1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(kind.getValue(), parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.getSource().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return getSource(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = getDest().getType(); 401 if (!isSupportedCombiningKind(getKind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 404 << "'"; 405 406 // Verify optional accumulator. 407 if (getAcc()) { 408 if (getKind() != CombiningKind::ADD && getKind() != CombiningKind::MUL) 409 return emitOpError("no accumulator for reduction kind: ") 410 << stringifyCombiningKind(getKind()); 411 if (!eltType.isa<FloatType>()) 412 return emitOpError("no accumulator for type: ") << eltType; 413 } 414 415 return success(); 416 } 417 418 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 419 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 420 Type redType; 421 Type resType; 422 CombiningKindAttr kindAttr; 423 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 424 result.attributes) || 425 parser.parseComma() || parser.parseOperandList(operandsInfo) || 426 parser.parseColonType(redType) || 427 parser.parseKeywordType("into", resType) || 428 (!operandsInfo.empty() && 429 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 430 (operandsInfo.size() > 1 && 431 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 432 parser.addTypeToList(resType, result.types)) 433 return failure(); 434 if (operandsInfo.empty() || operandsInfo.size() > 2) 435 return parser.emitError(parser.getNameLoc(), 436 "unsupported number of operands"); 437 return success(); 438 } 439 440 void ReductionOp::print(OpAsmPrinter &p) { 441 p << " "; 442 getKindAttr().print(p); 443 p << ", " << getVector(); 444 if (getAcc()) 445 p << ", " << getAcc(); 446 p << " : " << getVector().getType() << " into " << getDest().getType(); 447 } 448 449 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 450 OpBuilder &builder, Location loc, 451 Value vector) { 452 switch (op) { 453 case arith::AtomicRMWKind::addf: 454 case arith::AtomicRMWKind::addi: 455 return builder.create<vector::ReductionOp>(vector.getLoc(), 456 CombiningKind::ADD, vector); 457 case arith::AtomicRMWKind::mulf: 458 case arith::AtomicRMWKind::muli: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MUL, vector); 461 case arith::AtomicRMWKind::minf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MINF, vector); 464 case arith::AtomicRMWKind::mins: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MINSI, vector); 467 case arith::AtomicRMWKind::minu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MINUI, vector); 470 case arith::AtomicRMWKind::maxf: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::MAXF, vector); 473 case arith::AtomicRMWKind::maxs: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::MAXSI, vector); 476 case arith::AtomicRMWKind::maxu: 477 return builder.create<vector::ReductionOp>(vector.getLoc(), 478 CombiningKind::MAXUI, vector); 479 // TODO: Add remaining reduction operations. 480 default: 481 (void)emitOptionalError(loc, "Reduction operation type not supported"); 482 break; 483 } 484 return nullptr; 485 } 486 487 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 488 return llvm::to_vector<4>(getVectorType().getShape()); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // ContractionOp 493 //===----------------------------------------------------------------------===// 494 495 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 496 Value lhs, Value rhs, Value acc, 497 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 498 ArrayRef<StringRef> iteratorTypes) { 499 result.addOperands({lhs, rhs, acc}); 500 result.addTypes(acc.getType()); 501 result.addAttribute(::mlir::getIndexingMapsAttrName(), 502 builder.getAffineMapArrayAttr( 503 AffineMap::inferFromExprList(indexingExprs))); 504 result.addAttribute(::mlir::getIteratorTypesAttrName(), 505 builder.getStrArrayAttr(iteratorTypes)); 506 } 507 508 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 509 Value lhs, Value rhs, Value acc, 510 ArrayAttr indexingMaps, 511 ArrayAttr iteratorTypes) { 512 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 513 ContractionOp::getDefaultKind()); 514 } 515 516 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 517 Value lhs, Value rhs, Value acc, 518 ArrayAttr indexingMaps, 519 ArrayAttr iteratorTypes, CombiningKind kind) { 520 result.addOperands({lhs, rhs, acc}); 521 result.addTypes(acc.getType()); 522 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 523 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 524 result.addAttribute(ContractionOp::getKindAttrStrName(), 525 CombiningKindAttr::get(kind, builder.getContext())); 526 } 527 528 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 529 OpAsmParser::UnresolvedOperand lhsInfo; 530 OpAsmParser::UnresolvedOperand rhsInfo; 531 OpAsmParser::UnresolvedOperand accInfo; 532 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 533 SmallVector<Type, 2> types; 534 Type resultType; 535 auto loc = parser.getCurrentLocation(); 536 DictionaryAttr dictAttr; 537 // TODO: Unify linalg op attribute parsing. 538 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 539 parser.parseOperand(lhsInfo) || parser.parseComma() || 540 parser.parseOperand(rhsInfo) || parser.parseComma() || 541 parser.parseOperand(accInfo) || 542 parser.parseTrailingOperandList(masksInfo) || 543 parser.parseOptionalAttrDict(result.attributes) || 544 parser.parseColonTypeList(types) || 545 parser.parseKeywordType("into", resultType) || 546 parser.resolveOperand(lhsInfo, types[0], result.operands) || 547 parser.resolveOperand(rhsInfo, types[1], result.operands) || 548 parser.resolveOperand(accInfo, resultType, result.operands) || 549 parser.addTypeToList(resultType, result.types)) 550 return failure(); 551 result.attributes.assign(dictAttr.getValue().begin(), 552 dictAttr.getValue().end()); 553 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 554 result.addAttribute(ContractionOp::getKindAttrStrName(), 555 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 556 result.getContext())); 557 } 558 if (masksInfo.empty()) 559 return success(); 560 if (masksInfo.size() != 2) 561 return parser.emitError(parser.getNameLoc(), 562 "expected zero or exactly 2 vector mask operands"); 563 auto lhsType = types[0].cast<VectorType>(); 564 auto rhsType = types[1].cast<VectorType>(); 565 auto maskElementType = parser.getBuilder().getI1Type(); 566 std::array<Type, 2> maskTypes = { 567 VectorType::Builder(lhsType).setElementType(maskElementType), 568 VectorType::Builder(rhsType).setElementType(maskElementType)}; 569 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 570 return failure(); 571 return success(); 572 } 573 574 void ContractionOp::print(OpAsmPrinter &p) { 575 // TODO: Unify printing code with linalg ops. 576 auto attrNames = getTraitAttrNames(); 577 llvm::StringSet<> traitAttrsSet; 578 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 579 SmallVector<NamedAttribute, 8> attrs; 580 for (auto attr : (*this)->getAttrs()) 581 if (traitAttrsSet.count(attr.getName().strref()) > 0) 582 attrs.push_back(attr); 583 584 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 585 p << " " << dictAttr << " " << getLhs() << ", "; 586 p << getRhs() << ", " << getAcc(); 587 if (getMasks().size() == 2) 588 p << ", " << getMasks(); 589 590 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 591 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 592 << getResultType(); 593 } 594 595 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 596 const std::vector<std::pair<int64_t, int64_t>> &map) { 597 for (auto &dimPair : map) { 598 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 599 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 600 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 601 return false; 602 } 603 return true; 604 } 605 606 static LogicalResult verifyOutputShape( 607 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 608 Type resType, 609 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 610 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 611 DenseSet<int64_t> lhsContractingDimSet; 612 DenseSet<int64_t> rhsContractingDimSet; 613 for (auto &dimPair : contractingDimMap) { 614 lhsContractingDimSet.insert(dimPair.first); 615 rhsContractingDimSet.insert(dimPair.second); 616 } 617 DenseSet<int64_t> rhsBatchDimSet; 618 for (auto &dimPair : batchDimMap) 619 rhsBatchDimSet.insert(dimPair.second); 620 621 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 622 SmallVector<int64_t, 4> expectedResultDims; 623 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 624 if (lhsContractingDimSet.count(i) > 0) 625 continue; 626 expectedResultDims.push_back(lhsType.getDimSize(i)); 627 } 628 629 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 630 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 631 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 632 continue; 633 expectedResultDims.push_back(rhsType.getDimSize(i)); 634 } 635 636 // Verify 'expectedResultDims'. 637 if (expectedResultDims.empty()) { 638 // No batch or free dimension implies a scalar result. 639 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 640 return op.emitOpError("invalid accumulator/result vector shape"); 641 } else { 642 // At least one batch or free dimension implies a vector result. 643 auto resVectorType = resType.dyn_cast<VectorType>(); 644 auto accVectorType = accType.dyn_cast<VectorType>(); 645 if (!resVectorType || !accVectorType) 646 return op.emitOpError("invalid accumulator/result vector shape"); 647 648 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 649 // types fully define the result vector type. This assumes the affine maps 650 // are well-formed, which must have been verified already. 651 MLIRContext *ctx = op.getContext(); 652 AffineMap lhsMap = op.getIndexingMaps()[0]; 653 AffineMap rhsMap = op.getIndexingMaps()[1]; 654 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 655 for (auto pair : 656 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 657 VectorType v = pair.first; 658 auto map = pair.second; 659 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 660 unsigned pos = map.getDimPosition(idx); 661 if (!extents[pos]) 662 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 663 } 664 } 665 assert(llvm::all_of(extents, [](AffineExpr e) { return e; }) && 666 "expected extent along all dimensions."); 667 668 AffineMap resMap = op.getIndexingMaps()[2]; 669 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 670 /*symCount=*/0, extents, ctx); 671 // Compose the resMap with the extentsMap, which is a constant map. 672 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 673 assert(llvm::all_of( 674 expectedMap.getResults(), 675 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 676 "expected constant extent along all dimensions."); 677 // Extract the expected shape and build the type. 678 auto expectedShape = llvm::to_vector<4>( 679 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 680 return e.cast<AffineConstantExpr>().getValue(); 681 })); 682 auto expected = 683 VectorType::get(expectedShape, resVectorType.getElementType()); 684 if (resVectorType != expected || accVectorType != expected) 685 return op.emitOpError( 686 "invalid accumulator/result vector shape, expected: ") 687 << expected; 688 } 689 return success(); 690 } 691 692 LogicalResult ContractionOp::verify() { 693 auto lhsType = getLhsType(); 694 auto rhsType = getRhsType(); 695 auto accType = getAccType(); 696 auto resType = getResultType(); 697 698 // Verify that an indexing map was specified for each vector operand. 699 if (getIndexingMaps().size() != 3) 700 return emitOpError("expected an indexing map for each vector operand"); 701 702 // Verify that each index map has 'numIterators' inputs, no symbols, and 703 // that the number of map outputs equals the rank of its associated 704 // vector operand. 705 unsigned numIterators = getIteratorTypes().getValue().size(); 706 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 707 auto index = it.index(); 708 auto map = it.value(); 709 if (map.getNumSymbols() != 0) 710 return emitOpError("expected indexing map ") 711 << index << " to have no symbols"; 712 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 713 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 714 // Verify that the map has the right number of inputs, outputs, and indices. 715 // This also correctly accounts for (..) -> () for rank-0 results. 716 if (map.getNumDims() != numIterators) 717 return emitOpError("expected indexing map ") 718 << index << " to have " << numIterators << " number of inputs"; 719 if (map.getNumResults() != rank) 720 return emitOpError("expected indexing map ") 721 << index << " to have " << rank << " number of outputs"; 722 if (!map.isProjectedPermutation()) 723 return emitOpError("expected indexing map ") 724 << index << " to be a projected permutation of its inputs"; 725 } 726 727 auto contractingDimMap = getContractingDimMap(); 728 auto batchDimMap = getBatchDimMap(); 729 730 // Verify at least one contracting dimension pair was specified. 731 if (contractingDimMap.empty()) 732 return emitOpError("expected at least one contracting dimension pair"); 733 734 // Verify contracting dimension map was properly constructed. 735 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 736 return emitOpError("invalid contracting dimension map"); 737 738 // Verify batch dimension map was properly constructed. 739 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 740 return emitOpError("invalid batch dimension map"); 741 742 // Verify 'accType' and 'resType' shape. 743 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 744 contractingDimMap, batchDimMap))) 745 return failure(); 746 747 // Verify that either two vector masks are set or none are set. 748 auto lhsMaskType = getLHSVectorMaskType(); 749 auto rhsMaskType = getRHSVectorMaskType(); 750 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 751 return emitOpError("invalid number of vector masks specified"); 752 if (lhsMaskType && rhsMaskType) { 753 // Verify mask rank == argument rank. 754 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 755 rhsMaskType.getShape().size() != rhsType.getShape().size()) 756 return emitOpError("invalid vector mask rank"); 757 } 758 759 // Verify supported combining kind. 760 auto vectorType = resType.dyn_cast<VectorType>(); 761 auto elementType = vectorType ? vectorType.getElementType() : resType; 762 if (!isSupportedCombiningKind(getKind(), elementType)) 763 return emitOpError("unsupported contraction type"); 764 765 return success(); 766 } 767 768 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 769 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 770 ::mlir::getIteratorTypesAttrName(), 771 ContractionOp::getKindAttrStrName()}; 772 return llvm::makeArrayRef(names); 773 } 774 775 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 776 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 777 if (targetExpr == map.getResult(i)) 778 return i; 779 return -1; 780 } 781 782 static std::vector<std::pair<int64_t, int64_t>> 783 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 784 StringRef targetIteratorTypeName, MLIRContext *context) { 785 std::vector<std::pair<int64_t, int64_t>> dimMap; 786 for (const auto &it : llvm::enumerate(iteratorTypes)) { 787 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 788 if (iteratorTypeName != targetIteratorTypeName) 789 continue; 790 // Search lhs/rhs map results for 'targetExpr'. 791 auto targetExpr = getAffineDimExpr(it.index(), context); 792 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 793 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 794 if (lhsDim >= 0 && rhsDim >= 0) 795 dimMap.emplace_back(lhsDim, rhsDim); 796 } 797 return dimMap; 798 } 799 800 void ContractionOp::getIterationBounds( 801 SmallVectorImpl<int64_t> &iterationBounds) { 802 auto lhsShape = getLhsType().getShape(); 803 auto resVectorType = getResultType().dyn_cast<VectorType>(); 804 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 805 SmallVector<int64_t, 2> iterationShape; 806 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 807 // Search lhs/rhs map results for 'targetExpr'. 808 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 809 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 810 if (iteratorTypeName == getReductionIteratorTypeName()) { 811 // Get reduction dim size from lhs shape (same size in rhsShape). 812 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 813 assert(lhsDimIndex >= 0); 814 iterationBounds.push_back(lhsShape[lhsDimIndex]); 815 continue; 816 } 817 // Get parallel dimension size from result shape. 818 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 819 assert(resDimIndex >= 0); 820 assert(resVectorType != nullptr); 821 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 822 } 823 } 824 825 void ContractionOp::getIterationIndexMap( 826 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 827 unsigned numMaps = getIndexingMaps().size(); 828 iterationIndexMap.resize(numMaps); 829 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 830 auto index = it.index(); 831 auto map = it.value(); 832 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 833 auto dim = map.getResult(i).cast<AffineDimExpr>(); 834 iterationIndexMap[index][dim.getPosition()] = i; 835 } 836 } 837 } 838 839 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 840 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 841 return getDimMap(indexingMaps, getIteratorTypes(), 842 getReductionIteratorTypeName(), getContext()); 843 } 844 845 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 846 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 847 return getDimMap(indexingMaps, getIteratorTypes(), 848 getParallelIteratorTypeName(), getContext()); 849 } 850 851 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 852 SmallVector<int64_t, 4> shape; 853 getIterationBounds(shape); 854 return shape; 855 } 856 857 /// Return a fused vector::ContractionOp which represents a patterns such as: 858 /// 859 /// ```mlir 860 /// %c0 = vector.constant 0: ... 861 /// %c = vector.contract %a, %b, %c0: ... 862 /// %e = add %c, %d: ... 863 /// ``` 864 /// 865 /// by: 866 /// 867 /// ```mlir 868 /// %e = vector.contract %a, %b, %d: ... 869 /// ``` 870 /// 871 /// Return null if the canonicalization does not apply. 872 // TODO: This should be a folding of Add into Contract in core but while they 873 // live in different dialects, it is not possible without unnatural 874 // dependencies. 