridedSliceOp::getOffsetsAttrName();
2120   auto stridesName = InsertStridedSliceOp::getStridesAttrName();
2121   if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
2122                                                offName)) ||
2123       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1,
2124                                                stridesName,
2125                                                /*halfOpen=*/false)) ||
2126       failed(isSumOfIntegerArrayAttrConfinedToShape(
2127           *this, offsets,
2128           makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
2129           offName, "source vector shape",
2130           /*halfOpen=*/false, /*min=*/1)))
2131     return failure();
2132 
2133   return success();
2134 }
2135 
2136 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2137   if (getSourceVectorType() == getDestVectorType())
2138     return getSource();
2139   return {};
2140 }
2141 
2142 //===----------------------------------------------------------------------===//
2143 // OuterProductOp
2144 //===----------------------------------------------------------------------===//
2145 
2146 /// Build an op without mask, use the type of `acc` as the return type.
2147 void OuterProductOp::build(OpBuilder &builder, OperationState &result,
2148                            Value lhs, Value rhs, Value acc) {
2149   result.addOperands({lhs, rhs, acc});
2150   result.addTypes(acc.getType());
2151 }
2152 
2153 void OuterProductOp::print(OpAsmPrinter &p) {
2154   p << " " << getLhs() << ", " << getRhs();
2155   if (!getAcc().empty()) {
2156     p << ", " << getAcc();
2157     p.printOptionalAttrDict((*this)->getAttrs());
2158   }
2159   p << " : " << getLhs().getType() << ", " << getRhs().getType();
2160 }
2161 
2162 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
2163   SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
2164   Type tLHS, tRHS;
2165   if (parser.parseOperandList(operandsInfo) ||
2166       parser.parseOptionalAttrDict(result.attributes) ||
2167       parser.parseColonType(tLHS) || parser.parseComma() ||
2168       parser.parseType(tRHS))
2169     return failure();
2170   if (operandsInfo.size() < 2)
2171     return parser.emitError(parser.getNameLoc(),
2172                             "expected at least 2 operands");
2173   VectorType vLHS = tLHS.dyn_cast<VectorType>();
2174   VectorType vRHS = tRHS.dyn_cast<VectorType>();
2175   if (!vLHS)
2176     return parser.emitError(parser.getNameLoc(),
2177                             "expected vector type for operand #1");
2178   VectorType resType =
2179       vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
2180                              vLHS.getElementType())
2181            : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType());
2182 
2183   if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) {
2184     result.attributes.append(
2185         OuterProductOp::getKindAttrStrName(),
2186         CombiningKindAttr::get(OuterProductOp::getDefaultKind(),
2187                                result.getContext()));
2188   }
2189 
2190   return failure(
2191       parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
2192       parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
2193       (operandsInfo.size() > 2 &&
2194        parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
2195       parser.addTypeToList(resType, result.types));
2196 }
2197 
2198 LogicalResult OuterProductOp::verify() {
2199   Type tRHS = getOperandTypeRHS();
2200   VectorType vLHS = getOperandVectorTypeLHS(),
2201              vRHS = tRHS.dyn_cast<VectorType>(),
2202              vACC = getOperandVectorTypeACC(), vRES = getVectorType();
2203 
2204   if (vLHS.getRank() != 1)
2205     return emitOpError("expected 1-d vector for operand #1");
2206 
2207   if (vRHS) {
2208     // Proper OUTER operation.
2209     if (vRHS.getRank() != 1)
2210       return emitOpError("expected 1-d vector for operand #2");
2211     if (vRES.getRank() != 2)
2212       return emitOpError("expected 2-d vector result");
2213     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2214       return emitOpError("expected #1 operand dim to match result dim #1");
2215     if (vRHS.getDimSize(0) != vRES.getDimSize(1))
2216       return emitOpError("expected #2 operand dim to match result dim #2");
2217   } else {
2218     // An AXPY operation.
2219     if (vRES.getRank() != 1)
2220       return emitOpError("expected 1-d vector result");
2221     if (vLHS.getDimSize(0) != vRES.getDimSize(0))
2222       return emitOpError("expected #1 operand dim to match result dim #1");
2223   }
2224 
2225   if (vACC && vACC != vRES)
2226     return emitOpError("expected operand #3 of same type as result type");
2227 
2228   // Verify supported combining kind.
2229   if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
2230     return emitOpError("unsupported outerproduct type");
2231 
2232   return success();
2233 }
2234 
2235 //===----------------------------------------------------------------------===//
2236 // ReshapeOp
2237 //===----------------------------------------------------------------------===//
2238 
2239 LogicalResult ReshapeOp::verify() {
2240   // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank.
2241   auto inputVectorType = getInputVectorType();
2242   auto outputVectorType = getOutputVectorType();
2243   int64_t inputShapeRank = getNumInputShapeSizes();
2244   int64_t outputShapeRank = getNumOutputShapeSizes();
2245   SmallVector<int64_t, 4> fixedVectorSizes;
2246   getFixedVectorSizes(fixedVectorSizes);
2247   int64_t numFixedVectorSizes = fixedVectorSizes.size();
2248 
2249   if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes)
2250     return emitError("invalid input shape for vector type ")
2251            << inputVectorType;
2252 
2253   if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes)
2254     return emitError("invalid output shape for vector type ")
2255            << outputVectorType;
2256 
2257   // Verify that the 'fixedVectorSizes' match an input/output vector shape
2258   // suffix.
2259   unsigned inputVectorRank = inputVectorType.getRank();
2260   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2261     unsigned index = inputVectorRank - numFixedVectorSizes - i;
2262     if (fixedVectorSizes[i] != inputVectorType.getShape()[index])
2263       return emitError("fixed vector size must match input vector for dim ")
2264              << i;
2265   }
2266 
2267   unsigned outputVectorRank = outputVectorType.getRank();
2268   for (unsigned i = 0; i < numFixedVectorSizes; ++i) {
2269     unsigned index = outputVectorRank - numFixedVectorSizes - i;
2270     if (fixedVectorSizes[i] != outputVectorType.getShape()[index])
2271       return emitError("fixed vector size must match output vector for dim ")
2272              << i;
2273   }
2274 
2275   // If all shape operands are produced by constant ops, verify that product
2276   // of dimensions for input/output shape match.
2277   auto isDefByConstant = [](Value operand) {
2278     return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
2279   };
2280   if (llvm::all_of(getInputShape(), isDefByConstant) &&
2281       llvm::all_of(getOutputShape(), isDefByConstant)) {
2282     int64_t numInputElements = 1;
2283     for (auto operand : getInputShape())
2284       numInputElements *=
2285           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2286     int64_t numOutputElements = 1;
2287     for (auto operand : getOutputShape())
2288       numOutputElements *=
2289           cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value();
2290     if (numInputElements != numOutputElements)
2291       return emitError("product of input and output shape sizes must match");
2292   }
2293   return success();
2294 }
2295 
2296 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) {
2297   populateFromInt64AttrArray(getFixedVectorSizes(), results);
2298 }
2299 
2300 //===----------------------------------------------------------------------===//
2301 // ExtractStridedSliceOp
2302 //===----------------------------------------------------------------------===//
2303 
2304 // Inference works as follows:
2305 //   1. Add 'sizes' from prefix of dims in 'offsets'.
2306 //   2. Add sizes from 'vectorType' for remaining dims.
2307 static Type inferStridedSliceOpResultType(VectorType vectorType,
2308                                           ArrayAttr offsets, ArrayAttr sizes,
2309                                           ArrayAttr strides) {
2310   assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
2311   SmallVector<int64_t, 4> shape;
2312   shape.reserve(vectorType.getRank());
2313   unsigned idx = 0;
2314   for (unsigned e = offsets.size(); idx < e; ++idx)
2315     shape.push_back(sizes[idx].cast<IntegerAttr>().getInt());
2316   for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
2317     shape.push_back(vectorType.getShape()[idx]);
2318 
2319   return VectorType::get(shape, vectorType.getElementType());
2320 }
2321 
2322 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
2323                                   Value source, ArrayRef<int64_t> offsets,
2324                                   ArrayRef<int64_t> sizes,
2325                                   ArrayRef<int64_t> strides) {
2326   result.addOperands(source);
2327   auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
2328   auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
2329   auto stridesAttr = getVectorSubscriptAttr(builder, strides);
2330   result.addTypes(
2331       inferStridedSliceOpResultType(source.getType().cast<VectorType>(),
2332                                     offsetsAttr, sizesAttr, stridesAttr));
2333   result.addAttribute(getOffsetsAttrStrName(), offsetsAttr);
2334   result.addAttribute(getSizesAttrStrName(), sizesAttr);
2335   result.addAttribute(getStridesAttrStrName(), stridesAttr);
2336 }
2337 
2338 LogicalResult ExtractStridedSliceOp::verify() {
2339   auto type = getVectorType();
2340   auto offsets = getOffsetsAttr();
2341   auto sizes = getSizesAttr();
2342   auto strides = getStridesAttr();
2343   if (offsets.size() != sizes.size() || offsets.size() != strides.size())
2344     return emitOpError("expected offsets, sizes and strides attributes of same size");
2345 
2346   auto shape = type.getShape();
2347   auto offName = getOffsetsAttrName();
2348   auto sizesName = getSizesAttrName();
2349   auto stridesName = getStridesAttrName();
2350   if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
2351       failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
2352       failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
2353                                                 stridesName)) ||
2354       failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
2355       failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
2356                                                /*halfOpen=*/false,
2357                                                /*min=*/1)) ||
2358       failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName,
2359                                                /*halfOpen=*/false)) ||
2360       failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape,
2361                                                     offName, sizesName,
2362                                                     /*halfOpen=*/false)))
2363     return failure();
2364 
2365   auto resultType =
2366       inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides);
2367   if (getResult().getType() != resultType)
2368     return emitOpError("expected result type to be ") << resultType;
2369 
2370   return success();
2371 }
2372 
2373 // When the source of ExtractStrided comes from a chain of InsertStrided ops try
2374 // to use the source of the InsertStrided ops if we can detect that the
2375 // extracted vector is a subset of one of the vector inserted.
2376 static LogicalResult
2377 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
2378   // Helper to extract integer out of ArrayAttr.
2379   auto getElement = [](ArrayAttr array, int idx) {
2380     return array[idx].cast<IntegerAttr>().getInt();
2381   };
2382   ArrayAttr extractOffsets = op.getOffsets();
2383   ArrayAttr extractStrides = op.getStrides();
2384   ArrayAttr extractSizes = op.getSizes();
2385   auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
2386   while (insertOp) {
2387     if (op.getVectorType().getRank() !=
2388         insertOp.getSourceVectorType().getRank())
2389       return failure();
2390     ArrayAttr insertOffsets = insertOp.getOffsets();
2391     ArrayAttr insertStrides = insertOp.getStrides();
2392     // If the rank of extract is greater than the rank of insert, we are likely
2393     // extracting a partial chunk of the vector inserted.
2394     if (extractOffsets.size() > insertOffsets.size())
2395       return failure();
2396     bool patialoverlap = false;
2397     bool disjoint = false;
2398     SmallVector<int64_t, 4> offsetDiffs;
2399     for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
2400       if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
2401         return failure();
2402       int64_t start = getElement(insertOffsets, dim);
2403       int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
2404       int64_t offset = getElement(extractOffsets, dim);
2405       int64_t size = getElement(extractSizes, dim);
2406       // Check if the start of the extract offset is in the interval inserted.
2407       if (start <= offset && offset < end) {
2408         // If the extract interval overlaps but is not fully included we may
2409         // have a partial overlap that will prevent any folding.
2410         if (offset + size > end)
2411           patialoverlap = true;
2412         offsetDiffs.push_back(offset - start);
2413         continue;
2414       }
2415       disjoint = true;
2416       break;
2417     }
2418     // The extract element chunk is a subset of the insert element.
2419     if (!disjoint && !patialoverlap) {
2420       op.setOperand(insertOp.getSource());
2421       // OpBuilder is only used as a helper to build an I64ArrayAttr.
2422       OpBuilder b(op.getContext());
2423       op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(),
2424                   b.getI64ArrayAttr(offsetDiffs));
2425       return success();
2426     }
2427     // If the chunk extracted is disjoint from the chunk inserted, keep looking
2428     // in the insert chain.
2429     if (disjoint)
2430       insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
2431     else {
2432       // The extracted vector partially overlap the inserted vector, we cannot
2433       // fold.
2434       return failure();
2435     }
2436   }
2437   return failure();
2438 }
2439 
2440 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) {
2441   if (getVectorType() == getResult().getType())
2442     return getVector();
2443   if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
2444     return getResult();
2445   return {};
2446 }
2447 
2448 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
2449   populateFromInt64AttrArray(getOffsets(), results);
2450 }
2451 
2452 namespace {
2453 
2454 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
2455 // ConstantMaskOp.
2456 class StridedSliceConstantMaskFolder final
2457     : public OpRewritePattern<ExtractStridedSliceOp> {
2458 public:
2459   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2460 
2461   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2462                                 PatternRewriter &rewriter) const override {
2463     // Return if 'extractStridedSliceOp' operand is not defined by a
2464     // ConstantMaskOp.
2465     auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
2466     auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
2467     if (!constantMaskOp)
2468       return failure();
2469     // Return if 'extractStridedSliceOp' has non-unit strides.
2470     if (extractStridedSliceOp.hasNonUnitStrides())
2471       return failure();
2472     // Gather constant mask dimension sizes.
2473     SmallVector<int64_t, 4> maskDimSizes;
2474     populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes);
2475     // Gather strided slice offsets and sizes.
2476     SmallVector<int64_t, 4> sliceOffsets;
2477     populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
2478                                sliceOffsets);
2479     SmallVector<int64_t, 4> sliceSizes;
2480     populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
2481 
2482     // Compute slice of vector mask region.
2483     SmallVector<int64_t, 4> sliceMaskDimSizes;
2484     assert(sliceOffsets.size() == maskDimSizes.size());
2485     for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
2486       int64_t maskDimSize = std::get<0>(it);
2487       int64_t sliceOffset = std::get<1>(it);
2488       int64_t sliceSize = std::get<2>(it);
2489       int64_t sliceMaskDimSize = std::max(
2490           static_cast<int64_t>(0),
2491           std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
2492       sliceMaskDimSizes.push_back(sliceMaskDimSize);
2493     }
2494     // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
2495     // region is a conjunction of mask dim intervals).
2496     if (llvm::is_contained(sliceMaskDimSizes, 0))
2497       sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
2498 
2499     // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
2500     // region.
2501     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
2502         extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
2503         vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes));
2504     return success();
2505   }
2506 };
2507 
2508 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
2509 class StridedSliceConstantFolder final
2510     : public OpRewritePattern<ExtractStridedSliceOp> {
2511 public:
2512   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2513 
2514   LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
2515                                 PatternRewriter &rewriter) const override {
2516     // Return if 'extractStridedSliceOp' operand is not defined by a
2517     // ConstantOp.
2518     auto constantOp =
2519         extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>();
2520     if (!constantOp)
2521       return failure();
2522     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
2523     if (!dense)
2524       return failure();
2525     auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(),
2526                                           dense.getSplatValue<Attribute>());
2527     rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp,
2528                                                    newAttr);
2529     return success();
2530   }
2531 };
2532 
2533 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
2534 // BroadcastOp(ExtractStrideSliceOp).
2535 class StridedSliceBroadcast final
2536     : public OpRewritePattern<ExtractStridedSliceOp> {
2537 public:
2538   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2539 
2540   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2541                                 PatternRewriter &rewriter) const override {
2542     auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
2543     if (!broadcast)
2544       return failure();
2545     auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>();
2546     unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
2547     auto dstVecType = op.getType().cast<VectorType>();
2548     unsigned dstRank = dstVecType.getRank();
2549     unsigned rankDiff = dstRank - srcRank;
2550     // Check if the most inner dimensions of the source of the broadcast are the
2551     // same as the destination of the extract. If this is the case we can just
2552     // use a broadcast as the original dimensions are untouched.
2553     bool lowerDimMatch = true;
2554     for (unsigned i = 0; i < srcRank; i++) {
2555       if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
2556         lowerDimMatch = false;
2557         break;
2558       }
2559     }
2560     Value source = broadcast.getSource();
2561     // If the inner dimensions don't match, it means we need to extract from the
2562     // source of the orignal broadcast and then broadcast the extracted value.
2563     // We also need to handle degenerated cases where the source is effectively
2564     // just a single scalar.
2565     bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1);
2566     if (!lowerDimMatch && !isScalarSrc) {
2567       source = rewriter.create<ExtractStridedSliceOp>(
2568           op->getLoc(), source,
2569           getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff),
2570           getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff),
2571           getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff));
2572     }
2573     rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
2574     return success();
2575   }
2576 };
2577 
2578 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
2579 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
2580 public:
2581   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
2582 
2583   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
2584                                 PatternRewriter &rewriter) const override {
2585     auto splat = op.getVector().getDefiningOp<SplatOp>();
2586     if (!splat)
2587       return failure();
2588     rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
2589     return success();
2590   }
2591 };
2592 
2593 } // namespace
2594 
2595 void ExtractStridedSliceOp::getCanonicalizationPatterns(
2596     RewritePatternSet &results, MLIRContext *context) {
2597   // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
2598   // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
2599   results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder,
2600               StridedSliceBroadcast, StridedSliceSplat>(context);
2601 }
2602 
2603 //===----------------------------------------------------------------------===//
2604 // TransferReadOp
2605 //===----------------------------------------------------------------------===//
2606 
2607 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
2608 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2609                            VectorType vectorType, Value source,
2610                            ValueRange indices, AffineMapAttr permutationMapAttr,
2611                            /*optional*/ ArrayAttr inBoundsAttr) {
2612   Type elemType = source.getType().cast<ShapedType>().getElementType();
2613   Value padding = builder.create<arith::ConstantOp>(
2614       result.location, elemType, builder.getZeroAttr(elemType));
2615   build(builder, result, vectorType, source, indices, permutationMapAttr,
2616         padding, /*mask=*/Value(), inBoundsAttr);
2617 }
2618 
2619 /// 2. Builder that sets padding to zero an empty mask (variant without attrs).
2620 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2621                            VectorType vectorType, Value source,
2622                            ValueRange indices, AffineMap permutationMap,
2623                            Optional<ArrayRef<bool>> inBounds) {
2624   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2625   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2626                           ? builder.getBoolArrayAttr(inBounds.getValue())
2627                           : ArrayAttr();
2628   build(builder, result, vectorType, source, indices, permutationMapAttr,
2629         inBoundsAttr);
2630 }
2631 
2632 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
2633 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2634                            VectorType vectorType, Value source,
2635                            ValueRange indices, Value padding,
2636                            Optional<ArrayRef<bool>> inBounds) {
2637   AffineMap permutationMap = getTransferMinorIdentityMap(
2638       source.getType().cast<ShapedType>(), vectorType);
2639   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
2640   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
2641                           ? builder.getBoolArrayAttr(inBounds.getValue())
2642                           : ArrayAttr();
2643   build(builder, result, vectorType, source, indices, permutationMapAttr,
2644         padding,
2645         /*mask=*/Value(), inBoundsAttr);
2646 }
2647 
2648 /// 4. Builder that sets padding to zero and permutation map to
2649 /// 'getMinorIdentityMap'.
2650 void TransferReadOp::build(OpBuilder &builder, OperationState &result,
2651                            VectorType vectorType, Value source,
2652                            ValueRange indices,
2653                            Optional<ArrayRef<bool>> inBounds) {
2654   Type elemType = source.getType().cast<ShapedType>().getElementType();
2655   Value padding = builder.create<arith::ConstantOp>(
2656       result.location, elemType, builder.getZeroAttr(elemType));
2657   build(builder, result, vectorType, source, indices, padding, inBounds);
2658 }
2659 
2660 template <typename EmitFun>
2661 static LogicalResult verifyPermutationMap(AffineMap permutationMap,
2662                                           EmitFun emitOpError) {
2663   SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
2664   for (auto expr : permutationMap.getResults()) {
2665     auto dim = expr.dyn_cast<AffineDimExpr>();
2666     auto zero = expr.dyn_cast<AffineConstantExpr>();
2667     if (zero) {
2668       if (zero.getValue() != 0) {
2669         return emitOpError(
2670             "requires a projected permutation_map (at most one dim or the zero "
2671             "constant can appear in each result)");
2672       }
2673       continue;
2674     }
2675     if (!dim) {
2676       return emitOpError("requires a projected permutation_map (at most one "
2677                          "dim or the zero constant can appear in each result)");
2678     }
2679     if (seen[dim.getPosition()]) {
2680       return emitOpError(
2681           "requires a permutation_map that is a permutation (found one dim "
2682           "used more than once)");
2683     }
2684     seen[dim.getPosition()] = true;
2685   }
2686   return success();
2687 }
2688 
2689 static LogicalResult
2690 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
2691                  VectorType vectorType, VectorType maskType,
2692                  AffineMap permutationMap, ArrayAttr inBounds) {
2693   if (op->hasAttr("masked")) {
2694     return op->emitOpError("masked attribute has been removed. "
2695                            "Use in_bounds instead.");
2696   }
2697 
2698   if (!shapedType.isa<MemRefType, RankedTensorType>())
2699     return op->emitOpError(
2700         "requires source to be a memref or ranked tensor type");
2701 
2702   auto elementType = shapedType.getElementType();
2703   DataLayout dataLayout = DataLayout::closest(op);
2704   if (auto vectorElementType = elementType.dyn_cast<VectorType>()) {
2705     // Memref or tensor has vector element type.