875 template <typename AddOpType> 876 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 877 using OpRewritePattern<AddOpType>::OpRewritePattern; 878 879 LogicalResult matchAndRewrite(AddOpType addOp, 880 PatternRewriter &rewriter) const override { 881 auto canonicalize = [&](Value maybeContraction, 882 Value otherOperand) -> vector::ContractionOp { 883 vector::ContractionOp contractionOp = 884 dyn_cast_or_null<vector::ContractionOp>( 885 maybeContraction.getDefiningOp()); 886 if (!contractionOp) 887 return vector::ContractionOp(); 888 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 889 contractionOp.getAcc().getDefiningOp())) { 890 if (maybeZero.getValue() == 891 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 892 BlockAndValueMapping bvm; 893 bvm.map(contractionOp.getAcc(), otherOperand); 894 auto newContraction = 895 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 896 rewriter.replaceOp(addOp, newContraction.getResult()); 897 return newContraction; 898 } 899 } 900 return vector::ContractionOp(); 901 }; 902 903 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 904 vector::ContractionOp contract = canonicalize(a, b); 905 contract = contract ? contract : canonicalize(b, a); 906 return contract ? success() : failure(); 907 } 908 }; 909 910 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 911 MLIRContext *context) { 912 results.add<CanonicalizeContractAdd<arith::AddIOp>, 913 CanonicalizeContractAdd<arith::AddFOp>>(context); 914 } 915 916 //===----------------------------------------------------------------------===// 917 // ExtractElementOp 918 //===----------------------------------------------------------------------===// 919 920 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 921 Value source) { 922 result.addOperands({source}); 923 result.addTypes(source.getType().cast<VectorType>().getElementType()); 924 } 925 926 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 927 Value source, Value position) { 928 result.addOperands({source, position}); 929 result.addTypes(source.getType().cast<VectorType>().getElementType()); 930 } 931 932 LogicalResult vector::ExtractElementOp::verify() { 933 VectorType vectorType = getVectorType(); 934 if (vectorType.getRank() == 0) { 935 if (getPosition()) 936 return emitOpError("expected position to be empty with 0-D vector"); 937 return success(); 938 } 939 if (vectorType.getRank() != 1) 940 return emitOpError("unexpected >1 vector rank"); 941 if (!getPosition()) 942 return emitOpError("expected position for 1-D vector"); 943 return success(); 944 } 945 946 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) { 947 // Skip the 0-D vector here now. 948 if (operands.size() < 2) 949 return {}; 950 951 Attribute src = operands[0]; 952 Attribute pos = operands[1]; 953 if (!src || !pos) 954 return {}; 955 956 auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>(); 957 958 auto attr = pos.dyn_cast<IntegerAttr>(); 959 uint64_t posIdx = attr.getInt(); 960 961 return srcElements[posIdx]; 962 } 963 964 //===----------------------------------------------------------------------===// 965 // ExtractOp 966 //===----------------------------------------------------------------------===// 967 968 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 969 Value source, ArrayRef<int64_t> position) { 970 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 971 } 972 973 // Convenience builder which assumes the values are constant indices. 974 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 975 Value source, ValueRange position) { 976 SmallVector<int64_t, 4> positionConstants = 977 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 978 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 979 })); 980 build(builder, result, source, positionConstants); 981 } 982 983 LogicalResult 984 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 985 ValueRange operands, DictionaryAttr attributes, 986 RegionRange, 987 SmallVectorImpl<Type> &inferredReturnTypes) { 988 ExtractOp::Adaptor op(operands, attributes); 989 auto vectorType = op.getVector().getType().cast<VectorType>(); 990 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 991 inferredReturnTypes.push_back(vectorType.getElementType()); 992 } else { 993 auto n = 994 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 995 inferredReturnTypes.push_back(VectorType::get( 996 vectorType.getShape().drop_front(n), vectorType.getElementType())); 997 } 998 return success(); 999 } 1000 1001 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 1002 // Allow extracting 1-element vectors instead of scalars. 1003 auto isCompatible = [](TypeRange l, TypeRange r) { 1004 auto vectorType = l.front().dyn_cast<VectorType>(); 1005 return vectorType && vectorType.getShape().equals({1}) && 1006 vectorType.getElementType() == r.front(); 1007 }; 1008 if (l.size() == 1 && r.size() == 1 && 1009 (isCompatible(l, r) || isCompatible(r, l))) 1010 return true; 1011 return l == r; 1012 } 1013 1014 LogicalResult vector::ExtractOp::verify() { 1015 auto positionAttr = getPosition().getValue(); 1016 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1017 return emitOpError( 1018 "expected position attribute of rank smaller than vector rank"); 1019 for (const auto &en : llvm::enumerate(positionAttr)) { 1020 auto attr = en.value().dyn_cast<IntegerAttr>(); 1021 if (!attr || attr.getInt() < 0 || 1022 attr.getInt() >= getVectorType().getDimSize(en.index())) 1023 return emitOpError("expected position attribute #") 1024 << (en.index() + 1) 1025 << " to be a non-negative integer smaller than the corresponding " 1026 "vector dimension"; 1027 } 1028 return success(); 1029 } 1030 1031 template <typename IntType> 1032 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1033 return llvm::to_vector<4>(llvm::map_range( 1034 arrayAttr.getAsRange<IntegerAttr>(), 1035 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1036 } 1037 1038 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1039 /// positions. 1040 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1041 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1042 return failure(); 1043 1044 SmallVector<int64_t, 4> globalPosition; 1045 ExtractOp currentOp = extractOp; 1046 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1047 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1048 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1049 currentOp = nextOp; 1050 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1051 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1052 } 1053 extractOp.setOperand(currentOp.getVector()); 1054 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1055 OpBuilder b(extractOp.getContext()); 1056 std::reverse(globalPosition.begin(), globalPosition.end()); 1057 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1058 b.getI64ArrayAttr(globalPosition)); 1059 return success(); 1060 } 1061 1062 namespace { 1063 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1064 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1065 /// Compose TransposeOp permutations as we walk back. 1066 /// This helper class keeps an updated extraction position `extractPosition` 1067 /// with extra trailing sentinels. 1068 /// The sentinels encode the internal transposition status of the result vector. 1069 /// As we iterate, extractPosition is permuted and updated. 1070 class ExtractFromInsertTransposeChainState { 1071 public: 1072 ExtractFromInsertTransposeChainState(ExtractOp e); 1073 1074 /// Iterate over producing insert and transpose ops until we find a fold. 1075 Value fold(); 1076 1077 private: 1078 /// Return true if the vector at position `a` is contained within the vector 1079 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1080 /// is a prefix of `b`. 1081 template <typename ContainerA, typename ContainerB> 1082 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1083 return a.size() <= b.size() && 1084 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1085 } 1086 1087 /// Return true if the vector at position `a` intersects the vector at 1088 /// position `b`. Under insert/extract semantics, this is the same as equality 1089 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1090 /// Comparison is on the common prefix (i.e. zip). 1091 template <typename ContainerA, typename ContainerB> 1092 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1093 for (auto it : llvm::zip(a, b)) { 1094 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1095 continue; 1096 if (std::get<0>(it) != std::get<1>(it)) 1097 return false; 1098 } 1099 return true; 1100 } 1101 1102 /// Folding is only possible in the absence of an internal permutation in the 1103 /// result vector. 1104 bool canFold() { 1105 return (sentinels == 1106 makeArrayRef(extractPosition).drop_front(extractedRank)); 1107 } 1108 1109 // Helper to get the next defining op of interest. 1110 void updateStateForNextIteration(Value v) { 1111 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1112 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1113 }; 1114 1115 // Case 1. If we hit a transpose, just compose the map and iterate. 1116 // Invariant: insert + transpose do not change rank, we can always compose. 1117 LogicalResult handleTransposeOp(); 1118 1119 // Case 2: the insert position matches extractPosition exactly, early return. 1120 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1121 1122 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1123 /// portion of the source of the insert. 1124 /// Example: 1125 /// ``` 1126 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1127 /// // extractPosition == [1, 2, 3] 1128 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1129 /// // can fold to vector.extract %source[0, 3] 1130 /// %ext = vector.extract %source[3]: vector<5x6> 1131 /// ``` 1132 /// To traverse through %source, we need to set the leading dims to 0 and 1133 /// drop the extra leading dims. 1134 /// This method updates the internal state. 1135 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1136 1137 /// Try to fold in place to extract(source, extractPosition) and return the 1138 /// folded result. Return null if folding is not possible (e.g. due to an 1139 /// internal tranposition in the result). 1140 Value tryToFoldExtractOpInPlace(Value source); 1141 1142 ExtractOp extractOp; 1143 int64_t vectorRank; 1144 int64_t extractedRank; 1145 1146 InsertOp nextInsertOp; 1147 TransposeOp nextTransposeOp; 1148 1149 /// Sentinel values that encode the internal permutation status of the result. 1150 /// They are set to (-1, ... , -k) at the beginning and appended to 1151 /// `extractPosition`. 1152 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1153 /// ensure that there is no internal transposition. 1154 /// Internal transposition cannot be accounted for with a folding pattern. 1155 // TODO: We could relax the internal transposition with an extra transposition 1156 // operation in a future canonicalizer. 1157 SmallVector<int64_t> sentinels; 1158 SmallVector<int64_t> extractPosition; 1159 }; 1160 } // namespace 1161 1162 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1163 ExtractOp e) 1164 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1165 extractedRank(extractOp.getPosition().size()) { 1166 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1167 sentinels.reserve(vectorRank - extractedRank); 1168 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1169 sentinels.push_back(-(i + 1)); 1170 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1171 llvm::append_range(extractPosition, sentinels); 1172 } 1173 1174 // Case 1. If we hit a transpose, just compose the map and iterate. 1175 // Invariant: insert + transpose do not change rank, we can always compose. 1176 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1177 if (!nextTransposeOp) 1178 return failure(); 1179 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1180 AffineMap m = inversePermutation( 1181 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1182 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1183 return success(); 1184 } 1185 1186 // Case 2: the insert position matches extractPosition exactly, early return. 1187 LogicalResult 1188 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1189 Value &res) { 1190 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1191 if (makeArrayRef(insertedPos) != 1192 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1193 return failure(); 1194 // Case 2.a. early-exit fold. 1195 res = nextInsertOp.getSource(); 1196 // Case 2.b. if internal transposition is present, canFold will be false. 1197 return success(); 1198 } 1199 1200 /// Case 3: if inserted position is a prefix of extractPosition, 1201 /// extract a portion of the source of the insertion. 1202 /// This method updates the internal state. 1203 LogicalResult 1204 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1205 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1206 if (!isContainedWithin(insertedPos, extractPosition)) 1207 return failure(); 1208 // Set leading dims to zero. 1209 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1210 // Drop extra leading dims. 1211 extractPosition.erase(extractPosition.begin(), 1212 extractPosition.begin() + insertedPos.size()); 1213 extractedRank = extractPosition.size() - sentinels.size(); 1214 // Case 3.a. early-exit fold (break and delegate to post-while path). 1215 res = nextInsertOp.getSource(); 1216 // Case 3.b. if internal transposition is present, canFold will be false. 1217 return success(); 1218 } 1219 1220 /// Try to fold in place to extract(source, extractPosition) and return the 1221 /// folded result. Return null if folding is not possible (e.g. due to an 1222 /// internal tranposition in the result). 1223 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1224 Value source) { 1225 // If we can't fold (either internal transposition, or nothing to fold), bail. 1226 bool nothingToFold = (source == extractOp.getVector()); 1227 if (nothingToFold || !canFold()) 1228 return Value(); 1229 // Otherwise, fold by updating the op inplace and return its result. 1230 OpBuilder b(extractOp.getContext()); 1231 extractOp->setAttr( 1232 extractOp.getPositionAttrName(), 1233 b.getI64ArrayAttr( 1234 makeArrayRef(extractPosition).take_front(extractedRank))); 1235 extractOp.getVectorMutable().assign(source); 1236 return extractOp.getResult(); 1237 } 1238 1239 /// Iterate over producing insert and transpose ops until we find a fold. 1240 Value ExtractFromInsertTransposeChainState::fold() { 1241 Value valueToExtractFrom = extractOp.getVector(); 1242 updateStateForNextIteration(valueToExtractFrom); 1243 while (nextInsertOp || nextTransposeOp) { 1244 // Case 1. If we hit a transpose, just compose the map and iterate. 1245 // Invariant: insert + transpose do not change rank, we can always compose. 1246 if (succeeded(handleTransposeOp())) { 1247 valueToExtractFrom = nextTransposeOp.getVector(); 1248 updateStateForNextIteration(valueToExtractFrom); 1249 continue; 1250 } 1251 1252 Value result; 1253 // Case 2: the position match exactly. 1254 if (succeeded(handleInsertOpWithMatchingPos(result))) 1255 return result; 1256 1257 // Case 3: if the inserted position is a prefix of extractPosition, we can 1258 // just extract a portion of the source of the insert. 1259 if (succeeded(handleInsertOpWithPrefixPos(result))) 1260 return tryToFoldExtractOpInPlace(result); 1261 1262 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1263 // values. This is a more difficult case and we bail. 1264 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1265 if (isContainedWithin(extractPosition, insertedPos) || 1266 intersectsWhereNonNegative(extractPosition, insertedPos)) 1267 return Value(); 1268 1269 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1270 valueToExtractFrom = nextInsertOp.getDest(); 1271 updateStateForNextIteration(valueToExtractFrom); 1272 } 1273 // If after all this we can fold, go for it. 1274 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1275 } 1276 1277 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1278 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1279 Operation *defOp = extractOp.getVector().getDefiningOp(); 1280 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1281 return Value(); 1282 Value source = defOp->getOperand(0); 1283 if (extractOp.getType() == source.getType()) 1284 return source; 1285 auto getRank = [](Type type) { 1286 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1287 }; 1288 unsigned broadcastSrcRank = getRank(source.getType()); 1289 unsigned extractResultRank = getRank(extractOp.getType()); 1290 if (extractResultRank < broadcastSrcRank) { 1291 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1292 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1293 extractPos.erase( 1294 extractPos.begin(), 1295 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1296 extractOp.setOperand(source); 1297 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1298 OpBuilder b(extractOp.getContext()); 1299 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1300 b.getI64ArrayAttr(extractPos)); 1301 return extractOp.getResult(); 1302 } 1303 return Value(); 1304 } 1305 1306 // Fold extractOp with source coming from ShapeCast op. 1307 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1308 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1309 if (!shapeCastOp) 1310 return Value(); 1311 // Get the nth dimension size starting from lowest dimension. 1312 auto getDimReverse = [](VectorType type, int64_t n) { 1313 return type.getShape().take_back(n + 1).front(); 1314 }; 1315 int64_t destinationRank = 1316 extractOp.getType().isa<VectorType>() 1317 ? extractOp.getType().cast<VectorType>().getRank() 1318 : 0; 1319 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1320 return Value(); 1321 if (destinationRank > 0) { 1322 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1323 for (int64_t i = 0; i < destinationRank; i++) { 1324 // The lowest dimension of of the destination must match the lowest 1325 // dimension of the shapecast op source. 1326 // TODO: This case could be support in a canonicalization pattern. 1327 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1328 getDimReverse(destinationType, i)) 1329 return Value(); 1330 } 1331 } 1332 // Extract the strides associated with the extract op vector source. Then use 1333 // this to calculate a linearized position for the extract. 1334 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1335 std::reverse(extractedPos.begin(), extractedPos.end()); 1336 SmallVector<int64_t, 4> strides; 1337 int64_t stride = 1; 1338 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1339 strides.push_back(stride); 1340 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1341 } 1342 1343 int64_t position = linearize(extractedPos, strides); 1344 // Then extract the strides associated to the shapeCast op vector source and 1345 // delinearize the position using those strides. 1346 SmallVector<int64_t, 4> newStrides; 1347 int64_t numDimension = 1348 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1349 stride = 1; 1350 for (int64_t i = 0; i < numDimension; i++) { 1351 newStrides.push_back(stride); 1352 stride *= 1353 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1354 } 1355 std::reverse(newStrides.begin(), newStrides.end()); 1356 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1357 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1358 OpBuilder b(extractOp.getContext()); 1359 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1360 b.getI64ArrayAttr(newPosition)); 1361 extractOp.setOperand(shapeCastOp.getSource()); 1362 return extractOp.getResult(); 1363 } 1364 1365 /// Fold an ExtractOp from ExtractStridedSliceOp. 1366 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1367 auto extractStridedSliceOp = 1368 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1369 if (!extractStridedSliceOp) 1370 return Value(); 1371 // Return if 'extractStridedSliceOp' has non-unit strides. 1372 if (extractStridedSliceOp.hasNonUnitStrides()) 1373 return Value(); 1374 1375 // Trim offsets for dimensions fully extracted. 