2706     unsigned sourceVecSize =
2707         dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
2708         vectorElementType.getShape().back();
2709     unsigned resultVecSize =
2710         dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
2711         vectorType.getShape().back();
2712     if (resultVecSize % sourceVecSize != 0)
2713       return op->emitOpError(
2714           "requires the bitwidth of the minor 1-D vector to be an integral "
2715           "multiple of the bitwidth of the minor 1-D vector of the source");
2716 
2717     unsigned sourceVecEltRank = vectorElementType.getRank();
2718     unsigned resultVecRank = vectorType.getRank();
2719     if (sourceVecEltRank > resultVecRank)
2720       return op->emitOpError(
2721           "requires source vector element and vector result ranks to match.");
2722     unsigned rankOffset = resultVecRank - sourceVecEltRank;
2723     // Check that permutation map results match 'rankOffset' of vector type.
2724     if (permutationMap.getNumResults() != rankOffset)
2725       return op->emitOpError("requires a permutation_map with result dims of "
2726                              "the same rank as the vector type");
2727 
2728     if (maskType)
2729       return op->emitOpError("does not support masks with vector element type");
2730   } else {
2731     // Memref or tensor has scalar element type.
2732     unsigned minorSize =
2733         vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
2734     unsigned resultVecSize =
2735         dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
2736     if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
2737       return op->emitOpError(
2738           "requires the bitwidth of the minor 1-D vector to be an integral "
2739           "multiple of the bitwidth of the source element type");
2740 
2741     // Check that permutation map results match rank of vector type.
2742     if (permutationMap.getNumResults() != vectorType.getRank())
2743       return op->emitOpError("requires a permutation_map with result dims of "
2744                              "the same rank as the vector type");
2745 
2746     VectorType expectedMaskType =
2747         vector::detail::transferMaskType(vectorType, permutationMap);
2748     if (maskType && expectedMaskType != maskType)
2749       return op->emitOpError("expects mask type consistent with permutation "
2750                              "map: ")
2751              << maskType;
2752   }
2753 
2754   if (permutationMap.getNumSymbols() != 0)
2755     return op->emitOpError("requires permutation_map without symbols");
2756 
2757   if (permutationMap.getNumInputs() != shapedType.getRank())
2758     return op->emitOpError("requires a permutation_map with input dims of the "
2759                            "same rank as the source type");
2760 
2761   if (inBounds) {
2762     if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
2763       return op->emitOpError("expects the optional in_bounds attr of same rank "
2764                              "as permutation_map results: ")
2765              << AffineMapAttr::get(permutationMap)
2766              << " vs inBounds of size: " << inBounds.size();
2767     for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i)
2768       if (permutationMap.getResult(i).isa<AffineConstantExpr>() &&
2769           !inBounds.getValue()[i].cast<BoolAttr>().getValue())
2770         return op->emitOpError("requires broadcast dimensions to be in-bounds");
2771   }
2772 
2773   return success();
2774 }
2775 
2776 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
2777   SmallVector<StringRef, 3> elidedAttrs;
2778   elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
2779   if (op.permutation_map().isMinorIdentity())
2780     elidedAttrs.push_back(op.getPermutationMapAttrStrName());
2781   bool elideInBounds = true;
2782   if (auto inBounds = op.in_bounds()) {
2783     for (auto attr : *inBounds) {
2784       if (attr.template cast<BoolAttr>().getValue()) {
2785         elideInBounds = false;
2786         break;
2787       }
2788     }
2789   }
2790   if (elideInBounds)
2791     elidedAttrs.push_back(op.getInBoundsAttrStrName());
2792   p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
2793 }
2794 
2795 void TransferReadOp::print(OpAsmPrinter &p) {
2796   p << " " << getSource() << "[" << getIndices() << "], " << getPadding();
2797   if (getMask())
2798     p << ", " << getMask();
2799   printTransferAttrs(p, *this);
2800   p << " : " << getShapedType() << ", " << getVectorType();
2801 }
2802 
2803 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
2804   auto &builder = parser.getBuilder();
2805   SMLoc typesLoc;
2806   OpAsmParser::UnresolvedOperand sourceInfo;
2807   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
2808   OpAsmParser::UnresolvedOperand paddingInfo;
2809   SmallVector<Type, 2> types;
2810   OpAsmParser::UnresolvedOperand maskInfo;
2811   // Parsing with support for paddingValue.
2812   if (parser.parseOperand(sourceInfo) ||
2813       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
2814       parser.parseComma() || parser.parseOperand(paddingInfo))
2815     return failure();
2816   ParseResult hasMask = parser.parseOptionalComma();
2817   if (hasMask.succeeded()) {
2818     parser.parseOperand(maskInfo);
2819   }
2820   if (parser.parseOptionalAttrDict(result.attributes) ||
2821       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
2822     return failure();
2823   if (types.size() != 2)
2824     return parser.emitError(typesLoc, "requires two types");
2825   auto indexType = builder.getIndexType();
2826   auto shapedType = types[0].dyn_cast<ShapedType>();
2827   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
2828     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
2829   VectorType vectorType = types[1].dyn_cast<VectorType>();
2830   if (!vectorType)
2831     return parser.emitError(typesLoc, "requires vector type");
2832   auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName();
2833   Attribute mapAttr = result.attributes.get(permutationAttrName);
2834   if (!mapAttr) {
2835     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
2836     // Update `mapAttr` that is used later to determine mask type.
2837     mapAttr = AffineMapAttr::get(permMap);
2838     result.attributes.set(permutationAttrName, mapAttr);
2839   }
2840   if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
2841       parser.resolveOperands(indexInfo, indexType, result.operands) ||
2842       parser.resolveOperand(paddingInfo, shapedType.getElementType(),
2843                             result.operands))
2844     return failure();
2845   if (hasMask.succeeded()) {
2846     if (shapedType.getElementType().dyn_cast<VectorType>())
2847       return parser.emitError(
2848           maskInfo.location, "does not support masks with vector element type");
2849     auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue();
2850     // Instead of adding the mask type as an op type, compute it based on the
2851     // vector type and the permutation map (to keep the type signature small).
2852     auto maskType = mlir::vector::detail::transferMaskType(vectorType, map);
2853     if (parser.resolveOperand(maskInfo, maskType, result.operands))
2854       return failure();
2855   }
2856   result.addAttribute(
2857       TransferReadOp::getOperandSegmentSizeAttr(),
2858       builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1,
2859                                 static_cast<int32_t>(hasMask.succeeded())}));
2860   return parser.addTypeToList(vectorType, result.types);
2861 }
2862 
2863 LogicalResult TransferReadOp::verify() {
2864   // Consistency of elemental types in source and vector.
2865   ShapedType shapedType = getShapedType();
2866   VectorType vectorType = getVectorType();
2867   VectorType maskType = getMaskType();
2868   auto paddingType = getPadding().getType();
2869   auto permutationMap = getPermutationMap();
2870   auto sourceElementType = shapedType.getElementType();
2871 
2872   if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
2873     return emitOpError("requires ") << shapedType.getRank() << " indices";
2874 
2875   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
2876                               shapedType, vectorType, maskType, permutationMap,
2877                               getInBounds() ? *getInBounds() : ArrayAttr())))
2878     return failure();
2879 
2880   if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) {
2881     // Source has vector element type.
2882     // Check that 'sourceVectorElementType' and 'paddingType' types match.
2883     if (sourceVectorElementType != paddingType)
2884       return emitOpError(
2885           "requires source element type and padding type to match.");
2886 
2887   } else {
2888     // Check that 'paddingType' is valid to store in a vector type.
2889     if (!VectorType::isValidElementType(paddingType))
2890       return emitOpError("requires valid padding vector elemental type");
2891 
2892     // Check that padding type and vector element types match.
2893     if (paddingType != sourceElementType)
2894       return emitOpError(
2895           "requires formal padding and source of the same elemental type");
2896   }
2897 
2898   return verifyPermutationMap(permutationMap,
2899                               [&](Twine t) { return emitOpError(t); });
2900 }
2901 
2902 /// This is a common class used for patterns of the form
2903 /// ```
2904 ///    someop(memrefcast) -> someop
2905 /// ```
2906 /// It folds the source of the memref.cast into the root operation directly.
2907 static LogicalResult foldMemRefCast(Operation *op) {
2908   bool folded = false;
2909   for (OpOperand &operand : op->getOpOperands()) {
2910     auto castOp = operand.get().getDefiningOp<memref::CastOp>();
2911     if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
2912       operand.set(castOp.getOperand());
2913       folded = true;
2914     }
2915   }
2916   return success(folded);
2917 }
2918 
2919 static LogicalResult foldTensorCast(Operation *op) {
2920   bool folded = false;
2921   for (OpOperand &operand : op->getOpOperands()) {
2922     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
2923     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
2924       operand.set(castOp.getOperand());
2925       folded = true;
2926     }
2927   }
2928   return success(folded);
2929 }
2930 
2931 template <typename TransferOp>
2932 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
2933   // TODO: support more aggressive createOrFold on:
2934   // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)`
2935   if (op.getShapedType().isDynamicDim(indicesIdx))
2936     return false;
2937   Value index = op.getIndices()[indicesIdx];
2938   auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>();
2939   if (!cstOp)
2940     return false;
2941 
2942   int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
2943   int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
2944 
2945   return cstOp.value() + vectorSize <= sourceSize;
2946 }
2947 
2948 template <typename TransferOp>
2949 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
2950   // TODO: support 0-d corner case.
2951   // TODO: Be less conservative.
2952   if (op.getTransferRank() == 0)
2953     return failure();
2954   AffineMap permutationMap = op.getPermutationMap();
2955   bool changed = false;
2956   SmallVector<bool, 4> newInBounds;
2957   newInBounds.reserve(op.getTransferRank());
2958   for (unsigned i = 0; i < op.getTransferRank(); ++i) {
2959     // Already marked as in-bounds, nothing to see here.
2960     if (op.isDimInBounds(i)) {
2961       newInBounds.push_back(true);
2962       continue;
2963     }
2964     // Currently out-of-bounds, check whether we can statically determine it is
2965     // inBounds.
2966     auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>();
2967     assert(dimExpr && "Broadcast dims must be in-bounds");
2968     auto inBounds =
2969         isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition());
2970     newInBounds.push_back(inBounds);
2971     // We commit the pattern if it is "more inbounds".
2972     changed |= inBounds;
2973   }
2974   if (!changed)
2975     return failure();
2976   // OpBuilder is only used as a helper to build an I64ArrayAttr.
2977   OpBuilder b(op.getContext());
2978   op->setAttr(TransferOp::getInBoundsAttrStrName(),
2979               b.getBoolArrayAttr(newInBounds));
2980   return success();
2981 }
2982 
2983 ///  ```
2984 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
2985 ///    : vector<1x4xf32>, tensor<4x4xf32>
2986 ///  %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
2987 ///    : tensor<4x4xf32>, vector<1x4xf32>
2988 ///  ```
2989 ///  -> Folds into
2990 ///  ```
2991 ///  %v0
2992 ///  ```
2993 static Value foldRAW(TransferReadOp readOp) {
2994   if (!readOp.getShapedType().isa<RankedTensorType>())
2995     return {};
2996   auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>();
2997   while (defWrite) {
2998     if (checkSameValueRAW(defWrite, readOp))
2999       return defWrite.getVector();
3000     if (!isDisjointTransferIndices(
3001             cast<VectorTransferOpInterface>(defWrite.getOperation()),
3002             cast<VectorTransferOpInterface>(readOp.getOperation())))
3003       break;
3004     defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3005   }
3006   return {};
3007 }
3008 
3009 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) {
3010   if (Value vec = foldRAW(*this))
3011     return vec;
3012   /// transfer_read(memrefcast) -> transfer_read
3013   if (succeeded(foldTransferInBoundsAttribute(*this)))
3014     return getResult();
3015   if (succeeded(foldMemRefCast(*this)))
3016     return getResult();
3017   if (succeeded(foldTensorCast(*this)))
3018     return getResult();
3019   return OpFoldResult();
3020 }
3021 
3022 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
3023   return llvm::to_vector<4>(getVectorType().getShape());
3024 }
3025 
3026 void TransferReadOp::getEffects(
3027     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3028         &effects) {
3029   if (getShapedType().isa<MemRefType>())
3030     effects.emplace_back(MemoryEffects::Read::get(), getSource(),
3031                          SideEffects::DefaultResource::get());
3032 }
3033 
3034 namespace {
3035 /// Fold transfer_reads of a tensor.extract_slice op. E.g.:
3036 ///
3037 /// ```
3038 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1]
3039 ///     : tensor<?x?xf32> to tensor<?x?xf32>
3040 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]}
3041 ///     : tensor<?x?xf32>, vector<4x5xf32>
3042 /// ```
3043 /// is rewritten to:
3044 /// ```
3045 /// %p0 = arith.addi %a, %e : index
3046 /// %p1 = arith.addi %b, %f : index
3047 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]}
3048 ///     : tensor<?x?xf32>, vector<4x5xf32>
3049 /// ```
3050 struct FoldExtractSliceIntoTransferRead
3051     : public OpRewritePattern<TransferReadOp> {
3052 public:
3053   using OpRewritePattern<TransferReadOp>::OpRewritePattern;
3054 
3055   LogicalResult matchAndRewrite(TransferReadOp xferOp,
3056                                 PatternRewriter &rewriter) const override {
3057     // TODO: support 0-d corner case.
3058     if (xferOp.getTransferRank() == 0)
3059       return failure();
3060     if (xferOp.hasOutOfBoundsDim())
3061       return failure();
3062     if (!xferOp.getPermutationMap().isIdentity())
3063       return failure();
3064     if (xferOp.getMask())
3065       return failure();
3066     auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
3067     if (!extractOp)
3068       return failure();
3069     if (!extractOp.hasUnitStride())
3070       return failure();
3071 
3072     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3073     // dims are exactly the leading dims. I.e. the following is illegal:
3074     // ```
3075     //    %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] :
3076     //      tensor<2x1x4xf32> to tensor<2x4xf32>
3077     //    %1 = vector.transfer_read %0[0,0], %cst :
3078     //      tensor<2x4xf32>, vector<2x4xf32>
3079     // ```
3080     //
3081     // Cannot fold into:
3082     // ```
3083     //    %0 = vector.transfer_read %t[0,0,0], %cst :
3084     //      tensor<2x1x4xf32>, vector<2x4xf32>
3085     // ```
3086     // For this, check the trailing `vectorRank` dims of the extract_slice
3087     // result tensor match the trailing dims of the inferred result tensor.
3088     int64_t rankReduced =
3089         extractOp.getSourceType().getRank() - extractOp.getType().getRank();
3090     int64_t vectorRank = xferOp.getVectorType().getRank();
3091     RankedTensorType inferredDestTensorType =
3092         tensor::ExtractSliceOp::inferResultType(
3093             extractOp.getSourceType(), extractOp.getMixedOffsets(),
3094             extractOp.getMixedSizes(), extractOp.getMixedStrides());
3095     auto actualDestTensorShape = extractOp.getType().getShape();
3096     if (rankReduced > 0 &&
3097         actualDestTensorShape.take_back(vectorRank) !=
3098             inferredDestTensorType.getShape().take_back(vectorRank))
3099       return failure();
3100 
3101     SmallVector<Value> newIndices;
3102     // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced
3103     // indices first.
3104     for (int64_t i = 0; i < rankReduced; ++i) {
3105       OpFoldResult offset = extractOp.getMixedOffsets()[i];
3106       newIndices.push_back(getValueOrCreateConstantIndexOp(
3107           rewriter, extractOp.getLoc(), offset));
3108     }
3109     for (const auto &it : llvm::enumerate(xferOp.getIndices())) {
3110       OpFoldResult offset =
3111           extractOp.getMixedOffsets()[it.index() + rankReduced];
3112       newIndices.push_back(rewriter.create<arith::AddIOp>(
3113           xferOp->getLoc(), it.value(),
3114           getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(),
3115                                           offset)));
3116     }
3117     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3118     rewriter.replaceOpWithNewOp<TransferReadOp>(
3119         xferOp, xferOp.getVectorType(), extractOp.source(), newIndices,
3120         xferOp.getPadding(), ArrayRef<bool>{inBounds});
3121 
3122     return success();
3123   }
3124 };
3125 } // namespace
3126 
3127 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3128                                                  MLIRContext *context) {
3129   results.add<FoldExtractSliceIntoTransferRead>(context);
3130 }
3131 
3132 //===----------------------------------------------------------------------===//
3133 // TransferWriteOp
3134 //===----------------------------------------------------------------------===//
3135 
3136 /// 1. Builder with type inference.
3137 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3138                             Value vector, Value dest, ValueRange indices,
3139                             AffineMapAttr permutationMapAttr,
3140                             /*optional*/ Value mask,
3141                             /*optional*/ ArrayAttr inBoundsAttr) {
3142   Type resultType = dest.getType().dyn_cast<RankedTensorType>();
3143   build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
3144         mask, inBoundsAttr);
3145 }
3146 
3147 /// 2. Builder with type inference that sets an empty mask (variant with attrs).
3148 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3149                             Value vector, Value dest, ValueRange indices,
3150                             AffineMapAttr permutationMapAttr,
3151                             /*optional*/ ArrayAttr inBoundsAttr) {
3152   build(builder, result, vector, dest, indices, permutationMapAttr,
3153         /*mask=*/Value(), inBoundsAttr);
3154 }
3155 
3156 /// 3. Builder with type inference that sets an empty mask (variant without
3157 /// attrs)
3158 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3159                             Value vector, Value dest, ValueRange indices,
3160                             AffineMap permutationMap,
3161                             Optional<ArrayRef<bool>> inBounds) {
3162   auto permutationMapAttr = AffineMapAttr::get(permutationMap);
3163   auto inBoundsAttr = (inBounds && !inBounds.getValue().empty())
3164                           ? builder.getBoolArrayAttr(inBounds.getValue())
3165                           : ArrayAttr();
3166   build(builder, result, vector, dest, indices, permutationMapAttr,
3167         /*mask=*/Value(), inBoundsAttr);
3168 }
3169 
3170 /// 4. Builder with type inference that sets an empty mask and sets permutation
3171 ///    map to 'getMinorIdentityMap'.
3172 void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
3173                             Value vector, Value dest, ValueRange indices,
3174                             Optional<ArrayRef<bool>> inBounds) {
3175   auto vectorType = vector.getType().cast<VectorType>();
3176   AffineMap permutationMap = getTransferMinorIdentityMap(
3177       dest.getType().cast<ShapedType>(), vectorType);
3178   build(builder, result, vector, dest, indices, permutationMap, inBounds);
3179 }
3180 
3181 ParseResult TransferWriteOp::parse(OpAsmParser &parser,
3182                                    OperationState &result) {
3183   auto &builder = parser.getBuilder();
3184   SMLoc typesLoc;
3185   OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
3186   SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
3187   SmallVector<Type, 2> types;
3188   OpAsmParser::UnresolvedOperand maskInfo;
3189   if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
3190       parser.parseOperand(sourceInfo) ||
3191       parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
3192     return failure();
3193   ParseResult hasMask = parser.parseOptionalComma();
3194   if (hasMask.succeeded() && parser.parseOperand(maskInfo))
3195     return failure();
3196   if (parser.parseOptionalAttrDict(result.attributes) ||
3197       parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
3198     return failure();
3199   if (types.size() != 2)
3200     return parser.emitError(typesLoc, "requires two types");
3201   auto indexType = builder.getIndexType();
3202   VectorType vectorType = types[0].dyn_cast<VectorType>();
3203   if (!vectorType)
3204     return parser.emitError(typesLoc, "requires vector type");
3205   ShapedType shapedType = types[1].dyn_cast<ShapedType>();
3206   if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>())
3207     return parser.emitError(typesLoc, "requires memref or ranked tensor type");
3208   auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName();
3209   auto attr = result.attributes.get(permutationAttrName);
3210   if (!attr) {
3211     auto permMap = getTransferMinorIdentityMap(shapedType, vectorType);
3212     result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap));
3213   }
3214   if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
3215       parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
3216       parser.resolveOperands(indexInfo, indexType, result.operands))
3217     return failure();
3218   if (hasMask.succeeded()) {
3219     if (shapedType.getElementType().dyn_cast<VectorType>())
3220       return parser.emitError(
3221           maskInfo.location, "does not support masks with vector element type");
3222     auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type());
3223     if (parser.resolveOperand(maskInfo, maskType, result.operands))
3224       return failure();
3225   }
3226   result.addAttribute(
3227       TransferWriteOp::getOperandSegmentSizeAttr(),
3228       builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()),
3229                                 static_cast<int32_t>(hasMask.succeeded())}));
3230   return failure(shapedType.isa<RankedTensorType>() &&
3231                  parser.addTypeToList(shapedType, result.types));
3232 }
3233 
3234 void TransferWriteOp::print(OpAsmPrinter &p) {
3235   p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]";
3236   if (getMask())
3237     p << ", " << getMask();
3238   printTransferAttrs(p, *this);
3239   p << " : " << getVectorType() << ", " << getShapedType();
3240 }
3241 
3242 LogicalResult TransferWriteOp::verify() {
3243   // Consistency of elemental types in shape and vector.
3244   ShapedType shapedType = getShapedType();
3245   VectorType vectorType = getVectorType();
3246   VectorType maskType = getMaskType();
3247   auto permutationMap = getPermutationMap();
3248 
3249   if (llvm::size(getIndices()) != shapedType.getRank())
3250     return emitOpError("requires ") << shapedType.getRank() << " indices";
3251 
3252   // We do not allow broadcast dimensions on TransferWriteOps for the moment,
3253   // as the semantics is unclear. This can be revisited later if necessary.
3254   if (hasBroadcastDim())
3255     return emitOpError("should not have broadcast dimensions");
3256 
3257   if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
3258                               shapedType, vectorType, maskType, permutationMap,
3259                               getInBounds() ? *getInBounds() : ArrayAttr())))
3260     return failure();
3261 
3262   return verifyPermutationMap(permutationMap,
3263                               [&](Twine t) { return emitOpError(t); });
3264 }
3265 
3266 /// Fold:
3267 /// ```
3268 ///    %t1 = ...