1376 auto sliceOffsets = 1377 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1378 while (!sliceOffsets.empty()) { 1379 size_t lastOffset = sliceOffsets.size() - 1; 1380 if (sliceOffsets.back() != 0 || 1381 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1382 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1383 break; 1384 sliceOffsets.pop_back(); 1385 } 1386 unsigned destinationRank = 0; 1387 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1388 destinationRank = vecType.getRank(); 1389 // The dimensions of the result need to be untouched by the 1390 // extractStridedSlice op. 1391 if (destinationRank > 1392 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1393 return Value(); 1394 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1395 assert(extractedPos.size() >= sliceOffsets.size()); 1396 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1397 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1398 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1399 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1400 OpBuilder b(extractOp.getContext()); 1401 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1402 b.getI64ArrayAttr(extractedPos)); 1403 return extractOp.getResult(); 1404 } 1405 1406 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1407 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1408 int64_t destinationRank = op.getType().isa<VectorType>() 1409 ? op.getType().cast<VectorType>().getRank() 1410 : 0; 1411 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1412 while (insertOp) { 1413 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1414 insertOp.getSourceVectorType().getRank(); 1415 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1416 return Value(); 1417 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1418 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1419 1420 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1421 return attr.cast<IntegerAttr>().getInt() != 1; 1422 })) 1423 return Value(); 1424 bool disjoint = false; 1425 SmallVector<int64_t, 4> offsetDiffs; 1426 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1427 int64_t start = insertOffsets[dim]; 1428 int64_t size = 1429 (dim < insertRankDiff) 1430 ? 1 1431 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1432 int64_t end = start + size; 1433 int64_t offset = extractOffsets[dim]; 1434 // Check if the start of the extract offset is in the interval inserted. 1435 if (start <= offset && offset < end) { 1436 if (dim >= insertRankDiff) 1437 offsetDiffs.push_back(offset - start); 1438 continue; 1439 } 1440 disjoint = true; 1441 break; 1442 } 1443 // The extract element chunk overlap with the vector inserted. 1444 if (!disjoint) { 1445 // If any of the inner dimensions are only partially inserted we have a 1446 // partial overlap. 1447 int64_t srcRankDiff = 1448 insertOp.getSourceVectorType().getRank() - destinationRank; 1449 for (int64_t i = 0; i < destinationRank; i++) { 1450 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1451 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1452 insertRankDiff)) 1453 return Value(); 1454 } 1455 op.getVectorMutable().assign(insertOp.getSource()); 1456 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1457 OpBuilder b(op.getContext()); 1458 op->setAttr(ExtractOp::getPositionAttrStrName(), 1459 b.getI64ArrayAttr(offsetDiffs)); 1460 return op.getResult(); 1461 } 1462 // If the chunk extracted is disjoint from the chunk inserted, keep 1463 // looking in the insert chain. 1464 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1465 } 1466 return Value(); 1467 } 1468 1469 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1470 if (getPosition().empty()) 1471 return getVector(); 1472 if (succeeded(foldExtractOpFromExtractChain(*this))) 1473 return getResult(); 1474 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1475 return res; 1476 if (auto res = foldExtractFromBroadcast(*this)) 1477 return res; 1478 if (auto res = foldExtractFromShapeCast(*this)) 1479 return res; 1480 if (auto val = foldExtractFromExtractStrided(*this)) 1481 return val; 1482 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1483 return val; 1484 return OpFoldResult(); 1485 } 1486 1487 namespace { 1488 1489 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1490 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1491 public: 1492 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1493 1494 LogicalResult matchAndRewrite(ExtractOp extractOp, 1495 PatternRewriter &rewriter) const override { 1496 Operation *defOp = extractOp.getVector().getDefiningOp(); 1497 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1498 return failure(); 1499 1500 Value source = defOp->getOperand(0); 1501 if (extractOp.getType() == source.getType()) 1502 return failure(); 1503 auto getRank = [](Type type) { 1504 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1505 }; 1506 unsigned broadcastSrcRank = getRank(source.getType()); 1507 unsigned extractResultRank = getRank(extractOp.getType()); 1508 // We only consider the case where the rank of the source is less than or 1509 // equal to the rank of the extract dst. The other cases are handled in the 1510 // folding patterns. 1511 if (extractResultRank < broadcastSrcRank) 1512 return failure(); 1513 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1514 extractOp, extractOp.getType(), source); 1515 return success(); 1516 } 1517 }; 1518 1519 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1520 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1521 public: 1522 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1523 1524 LogicalResult matchAndRewrite(ExtractOp extractOp, 1525 PatternRewriter &rewriter) const override { 1526 // Return if 'extractStridedSliceOp' operand is not defined by a 1527 // ConstantOp. 1528 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1529 if (!constantOp) 1530 return failure(); 1531 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1532 if (!dense) 1533 return failure(); 1534 Attribute newAttr = dense.getSplatValue<Attribute>(); 1535 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1536 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1537 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1538 return success(); 1539 } 1540 }; 1541 1542 } // namespace 1543 1544 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1545 MLIRContext *context) { 1546 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1547 } 1548 1549 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1550 SmallVectorImpl<int64_t> &results) { 1551 for (auto attr : arrayAttr) 1552 results.push_back(attr.cast<IntegerAttr>().getInt()); 1553 } 1554 1555 //===----------------------------------------------------------------------===// 1556 // ExtractMapOp 1557 //===----------------------------------------------------------------------===// 1558 1559 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1560 Value vector, ValueRange ids, 1561 ArrayRef<int64_t> multiplicity, 1562 AffineMap permutationMap) { 1563 assert(ids.size() == multiplicity.size() && 1564 ids.size() == permutationMap.getNumResults()); 1565 assert(permutationMap.isProjectedPermutation()); 1566 VectorType type = vector.getType().cast<VectorType>(); 1567 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1568 type.getShape().end()); 1569 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1570 AffineExpr expr = permutationMap.getResult(i); 1571 auto dim = expr.cast<AffineDimExpr>(); 1572 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1573 } 1574 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1575 ExtractMapOp::build(builder, result, resultType, vector, ids); 1576 } 1577 1578 LogicalResult ExtractMapOp::verify() { 1579 if (getSourceVectorType().getRank() != getResultType().getRank()) 1580 return emitOpError("expected source and destination vectors of same rank"); 1581 unsigned numId = 0; 1582 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1583 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1584 0) 1585 return emitOpError("source vector dimensions must be a multiple of " 1586 "destination vector dimensions"); 1587 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1588 numId++; 1589 } 1590 if (numId != getIds().size()) 1591 return emitOpError("expected number of ids must match the number of " 1592 "dimensions distributed"); 1593 return success(); 1594 } 1595 1596 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1597 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1598 if (insert == nullptr || getType() != insert.getVector().getType() || 1599 getIds() != insert.getIds()) 1600 return {}; 1601 return insert.getVector(); 1602 } 1603 1604 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1605 assert(multiplicity.empty()); 1606 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1607 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1608 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1609 getResultType().getDimSize(i)); 1610 } 1611 } 1612 1613 template <typename MapOp> 1614 AffineMap calculateImplicitMap(MapOp op) { 1615 SmallVector<AffineExpr, 4> perm; 1616 // Check which dimension have a multiplicity greater than 1 and associated 1617 // them to the IDs in order. 1618 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1619 if (op.getSourceVectorType().getDimSize(i) != 1620 op.getResultType().getDimSize(i)) 1621 perm.push_back(getAffineDimExpr(i, op.getContext())); 1622 } 1623 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1624 op.getContext()); 1625 return map; 1626 } 1627 1628 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1629 1630 //===----------------------------------------------------------------------===// 1631 // FmaOp 1632 //===----------------------------------------------------------------------===// 1633 1634 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1635 return llvm::to_vector<4>(getVectorType().getShape()); 1636 } 1637 1638 //===----------------------------------------------------------------------===// 1639 // BroadcastOp 1640 //===----------------------------------------------------------------------===// 1641 1642 BroadcastableToResult 1643 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1644 std::pair<int, int> *mismatchingDims) { 1645 // Broadcast scalar to vector of the same element type. 1646 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1647 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1648 return BroadcastableToResult::Success; 1649 // From now on, only vectors broadcast. 1650 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1651 if (!srcVectorType) 1652 return BroadcastableToResult::SourceTypeNotAVector; 1653 1654 int64_t srcRank = srcVectorType.getRank(); 1655 int64_t dstRank = dstVectorType.getRank(); 1656 if (srcRank > dstRank) 1657 return BroadcastableToResult::SourceRankHigher; 1658 // Source has an exact match or singleton value for all trailing dimensions 1659 // (all leading dimensions are simply duplicated). 1660 int64_t lead = dstRank - srcRank; 1661 for (int64_t r = 0; r < srcRank; ++r) { 1662 int64_t srcDim = srcVectorType.getDimSize(r); 1663 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1664 if (srcDim != 1 && srcDim != dstDim) { 1665 if (mismatchingDims) { 1666 mismatchingDims->first = srcDim; 1667 mismatchingDims->second = dstDim; 1668 } 1669 return BroadcastableToResult::DimensionMismatch; 1670 } 1671 } 1672 1673 return BroadcastableToResult::Success; 1674 } 1675 1676 LogicalResult BroadcastOp::verify() { 1677 std::pair<int, int> mismatchingDims; 1678 BroadcastableToResult res = 1679 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1680 if (res == BroadcastableToResult::Success) 1681 return success(); 1682 if (res == BroadcastableToResult::SourceRankHigher) 1683 return emitOpError("source rank higher than destination rank"); 1684 if (res == BroadcastableToResult::DimensionMismatch) 1685 return emitOpError("dimension mismatch (") 1686 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1687 if (res == BroadcastableToResult::SourceTypeNotAVector) 1688 return emitOpError("source type is not a vector"); 1689 llvm_unreachable("unexpected vector.broadcast op error"); 1690 } 1691 1692 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1693 if (getSourceType() == getVectorType()) 1694 return getSource(); 1695 if (!operands[0]) 1696 return {}; 1697 auto vectorType = getVectorType(); 1698 if (operands[0].getType().isIntOrIndexOrFloat()) 1699 return DenseElementsAttr::get(vectorType, operands[0]); 1700 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1701 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1702 return {}; 1703 } 1704 1705 namespace { 1706 1707 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1708 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1709 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1710 1711 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1712 PatternRewriter &rewriter) const override { 1713 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1714 if (!srcBroadcast) 1715 return failure(); 1716 rewriter.replaceOpWithNewOp<BroadcastOp>( 1717 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1718 return success(); 1719 } 1720 }; 1721 } // namespace 1722 1723 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1724 MLIRContext *context) { 1725 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1726 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1727 results.add<BroadcastFolder>(context); 1728 } 1729 1730 //===----------------------------------------------------------------------===// 1731 // ShuffleOp 1732 //===----------------------------------------------------------------------===// 1733 1734 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1735 Value v2, ArrayRef<int64_t> mask) { 1736 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1737 } 1738 1739 LogicalResult ShuffleOp::verify() { 1740 VectorType resultType = getVectorType(); 1741 VectorType v1Type = getV1VectorType(); 1742 VectorType v2Type = getV2VectorType(); 1743 // Verify ranks. 1744 int64_t resRank = resultType.getRank(); 1745 int64_t v1Rank = v1Type.getRank(); 1746 int64_t v2Rank = v2Type.getRank(); 1747 if (resRank != v1Rank || v1Rank != v2Rank) 1748 return emitOpError("rank mismatch"); 1749 // Verify all but leading dimension sizes. 1750 for (int64_t r = 1; r < v1Rank; ++r) { 1751 int64_t resDim = resultType.getDimSize(r); 1752 int64_t v1Dim = v1Type.getDimSize(r); 1753 int64_t v2Dim = v2Type.getDimSize(r); 1754 if (resDim != v1Dim || v1Dim != v2Dim) 1755 return emitOpError("dimension mismatch"); 1756 } 1757 // Verify mask length. 1758 auto maskAttr = getMask().getValue(); 1759 int64_t maskLength = maskAttr.size(); 1760 if (maskLength <= 0) 1761 return emitOpError("invalid mask length"); 1762 if (maskLength != resultType.getDimSize(0)) 1763 return emitOpError("mask length mismatch"); 1764 // Verify all indices. 1765 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1766 for (const auto &en : llvm::enumerate(maskAttr)) { 1767 auto attr = en.value().dyn_cast<IntegerAttr>(); 1768 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1769 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1770 } 1771 return success(); 1772 } 1773 1774 LogicalResult 1775 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1776 ValueRange operands, DictionaryAttr attributes, 1777 RegionRange, 1778 SmallVectorImpl<Type> &inferredReturnTypes) { 1779 ShuffleOp::Adaptor op(operands, attributes); 1780 auto v1Type = op.getV1().getType().cast<VectorType>(); 1781 // Construct resulting type: leading dimension matches mask length, 1782 // all trailing dimensions match the operands. 1783 SmallVector<int64_t, 4> shape; 1784 shape.reserve(v1Type.getRank()); 1785 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1786 llvm::append_range(shape, v1Type.getShape().drop_front()); 1787 inferredReturnTypes.push_back( 1788 VectorType::get(shape, v1Type.getElementType())); 1789 return success(); 1790 } 1791 1792 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { 1793 uint64_t expected = begin; 1794 return idxArr.size() == width && 1795 llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), 1796 [&expected](auto attr) { 1797 return attr.getZExtValue() == expected++; 1798 }); 1799 } 1800 1801 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1802 // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 1803 if (!getV1VectorType().isScalable() && 1804 isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0))) 1805 return getV1(); 1806 // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 1807 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && 1808 isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), 1809 getV2VectorType().getDimSize(0))) 1810 return getV2(); 1811 1812 Attribute lhs = operands.front(), rhs = operands.back(); 1813 if (!lhs || !rhs) 1814 return {}; 1815 1816 auto lhsType = lhs.getType().cast<VectorType>(); 1817 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1818 // manipulation. 1819 if (lhsType.getRank() != 1) 1820 return {}; 1821 int64_t lhsSize = lhsType.getDimSize(0); 1822 1823 SmallVector<Attribute> results; 1824 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1825 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1826 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1827 int64_t i = index.getZExtValue(); 1828 if (i >= lhsSize) { 1829 results.push_back(rhsElements[i - lhsSize]); 1830 } else { 1831 results.push_back(lhsElements[i]); 1832 } 1833 } 1834 1835 return DenseElementsAttr::get(getVectorType(), results); 1836 } 1837 1838 //===----------------------------------------------------------------------===// 1839 // InsertElementOp 1840 //===----------------------------------------------------------------------===// 1841 1842 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1843 Value source, Value dest) { 1844 build(builder, result, source, dest, {}); 1845 } 1846 1847 LogicalResult InsertElementOp::verify() { 1848 auto dstVectorType = getDestVectorType(); 1849 if (dstVectorType.getRank() == 0) { 1850 if (getPosition()) 1851 return emitOpError("expected position to be empty with 0-D vector"); 1852 return success(); 1853 } 1854 if (dstVectorType.getRank() != 1) 1855 return emitOpError("unexpected >1 vector rank"); 1856 if (!getPosition()) 1857 return emitOpError("expected position for 1-D vector"); 1858 return success(); 1859 } 1860 1861 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) { 1862 // Skip the 0-D vector here. 1863 if (operands.size() < 3) 1864 return {}; 1865 1866 Attribute src = operands[0]; 1867 Attribute dst = operands[1]; 1868 Attribute pos = operands[2]; 1869 if (!src || !dst || !pos) 1870 return {}; 1871 1872 auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>(); 1873 1874 SmallVector<Attribute> results(dstElements); 1875 1876 auto attr = pos.dyn_cast<IntegerAttr>(); 1877 uint64_t posIdx = attr.getInt(); 1878 1879 results[posIdx] = src; 1880 1881 return DenseElementsAttr::get(getDestVectorType(), results); 1882 } 1883 1884 //===----------------------------------------------------------------------===// 1885 // InsertOp 1886 //===----------------------------------------------------------------------===// 1887 1888 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1889 Value dest, ArrayRef<int64_t> position) { 1890 result.addOperands({source, dest}); 1891 auto positionAttr = getVectorSubscriptAttr(builder, position); 1892 result.addTypes(dest.getType()); 1893 result.addAttribute(getPositionAttrStrName(), positionAttr); 1894 } 1895 1896 // Convenience builder which assumes the values are constant indices. 1897 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1898 Value dest, ValueRange position) { 1899 SmallVector<int64_t, 4> positionConstants = 1900 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1901 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1902 })); 1903 build(builder, result, source, dest, positionConstants); 1904 } 1905 1906 LogicalResult InsertOp::verify() { 1907 auto positionAttr = getPosition().getValue(); 1908 auto destVectorType = getDestVectorType(); 1909 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1910 return emitOpError( 1911 "expected position attribute of rank smaller than dest vector rank"); 1912 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1913 if (srcVectorType && 1914 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1915 static_cast<unsigned>(destVectorType.getRank()))) 1916 return emitOpError("expected position attribute rank + source rank to " 1917 "match dest vector rank"); 1918 if (!srcVectorType && 1919 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1920 return emitOpError( 1921 "expected position attribute rank to match the dest vector rank"); 1922 for (const auto &en : llvm::enumerate(positionAttr)) { 1923 auto attr = en.value().dyn_cast<IntegerAttr>(); 1924 if (!attr || attr.getInt() < 0 || 1925 attr.getInt() >= destVectorType.getDimSize(en.index())) 1926 return emitOpError("expected position attribute #") 1927 << (en.index() + 1) 1928 << " to be a non-negative integer smaller than the corresponding " 1929 "dest vector dimension"; 1930 } 1931 return success(); 1932 } 1933 1934 namespace { 1935 1936 // If insertOp is only inserting unit dimensions it can be transformed to a 1937 // broadcast. 