3269 ///    %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
3270 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3271 ///    %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
3272 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3273 /// ```
3274 ///
3275 /// into:
3276 ///
3277 /// ```
3278 ///    %t0
3279 /// ```
3280 ///
3281 /// The producer of t1 may or may not be DCE'd depending on whether it is a
3282 /// block argument or has side effects.
3283 static LogicalResult foldReadInitWrite(TransferWriteOp write,
3284                                        ArrayRef<Attribute>,
3285                                        SmallVectorImpl<OpFoldResult> &results) {
3286   // TODO: support 0-d corner case.
3287   if (write.getTransferRank() == 0)
3288     return failure();
3289   auto rankedTensorType =
3290       write.getSource().getType().dyn_cast<RankedTensorType>();
3291   // If not operating on tensors, bail.
3292   if (!rankedTensorType)
3293     return failure();
3294   // If no read, bail.
3295   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3296   if (!read)
3297     return failure();
3298   // TODO: support 0-d corner case.
3299   if (read.getTransferRank() == 0)
3300     return failure();
3301   // For now, only accept minor identity. Future: composition is minor identity.
3302   if (!read.getPermutationMap().isMinorIdentity() ||
3303       !write.getPermutationMap().isMinorIdentity())
3304     return failure();
3305   // Bail on mismatching ranks.
3306   if (read.getTransferRank() != write.getTransferRank())
3307     return failure();
3308   // Bail on potential out-of-bounds accesses.
3309   if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
3310     return failure();
3311   // Tensor types must be the same.
3312   if (read.getSource().getType() != rankedTensorType)
3313     return failure();
3314   // Vector types must be the same.
3315   if (read.getVectorType() != write.getVectorType())
3316     return failure();
3317   // Vector and Tensor shapes must match.
3318   if (read.getVectorType().getShape() != rankedTensorType.getShape())
3319     return failure();
3320   // If any index is nonzero.
3321   auto isNotConstantZero = [](Value v) {
3322     auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>();
3323     return !cstOp || cstOp.value() != 0;
3324   };
3325   if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
3326       llvm::any_of(write.getIndices(), isNotConstantZero))
3327     return failure();
3328   // Success.
3329   results.push_back(read.getSource());
3330   return success();
3331 }
3332 
3333 static bool checkSameValueWAR(vector::TransferReadOp read,
3334                               vector::TransferWriteOp write) {
3335   return read.getSource() == write.getSource() &&
3336          read.getIndices() == write.getIndices() &&
3337          read.getPermutationMap() == write.getPermutationMap() &&
3338          read.getVectorType() == write.getVectorType() && !read.getMask() &&
3339          !write.getMask();
3340 }
3341 /// Fold transfer_write write after read:
3342 /// ```
3343 ///    %t0 = ...
3344 ///    %v = vector.transfer_read %t0[%c0...] :
3345 ///      tensor<static_sizesxf32>, vector<static_sizesxf32>
3346 ///    %t1 = vector.transfer_write %v, %t0[%c0...] :
3347 ///      vector<static_sizesxf32>, tensor<static_sizesxf32>
3348 /// ```
3349 ///
3350 /// into:
3351 ///
3352 /// ```
3353 ///    %t0
3354 /// ```
3355 static LogicalResult foldWAR(TransferWriteOp write,
3356                              SmallVectorImpl<OpFoldResult> &results) {
3357   if (!write.getSource().getType().isa<RankedTensorType>())
3358     return failure();
3359   auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
3360   if (!read)
3361     return failure();
3362 
3363   if (!checkSameValueWAR(read, write))
3364     return failure();
3365   results.push_back(read.getSource());
3366   return success();
3367 }
3368 
3369 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands,
3370                                     SmallVectorImpl<OpFoldResult> &results) {
3371   if (succeeded(foldReadInitWrite(*this, operands, results)))
3372     return success();
3373   if (succeeded(foldWAR(*this, results)))
3374     return success();
3375   if (succeeded(foldTransferInBoundsAttribute(*this)))
3376     return success();
3377   return foldMemRefCast(*this);
3378 }
3379 
3380 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
3381   return llvm::to_vector<4>(getVectorType().getShape());
3382 }
3383 
3384 void TransferWriteOp::getEffects(
3385     SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
3386         &effects) {
3387   if (getShapedType().isa<MemRefType>())
3388     effects.emplace_back(MemoryEffects::Write::get(), getSource(),
3389                          SideEffects::DefaultResource::get());
3390 }
3391 
3392 namespace {
3393 /// Remove dead transfer write from the SSA chain so that it an be eliminated by
3394 /// DCE
3395 /// ```
3396 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3397 ///    : vector<1x4xf32>, tensor<4x4xf32>
3398 ///  %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
3399 ///    : vector<1x4xf32>, tensor<4x4xf32>
3400 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3401 ///    : vector<1x4xf32>, tensor<4x4xf32>
3402 /// ```
3403 ///
3404 /// into:
3405 ///
3406 /// ```
3407 ///  %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
3408 ///    : vector<1x4xf32>, tensor<4x4xf32>
3409 ///  %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
3410 ///    : vector<1x4xf32>, tensor<4x4xf32>
3411 ///  %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
3412 ///    : vector<1x4xf32>, tensor<4x4xf32>
3413 /// ```
3414 ///
3415 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
3416 /// any other uses.
3417 class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
3418 public:
3419   using OpRewritePattern<TransferWriteOp>::OpRewritePattern;
3420   LogicalResult matchAndRewrite(TransferWriteOp writeOp,
3421                                 PatternRewriter &rewriter) const override {
3422     if (!writeOp.getShapedType().isa<RankedTensorType>())
3423       return failure();
3424     vector::TransferWriteOp writeToModify = writeOp;
3425 
3426     auto defWrite =
3427         writeOp.getSource().getDefiningOp<vector::TransferWriteOp>();
3428     while (defWrite) {
3429       if (checkSameValueWAW(writeOp, defWrite)) {
3430         writeToModify.getSourceMutable().assign(defWrite.getSource());
3431         return success();
3432       }
3433       if (!isDisjointTransferIndices(
3434               cast<VectorTransferOpInterface>(defWrite.getOperation()),
3435               cast<VectorTransferOpInterface>(writeOp.getOperation())))
3436         break;
3437       // If the previous write op doesn't have any other use we an safely look
3438       // at the previous store to see if it can be removed.
3439       if (!defWrite->hasOneUse())
3440         break;
3441       writeToModify = defWrite;
3442       defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>();
3443     }
3444     return failure();
3445   }
3446 };
3447 
3448 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write
3449 /// could directly write to the insert_slice's destination. E.g.:
3450 ///
3451 /// ```
3452 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]}
3453 ///     : vector<4x5xf32>, tensor<4x5xf32>
3454 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1]
3455 ///     : tensor<4x5xf32> into tensor<?x?xf32>
3456 /// ```
3457 /// is rewritten to:
3458 /// ```
3459 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]}
3460 ///     : vector<4x5xf32>, tensor<?x?xf32>
3461 /// ```
3462 struct FoldInsertSliceIntoTransferWrite
3463     : public OpRewritePattern<tensor::InsertSliceOp> {
3464 public:
3465   using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern;
3466 
3467   LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
3468                                 PatternRewriter &rewriter) const override {
3469     if (!insertOp.hasUnitStride())
3470       return failure();
3471 
3472     auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>();
3473     if (!xferOp)
3474       return failure();
3475     // TODO: support 0-d corner case.
3476     if (xferOp.getTransferRank() == 0)
3477       return failure();
3478 
3479     if (xferOp.hasOutOfBoundsDim())
3480       return failure();
3481     if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank())
3482       return failure();
3483     if (xferOp.getMask())
3484       return failure();
3485     // Fold only if the TransferWriteOp completely overwrites the `source` with
3486     // a vector. I.e., the result of the TransferWriteOp is a new tensor whose
3487     // content is the data of the vector.
3488     if (!llvm::equal(xferOp.getVectorType().getShape(),
3489                      xferOp.getShapedType().getShape()))
3490       return failure();
3491     if (!xferOp.getPermutationMap().isIdentity())
3492       return failure();
3493 
3494     // Bail on illegal rank-reduction: we need to check that the rank-reduced
3495     // dims are exactly the leading dims. I.e. the following is illegal:
3496     // ```
3497     //    %0 = vector.transfer_write %v, %t[0,0], %cst :
3498     //      vector<2x4xf32>, tensor<2x4xf32>
3499     //    %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
3500     //      tensor<2x4xf32> into tensor<2x1x4xf32>
3501     // ```
3502     //
3503     // Cannot fold into:
3504     // ```
3505     //    %0 = vector.transfer_write %v, %t[0,0,0], %cst :
3506     //      vector<2x4xf32>, tensor<2x1x4xf32>
3507     // ```
3508     // For this, check the trailing `vectorRank` dims of the insert_slice result
3509     // tensor match the trailing dims of the inferred result tensor.
3510     int64_t rankReduced =
3511         insertOp.getType().getRank() - insertOp.getSourceType().getRank();
3512     int64_t vectorRank = xferOp.getVectorType().getRank();
3513     RankedTensorType inferredSourceTensorType =
3514         tensor::ExtractSliceOp::inferResultType(
3515             insertOp.getType(), insertOp.getMixedOffsets(),
3516             insertOp.getMixedSizes(), insertOp.getMixedStrides());
3517     auto actualSourceTensorShape = insertOp.getSourceType().getShape();
3518     if (rankReduced > 0 &&
3519         actualSourceTensorShape.take_back(vectorRank) !=
3520             inferredSourceTensorType.getShape().take_back(vectorRank))
3521       return failure();
3522 
3523     SmallVector<Value> indices = getValueOrCreateConstantIndexOp(
3524         rewriter, insertOp.getLoc(), insertOp.getMixedOffsets());
3525     SmallVector<bool> inBounds(xferOp.getTransferRank(), true);
3526     rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(),
3527                                                  insertOp.dest(), indices,
3528                                                  ArrayRef<bool>{inBounds});
3529     return success();
3530   }
3531 };
3532 } // namespace
3533 
3534 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
3535                                                   MLIRContext *context) {
3536   results.add<FoldWaw, FoldInsertSliceIntoTransferWrite>(context);
3537 }
3538 
3539 //===----------------------------------------------------------------------===//
3540 // LoadOp
3541 //===----------------------------------------------------------------------===//
3542 
3543 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
3544                                                  MemRefType memRefTy) {
3545   if (!isLastMemrefDimUnitStride(memRefTy))
3546     return op->emitOpError("most minor memref dim must have unit stride");
3547   return success();
3548 }
3549 
3550 LogicalResult vector::LoadOp::verify() {
3551   VectorType resVecTy = getVectorType();
3552   MemRefType memRefTy = getMemRefType();
3553 
3554   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3555     return failure();
3556 
3557   // Checks for vector memrefs.
3558   Type memElemTy = memRefTy.getElementType();
3559   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3560     if (memVecTy != resVecTy)
3561       return emitOpError("base memref and result vector types should match");
3562     memElemTy = memVecTy.getElementType();
3563   }
3564 
3565   if (resVecTy.getElementType() != memElemTy)
3566     return emitOpError("base and result element types should match");
3567   if (llvm::size(getIndices()) != memRefTy.getRank())
3568     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3569   return success();
3570 }
3571 
3572 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) {
3573   if (succeeded(foldMemRefCast(*this)))
3574     return getResult();
3575   return OpFoldResult();
3576 }
3577 
3578 //===----------------------------------------------------------------------===//
3579 // StoreOp
3580 //===----------------------------------------------------------------------===//
3581 
3582 LogicalResult vector::StoreOp::verify() {
3583   VectorType valueVecTy = getVectorType();
3584   MemRefType memRefTy = getMemRefType();
3585 
3586   if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy)))
3587     return failure();
3588 
3589   // Checks for vector memrefs.
3590   Type memElemTy = memRefTy.getElementType();
3591   if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) {
3592     if (memVecTy != valueVecTy)
3593       return emitOpError(
3594           "base memref and valueToStore vector types should match");
3595     memElemTy = memVecTy.getElementType();
3596   }
3597 
3598   if (valueVecTy.getElementType() != memElemTy)
3599     return emitOpError("base and valueToStore element type should match");
3600   if (llvm::size(getIndices()) != memRefTy.getRank())
3601     return emitOpError("requires ") << memRefTy.getRank() << " indices";
3602   return success();
3603 }
3604 
3605 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands,
3606                             SmallVectorImpl<OpFoldResult> &results) {
3607   return foldMemRefCast(*this);
3608 }
3609 
3610 //===----------------------------------------------------------------------===//
3611 // MaskedLoadOp
3612 //===----------------------------------------------------------------------===//
3613 
3614 LogicalResult MaskedLoadOp::verify() {
3615   VectorType maskVType = getMaskVectorType();
3616   VectorType passVType = getPassThruVectorType();
3617   VectorType resVType = getVectorType();
3618   MemRefType memType = getMemRefType();
3619 
3620   if (resVType.getElementType() != memType.getElementType())
3621     return emitOpError("base and result element type should match");
3622   if (llvm::size(getIndices()) != memType.getRank())
3623     return emitOpError("requires ") << memType.getRank() << " indices";
3624   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3625     return emitOpError("expected result dim to match mask dim");
3626   if (resVType != passVType)
3627     return emitOpError("expected pass_thru of same type as result type");
3628   return success();
3629 }
3630 
3631 namespace {
3632 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
3633 public:
3634   using OpRewritePattern<MaskedLoadOp>::OpRewritePattern;
3635   LogicalResult matchAndRewrite(MaskedLoadOp load,
3636                                 PatternRewriter &rewriter) const override {
3637     switch (get1DMaskFormat(load.getMask())) {
3638     case MaskFormat::AllTrue:
3639       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3640           load, load.getType(), load.getBase(), load.getIndices());
3641       return success();
3642     case MaskFormat::AllFalse:
3643       rewriter.replaceOp(load, load.getPassThru());
3644       return success();
3645     case MaskFormat::Unknown:
3646       return failure();
3647     }
3648     llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
3649   }
3650 };
3651 } // namespace
3652 
3653 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3654                                                MLIRContext *context) {
3655   results.add<MaskedLoadFolder>(context);
3656 }
3657 
3658 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) {
3659   if (succeeded(foldMemRefCast(*this)))
3660     return getResult();
3661   return OpFoldResult();
3662 }
3663 
3664 //===----------------------------------------------------------------------===//
3665 // MaskedStoreOp
3666 //===----------------------------------------------------------------------===//
3667 
3668 LogicalResult MaskedStoreOp::verify() {
3669   VectorType maskVType = getMaskVectorType();
3670   VectorType valueVType = getVectorType();
3671   MemRefType memType = getMemRefType();
3672 
3673   if (valueVType.getElementType() != memType.getElementType())
3674     return emitOpError("base and valueToStore element type should match");
3675   if (llvm::size(getIndices()) != memType.getRank())
3676     return emitOpError("requires ") << memType.getRank() << " indices";
3677   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3678     return emitOpError("expected valueToStore dim to match mask dim");
3679   return success();
3680 }
3681 
3682 namespace {
3683 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
3684 public:
3685   using OpRewritePattern<MaskedStoreOp>::OpRewritePattern;
3686   LogicalResult matchAndRewrite(MaskedStoreOp store,
3687                                 PatternRewriter &rewriter) const override {
3688     switch (get1DMaskFormat(store.getMask())) {
3689     case MaskFormat::AllTrue:
3690       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3691           store, store.getValueToStore(), store.getBase(), store.getIndices());
3692       return success();
3693     case MaskFormat::AllFalse:
3694       rewriter.eraseOp(store);
3695       return success();
3696     case MaskFormat::Unknown:
3697       return failure();
3698     }
3699     llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
3700   }
3701 };
3702 } // namespace
3703 
3704 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3705                                                 MLIRContext *context) {
3706   results.add<MaskedStoreFolder>(context);
3707 }
3708 
3709 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands,
3710                                   SmallVectorImpl<OpFoldResult> &results) {
3711   return foldMemRefCast(*this);
3712 }
3713 
3714 //===----------------------------------------------------------------------===//
3715 // GatherOp
3716 //===----------------------------------------------------------------------===//
3717 
3718 LogicalResult GatherOp::verify() {
3719   VectorType indVType = getIndexVectorType();
3720   VectorType maskVType = getMaskVectorType();
3721   VectorType resVType = getVectorType();
3722   MemRefType memType = getMemRefType();
3723 
3724   if (resVType.getElementType() != memType.getElementType())
3725     return emitOpError("base and result element type should match");
3726   if (llvm::size(getIndices()) != memType.getRank())
3727     return emitOpError("requires ") << memType.getRank() << " indices";
3728   if (resVType.getDimSize(0) != indVType.getDimSize(0))
3729     return emitOpError("expected result dim to match indices dim");
3730   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3731     return emitOpError("expected result dim to match mask dim");
3732   if (resVType != getPassThruVectorType())
3733     return emitOpError("expected pass_thru of same type as result type");
3734   return success();
3735 }
3736 
3737 namespace {
3738 class GatherFolder final : public OpRewritePattern<GatherOp> {
3739 public:
3740   using OpRewritePattern<GatherOp>::OpRewritePattern;
3741   LogicalResult matchAndRewrite(GatherOp gather,
3742                                 PatternRewriter &rewriter) const override {
3743     switch (get1DMaskFormat(gather.getMask())) {
3744     case MaskFormat::AllTrue:
3745       return failure(); // no unmasked equivalent
3746     case MaskFormat::AllFalse:
3747       rewriter.replaceOp(gather, gather.getPassThru());
3748       return success();
3749     case MaskFormat::Unknown:
3750       return failure();
3751     }
3752     llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
3753   }
3754 };
3755 } // namespace
3756 
3757 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
3758                                            MLIRContext *context) {
3759   results.add<GatherFolder>(context);
3760 }
3761 
3762 //===----------------------------------------------------------------------===//
3763 // ScatterOp
3764 //===----------------------------------------------------------------------===//
3765 
3766 LogicalResult ScatterOp::verify() {
3767   VectorType indVType = getIndexVectorType();
3768   VectorType maskVType = getMaskVectorType();
3769   VectorType valueVType = getVectorType();
3770   MemRefType memType = getMemRefType();
3771 
3772   if (valueVType.getElementType() != memType.getElementType())
3773     return emitOpError("base and valueToStore element type should match");
3774   if (llvm::size(getIndices()) != memType.getRank())
3775     return emitOpError("requires ") << memType.getRank() << " indices";
3776   if (valueVType.getDimSize(0) != indVType.getDimSize(0))
3777     return emitOpError("expected valueToStore dim to match indices dim");
3778   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3779     return emitOpError("expected valueToStore dim to match mask dim");
3780   return success();
3781 }
3782 
3783 namespace {
3784 class ScatterFolder final : public OpRewritePattern<ScatterOp> {
3785 public:
3786   using OpRewritePattern<ScatterOp>::OpRewritePattern;
3787   LogicalResult matchAndRewrite(ScatterOp scatter,
3788                                 PatternRewriter &rewriter) const override {
3789     switch (get1DMaskFormat(scatter.getMask())) {
3790     case MaskFormat::AllTrue:
3791       return failure(); // no unmasked equivalent
3792     case MaskFormat::AllFalse:
3793       rewriter.eraseOp(scatter);
3794       return success();
3795     case MaskFormat::Unknown:
3796       return failure();
3797     }
3798     llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
3799   }
3800 };
3801 } // namespace
3802 
3803 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
3804                                             MLIRContext *context) {
3805   results.add<ScatterFolder>(context);
3806 }
3807 
3808 //===----------------------------------------------------------------------===//
3809 // ExpandLoadOp
3810 //===----------------------------------------------------------------------===//
3811 
3812 LogicalResult ExpandLoadOp::verify() {
3813   VectorType maskVType = getMaskVectorType();
3814   VectorType passVType = getPassThruVectorType();
3815   VectorType resVType = getVectorType();
3816   MemRefType memType = getMemRefType();
3817 
3818   if (resVType.getElementType() != memType.getElementType())
3819     return emitOpError("base and result element type should match");
3820   if (llvm::size(getIndices()) != memType.getRank())
3821     return emitOpError("requires ") << memType.getRank() << " indices";
3822   if (resVType.getDimSize(0) != maskVType.getDimSize(0))
3823     return emitOpError("expected result dim to match mask dim");
3824   if (resVType != passVType)
3825     return emitOpError("expected pass_thru of same type as result type");
3826   return success();
3827 }
3828 
3829 namespace {
3830 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
3831 public:
3832   using OpRewritePattern<ExpandLoadOp>::OpRewritePattern;
3833   LogicalResult matchAndRewrite(ExpandLoadOp expand,
3834                                 PatternRewriter &rewriter) const override {
3835     switch (get1DMaskFormat(expand.getMask())) {
3836     case MaskFormat::AllTrue:
3837       rewriter.replaceOpWithNewOp<vector::LoadOp>(
3838           expand, expand.getType(), expand.getBase(), expand.getIndices());
3839       return success();
3840     case MaskFormat::AllFalse:
3841       rewriter.replaceOp(expand, expand.getPassThru());
3842       return success();
3843     case MaskFormat::Unknown:
3844       return failure();
3845     }
3846     llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
3847   }
3848 };
3849 } // namespace
3850 
3851 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
3852                                                MLIRContext *context) {
3853   results.add<ExpandLoadFolder>(context);
3854 }
3855 
3856 //===----------------------------------------------------------------------===//
3857 // CompressStoreOp
3858 //===----------------------------------------------------------------------===//
3859 
3860 LogicalResult CompressStoreOp::verify() {
3861   VectorType maskVType = getMaskVectorType();
3862   VectorType valueVType = getVectorType();
3863   MemRefType memType = getMemRefType();
3864 
3865   if (valueVType.getElementType() != memType.getElementType())
3866     return emitOpError("base and valueToStore element type should match");
3867   if (llvm::size(getIndices()) != memType.getRank())
3868     return emitOpError("requires ") << memType.getRank() << " indices";
3869   if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
3870     return emitOpError("expected valueToStore dim to match mask dim");
3871   return success();
3872 }
3873 
3874 namespace {
3875 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
3876 public:
3877   using OpRewritePattern<CompressStoreOp>::OpRewritePattern;
3878   LogicalResult matchAndRewrite(CompressStoreOp compress,
3879                                 PatternRewriter &rewriter) const override {
3880     switch (get1DMaskFormat(compress.getMask())) {
3881     case MaskFormat::AllTrue:
3882       rewriter.replaceOpWithNewOp<vector::StoreOp>(
3883           compress, compress.getValueToStore(), compress.getBase(),
3884           compress.getIndices());
3885       return success();
3886     case MaskFormat::AllFalse:
3887       rewriter.eraseOp(compress);
3888       return success();
3889     case MaskFormat::Unknown:
3890       return failure();
3891     }
3892     llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
3893   }
3894 };
3895 } // namespace
3896 
3897 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
3898                                                   MLIRContext *context) {
3899   results.add<CompressStoreFolder>(context);
3900 }
3901 
3902 //===----------------------------------------------------------------------===//
3903 // ShapeCastOp
3904 //===----------------------------------------------------------------------===//
3905 
3906 /// Returns true if each element of 'a' is equal to the product of a contiguous
3907 /// sequence of the elements of 'b'. Returns false otherwise.