1938 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1939 public: 1940 using OpRewritePattern<InsertOp>::OpRewritePattern; 1941 1942 LogicalResult matchAndRewrite(InsertOp insertOp, 1943 PatternRewriter &rewriter) const override { 1944 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1945 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1946 srcVecType.getNumElements()) 1947 return failure(); 1948 rewriter.replaceOpWithNewOp<BroadcastOp>( 1949 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 1950 return success(); 1951 } 1952 }; 1953 1954 } // namespace 1955 1956 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 1957 MLIRContext *context) { 1958 results.add<InsertToBroadcast, BroadcastFolder>(context); 1959 } 1960 1961 // Eliminates insert operations that produce values identical to their source 1962 // value. This happens when the source and destination vectors have identical 1963 // sizes. 1964 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 1965 if (getPosition().empty()) 1966 return getSource(); 1967 return {}; 1968 } 1969 1970 //===----------------------------------------------------------------------===// 1971 // InsertMapOp 1972 //===----------------------------------------------------------------------===// 1973 1974 LogicalResult InsertMapOp::verify() { 1975 if (getSourceVectorType().getRank() != getResultType().getRank()) 1976 return emitOpError("expected source and destination vectors of same rank"); 1977 unsigned numId = 0; 1978 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 1979 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 1980 0) 1981 return emitOpError( 1982 "destination vector size must be a multiple of source vector size"); 1983 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 1984 numId++; 1985 } 1986 if (numId != getIds().size()) 1987 return emitOpError("expected number of ids must match the number of " 1988 "dimensions distributed"); 1989 return success(); 1990 } 1991 1992 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 1993 1994 //===----------------------------------------------------------------------===// 1995 // InsertStridedSliceOp 1996 //===----------------------------------------------------------------------===// 1997 1998 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 1999 Value source, Value dest, 2000 ArrayRef<int64_t> offsets, 2001 ArrayRef<int64_t> strides) { 2002 result.addOperands({source, dest}); 2003 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2004 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2005 result.addTypes(dest.getType()); 2006 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2007 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2008 } 2009 2010 // TODO: Should be moved to Tablegen Confined attributes. 2011 template <typename OpType> 2012 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2013 ArrayAttr arrayAttr, 2014 ArrayRef<int64_t> shape, 2015 StringRef attrName) { 2016 if (arrayAttr.size() > shape.size()) 2017 return op.emitOpError("expected ") 2018 << attrName << " attribute of rank smaller than vector rank"; 2019 return success(); 2020 } 2021 2022 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2023 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2024 // Otherwise, the admissible interval is [min, max]. 2025 template <typename OpType> 2026 static LogicalResult 2027 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2028 int64_t max, StringRef attrName, 2029 bool halfOpen = true) { 2030 for (auto attr : arrayAttr) { 2031 auto val = attr.cast<IntegerAttr>().getInt(); 2032 auto upper = max; 2033 if (!halfOpen) 2034 upper += 1; 2035 if (val < min || val >= upper) 2036 return op.emitOpError("expected ") << attrName << " to be confined to [" 2037 << min << ", " << upper << ")"; 2038 } 2039 return success(); 2040 } 2041 2042 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2043 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2044 // Otherwise, the admissible interval is [min, max]. 2045 template <typename OpType> 2046 static LogicalResult 2047 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2048 ArrayRef<int64_t> shape, StringRef attrName, 2049 bool halfOpen = true, int64_t min = 0) { 2050 assert(arrayAttr.size() <= shape.size()); 2051 unsigned index = 0; 2052 for (auto it : llvm::zip(arrayAttr, shape)) { 2053 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2054 auto max = std::get<1>(it); 2055 if (!halfOpen) 2056 max += 1; 2057 if (val < min || val >= max) 2058 return op.emitOpError("expected ") 2059 << attrName << " dimension " << index << " to be confined to [" 2060 << min << ", " << max << ")"; 2061 ++index; 2062 } 2063 return success(); 2064 } 2065 2066 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2067 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2068 // Otherwise, the admissible interval is [min, max]. 2069 template <typename OpType> 2070 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2071 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2072 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2073 bool halfOpen = true, int64_t min = 1) { 2074 assert(arrayAttr1.size() <= shape.size()); 2075 assert(arrayAttr2.size() <= shape.size()); 2076 unsigned index = 0; 2077 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2078 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2079 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2080 auto max = std::get<2>(it); 2081 if (!halfOpen) 2082 max += 1; 2083 if (val1 + val2 < 0 || val1 + val2 >= max) 2084 return op.emitOpError("expected sum(") 2085 << attrName1 << ", " << attrName2 << ") dimension " << index 2086 << " to be confined to [" << min << ", " << max << ")"; 2087 ++index; 2088 } 2089 return success(); 2090 } 2091 2092 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2093 MLIRContext *context) { 2094 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2095 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2096 }); 2097 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2098 } 2099 2100 LogicalResult InsertStridedSliceOp::verify() { 2101 auto sourceVectorType = getSourceVectorType(); 2102 auto destVectorType = getDestVectorType(); 2103 auto offsets = getOffsetsAttr(); 2104 auto strides = getStridesAttr(); 2105 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2106 return emitOpError( 2107 "expected offsets of same size as destination vector rank"); 2108 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2109 return emitOpError("expected strides of same size as source vector rank"); 2110 if (sourceVectorType.getRank() > destVectorType.getRank()) 2111 return emitOpError( 2112 "expected source rank to be smaller than destination rank"); 2113 2114 auto sourceShape = sourceVectorType.getShape(); 2115 auto destShape = destVectorType.getShape(); 2116 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2117 destShape.size() - sourceShape.size(), 0); 2118 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2119 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2120 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2121 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2122 offName)) || 2123 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2124 stridesName, 2125 /*halfOpen=*/false)) || 2126 failed(isSumOfIntegerArrayAttrConfinedToShape( 2127 *this, offsets, 2128 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2129 offName, "source vector shape", 2130 /*halfOpen=*/false, /*min=*/1))) 2131 return failure(); 2132 2133 return success(); 2134 } 2135 2136 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2137 if (getSourceVectorType() == getDestVectorType()) 2138 return getSource(); 2139 return {}; 2140 } 2141 2142 //===----------------------------------------------------------------------===// 2143 // OuterProductOp 2144 //===----------------------------------------------------------------------===// 2145 2146 /// Build an op without mask, use the type of `acc` as the return type. 2147 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2148 Value lhs, Value rhs, Value acc) { 2149 result.addOperands({lhs, rhs, acc}); 2150 result.addTypes(acc.getType()); 2151 } 2152 2153 void OuterProductOp::print(OpAsmPrinter &p) { 2154 p << " " << getLhs() << ", " << getRhs(); 2155 if (!getAcc().empty()) { 2156 p << ", " << getAcc(); 2157 p.printOptionalAttrDict((*this)->getAttrs()); 2158 } 2159 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2160 } 2161 2162 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2163 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2164 Type tLHS, tRHS; 2165 if (parser.parseOperandList(operandsInfo) || 2166 parser.parseOptionalAttrDict(result.attributes) || 2167 parser.parseColonType(tLHS) || parser.parseComma() || 2168 parser.parseType(tRHS)) 2169 return failure(); 2170 if (operandsInfo.size() < 2) 2171 return parser.emitError(parser.getNameLoc(), 2172 "expected at least 2 operands"); 2173 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2174 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2175 if (!vLHS) 2176 return parser.emitError(parser.getNameLoc(), 2177 "expected vector type for operand #1"); 2178 VectorType resType = 2179 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2180 vLHS.getElementType()) 2181 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2182 2183 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2184 result.attributes.append( 2185 OuterProductOp::getKindAttrStrName(), 2186 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2187 result.getContext())); 2188 } 2189 2190 return failure( 2191 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2192 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2193 (operandsInfo.size() > 2 && 2194 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2195 parser.addTypeToList(resType, result.types)); 2196 } 2197 2198 LogicalResult OuterProductOp::verify() { 2199 Type tRHS = getOperandTypeRHS(); 2200 VectorType vLHS = getOperandVectorTypeLHS(), 2201 vRHS = tRHS.dyn_cast<VectorType>(), 2202 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2203 2204 if (vLHS.getRank() != 1) 2205 return emitOpError("expected 1-d vector for operand #1"); 2206 2207 if (vRHS) { 2208 // Proper OUTER operation. 2209 if (vRHS.getRank() != 1) 2210 return emitOpError("expected 1-d vector for operand #2"); 2211 if (vRES.getRank() != 2) 2212 return emitOpError("expected 2-d vector result"); 2213 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2214 return emitOpError("expected #1 operand dim to match result dim #1"); 2215 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2216 return emitOpError("expected #2 operand dim to match result dim #2"); 2217 } else { 2218 // An AXPY operation. 2219 if (vRES.getRank() != 1) 2220 return emitOpError("expected 1-d vector result"); 2221 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2222 return emitOpError("expected #1 operand dim to match result dim #1"); 2223 } 2224 2225 if (vACC && vACC != vRES) 2226 return emitOpError("expected operand #3 of same type as result type"); 2227 2228 // Verify supported combining kind. 2229 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2230 return emitOpError("unsupported outerproduct type"); 2231 2232 return success(); 2233 } 2234 2235 //===----------------------------------------------------------------------===// 2236 // ReshapeOp 2237 //===----------------------------------------------------------------------===// 2238 2239 LogicalResult ReshapeOp::verify() { 2240 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2241 auto inputVectorType = getInputVectorType(); 2242 auto outputVectorType = getOutputVectorType(); 2243 int64_t inputShapeRank = getNumInputShapeSizes(); 2244 int64_t outputShapeRank = getNumOutputShapeSizes(); 2245 SmallVector<int64_t, 4> fixedVectorSizes; 2246 getFixedVectorSizes(fixedVectorSizes); 2247 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2248 2249 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2250 return emitError("invalid input shape for vector type ") 2251 << inputVectorType; 2252 2253 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2254 return emitError("invalid output shape for vector type ") 2255 << outputVectorType; 2256 2257 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2258 // suffix. 2259 unsigned inputVectorRank = inputVectorType.getRank(); 2260 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2261 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2262 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2263 return emitError("fixed vector size must match input vector for dim ") 2264 << i; 2265 } 2266 2267 unsigned outputVectorRank = outputVectorType.getRank(); 2268 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2269 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2270 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2271 return emitError("fixed vector size must match output vector for dim ") 2272 << i; 2273 } 2274 2275 // If all shape operands are produced by constant ops, verify that product 2276 // of dimensions for input/output shape match. 2277 auto isDefByConstant = [](Value operand) { 2278 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2279 }; 2280 if (llvm::all_of(getInputShape(), isDefByConstant) && 2281 llvm::all_of(getOutputShape(), isDefByConstant)) { 2282 int64_t numInputElements = 1; 2283 for (auto operand : getInputShape()) 2284 numInputElements *= 2285 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2286 int64_t numOutputElements = 1; 2287 for (auto operand : getOutputShape()) 2288 numOutputElements *= 2289 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2290 if (numInputElements != numOutputElements) 2291 return emitError("product of input and output shape sizes must match"); 2292 } 2293 return success(); 2294 } 2295 2296 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2297 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2298 } 2299 2300 //===----------------------------------------------------------------------===// 2301 // ExtractStridedSliceOp 2302 //===----------------------------------------------------------------------===// 2303 2304 // Inference works as follows: 2305 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2306 // 2. Add sizes from 'vectorType' for remaining dims. 2307 static Type inferStridedSliceOpResultType(VectorType vectorType, 2308 ArrayAttr offsets, ArrayAttr sizes, 2309 ArrayAttr strides) { 2310 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2311 SmallVector<int64_t, 4> shape; 2312 shape.reserve(vectorType.getRank()); 2313 unsigned idx = 0; 2314 for (unsigned e = offsets.size(); idx < e; ++idx) 2315 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2316 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2317 shape.push_back(vectorType.getShape()[idx]); 2318 2319 return VectorType::get(shape, vectorType.getElementType()); 2320 } 2321 2322 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2323 Value source, ArrayRef<int64_t> offsets, 2324 ArrayRef<int64_t> sizes, 2325 ArrayRef<int64_t> strides) { 2326 result.addOperands(source); 2327 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2328 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2329 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2330 result.addTypes( 2331 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2332 offsetsAttr, sizesAttr, stridesAttr)); 2333 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2334 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2335 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2336 } 2337 2338 LogicalResult ExtractStridedSliceOp::verify() { 2339 auto type = getVectorType(); 2340 auto offsets = getOffsetsAttr(); 2341 auto sizes = getSizesAttr(); 2342 auto strides = getStridesAttr(); 2343 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2344 return emitOpError("expected offsets, sizes and strides attributes of same size"); 2345 2346 auto shape = type.getShape(); 2347 auto offName = getOffsetsAttrName(); 2348 auto sizesName = getSizesAttrName(); 2349 auto stridesName = getStridesAttrName(); 2350 if (failed(isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2351 failed(isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2352 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2353 stridesName)) || 2354 failed(isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2355 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2356 /*halfOpen=*/false, 2357 /*min=*/1)) || 2358 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, stridesName, 2359 /*halfOpen=*/false)) || 2360 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape, 2361 offName, sizesName, 2362 /*halfOpen=*/false))) 2363 return failure(); 2364 2365 auto resultType = 2366 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2367 if (getResult().getType() != resultType) 2368 return emitOpError("expected result type to be ") << resultType; 2369 2370 return success(); 2371 } 2372 2373 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2374 // to use the source of the InsertStrided ops if we can detect that the 2375 // extracted vector is a subset of one of the vector inserted. 2376 static LogicalResult 2377 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2378 // Helper to extract integer out of ArrayAttr. 2379 auto getElement = [](ArrayAttr array, int idx) { 2380 return array[idx].cast<IntegerAttr>().getInt(); 2381 }; 2382 ArrayAttr extractOffsets = op.getOffsets(); 2383 ArrayAttr extractStrides = op.getStrides(); 2384 ArrayAttr extractSizes = op.getSizes(); 2385 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2386 while (insertOp) { 2387 if (op.getVectorType().getRank() != 2388 insertOp.getSourceVectorType().getRank()) 2389 return failure(); 2390 ArrayAttr insertOffsets = insertOp.getOffsets(); 2391 ArrayAttr insertStrides = insertOp.getStrides(); 2392 // If the rank of extract is greater than the rank of insert, we are likely 2393 // extracting a partial chunk of the vector inserted. 2394 if (extractOffsets.size() > insertOffsets.size()) 2395 return failure(); 2396 bool patialoverlap = false; 2397 bool disjoint = false; 2398 SmallVector<int64_t, 4> offsetDiffs; 2399 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2400 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2401 return failure(); 2402 int64_t start = getElement(insertOffsets, dim); 2403 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2404 int64_t offset = getElement(extractOffsets, dim); 2405 int64_t size = getElement(extractSizes, dim); 2406 // Check if the start of the extract offset is in the interval inserted. 2407 if (start <= offset && offset < end) { 2408 // If the extract interval overlaps but is not fully included we may 2409 // have a partial overlap that will prevent any folding. 