3908 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
3909   unsigned rankA = a.size();
3910   unsigned rankB = b.size();
3911   assert(rankA < rankB);
3912 
3913   unsigned i = 0;
3914   unsigned j = 0;
3915   while (i < rankA && j < rankB) {
3916     int64_t dimA = a[i];
3917     int64_t dimB = 1;
3918     while (dimB < dimA && j < rankB)
3919       dimB *= b[j++];
3920     if (dimA != dimB)
3921       break;
3922     ++i;
3923 
3924     // Handle the case when trailing dimensions are of size 1.
3925     // Include them into the contiguous sequence.
3926     auto isOne = [](int64_t v) { return v == 1; };
3927     if (i < rankA && llvm::all_of(a.slice(i), isOne))
3928       i = rankA;
3929     if (j < rankB && llvm::all_of(b.slice(j), isOne))
3930       j = rankB;
3931   }
3932 
3933   return i == rankA && j == rankB;
3934 }
3935 
3936 static LogicalResult verifyVectorShapeCast(Operation *op,
3937                                            VectorType sourceVectorType,
3938                                            VectorType resultVectorType) {
3939   // Check that element type is the same.
3940   if (sourceVectorType.getElementType() != resultVectorType.getElementType())
3941     return op->emitOpError("source/result vectors must have same element type");
3942   auto sourceShape = sourceVectorType.getShape();
3943   auto resultShape = resultVectorType.getShape();
3944 
3945   // Check that product of source dim sizes matches product of result dim sizes.
3946   int64_t sourceDimProduct = std::accumulate(
3947       sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
3948   int64_t resultDimProduct = std::accumulate(
3949       resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
3950   if (sourceDimProduct != resultDimProduct)
3951     return op->emitOpError("source/result number of elements must match");
3952 
3953   // Check that expanding/contracting rank cases.
3954   unsigned sourceRank = sourceVectorType.getRank();
3955   unsigned resultRank = resultVectorType.getRank();
3956   if (sourceRank < resultRank) {
3957     if (!isValidShapeCast(sourceShape, resultShape))
3958       return op->emitOpError("invalid shape cast");
3959   } else if (sourceRank > resultRank) {
3960     if (!isValidShapeCast(resultShape, sourceShape))
3961       return op->emitOpError("invalid shape cast");
3962   }
3963   return success();
3964 }
3965 
3966 LogicalResult ShapeCastOp::verify() {
3967   auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>();
3968   auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>();
3969 
3970   // Check if source/result are of vector type.
3971   if (sourceVectorType && resultVectorType)
3972     return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
3973 
3974   return success();
3975 }
3976 
3977 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) {
3978   // Nop shape cast.
3979   if (getSource().getType() == getResult().getType())
3980     return getSource();
3981 
3982   // Canceling shape casts.
3983   if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {
3984     if (getResult().getType() == otherOp.getSource().getType())
3985       return otherOp.getSource();
3986 
3987     // Only allows valid transitive folding.
3988     VectorType srcType = otherOp.getSource().getType().cast<VectorType>();
3989     VectorType resultType = getResult().getType().cast<VectorType>();
3990     if (srcType.getRank() < resultType.getRank()) {
3991       if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
3992         return {};
3993     } else if (srcType.getRank() > resultType.getRank()) {
3994       if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
3995         return {};
3996     } else {
3997       return {};
3998     }
3999 
4000     setOperand(otherOp.getSource());
4001     return getResult();
4002   }
4003   return {};
4004 }
4005 
4006 namespace {
4007 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp.
4008 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> {
4009 public:
4010   using OpRewritePattern<ShapeCastOp>::OpRewritePattern;
4011 
4012   LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
4013                                 PatternRewriter &rewriter) const override {
4014     auto constantOp =
4015         shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>();
4016     if (!constantOp)
4017       return failure();
4018     // Only handle splat for now.
4019     auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>();
4020     if (!dense)
4021       return failure();
4022     auto newAttr =
4023         DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(),
4024                                dense.getSplatValue<Attribute>());
4025     rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr);
4026     return success();
4027   }
4028 };
4029 
4030 } // namespace
4031 
4032 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
4033                                               MLIRContext *context) {
4034   // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp.
4035   results.add<ShapeCastConstantFolder>(context);
4036 }
4037 
4038 //===----------------------------------------------------------------------===//
4039 // VectorBitCastOp
4040 //===----------------------------------------------------------------------===//
4041 
4042 LogicalResult BitCastOp::verify() {
4043   auto sourceVectorType = getSourceVectorType();
4044   auto resultVectorType = getResultVectorType();
4045 
4046   for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
4047     if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
4048       return emitOpError("dimension size mismatch at: ") << i;
4049   }
4050 
4051   DataLayout dataLayout = DataLayout::closest(*this);
4052   auto sourceElementBits =
4053       dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
4054   auto resultElementBits =
4055       dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
4056 
4057   if (sourceVectorType.getRank() == 0) {
4058     if (sourceElementBits != resultElementBits)
4059       return emitOpError("source/result bitwidth of the 0-D vector element "
4060                             "types must be equal");
4061   } else if (sourceElementBits * sourceVectorType.getShape().back() !=
4062              resultElementBits * resultVectorType.getShape().back()) {
4063     return emitOpError(
4064         "source/result bitwidth of the minor 1-D vectors must be equal");
4065   }
4066 
4067   return success();
4068 }
4069 
4070 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) {
4071   // Nop cast.
4072   if (getSource().getType() == getResult().getType())
4073     return getSource();
4074 
4075   // Canceling bitcasts.
4076   if (auto otherOp = getSource().getDefiningOp<BitCastOp>())
4077     if (getResult().getType() == otherOp.getSource().getType())
4078       return otherOp.getSource();
4079 
4080   Attribute sourceConstant = operands.front();
4081   if (!sourceConstant)
4082     return {};
4083 
4084   Type srcElemType = getSourceVectorType().getElementType();
4085   Type dstElemType = getResultVectorType().getElementType();
4086 
4087   if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) {
4088     if (floatPack.isSplat()) {
4089       auto splat = floatPack.getSplatValue<FloatAttr>();
4090 
4091       // Casting fp16 into fp32.
4092       if (srcElemType.isF16() && dstElemType.isF32()) {
4093         uint32_t bits = static_cast<uint32_t>(
4094             splat.getValue().bitcastToAPInt().getZExtValue());
4095         // Duplicate the 16-bit pattern.
4096         bits = (bits << 16) | (bits & 0xffff);
4097         APInt intBits(32, bits);
4098         APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
4099         return DenseElementsAttr::get(getResultVectorType(), floatBits);
4100       }
4101     }
4102   }
4103 
4104   return {};
4105 }
4106 
4107 //===----------------------------------------------------------------------===//
4108 // TypeCastOp
4109 //===----------------------------------------------------------------------===//
4110 
4111 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
4112   auto vectorType = memRefType.getElementType().dyn_cast<VectorType>();
4113   SmallVector<int64_t, 8> res(memRefType.getShape().begin(),
4114                               memRefType.getShape().end());
4115   if (vectorType)
4116     res.append(vectorType.getShape().begin(), vectorType.getShape().end());
4117   return res;
4118 }
4119 
4120 /// Build the canonical memRefType with a single vector.
4121 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
4122 void TypeCastOp::build(OpBuilder &builder, OperationState &result,
4123                        Value source) {
4124   result.addOperands(source);
4125   MemRefType memRefType = source.getType().cast<MemRefType>();
4126   VectorType vectorType =
4127       VectorType::get(extractShape(memRefType),
4128                       getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
4129   result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
4130                                   memRefType.getMemorySpace()));
4131 }
4132 
4133 LogicalResult TypeCastOp::verify() {
4134   MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType());
4135   if (!canonicalType.getLayout().isIdentity())
4136     return emitOpError("expects operand to be a memref with identity layout");
4137   if (!getResultMemRefType().getLayout().isIdentity())
4138     return emitOpError("expects result to be a memref with identity layout");
4139   if (getResultMemRefType().getMemorySpace() !=
4140       getMemRefType().getMemorySpace())
4141     return emitOpError("expects result in same memory space");
4142 
4143   auto sourceType = getMemRefType();
4144   auto resultType = getResultMemRefType();
4145   if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
4146       getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
4147     return emitOpError(
4148                "expects result and operand with same underlying scalar type: ")
4149            << resultType;
4150   if (extractShape(sourceType) != extractShape(resultType))
4151     return emitOpError(
4152                "expects concatenated result and operand shapes to be equal: ")
4153            << resultType;
4154   return success();
4155 }
4156 
4157 //===----------------------------------------------------------------------===//
4158 // TransposeOp
4159 //===----------------------------------------------------------------------===//
4160 
4161 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
4162                                 Value vector, ArrayRef<int64_t> transp) {
4163   VectorType vt = vector.getType().cast<VectorType>();
4164   SmallVector<int64_t, 4> transposedShape(vt.getRank());
4165   for (unsigned i = 0; i < transp.size(); ++i)
4166     transposedShape[i] = vt.getShape()[transp[i]];
4167 
4168   result.addOperands(vector);
4169   result.addTypes(VectorType::get(transposedShape, vt.getElementType()));
4170   result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp));
4171 }
4172 
4173 // Eliminates transpose operations, which produce values identical to their
4174 // input values. This happens when the dimensions of the input vector remain in
4175 // their original order after the transpose operation.
4176 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) {
4177   SmallVector<int64_t, 4> transp;
4178   getTransp(transp);
4179 
4180   // Check if the permutation of the dimensions contains sequential values:
4181   // {0, 1, 2, ...}.
4182   for (int64_t i = 0, e = transp.size(); i < e; i++) {
4183     if (transp[i] != i)
4184       return {};
4185   }
4186 
4187   return getVector();
4188 }
4189 
4190 LogicalResult vector::TransposeOp::verify() {
4191   VectorType vectorType = getVectorType();
4192   VectorType resultType = getResultType();
4193   int64_t rank = resultType.getRank();
4194   if (vectorType.getRank() != rank)
4195     return emitOpError("vector result rank mismatch: ") << rank;
4196   // Verify transposition array.
4197   auto transpAttr = getTransp().getValue();
4198   int64_t size = transpAttr.size();
4199   if (rank != size)
4200     return emitOpError("transposition length mismatch: ") << size;
4201   SmallVector<bool, 8> seen(rank, false);
4202   for (const auto &ta : llvm::enumerate(transpAttr)) {
4203     int64_t i = ta.value().cast<IntegerAttr>().getInt();
4204     if (i < 0 || i >= rank)
4205       return emitOpError("transposition index out of range: ") << i;
4206     if (seen[i])
4207       return emitOpError("duplicate position index: ") << i;
4208     seen[i] = true;
4209     if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i))
4210       return emitOpError("dimension size mismatch at: ") << i;
4211   }
4212   return success();
4213 }
4214 
4215 namespace {
4216 
4217 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
4218 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
4219 public:
4220   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
4221 
4222   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4223                                 PatternRewriter &rewriter) const override {
4224     // Wrapper around vector::TransposeOp::getTransp() for cleaner code.
4225     auto getPermutation = [](vector::TransposeOp transpose) {
4226       SmallVector<int64_t, 4> permutation;
4227       transpose.getTransp(permutation);
4228       return permutation;
4229     };
4230 
4231     // Composes two permutations: result[i] = permutation1[permutation2[i]].
4232     auto composePermutations = [](ArrayRef<int64_t> permutation1,
4233                                   ArrayRef<int64_t> permutation2) {
4234       SmallVector<int64_t, 4> result;
4235       for (auto index : permutation2)
4236         result.push_back(permutation1[index]);
4237       return result;
4238     };
4239 
4240     // Return if the input of 'transposeOp' is not defined by another transpose.
4241     vector::TransposeOp parentTransposeOp =
4242         transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
4243     if (!parentTransposeOp)
4244       return failure();
4245 
4246     SmallVector<int64_t, 4> permutation = composePermutations(
4247         getPermutation(parentTransposeOp), getPermutation(transposeOp));
4248     // Replace 'transposeOp' with a new transpose operation.
4249     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
4250         transposeOp, transposeOp.getResult().getType(),
4251         parentTransposeOp.getVector(),
4252         vector::getVectorSubscriptAttr(rewriter, permutation));
4253     return success();
4254   }
4255 };
4256 
4257 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>).
4258 struct FoldTransposedScalarBroadcast final
4259     : public OpRewritePattern<vector::TransposeOp> {
4260   using OpRewritePattern::OpRewritePattern;
4261 
4262   LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
4263                                 PatternRewriter &rewriter) const override {
4264     auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>();
4265     if (!bcastOp)
4266       return failure();
4267 
4268     auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>();
4269     if (!srcVectorType || srcVectorType.getNumElements() == 1) {
4270       rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
4271           transposeOp, transposeOp.getResultType(), bcastOp.getSource());
4272       return success();
4273     }
4274 
4275     return failure();
4276   }
4277 };
4278 
4279 } // namespace
4280 
4281 void vector::TransposeOp::getCanonicalizationPatterns(
4282     RewritePatternSet &results, MLIRContext *context) {
4283   results.add<FoldTransposedScalarBroadcast, TransposeFolder>(context);
4284 }
4285 
4286 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) {
4287   populateFromInt64AttrArray(getTransp(), results);
4288 }
4289 
4290 //===----------------------------------------------------------------------===//
4291 // ConstantMaskOp
4292 //===----------------------------------------------------------------------===//
4293 
4294 LogicalResult ConstantMaskOp::verify() {
4295   auto resultType = getResult().getType().cast<VectorType>();
4296   // Check the corner case of 0-D vectors first.
4297   if (resultType.getRank() == 0) {
4298     if (getMaskDimSizes().size() != 1)
4299       return emitError("array attr must have length 1 for 0-D vectors");
4300     auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt();
4301     if (dim != 0 && dim != 1)
4302       return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
4303     return success();
4304   }
4305 
4306   // Verify that array attr size matches the rank of the vector result.
4307   if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
4308     return emitOpError(
4309         "must specify array attr of size equal vector result rank");
4310   // Verify that each array attr element is in bounds of corresponding vector
4311   // result dimension size.
4312   auto resultShape = resultType.getShape();
4313   SmallVector<int64_t, 4> maskDimSizes;
4314   for (const auto &it : llvm::enumerate(getMaskDimSizes())) {
4315     int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
4316     if (attrValue < 0 || attrValue > resultShape[it.index()])
4317       return emitOpError(
4318           "array attr of size out of bounds of vector result dimension size");
4319     maskDimSizes.push_back(attrValue);
4320   }
4321   // Verify that if one mask dim size is zero, they all should be zero (because
4322   // the mask region is a conjunction of each mask dimension interval).
4323   bool anyZeros = llvm::is_contained(maskDimSizes, 0);
4324   bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
4325   if (anyZeros && !allZeros)
4326     return emitOpError("expected all mask dim sizes to be zeros, "
4327                        "as a result of conjunction with zero mask dim");
4328   // Verify that if the mask type is scalable, dimensions should be zero because
4329   // constant scalable masks can only be defined for the "none set" or "all set"
4330   // cases, and there is no VLA way to define an "all set" case for
4331   // `vector.constant_mask`. In the future, a convention could be established
4332   // to decide if a specific dimension value could be considered as "all set".
4333   if (resultType.isScalable() &&
4334       getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0)
4335     return emitOpError("expected mask dim sizes for scalable masks to be 0");
4336   return success();
4337 }
4338 
4339 //===----------------------------------------------------------------------===//
4340 // CreateMaskOp
4341 //===----------------------------------------------------------------------===//
4342 
4343 LogicalResult CreateMaskOp::verify() {
4344   auto vectorType = getResult().getType().cast<VectorType>();
4345   // Verify that an operand was specified for each result vector each dimension.
4346   if (vectorType.getRank() == 0) {
4347     if (getNumOperands() != 1)
4348       return emitOpError(
4349           "must specify exactly one operand for 0-D create_mask");
4350   } else if (getNumOperands() !=
4351              getResult().getType().cast<VectorType>().getRank()) {
4352     return emitOpError(
4353         "must specify an operand for each result vector dimension");
4354   }
4355   return success();
4356 }
4357 
4358 namespace {
4359 
4360 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
4361 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
4362 public:
4363   using OpRewritePattern<CreateMaskOp>::OpRewritePattern;
4364 
4365   LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
4366                                 PatternRewriter &rewriter) const override {
4367     // Return if any of 'createMaskOp' operands are not defined by a constant.
4368     auto isNotDefByConstant = [](Value operand) {
4369       return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp());
4370     };
4371     if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant))
4372       return failure();
4373 
4374     // CreateMaskOp for scalable vectors can be folded only if all dimensions
4375     // are negative or zero.
4376     if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) {
4377       if (vType.isScalable())
4378         for (auto opDim : createMaskOp.getOperands()) {
4379           APInt intVal;
4380           if (matchPattern(opDim, m_ConstantInt(&intVal)) &&
4381               intVal.isStrictlyPositive())
4382             return failure();
4383         }
4384     }
4385 
4386     // Gather constant mask dimension sizes.
4387     SmallVector<int64_t, 4> maskDimSizes;
4388     for (auto it : llvm::zip(createMaskOp.operands(),
4389                              createMaskOp.getType().getShape())) {
4390       auto *defOp = std::get<0>(it).getDefiningOp();
4391       int64_t maxDimSize = std::get<1>(it);
4392       int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value();
4393       dimSize = std::min(dimSize, maxDimSize);
4394       // If one of dim sizes is zero, set all dims to zero.
4395       if (dimSize <= 0) {
4396         maskDimSizes.assign(createMaskOp.getType().getRank(), 0);
4397         break;
4398       }
4399       maskDimSizes.push_back(dimSize);
4400     }
4401     // Replace 'createMaskOp' with ConstantMaskOp.
4402     rewriter.replaceOpWithNewOp<ConstantMaskOp>(
4403         createMaskOp, createMaskOp.getResult().getType(),
4404         vector::getVectorSubscriptAttr(rewriter, maskDimSizes));
4405     return success();
4406   }
4407 };
4408 
4409 } // namespace
4410 
4411 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
4412                                                MLIRContext *context) {
4413   results.add<CreateMaskFolder>(context);
4414 }
4415 
4416 //===----------------------------------------------------------------------===//
4417 // ScanOp
4418 //===----------------------------------------------------------------------===//
4419 
4420 LogicalResult ScanOp::verify() {
4421   VectorType srcType = getSourceType();
4422   VectorType initialType = getInitialValueType();
4423   // Check reduction dimension < rank.
4424   int64_t srcRank = srcType.getRank();
4425   int64_t reductionDim = getReductionDim();
4426   if (reductionDim >= srcRank)
4427     return emitOpError("reduction dimension ")
4428            << reductionDim << " has to be less than " << srcRank;
4429 
4430   // Check that rank(initial_value) = rank(src) - 1.
4431   int64_t initialValueRank = initialType.getRank();
4432   if (initialValueRank != srcRank - 1)
4433     return emitOpError("initial value rank ")
4434            << initialValueRank << " has to be equal to " << srcRank - 1;
4435 
4436   // Check shapes of initial value and src.
4437   ArrayRef<int64_t> srcShape = srcType.getShape();
4438   ArrayRef<int64_t> initialValueShapes = initialType.getShape();
4439   SmallVector<int64_t> expectedShape;
4440   for (int i = 0; i < srcRank; i++) {
4441     if (i != reductionDim)
4442       expectedShape.push_back(srcShape[i]);
4443   }
4444   if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape),
4445                    [](std::tuple<int64_t, int64_t> s) {
4446                      return std::get<0>(s) != std::get<1>(s);
4447                    })) {
4448     return emitOpError("incompatible input/initial value shapes");
4449   }
4450 
4451   return success();
4452 }
4453 
4454 void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
4455     RewritePatternSet &patterns) {
4456   patterns
4457       .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
4458            ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
4459            StridedSliceConstantMaskFolder, TransposeFolder>(
4460           patterns.getContext());
4461 }
4462 
4463 //===----------------------------------------------------------------------===//
4464 // SplatOp
4465 //===----------------------------------------------------------------------===//
4466 
4467 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
4468   auto constOperand = operands.front();
4469   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
4470     return {};
4471 
4472   // SplatElementsAttr::get treats single value for second arg as being a splat.
4473   return SplatElementsAttr::get(getType(), {constOperand});
4474 }
4475 
4476 //===----------------------------------------------------------------------===//
4477 // TableGen'd op method definitions
4478 //===----------------------------------------------------------------------===//
4479 
4480 #define GET_OP_CLASSES
4481 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
4482