2410 if (offset + size > end) 2411 patialoverlap = true; 2412 offsetDiffs.push_back(offset - start); 2413 continue; 2414 } 2415 disjoint = true; 2416 break; 2417 } 2418 // The extract element chunk is a subset of the insert element. 2419 if (!disjoint && !patialoverlap) { 2420 op.setOperand(insertOp.getSource()); 2421 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2422 OpBuilder b(op.getContext()); 2423 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2424 b.getI64ArrayAttr(offsetDiffs)); 2425 return success(); 2426 } 2427 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2428 // in the insert chain. 2429 if (disjoint) 2430 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2431 else { 2432 // The extracted vector partially overlap the inserted vector, we cannot 2433 // fold. 2434 return failure(); 2435 } 2436 } 2437 return failure(); 2438 } 2439 2440 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2441 if (getVectorType() == getResult().getType()) 2442 return getVector(); 2443 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2444 return getResult(); 2445 return {}; 2446 } 2447 2448 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2449 populateFromInt64AttrArray(getOffsets(), results); 2450 } 2451 2452 namespace { 2453 2454 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2455 // ConstantMaskOp. 2456 class StridedSliceConstantMaskFolder final 2457 : public OpRewritePattern<ExtractStridedSliceOp> { 2458 public: 2459 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2460 2461 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2462 PatternRewriter &rewriter) const override { 2463 // Return if 'extractStridedSliceOp' operand is not defined by a 2464 // ConstantMaskOp. 2465 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2466 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2467 if (!constantMaskOp) 2468 return failure(); 2469 // Return if 'extractStridedSliceOp' has non-unit strides. 2470 if (extractStridedSliceOp.hasNonUnitStrides()) 2471 return failure(); 2472 // Gather constant mask dimension sizes. 2473 SmallVector<int64_t, 4> maskDimSizes; 2474 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2475 // Gather strided slice offsets and sizes. 2476 SmallVector<int64_t, 4> sliceOffsets; 2477 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2478 sliceOffsets); 2479 SmallVector<int64_t, 4> sliceSizes; 2480 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2481 2482 // Compute slice of vector mask region. 2483 SmallVector<int64_t, 4> sliceMaskDimSizes; 2484 assert(sliceOffsets.size() == maskDimSizes.size()); 2485 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2486 int64_t maskDimSize = std::get<0>(it); 2487 int64_t sliceOffset = std::get<1>(it); 2488 int64_t sliceSize = std::get<2>(it); 2489 int64_t sliceMaskDimSize = std::max( 2490 static_cast<int64_t>(0), 2491 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2492 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2493 } 2494 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2495 // region is a conjunction of mask dim intervals). 2496 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2497 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2498 2499 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2500 // region. 2501 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2502 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2503 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2504 return success(); 2505 } 2506 }; 2507 2508 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2509 class StridedSliceConstantFolder final 2510 : public OpRewritePattern<ExtractStridedSliceOp> { 2511 public: 2512 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2513 2514 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2515 PatternRewriter &rewriter) const override { 2516 // Return if 'extractStridedSliceOp' operand is not defined by a 2517 // ConstantOp. 2518 auto constantOp = 2519 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2520 if (!constantOp) 2521 return failure(); 2522 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2523 if (!dense) 2524 return failure(); 2525 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2526 dense.getSplatValue<Attribute>()); 2527 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2528 newAttr); 2529 return success(); 2530 } 2531 }; 2532 2533 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2534 // BroadcastOp(ExtractStrideSliceOp). 2535 class StridedSliceBroadcast final 2536 : public OpRewritePattern<ExtractStridedSliceOp> { 2537 public: 2538 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2539 2540 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2541 PatternRewriter &rewriter) const override { 2542 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2543 if (!broadcast) 2544 return failure(); 2545 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2546 unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; 2547 auto dstVecType = op.getType().cast<VectorType>(); 2548 unsigned dstRank = dstVecType.getRank(); 2549 unsigned rankDiff = dstRank - srcRank; 2550 // Check if the most inner dimensions of the source of the broadcast are the 2551 // same as the destination of the extract. If this is the case we can just 2552 // use a broadcast as the original dimensions are untouched. 2553 bool lowerDimMatch = true; 2554 for (unsigned i = 0; i < srcRank; i++) { 2555 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2556 lowerDimMatch = false; 2557 break; 2558 } 2559 } 2560 Value source = broadcast.getSource(); 2561 // If the inner dimensions don't match, it means we need to extract from the 2562 // source of the orignal broadcast and then broadcast the extracted value. 2563 // We also need to handle degenerated cases where the source is effectively 2564 // just a single scalar. 2565 bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); 2566 if (!lowerDimMatch && !isScalarSrc) { 2567 source = rewriter.create<ExtractStridedSliceOp>( 2568 op->getLoc(), source, 2569 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2570 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2571 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2572 } 2573 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2574 return success(); 2575 } 2576 }; 2577 2578 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2579 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2580 public: 2581 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2582 2583 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2584 PatternRewriter &rewriter) const override { 2585 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2586 if (!splat) 2587 return failure(); 2588 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2589 return success(); 2590 } 2591 }; 2592 2593 } // namespace 2594 2595 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2596 RewritePatternSet &results, MLIRContext *context) { 2597 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2598 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2599 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2600 StridedSliceBroadcast, StridedSliceSplat>(context); 2601 } 2602 2603 //===----------------------------------------------------------------------===// 2604 // TransferReadOp 2605 //===----------------------------------------------------------------------===// 2606 2607 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2608 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2609 VectorType vectorType, Value source, 2610 ValueRange indices, AffineMapAttr permutationMapAttr, 2611 /*optional*/ ArrayAttr inBoundsAttr) { 2612 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2613 Value padding = builder.create<arith::ConstantOp>( 2614 result.location, elemType, builder.getZeroAttr(elemType)); 2615 build(builder, result, vectorType, source, indices, permutationMapAttr, 2616 padding, /*mask=*/Value(), inBoundsAttr); 2617 } 2618 2619 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2620 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2621 VectorType vectorType, Value source, 2622 ValueRange indices, AffineMap permutationMap, 2623 Optional<ArrayRef<bool>> inBounds) { 2624 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2625 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2626 ? builder.getBoolArrayAttr(inBounds.getValue()) 2627 : ArrayAttr(); 2628 build(builder, result, vectorType, source, indices, permutationMapAttr, 2629 inBoundsAttr); 2630 } 2631 2632 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2633 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2634 VectorType vectorType, Value source, 2635 ValueRange indices, Value padding, 2636 Optional<ArrayRef<bool>> inBounds) { 2637 AffineMap permutationMap = getTransferMinorIdentityMap( 2638 source.getType().cast<ShapedType>(), vectorType); 2639 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2640 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2641 ? builder.getBoolArrayAttr(inBounds.getValue()) 2642 : ArrayAttr(); 2643 build(builder, result, vectorType, source, indices, permutationMapAttr, 2644 padding, 2645 /*mask=*/Value(), inBoundsAttr); 2646 } 2647 2648 /// 4. Builder that sets padding to zero and permutation map to 2649 /// 'getMinorIdentityMap'. 2650 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2651 VectorType vectorType, Value source, 2652 ValueRange indices, 2653 Optional<ArrayRef<bool>> inBounds) { 2654 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2655 Value padding = builder.create<arith::ConstantOp>( 2656 result.location, elemType, builder.getZeroAttr(elemType)); 2657 build(builder, result, vectorType, source, indices, padding, inBounds); 2658 } 2659 2660 template <typename EmitFun> 2661 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2662 EmitFun emitOpError) { 2663 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2664 for (auto expr : permutationMap.getResults()) { 2665 auto dim = expr.dyn_cast<AffineDimExpr>(); 2666 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2667 if (zero) { 2668 if (zero.getValue() != 0) { 2669 return emitOpError( 2670 "requires a projected permutation_map (at most one dim or the zero " 2671 "constant can appear in each result)"); 2672 } 2673 continue; 2674 } 2675 if (!dim) { 2676 return emitOpError("requires a projected permutation_map (at most one " 2677 "dim or the zero constant can appear in each result)"); 2678 } 2679 if (seen[dim.getPosition()]) { 2680 return emitOpError( 2681 "requires a permutation_map that is a permutation (found one dim " 2682 "used more than once)"); 2683 } 2684 seen[dim.getPosition()] = true; 2685 } 2686 return success(); 2687 } 2688 2689 static LogicalResult 2690 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2691 VectorType vectorType, VectorType maskType, 2692 AffineMap permutationMap, ArrayAttr inBounds) { 2693 if (op->hasAttr("masked")) { 2694 return op->emitOpError("masked attribute has been removed. " 2695 "Use in_bounds instead."); 2696 } 2697 2698 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2699 return op->emitOpError( 2700 "requires source to be a memref or ranked tensor type"); 2701 2702 auto elementType = shapedType.getElementType(); 2703 DataLayout dataLayout = DataLayout::closest(op); 2704 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2705 // Memref or tensor has vector element type. 2706 unsigned sourceVecSize = 2707 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2708 vectorElementType.getShape().back(); 2709 unsigned resultVecSize = 2710 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2711 vectorType.getShape().back(); 2712 if (resultVecSize % sourceVecSize != 0) 2713 return op->emitOpError( 2714 "requires the bitwidth of the minor 1-D vector to be an integral " 2715 "multiple of the bitwidth of the minor 1-D vector of the source"); 2716 2717 unsigned sourceVecEltRank = vectorElementType.getRank(); 2718 unsigned resultVecRank = vectorType.getRank(); 2719 if (sourceVecEltRank > resultVecRank) 2720 return op->emitOpError( 2721 "requires source vector element and vector result ranks to match."); 2722 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2723 // Check that permutation map results match 'rankOffset' of vector type. 2724 if (permutationMap.getNumResults() != rankOffset) 2725 return op->emitOpError("requires a permutation_map with result dims of " 2726 "the same rank as the vector type"); 2727 2728 if (maskType) 2729 return op->emitOpError("does not support masks with vector element type"); 2730 } else { 2731 // Memref or tensor has scalar element type. 2732 unsigned minorSize = 2733 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2734 unsigned resultVecSize = 2735 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2736 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2737 return op->emitOpError( 2738 "requires the bitwidth of the minor 1-D vector to be an integral " 2739 "multiple of the bitwidth of the source element type"); 2740 2741 // Check that permutation map results match rank of vector type. 2742 if (permutationMap.getNumResults() != vectorType.getRank()) 2743 return op->emitOpError("requires a permutation_map with result dims of " 2744 "the same rank as the vector type"); 2745 2746 VectorType expectedMaskType = 2747 vector::detail::transferMaskType(vectorType, permutationMap); 2748 if (maskType && expectedMaskType != maskType) 2749 return op->emitOpError("expects mask type consistent with permutation " 2750 "map: ") 2751 << maskType; 2752 } 2753 2754 if (permutationMap.getNumSymbols() != 0) 2755 return op->emitOpError("requires permutation_map without symbols"); 2756 2757 if (permutationMap.getNumInputs() != shapedType.getRank()) 2758 return op->emitOpError("requires a permutation_map with input dims of the " 2759 "same rank as the source type"); 2760 2761 if (inBounds) { 2762 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2763 return op->emitOpError("expects the optional in_bounds attr of same rank " 2764 "as permutation_map results: ") 2765 << AffineMapAttr::get(permutationMap) 2766 << " vs inBounds of size: " << inBounds.size(); 2767 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2768 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2769 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2770 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2771 } 2772 2773 return success(); 2774 } 2775 2776 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2777 SmallVector<StringRef, 3> elidedAttrs; 2778 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2779 if (op.permutation_map().isMinorIdentity()) 2780 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2781 bool elideInBounds = true; 2782 if (auto inBounds = op.in_bounds()) { 2783 for (auto attr : *inBounds) { 2784 if (attr.template cast<BoolAttr>().getValue()) { 2785 elideInBounds = false; 2786 break; 2787 } 2788 } 2789 } 2790 if (elideInBounds) 2791 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2792 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2793 } 2794 2795 void TransferReadOp::print(OpAsmPrinter &p) { 2796 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2797 if (getMask()) 2798 p << ", " << getMask(); 2799 printTransferAttrs(p, *this); 2800 p << " : " << getShapedType() << ", " << getVectorType(); 2801 } 2802 2803 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2804 auto &builder = parser.getBuilder(); 2805 SMLoc typesLoc; 2806 OpAsmParser::UnresolvedOperand sourceInfo; 2807 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2808 OpAsmParser::UnresolvedOperand paddingInfo; 2809 SmallVector<Type, 2> types; 2810 OpAsmParser::UnresolvedOperand maskInfo; 2811 // Parsing with support for paddingValue. 2812 if (parser.parseOperand(sourceInfo) || 2813 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2814 parser.parseComma() || parser.parseOperand(paddingInfo)) 2815 return failure(); 2816 ParseResult hasMask = parser.parseOptionalComma(); 2817 if (hasMask.succeeded()) { 2818 parser.parseOperand(maskInfo); 2819 } 2820 if (parser.parseOptionalAttrDict(result.attributes) || 2821 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2822 return failure(); 2823 if (types.size() != 2) 2824 return parser.emitError(typesLoc, "requires two types"); 2825 auto indexType = builder.getIndexType(); 2826 auto shapedType = types[0].dyn_cast<ShapedType>(); 2827 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2828 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2829 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2830 if (!vectorType) 2831 return parser.emitError(typesLoc, "requires vector type"); 2832 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2833 Attribute mapAttr = result.attributes.get(permutationAttrName); 2834 if (!mapAttr) { 2835 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2836 // Update `mapAttr` that is used later to determine mask type. 2837 mapAttr = AffineMapAttr::get(permMap); 2838 result.attributes.set(permutationAttrName, mapAttr); 2839 } 2840 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2841 parser.resolveOperands(indexInfo, indexType, result.operands) || 2842 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2843 result.operands)) 2844 return failure(); 2845 if (hasMask.succeeded()) { 2846 if (shapedType.getElementType().dyn_cast<VectorType>()) 2847 return parser.emitError( 2848 maskInfo.location, "does not support masks with vector element type"); 2849 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2850 // Instead of adding the mask type as an op type, compute it based on the 2851 // vector type and the permutation map (to keep the type signature small). 2852 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2853 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2854 return failure(); 2855 } 2856 result.addAttribute( 2857 TransferReadOp::getOperandSegmentSizeAttr(), 2858 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2859 static_cast<int32_t>(hasMask.succeeded())})); 2860 return parser.addTypeToList(vectorType, result.types); 2861 } 2862 2863 LogicalResult TransferReadOp::verify() { 2864 // Consistency of elemental types in source and vector. 2865 ShapedType shapedType = getShapedType(); 2866 VectorType vectorType = getVectorType(); 2867 VectorType maskType = getMaskType(); 2868 auto paddingType = getPadding().getType(); 2869 auto permutationMap = getPermutationMap(); 2870 auto sourceElementType = shapedType.getElementType(); 2871 2872 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 2873 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2874 2875 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2876 shapedType, vectorType, maskType, permutationMap, 2877 getInBounds() ? *getInBounds() : ArrayAttr()))) 2878 return failure(); 2879 2880 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2881 // Source has vector element type. 2882 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2883 if (sourceVectorElementType != paddingType) 2884 return emitOpError( 2885 "requires source element type and padding type to match."); 2886 2887 } else { 2888 // Check that 'paddingType' is valid to store in a vector type. 2889 if (!VectorType::isValidElementType(paddingType)) 2890 return emitOpError("requires valid padding vector elemental type"); 2891 2892 // Check that padding type and vector element types match. 2893 if (paddingType != sourceElementType) 2894 return emitOpError( 2895 "requires formal padding and source of the same elemental type"); 2896 } 2897 2898 return verifyPermutationMap(permutationMap, 2899 [&](Twine t) { return emitOpError(t); }); 2900 } 2901 2902 /// This is a common class used for patterns of the form 2903 /// ``` 2904 /// someop(memrefcast) -> someop 2905 /// ``` 2906 /// It folds the source of the memref.cast into the root operation directly. 2907 static LogicalResult foldMemRefCast(Operation *op) { 2908 bool folded = false; 2909 for (OpOperand &operand : op->getOpOperands()) { 2910 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2911 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2912 operand.set(castOp.getOperand()); 2913 folded = true; 2914 } 2915 } 2916 return success(folded); 2917 } 2918 2919 static LogicalResult foldTensorCast(Operation *op) { 2920 bool folded = false; 2921 for (OpOperand &operand : op->getOpOperands()) { 2922 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2923 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2924 operand.set(castOp.getOperand()); 2925 folded = true; 2926 } 2927 } 2928 return success(folded); 2929 } 2930 2931 template <typename TransferOp> 2932 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2933 // TODO: support more aggressive createOrFold on: 2934 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2935 if (op.getShapedType().isDynamicDim(indicesIdx)) 2936 return false; 2937 Value index = op.getIndices()[indicesIdx]; 2938 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2939 if (!cstOp) 2940 return false; 2941 2942 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2943 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 2944 2945 return cstOp.value() + vectorSize <= sourceSize; 2946 } 2947 2948 template <typename TransferOp> 2949 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 2950 // TODO: support 0-d corner case. 2951 // TODO: Be less conservative. 2952 if (op.getTransferRank() == 0) 2953 return failure(); 2954 AffineMap permutationMap = op.getPermutationMap(); 2955 bool changed = false; 2956 SmallVector<bool, 4> newInBounds; 2957 newInBounds.reserve(op.getTransferRank()); 2958 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 2959 // Already marked as in-bounds, nothing to see here. 2960 if (op.isDimInBounds(i)) { 2961 newInBounds.push_back(true); 2962 continue; 2963 } 2964 // Currently out-of-bounds, check whether we can statically determine it is 2965 // inBounds. 2966 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 2967 assert(dimExpr && "Broadcast dims must be in-bounds"); 2968 auto inBounds = 2969 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 2970 newInBounds.push_back(inBounds); 2971 // We commit the pattern if it is "more inbounds". 2972 changed |= inBounds; 2973 } 2974 if (!changed) 2975 return failure(); 2976 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2977 OpBuilder b(op.getContext()); 2978 op->setAttr(TransferOp::getInBoundsAttrStrName(), 2979 b.getBoolArrayAttr(newInBounds)); 2980 return success(); 2981 } 2982 2983 /// ``` 2984 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 2985 /// : vector<1x4xf32>, tensor<4x4xf32> 2986 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 2987 /// : tensor<4x4xf32>, vector<1x4xf32> 2988 /// ``` 2989 /// -> Folds into 2990 /// ``` 2991 /// %v0 2992 /// ``` 2993 static Value foldRAW(TransferReadOp readOp) { 2994 if (!readOp.getShapedType().isa<RankedTensorType>()) 2995 return {}; 2996 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 2997 while (defWrite) { 2998 if (checkSameValueRAW(defWrite, readOp)) 2999 return defWrite.getVector(); 3000 if (!isDisjointTransferIndices( 3001 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3002 cast<VectorTransferOpInterface>(readOp.getOperation()))) 3003 break; 3004 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3005 } 3006 return {}; 3007 } 3008 3009 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 3010 if (Value vec = foldRAW(*this)) 3011 return vec; 3012 /// transfer_read(memrefcast) -> transfer_read 3013 if (succeeded(foldTransferInBoundsAttribute(*this))) 3014 return getResult(); 3015 if (succeeded(foldMemRefCast(*this))) 3016 return getResult(); 3017 if (succeeded(foldTensorCast(*this))) 3018 return getResult(); 3019 return OpFoldResult(); 3020 } 3021 3022 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3023 return llvm::to_vector<4>(getVectorType().getShape()); 3024 } 3025 3026 void TransferReadOp::getEffects( 3027 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3028 &effects) { 3029 if (getShapedType().isa<MemRefType>()) 3030 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 3031 SideEffects::DefaultResource::get()); 3032 } 3033 3034 namespace { 3035 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3036 /// 3037 /// ``` 3038 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3039 /// : tensor<?x?xf32> to tensor<?x?xf32> 3040 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3041 /// : tensor<?x?xf32>, vector<4x5xf32> 3042 /// ``` 3043 /// is rewritten to: 3044 /// ``` 3045 /// %p0 = arith.addi %a, %e : index 3046 /// %p1 = arith.addi %b, %f : index 3047 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3048 /// : tensor<?x?xf32>, vector<4x5xf32> 3049 /// ``` 3050 struct FoldExtractSliceIntoTransferRead 3051 : public OpRewritePattern<TransferReadOp> { 3052 public: 3053 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3054 3055 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3056 PatternRewriter &rewriter) const override { 3057 // TODO: support 0-d corner case. 3058 if (xferOp.getTransferRank() == 0) 3059 return failure(); 3060 if (xferOp.hasOutOfBoundsDim()) 3061 return failure(); 3062 if (!xferOp.getPermutationMap().isIdentity()) 3063 return failure(); 3064 if (xferOp.getMask()) 3065 return failure(); 3066 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3067 if (!extractOp) 3068 return failure(); 3069 if (!extractOp.hasUnitStride()) 3070 return failure(); 3071 3072 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3073 // dims are exactly the leading dims. I.e. the following is illegal: 3074 // ``` 3075 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3076 // tensor<2x1x4xf32> to tensor<2x4xf32> 3077 // %1 = vector.transfer_read %0[0,0], %cst : 3078 // tensor<2x4xf32>, vector<2x4xf32> 3079 // ``` 3080 // 3081 // Cannot fold into: 3082 // ``` 3083 // %0 = vector.transfer_read %t[0,0,0], %cst : 3084 // tensor<2x1x4xf32>, vector<2x4xf32> 3085 // ``` 3086 // For this, check the trailing `vectorRank` dims of the extract_slice 3087 // result tensor match the trailing dims of the inferred result tensor. 3088 int64_t rankReduced = 3089 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3090 int64_t vectorRank = xferOp.getVectorType().getRank(); 3091 RankedTensorType inferredDestTensorType = 3092 tensor::ExtractSliceOp::inferResultType( 3093 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3094 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3095 auto actualDestTensorShape = extractOp.getType().getShape(); 3096 if (rankReduced > 0 && 3097 actualDestTensorShape.take_back(vectorRank) != 3098 inferredDestTensorType.getShape().take_back(vectorRank)) 3099 return failure(); 3100 3101 SmallVector<Value> newIndices; 3102 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3103 // indices first. 3104 for (int64_t i = 0; i < rankReduced; ++i) { 3105 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3106 newIndices.push_back(getValueOrCreateConstantIndexOp( 3107 rewriter, extractOp.getLoc(), offset)); 3108 } 3109 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3110 OpFoldResult offset = 3111 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3112 newIndices.push_back(rewriter.create<arith::AddIOp>( 3113 xferOp->getLoc(), it.value(), 3114 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3115 offset))); 3116 } 3117 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3118 rewriter.replaceOpWithNewOp<TransferReadOp>( 3119 xferOp, xferOp.getVectorType(), extractOp.source(), newIndices, 3120 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3121 3122 return success(); 3123 } 3124 }; 3125 } // namespace 3126 3127 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3128 MLIRContext *context) { 3129 results.add<FoldExtractSliceIntoTransferRead>(context); 3130 } 3131 3132 //===----------------------------------------------------------------------===// 3133 // TransferWriteOp 3134 //===----------------------------------------------------------------------===// 3135 3136 /// 1. Builder with type inference. 3137 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3138 Value vector, Value dest, ValueRange indices, 3139 AffineMapAttr permutationMapAttr, 3140 /*optional*/ Value mask, 3141 /*optional*/ ArrayAttr inBoundsAttr) { 3142 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3143 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3144 mask, inBoundsAttr); 3145 } 3146 3147 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3148 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3149 Value vector, Value dest, ValueRange indices, 3150 AffineMapAttr permutationMapAttr, 3151 /*optional*/ ArrayAttr inBoundsAttr) { 3152 build(builder, result, vector, dest, indices, permutationMapAttr, 3153 /*mask=*/Value(), inBoundsAttr); 3154 } 3155 3156 /// 3. Builder with type inference that sets an empty mask (variant without 3157 /// attrs) 3158 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3159 Value vector, Value dest, ValueRange indices, 3160 AffineMap permutationMap, 3161 Optional<ArrayRef<bool>> inBounds) { 3162 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3163 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3164 ? builder.getBoolArrayAttr(inBounds.getValue()) 3165 : ArrayAttr(); 3166 build(builder, result, vector, dest, indices, permutationMapAttr, 3167 /*mask=*/Value(), inBoundsAttr); 3168 } 3169 3170 /// 4. Builder with type inference that sets an empty mask and sets permutation 3171 /// map to 'getMinorIdentityMap'. 3172 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3173 Value vector, Value dest, ValueRange indices, 3174 Optional<ArrayRef<bool>> inBounds) { 3175 auto vectorType = vector.getType().cast<VectorType>(); 3176 AffineMap permutationMap = getTransferMinorIdentityMap( 3177 dest.getType().cast<ShapedType>(), vectorType); 3178 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3179 } 3180 3181 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3182 OperationState &result) { 3183 auto &builder = parser.getBuilder(); 3184 SMLoc typesLoc; 3185 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3186 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3187 SmallVector<Type, 2> types; 3188 OpAsmParser::UnresolvedOperand maskInfo; 3189 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3190 parser.parseOperand(sourceInfo) || 3191 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3192 return failure(); 3193 ParseResult hasMask = parser.parseOptionalComma(); 3194 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3195 return failure(); 3196 if (parser.parseOptionalAttrDict(result.attributes) || 3197 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3198 return failure(); 3199 if (types.size() != 2) 3200 return parser.emitError(typesLoc, "requires two types"); 3201 auto indexType = builder.getIndexType(); 3202 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3203 if (!vectorType) 3204 return parser.emitError(typesLoc, "requires vector type"); 3205 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3206 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3207 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3208 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3209 auto attr = result.attributes.get(permutationAttrName); 3210 if (!attr) { 3211 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3212 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3213 } 3214 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3215 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3216 parser.resolveOperands(indexInfo, indexType, result.operands)) 3217 return failure(); 3218 if (hasMask.succeeded()) { 3219 if (shapedType.getElementType().dyn_cast<VectorType>()) 3220 return parser.emitError( 3221 maskInfo.location, "does not support masks with vector element type"); 3222 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3223 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3224 return failure(); 3225 } 3226 result.addAttribute( 3227 TransferWriteOp::getOperandSegmentSizeAttr(), 3228 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3229 static_cast<int32_t>(hasMask.succeeded())})); 3230 return failure(shapedType.isa<RankedTensorType>() && 3231 parser.addTypeToList(shapedType, result.types)); 3232 } 3233 3234 void TransferWriteOp::print(OpAsmPrinter &p) { 3235 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3236 if (getMask()) 3237 p << ", " << getMask(); 3238 printTransferAttrs(p, *this); 3239 p << " : " << getVectorType() << ", " << getShapedType(); 3240 } 3241 3242 LogicalResult TransferWriteOp::verify() { 3243 // Consistency of elemental types in shape and vector. 3244 ShapedType shapedType = getShapedType(); 3245 VectorType vectorType = getVectorType(); 3246 VectorType maskType = getMaskType(); 3247 auto permutationMap = getPermutationMap(); 3248 3249 if (llvm::size(getIndices()) != shapedType.getRank()) 3250 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3251 3252 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3253 // as the semantics is unclear. This can be revisited later if necessary. 3254 if (hasBroadcastDim()) 3255 return emitOpError("should not have broadcast dimensions"); 3256 3257 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3258 shapedType, vectorType, maskType, permutationMap, 3259 getInBounds() ? *getInBounds() : ArrayAttr()))) 3260 return failure(); 3261 3262 return verifyPermutationMap(permutationMap, 3263 [&](Twine t) { return emitOpError(t); }); 3264 } 3265 3266 /// Fold: 3267 /// ``` 3268 /// %t1 = ... 3269 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3270 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3271 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3272 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3273 /// ``` 3274 /// 3275 /// into: 3276 /// 3277 /// ``` 3278 /// %t0 3279 /// ``` 3280 /// 3281 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3282 /// block argument or has side effects. 3283 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3284 ArrayRef<Attribute>, 3285 SmallVectorImpl<OpFoldResult> &results) { 3286 // TODO: support 0-d corner case. 3287 if (write.getTransferRank() == 0) 3288 return failure(); 3289 auto rankedTensorType = 3290 write.getSource().getType().dyn_cast<RankedTensorType>(); 3291 // If not operating on tensors, bail. 3292 if (!rankedTensorType) 3293 return failure(); 3294 // If no read, bail. 3295 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3296 if (!read) 3297 return failure(); 3298 // TODO: support 0-d corner case. 3299 if (read.getTransferRank() == 0) 3300 return failure(); 3301 // For now, only accept minor identity. Future: composition is minor identity. 3302 if (!read.getPermutationMap().isMinorIdentity() || 3303 !write.getPermutationMap().isMinorIdentity()) 3304 return failure(); 3305 // Bail on mismatching ranks. 3306 if (read.getTransferRank() != write.getTransferRank()) 3307 return failure(); 3308 // Bail on potential out-of-bounds accesses. 3309 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3310 return failure(); 3311 // Tensor types must be the same. 3312 if (read.getSource().getType() != rankedTensorType) 3313 return failure(); 3314 // Vector types must be the same. 3315 if (read.getVectorType() != write.getVectorType()) 3316 return failure(); 3317 // Vector and Tensor shapes must match. 3318 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3319 return failure(); 3320 // If any index is nonzero. 3321 auto isNotConstantZero = [](Value v) { 3322 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3323 return !cstOp || cstOp.value() != 0; 3324 }; 3325 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3326 llvm::any_of(write.getIndices(), isNotConstantZero)) 3327 return failure(); 3328 // Success. 3329 results.push_back(read.getSource()); 3330 return success(); 3331 } 3332 3333 static bool checkSameValueWAR(vector::TransferReadOp read, 3334 vector::TransferWriteOp write) { 3335 return read.getSource() == write.getSource() && 3336 read.getIndices() == write.getIndices() && 3337 read.getPermutationMap() == write.getPermutationMap() && 3338 read.getVectorType() == write.getVectorType() && !read.getMask() && 3339 !write.getMask(); 3340 } 3341 /// Fold transfer_write write after read: 3342 /// ``` 3343 /// %t0 = ... 3344 /// %v = vector.transfer_read %t0[%c0...] : 3345 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3346 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3347 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3348 /// ``` 3349 /// 3350 /// into: 3351 /// 3352 /// ``` 3353 /// %t0 3354 /// ``` 3355 static LogicalResult foldWAR(TransferWriteOp write, 3356 SmallVectorImpl<OpFoldResult> &results) { 3357 if (!write.getSource().getType().isa<RankedTensorType>()) 3358 return failure(); 3359 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3360 if (!read) 3361 return failure(); 3362 3363 if (!checkSameValueWAR(read, write)) 3364 return failure(); 3365 results.push_back(read.getSource()); 3366 return success(); 3367 } 3368 3369 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3370 SmallVectorImpl<OpFoldResult> &results) { 3371 if (succeeded(foldReadInitWrite(*this, operands, results))) 3372 return success(); 3373 if (succeeded(foldWAR(*this, results))) 3374 return success(); 3375 if (succeeded(foldTransferInBoundsAttribute(*this))) 3376 return success(); 3377 return foldMemRefCast(*this); 3378 } 3379 3380 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3381 return llvm::to_vector<4>(getVectorType().getShape()); 3382 } 3383 3384 void TransferWriteOp::getEffects( 3385 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3386 &effects) { 3387 if (getShapedType().isa<MemRefType>()) 3388 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3389 SideEffects::DefaultResource::get()); 3390 } 3391 3392 namespace { 3393 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3394 /// DCE 3395 /// ``` 3396 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3397 /// : vector<1x4xf32>, tensor<4x4xf32> 3398 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3399 /// : vector<1x4xf32>, tensor<4x4xf32> 3400 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3401 /// : vector<1x4xf32>, tensor<4x4xf32> 3402 /// ``` 3403 /// 3404 /// into: 3405 /// 3406 /// ``` 3407 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3408 /// : vector<1x4xf32>, tensor<4x4xf32> 3409 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3410 /// : vector<1x4xf32>, tensor<4x4xf32> 3411 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3412 /// : vector<1x4xf32>, tensor<4x4xf32> 3413 /// ``` 3414 /// 3415 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3416 /// any other uses. 3417 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3418 public: 3419 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3420 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3421 PatternRewriter &rewriter) const override { 3422 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3423 return failure(); 3424 vector::TransferWriteOp writeToModify = writeOp; 3425 3426 auto defWrite = 3427 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3428 while (defWrite) { 3429 if (checkSameValueWAW(writeOp, defWrite)) { 3430 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3431 return success(); 3432 } 3433 if (!isDisjointTransferIndices( 3434 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3435 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3436 break; 3437 // If the previous write op doesn't have any other use we an safely look 3438 // at the previous store to see if it can be removed. 3439 if (!defWrite->hasOneUse()) 3440 break; 3441 writeToModify = defWrite; 3442 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3443 } 3444 return failure(); 3445 } 3446 }; 3447 3448 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3449 /// could directly write to the insert_slice's destination. E.g.: 3450 /// 3451 /// ``` 3452 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3453 /// : vector<4x5xf32>, tensor<4x5xf32> 3454 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3455 /// : tensor<4x5xf32> into tensor<?x?xf32> 3456 /// ``` 3457 /// is rewritten to: 3458 /// ``` 3459 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3460 /// : vector<4x5xf32>, tensor<?x?xf32> 3461 /// ``` 3462 struct FoldInsertSliceIntoTransferWrite 3463 : public OpRewritePattern<tensor::InsertSliceOp> { 3464 public: 3465 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3466 3467 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3468 PatternRewriter &rewriter) const override { 3469 if (!insertOp.hasUnitStride()) 3470 return failure(); 3471 3472 auto xferOp = insertOp.source().getDefiningOp<TransferWriteOp>(); 3473 if (!xferOp) 3474 return failure(); 3475 // TODO: support 0-d corner case. 3476 if (xferOp.getTransferRank() == 0) 3477 return failure(); 3478 3479 if (xferOp.hasOutOfBoundsDim()) 3480 return failure(); 3481 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3482 return failure(); 3483 if (xferOp.getMask()) 3484 return failure(); 3485 // Fold only if the TransferWriteOp completely overwrites the `source` with 3486 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3487 // content is the data of the vector. 3488 if (!llvm::equal(xferOp.getVectorType().getShape(), 3489 xferOp.getShapedType().getShape())) 3490 return failure(); 3491 if (!xferOp.getPermutationMap().isIdentity()) 3492 return failure(); 3493 3494 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3495 // dims are exactly the leading dims. I.e. the following is illegal: 3496 // ``` 3497 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3498 // vector<2x4xf32>, tensor<2x4xf32> 3499 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3500 // tensor<2x4xf32> into tensor<2x1x4xf32> 3501 // ``` 3502 // 3503 // Cannot fold into: 3504 // ``` 3505 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3506 // vector<2x4xf32>, tensor<2x1x4xf32> 3507 // ``` 3508 // For this, check the trailing `vectorRank` dims of the insert_slice result 3509 // tensor match the trailing dims of the inferred result tensor. 3510 int64_t rankReduced = 3511 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3512 int64_t vectorRank = xferOp.getVectorType().getRank(); 3513 RankedTensorType inferredSourceTensorType = 3514 tensor::ExtractSliceOp::inferResultType( 3515 insertOp.getType(), insertOp.getMixedOffsets(), 3516 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3517 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3518 if (rankReduced > 0 && 3519 actualSourceTensorShape.take_back(vectorRank) != 3520 inferredSourceTensorType.getShape().take_back(vectorRank)) 3521 return failure(); 3522 3523 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3524 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3525 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3526 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3527 insertOp.dest(), indices, 3528 ArrayRef<bool>{inBounds}); 3529 return success(); 3530 } 3531 }; 3532 } // namespace 3533 3534 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3535 MLIRContext *context) { 3536 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite>(context); 3537 } 3538 3539 //===----------------------------------------------------------------------===// 3540 // LoadOp 3541 //===----------------------------------------------------------------------===// 3542 3543 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3544 MemRefType memRefTy) { 3545 if (!isLastMemrefDimUnitStride(memRefTy)) 3546 return op->emitOpError("most minor memref dim must have unit stride"); 3547 return success(); 3548 } 3549 3550 LogicalResult vector::LoadOp::verify() { 3551 VectorType resVecTy = getVectorType(); 3552 MemRefType memRefTy = getMemRefType(); 3553 3554 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3555 return failure(); 3556 3557 // Checks for vector memrefs. 3558 Type memElemTy = memRefTy.getElementType(); 3559 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3560 if (memVecTy != resVecTy) 3561 return emitOpError("base memref and result vector types should match"); 3562 memElemTy = memVecTy.getElementType(); 3563 } 3564 3565 if (resVecTy.getElementType() != memElemTy) 3566 return emitOpError("base and result element types should match"); 3567 if (llvm::size(getIndices()) != memRefTy.getRank()) 3568 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3569 return success(); 3570 } 3571 3572 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3573 if (succeeded(foldMemRefCast(*this))) 3574 return getResult(); 3575 return OpFoldResult(); 3576 } 3577 3578 //===----------------------------------------------------------------------===// 3579 // StoreOp 3580 //===----------------------------------------------------------------------===// 3581 3582 LogicalResult vector::StoreOp::verify() { 3583 VectorType valueVecTy = getVectorType(); 3584 MemRefType memRefTy = getMemRefType(); 3585 3586 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3587 return failure(); 3588 3589 // Checks for vector memrefs. 3590 Type memElemTy = memRefTy.getElementType(); 3591 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3592 if (memVecTy != valueVecTy) 3593 return emitOpError( 3594 "base memref and valueToStore vector types should match"); 3595 memElemTy = memVecTy.getElementType(); 3596 } 3597 3598 if (valueVecTy.getElementType() != memElemTy) 3599 return emitOpError("base and valueToStore element type should match"); 3600 if (llvm::size(getIndices()) != memRefTy.getRank()) 3601 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3602 return success(); 3603 } 3604 3605 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3606 SmallVectorImpl<OpFoldResult> &results) { 3607 return foldMemRefCast(*this); 3608 } 3609 3610 //===----------------------------------------------------------------------===// 3611 // MaskedLoadOp 3612 //===----------------------------------------------------------------------===// 3613 3614 LogicalResult MaskedLoadOp::verify() { 3615 VectorType maskVType = getMaskVectorType(); 3616 VectorType passVType = getPassThruVectorType(); 3617 VectorType resVType = getVectorType(); 3618 MemRefType memType = getMemRefType(); 3619 3620 if (resVType.getElementType() != memType.getElementType()) 3621 return emitOpError("base and result element type should match"); 3622 if (llvm::size(getIndices()) != memType.getRank()) 3623 return emitOpError("requires ") << memType.getRank() << " indices"; 3624 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3625 return emitOpError("expected result dim to match mask dim"); 3626 if (resVType != passVType) 3627 return emitOpError("expected pass_thru of same type as result type"); 3628 return success(); 3629 } 3630 3631 namespace { 3632 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3633 public: 3634 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3635 LogicalResult matchAndRewrite(MaskedLoadOp load, 3636 PatternRewriter &rewriter) const override { 3637 switch (get1DMaskFormat(load.getMask())) { 3638 case MaskFormat::AllTrue: 3639 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3640 load, load.getType(), load.getBase(), load.getIndices()); 3641 return success(); 3642 case MaskFormat::AllFalse: 3643 rewriter.replaceOp(load, load.getPassThru()); 3644 return success(); 3645 case MaskFormat::Unknown: 3646 return failure(); 3647 } 3648 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3649 } 3650 }; 3651 } // namespace 3652 3653 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3654 MLIRContext *context) { 3655 results.add<MaskedLoadFolder>(context); 3656 } 3657 3658 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3659 if (succeeded(foldMemRefCast(*this))) 3660 return getResult(); 3661 return OpFoldResult(); 3662 } 3663 3664 //===----------------------------------------------------------------------===// 3665 // MaskedStoreOp 3666 //===----------------------------------------------------------------------===// 3667 3668 LogicalResult MaskedStoreOp::verify() { 3669 VectorType maskVType = getMaskVectorType(); 3670 VectorType valueVType = getVectorType(); 3671 MemRefType memType = getMemRefType(); 3672 3673 if (valueVType.getElementType() != memType.getElementType()) 3674 return emitOpError("base and valueToStore element type should match"); 3675 if (llvm::size(getIndices()) != memType.getRank()) 3676 return emitOpError("requires ") << memType.getRank() << " indices"; 3677 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3678 return emitOpError("expected valueToStore dim to match mask dim"); 3679 return success(); 3680 } 3681 3682 namespace { 3683 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3684 public: 3685 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3686 LogicalResult matchAndRewrite(MaskedStoreOp store, 3687 PatternRewriter &rewriter) const override { 3688 switch (get1DMaskFormat(store.getMask())) { 3689 case MaskFormat::AllTrue: 3690 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3691 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3692 return success(); 3693 case MaskFormat::AllFalse: 3694 rewriter.eraseOp(store); 3695 return success(); 3696 case MaskFormat::Unknown: 3697 return failure(); 3698 } 3699 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3700 } 3701 }; 3702 } // namespace 3703 3704 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3705 MLIRContext *context) { 3706 results.add<MaskedStoreFolder>(context); 3707 } 3708 3709 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3710 SmallVectorImpl<OpFoldResult> &results) { 3711 return foldMemRefCast(*this); 3712 } 3713 3714 //===----------------------------------------------------------------------===// 3715 // GatherOp 3716 //===----------------------------------------------------------------------===// 3717 3718 LogicalResult GatherOp::verify() { 3719 VectorType indVType = getIndexVectorType(); 3720 VectorType maskVType = getMaskVectorType(); 3721 VectorType resVType = getVectorType(); 3722 MemRefType memType = getMemRefType(); 3723 3724 if (resVType.getElementType() != memType.getElementType()) 3725 return emitOpError("base and result element type should match"); 3726 if (llvm::size(getIndices()) != memType.getRank()) 3727 return emitOpError("requires ") << memType.getRank() << " indices"; 3728 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3729 return emitOpError("expected result dim to match indices dim"); 3730 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3731 return emitOpError("expected result dim to match mask dim"); 3732 if (resVType != getPassThruVectorType()) 3733 return emitOpError("expected pass_thru of same type as result type"); 3734 return success(); 3735 } 3736 3737 namespace { 3738 class GatherFolder final : public OpRewritePattern<GatherOp> { 3739 public: 3740 using OpRewritePattern<GatherOp>::OpRewritePattern; 3741 LogicalResult matchAndRewrite(GatherOp gather, 3742 PatternRewriter &rewriter) const override { 3743 switch (get1DMaskFormat(gather.getMask())) { 3744 case MaskFormat::AllTrue: 3745 return failure(); // no unmasked equivalent 3746 case MaskFormat::AllFalse: 3747 rewriter.replaceOp(gather, gather.getPassThru()); 3748 return success(); 3749 case MaskFormat::Unknown: 3750 return failure(); 3751 } 3752 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3753 } 3754 }; 3755 } // namespace 3756 3757 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3758 MLIRContext *context) { 3759 results.add<GatherFolder>(context); 3760 } 3761 3762 //===----------------------------------------------------------------------===// 3763 // ScatterOp 3764 //===----------------------------------------------------------------------===// 3765 3766 LogicalResult ScatterOp::verify() { 3767 VectorType indVType = getIndexVectorType(); 3768 VectorType maskVType = getMaskVectorType(); 3769 VectorType valueVType = getVectorType(); 3770 MemRefType memType = getMemRefType(); 3771 3772 if (valueVType.getElementType() != memType.getElementType()) 3773 return emitOpError("base and valueToStore element type should match"); 3774 if (llvm::size(getIndices()) != memType.getRank()) 3775 return emitOpError("requires ") << memType.getRank() << " indices"; 3776 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3777 return emitOpError("expected valueToStore dim to match indices dim"); 3778 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3779 return emitOpError("expected valueToStore dim to match mask dim"); 3780 return success(); 3781 } 3782 3783 namespace { 3784 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3785 public: 3786 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3787 LogicalResult matchAndRewrite(ScatterOp scatter, 3788 PatternRewriter &rewriter) const override { 3789 switch (get1DMaskFormat(scatter.getMask())) { 3790 case MaskFormat::AllTrue: 3791 return failure(); // no unmasked equivalent 3792 case MaskFormat::AllFalse: 3793 rewriter.eraseOp(scatter); 3794 return success(); 3795 case MaskFormat::Unknown: 3796 return failure(); 3797 } 3798 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3799 } 3800 }; 3801 } // namespace 3802 3803 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3804 MLIRContext *context) { 3805 results.add<ScatterFolder>(context); 3806 } 3807 3808 //===----------------------------------------------------------------------===// 3809 // ExpandLoadOp 3810 //===----------------------------------------------------------------------===// 3811 3812 LogicalResult ExpandLoadOp::verify() { 3813 VectorType maskVType = getMaskVectorType(); 3814 VectorType passVType = getPassThruVectorType(); 3815 VectorType resVType = getVectorType(); 3816 MemRefType memType = getMemRefType(); 3817 3818 if (resVType.getElementType() != memType.getElementType()) 3819 return emitOpError("base and result element type should match"); 3820 if (llvm::size(getIndices()) != memType.getRank()) 3821 return emitOpError("requires ") << memType.getRank() << " indices"; 3822 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3823 return emitOpError("expected result dim to match mask dim"); 3824 if (resVType != passVType) 3825 return emitOpError("expected pass_thru of same type as result type"); 3826 return success(); 3827 } 3828 3829 namespace { 3830 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3831 public: 3832 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3833 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3834 PatternRewriter &rewriter) const override { 3835 switch (get1DMaskFormat(expand.getMask())) { 3836 case MaskFormat::AllTrue: 3837 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3838 expand, expand.getType(), expand.getBase(), expand.getIndices()); 3839 return success(); 3840 case MaskFormat::AllFalse: 3841 rewriter.replaceOp(expand, expand.getPassThru()); 3842 return success(); 3843 case MaskFormat::Unknown: 3844 return failure(); 3845 } 3846 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 3847 } 3848 }; 3849 } // namespace 3850 3851 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3852 MLIRContext *context) { 3853 results.add<ExpandLoadFolder>(context); 3854 } 3855 3856 //===----------------------------------------------------------------------===// 3857 // CompressStoreOp 3858 //===----------------------------------------------------------------------===// 3859 3860 LogicalResult CompressStoreOp::verify() { 3861 VectorType maskVType = getMaskVectorType(); 3862 VectorType valueVType = getVectorType(); 3863 MemRefType memType = getMemRefType(); 3864 3865 if (valueVType.getElementType() != memType.getElementType()) 3866 return emitOpError("base and valueToStore element type should match"); 3867 if (llvm::size(getIndices()) != memType.getRank()) 3868 return emitOpError("requires ") << memType.getRank() << " indices"; 3869 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3870 return emitOpError("expected valueToStore dim to match mask dim"); 3871 return success(); 3872 } 3873 3874 namespace { 3875 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 3876 public: 3877 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 3878 LogicalResult matchAndRewrite(CompressStoreOp compress, 3879 PatternRewriter &rewriter) const override { 3880 switch (get1DMaskFormat(compress.getMask())) { 3881 case MaskFormat::AllTrue: 3882 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3883 compress, compress.getValueToStore(), compress.getBase(), 3884 compress.getIndices()); 3885 return success(); 3886 case MaskFormat::AllFalse: 3887 rewriter.eraseOp(compress); 3888 return success(); 3889 case MaskFormat::Unknown: 3890 return failure(); 3891 } 3892 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 3893 } 3894 }; 3895 } // namespace 3896 3897 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3898 MLIRContext *context) { 3899 results.add<CompressStoreFolder>(context); 3900 } 3901 3902 //===----------------------------------------------------------------------===// 3903 // ShapeCastOp 3904 //===----------------------------------------------------------------------===// 3905 3906 /// Returns true if each element of 'a' is equal to the product of a contiguous 3907 /// sequence of the elements of 'b'. Returns false otherwise. 3908 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 3909 unsigned rankA = a.size(); 3910 unsigned rankB = b.size(); 3911 assert(rankA < rankB); 3912 3913 unsigned i = 0; 3914 unsigned j = 0; 3915 while (i < rankA && j < rankB) { 3916 int64_t dimA = a[i]; 3917 int64_t dimB = 1; 3918 while (dimB < dimA && j < rankB) 3919 dimB *= b[j++]; 3920 if (dimA != dimB) 3921 break; 3922 ++i; 3923 3924 // Handle the case when trailing dimensions are of size 1. 3925 // Include them into the contiguous sequence. 3926 auto isOne = [](int64_t v) { return v == 1; }; 3927 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 3928 i = rankA; 3929 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 3930 j = rankB; 3931 } 3932 3933 return i == rankA && j == rankB; 3934 } 3935 3936 static LogicalResult verifyVectorShapeCast(Operation *op, 3937 VectorType sourceVectorType, 3938 VectorType resultVectorType) { 3939 // Check that element type is the same. 3940 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 3941 return op->emitOpError("source/result vectors must have same element type"); 3942 auto sourceShape = sourceVectorType.getShape(); 3943 auto resultShape = resultVectorType.getShape(); 3944 3945 // Check that product of source dim sizes matches product of result dim sizes. 3946 int64_t sourceDimProduct = std::accumulate( 3947 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 3948 int64_t resultDimProduct = std::accumulate( 3949 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 3950 if (sourceDimProduct != resultDimProduct) 3951 return op->emitOpError("source/result number of elements must match"); 3952 3953 // Check that expanding/contracting rank cases. 3954 unsigned sourceRank = sourceVectorType.getRank(); 3955 unsigned resultRank = resultVectorType.getRank(); 3956 if (sourceRank < resultRank) { 3957 if (!isValidShapeCast(sourceShape, resultShape)) 3958 return op->emitOpError("invalid shape cast"); 3959 } else if (sourceRank > resultRank) { 3960 if (!isValidShapeCast(resultShape, sourceShape)) 3961 return op->emitOpError("invalid shape cast"); 3962 } 3963 return success(); 3964 } 3965 3966 LogicalResult ShapeCastOp::verify() { 3967 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 3968 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 3969 3970 // Check if source/result are of vector type. 3971 if (sourceVectorType && resultVectorType) 3972 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 3973 3974 return success(); 3975 } 3976 3977 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 3978 // Nop shape cast. 3979 if (getSource().getType() == getResult().getType()) 3980 return getSource(); 3981 3982 // Canceling shape casts. 3983 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 3984 if (getResult().getType() == otherOp.getSource().getType()) 3985 return otherOp.getSource(); 3986 3987 // Only allows valid transitive folding. 3988 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 3989 VectorType resultType = getResult().getType().cast<VectorType>(); 3990 if (srcType.getRank() < resultType.getRank()) { 3991 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 3992 return {}; 3993 } else if (srcType.getRank() > resultType.getRank()) { 3994 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 3995 return {}; 3996 } else { 3997 return {}; 3998 } 3999 4000 setOperand(otherOp.getSource()); 4001 return getResult(); 4002 } 4003 return {}; 4004 } 4005 4006 namespace { 4007 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 4008 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 4009 public: 4010 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4011 4012 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4013 PatternRewriter &rewriter) const override { 4014 auto constantOp = 4015 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 4016 if (!constantOp) 4017 return failure(); 4018 // Only handle splat for now. 4019 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4020 if (!dense) 4021 return failure(); 4022 auto newAttr = 4023 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4024 dense.getSplatValue<Attribute>()); 4025 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4026 return success(); 4027 } 4028 }; 4029 4030 } // namespace 4031 4032 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4033 MLIRContext *context) { 4034 // Pattern to rewrite a ShapeCastOp(ConstantOp) -> ConstantOp. 4035 results.add<ShapeCastConstantFolder>(context); 4036 } 4037 4038 //===----------------------------------------------------------------------===// 4039 // VectorBitCastOp 4040 //===----------------------------------------------------------------------===// 4041 4042 LogicalResult BitCastOp::verify() { 4043 auto sourceVectorType = getSourceVectorType(); 4044 auto resultVectorType = getResultVectorType(); 4045 4046 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4047 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4048 return emitOpError("dimension size mismatch at: ") << i; 4049 } 4050 4051 DataLayout dataLayout = DataLayout::closest(*this); 4052 auto sourceElementBits = 4053 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4054 auto resultElementBits = 4055 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4056 4057 if (sourceVectorType.getRank() == 0) { 4058 if (sourceElementBits != resultElementBits) 4059 return emitOpError("source/result bitwidth of the 0-D vector element " 4060 "types must be equal"); 4061 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4062 resultElementBits * resultVectorType.getShape().back()) { 4063 return emitOpError( 4064 "source/result bitwidth of the minor 1-D vectors must be equal"); 4065 } 4066 4067 return success(); 4068 } 4069 4070 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4071 // Nop cast. 4072 if (getSource().getType() == getResult().getType()) 4073 return getSource(); 4074 4075 // Canceling bitcasts. 4076 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) 4077 if (getResult().getType() == otherOp.getSource().getType()) 4078 return otherOp.getSource(); 4079 4080 Attribute sourceConstant = operands.front(); 4081 if (!sourceConstant) 4082 return {}; 4083 4084 Type srcElemType = getSourceVectorType().getElementType(); 4085 Type dstElemType = getResultVectorType().getElementType(); 4086 4087 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4088 if (floatPack.isSplat()) { 4089 auto splat = floatPack.getSplatValue<FloatAttr>(); 4090 4091 // Casting fp16 into fp32. 4092 if (srcElemType.isF16() && dstElemType.isF32()) { 4093 uint32_t bits = static_cast<uint32_t>( 4094 splat.getValue().bitcastToAPInt().getZExtValue()); 4095 // Duplicate the 16-bit pattern. 4096 bits = (bits << 16) | (bits & 0xffff); 4097 APInt intBits(32, bits); 4098 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4099 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4100 } 4101 } 4102 } 4103 4104 return {}; 4105 } 4106 4107 //===----------------------------------------------------------------------===// 4108 // TypeCastOp 4109 //===----------------------------------------------------------------------===// 4110 4111 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4112 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4113 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4114 memRefType.getShape().end()); 4115 if (vectorType) 4116 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4117 return res; 4118 } 4119 4120 /// Build the canonical memRefType with a single vector. 4121 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4122 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4123 Value source) { 4124 result.addOperands(source); 4125 MemRefType memRefType = source.getType().cast<MemRefType>(); 4126 VectorType vectorType = 4127 VectorType::get(extractShape(memRefType), 4128 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4129 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4130 memRefType.getMemorySpace())); 4131 } 4132 4133 LogicalResult TypeCastOp::verify() { 4134 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4135 if (!canonicalType.getLayout().isIdentity()) 4136 return emitOpError("expects operand to be a memref with identity layout"); 4137 if (!getResultMemRefType().getLayout().isIdentity()) 4138 return emitOpError("expects result to be a memref with identity layout"); 4139 if (getResultMemRefType().getMemorySpace() != 4140 getMemRefType().getMemorySpace()) 4141 return emitOpError("expects result in same memory space"); 4142 4143 auto sourceType = getMemRefType(); 4144 auto resultType = getResultMemRefType(); 4145 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4146 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4147 return emitOpError( 4148 "expects result and operand with same underlying scalar type: ") 4149 << resultType; 4150 if (extractShape(sourceType) != extractShape(resultType)) 4151 return emitOpError( 4152 "expects concatenated result and operand shapes to be equal: ") 4153 << resultType; 4154 return success(); 4155 } 4156 4157 //===----------------------------------------------------------------------===// 4158 // TransposeOp 4159 //===----------------------------------------------------------------------===// 4160 4161 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4162 Value vector, ArrayRef<int64_t> transp) { 4163 VectorType vt = vector.getType().cast<VectorType>(); 4164 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4165 for (unsigned i = 0; i < transp.size(); ++i) 4166 transposedShape[i] = vt.getShape()[transp[i]]; 4167 4168 result.addOperands(vector); 4169 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4170 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4171 } 4172 4173 // Eliminates transpose operations, which produce values identical to their 4174 // input values. This happens when the dimensions of the input vector remain in 4175 // their original order after the transpose operation. 4176 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4177 SmallVector<int64_t, 4> transp; 4178 getTransp(transp); 4179 4180 // Check if the permutation of the dimensions contains sequential values: 4181 // {0, 1, 2, ...}. 4182 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4183 if (transp[i] != i) 4184 return {}; 4185 } 4186 4187 return getVector(); 4188 } 4189 4190 LogicalResult vector::TransposeOp::verify() { 4191 VectorType vectorType = getVectorType(); 4192 VectorType resultType = getResultType(); 4193 int64_t rank = resultType.getRank(); 4194 if (vectorType.getRank() != rank) 4195 return emitOpError("vector result rank mismatch: ") << rank; 4196 // Verify transposition array. 4197 auto transpAttr = getTransp().getValue(); 4198 int64_t size = transpAttr.size(); 4199 if (rank != size) 4200 return emitOpError("transposition length mismatch: ") << size; 4201 SmallVector<bool, 8> seen(rank, false); 4202 for (const auto &ta : llvm::enumerate(transpAttr)) { 4203 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4204 if (i < 0 || i >= rank) 4205 return emitOpError("transposition index out of range: ") << i; 4206 if (seen[i]) 4207 return emitOpError("duplicate position index: ") << i; 4208 seen[i] = true; 4209 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4210 return emitOpError("dimension size mismatch at: ") << i; 4211 } 4212 return success(); 4213 } 4214 4215 namespace { 4216 4217 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4218 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4219 public: 4220 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4221 4222 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4223 PatternRewriter &rewriter) const override { 4224 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4225 auto getPermutation = [](vector::TransposeOp transpose) { 4226 SmallVector<int64_t, 4> permutation; 4227 transpose.getTransp(permutation); 4228 return permutation; 4229 }; 4230 4231 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4232 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4233 ArrayRef<int64_t> permutation2) { 4234 SmallVector<int64_t, 4> result; 4235 for (auto index : permutation2) 4236 result.push_back(permutation1[index]); 4237 return result; 4238 }; 4239 4240 // Return if the input of 'transposeOp' is not defined by another transpose. 4241 vector::TransposeOp parentTransposeOp = 4242 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4243 if (!parentTransposeOp) 4244 return failure(); 4245 4246 SmallVector<int64_t, 4> permutation = composePermutations( 4247 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4248 // Replace 'transposeOp' with a new transpose operation. 4249 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4250 transposeOp, transposeOp.getResult().getType(), 4251 parentTransposeOp.getVector(), 4252 vector::getVectorSubscriptAttr(rewriter, permutation)); 4253 return success(); 4254 } 4255 }; 4256 4257 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). 4258 struct FoldTransposedScalarBroadcast final 4259 : public OpRewritePattern<vector::TransposeOp> { 4260 using OpRewritePattern::OpRewritePattern; 4261 4262 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4263 PatternRewriter &rewriter) const override { 4264 auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); 4265 if (!bcastOp) 4266 return failure(); 4267 4268 auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>(); 4269 if (!srcVectorType || srcVectorType.getNumElements() == 1) { 4270 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4271 transposeOp, transposeOp.getResultType(), bcastOp.getSource()); 4272 return success(); 4273 } 4274 4275 return failure(); 4276 } 4277 }; 4278 4279 } // namespace 4280 4281 void vector::TransposeOp::getCanonicalizationPatterns( 4282 RewritePatternSet &results, MLIRContext *context) { 4283 results.add<FoldTransposedScalarBroadcast, TransposeFolder>(context); 4284 } 4285 4286 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4287 populateFromInt64AttrArray(getTransp(), results); 4288 } 4289 4290 //===----------------------------------------------------------------------===// 4291 // ConstantMaskOp 4292 //===----------------------------------------------------------------------===// 4293 4294 LogicalResult ConstantMaskOp::verify() { 4295 auto resultType = getResult().getType().cast<VectorType>(); 4296 // Check the corner case of 0-D vectors first. 4297 if (resultType.getRank() == 0) { 4298 if (getMaskDimSizes().size() != 1) 4299 return emitError("array attr must have length 1 for 0-D vectors"); 4300 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4301 if (dim != 0 && dim != 1) 4302 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4303 return success(); 4304 } 4305 4306 // Verify that array attr size matches the rank of the vector result. 4307 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4308 return emitOpError( 4309 "must specify array attr of size equal vector result rank"); 4310 // Verify that each array attr element is in bounds of corresponding vector 4311 // result dimension size. 4312 auto resultShape = resultType.getShape(); 4313 SmallVector<int64_t, 4> maskDimSizes; 4314 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4315 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4316 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4317 return emitOpError( 4318 "array attr of size out of bounds of vector result dimension size"); 4319 maskDimSizes.push_back(attrValue); 4320 } 4321 // Verify that if one mask dim size is zero, they all should be zero (because 4322 // the mask region is a conjunction of each mask dimension interval). 4323 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4324 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4325 if (anyZeros && !allZeros) 4326 return emitOpError("expected all mask dim sizes to be zeros, " 4327 "as a result of conjunction with zero mask dim"); 4328 // Verify that if the mask type is scalable, dimensions should be zero because 4329 // constant scalable masks can only be defined for the "none set" or "all set" 4330 // cases, and there is no VLA way to define an "all set" case for 4331 // `vector.constant_mask`. In the future, a convention could be established 4332 // to decide if a specific dimension value could be considered as "all set". 4333 if (resultType.isScalable() && 4334 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4335 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4336 return success(); 4337 } 4338 4339 //===----------------------------------------------------------------------===// 4340 // CreateMaskOp 4341 //===----------------------------------------------------------------------===// 4342 4343 LogicalResult CreateMaskOp::verify() { 4344 auto vectorType = getResult().getType().cast<VectorType>(); 4345 // Verify that an operand was specified for each result vector each dimension. 4346 if (vectorType.getRank() == 0) { 4347 if (getNumOperands() != 1) 4348 return emitOpError( 4349 "must specify exactly one operand for 0-D create_mask"); 4350 } else if (getNumOperands() != 4351 getResult().getType().cast<VectorType>().getRank()) { 4352 return emitOpError( 4353 "must specify an operand for each result vector dimension"); 4354 } 4355 return success(); 4356 } 4357 4358 namespace { 4359 4360 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4361 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4362 public: 4363 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4364 4365 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4366 PatternRewriter &rewriter) const override { 4367 // Return if any of 'createMaskOp' operands are not defined by a constant. 4368 auto isNotDefByConstant = [](Value operand) { 4369 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4370 }; 4371 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4372 return failure(); 4373 4374 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4375 // are negative or zero. 4376 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4377 if (vType.isScalable()) 4378 for (auto opDim : createMaskOp.getOperands()) { 4379 APInt intVal; 4380 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4381 intVal.isStrictlyPositive()) 4382 return failure(); 4383 } 4384 } 4385 4386 // Gather constant mask dimension sizes. 4387 SmallVector<int64_t, 4> maskDimSizes; 4388 for (auto it : llvm::zip(createMaskOp.operands(), 4389 createMaskOp.getType().getShape())) { 4390 auto *defOp = std::get<0>(it).getDefiningOp(); 4391 int64_t maxDimSize = std::get<1>(it); 4392 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4393 dimSize = std::min(dimSize, maxDimSize); 4394 // If one of dim sizes is zero, set all dims to zero. 4395 if (dimSize <= 0) { 4396 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4397 break; 4398 } 4399 maskDimSizes.push_back(dimSize); 4400 } 4401 // Replace 'createMaskOp' with ConstantMaskOp. 4402 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4403 createMaskOp, createMaskOp.getResult().getType(), 4404 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4405 return success(); 4406 } 4407 }; 4408 4409 } // namespace 4410 4411 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4412 MLIRContext *context) { 4413 results.add<CreateMaskFolder>(context); 4414 } 4415 4416 //===----------------------------------------------------------------------===// 4417 // ScanOp 4418 //===----------------------------------------------------------------------===// 4419 4420 LogicalResult ScanOp::verify() { 4421 VectorType srcType = getSourceType(); 4422 VectorType initialType = getInitialValueType(); 4423 // Check reduction dimension < rank. 4424 int64_t srcRank = srcType.getRank(); 4425 int64_t reductionDim = getReductionDim(); 4426 if (reductionDim >= srcRank) 4427 return emitOpError("reduction dimension ") 4428 << reductionDim << " has to be less than " << srcRank; 4429 4430 // Check that rank(initial_value) = rank(src) - 1. 4431 int64_t initialValueRank = initialType.getRank(); 4432 if (initialValueRank != srcRank - 1) 4433 return emitOpError("initial value rank ") 4434 << initialValueRank << " has to be equal to " << srcRank - 1; 4435 4436 // Check shapes of initial value and src. 4437 ArrayRef<int64_t> srcShape = srcType.getShape(); 4438 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4439 SmallVector<int64_t> expectedShape; 4440 for (int i = 0; i < srcRank; i++) { 4441 if (i != reductionDim) 4442 expectedShape.push_back(srcShape[i]); 4443 } 4444 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4445 [](std::tuple<int64_t, int64_t> s) { 4446 return std::get<0>(s) != std::get<1>(s); 4447 })) { 4448 return emitOpError("incompatible input/initial value shapes"); 4449 } 4450 4451 return success(); 4452 } 4453 4454 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4455 RewritePatternSet &patterns) { 4456 patterns 4457 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4458 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4459 StridedSliceConstantMaskFolder, TransposeFolder>( 4460 patterns.getContext()); 4461 } 4462 4463 //===----------------------------------------------------------------------===// 4464 // SplatOp 4465 //===----------------------------------------------------------------------===// 4466 4467 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4468 auto constOperand = operands.front(); 4469 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4470 return {}; 4471 4472 // SplatElementsAttr::get treats single value for second arg as being a splat. 4473 return SplatElementsAttr::get(getType(), {constOperand}); 4474 } 4475 4476 //===----------------------------------------------------------------------===// 4477 // TableGen'd op method definitions 4478 //===----------------------------------------------------------------------===// 4479 4480 #define GET_OP_CLASSES 4481 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4482