1 //===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements convenience types for working with super-vectorization 10 // operations, in particular super-vector loads and stores. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Dialect/Vector/IR/VectorOps.h" 15 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/IndexingUtils.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/BuiltinOps.h" 27 #include "mlir/IR/BuiltinTypes.h" 28 #include "mlir/IR/DialectImplementation.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/TypeUtilities.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/MathExtras.h" 34 #include "llvm/ADT/StringSet.h" 35 #include "llvm/ADT/bit.h" 36 #include <numeric> 37 38 #include "mlir/Dialect/Vector/IR/VectorOpsDialect.cpp.inc" 39 // Pull in all enum type and utility function definitions. 40 #include "mlir/Dialect/Vector/IR/VectorOpsEnums.cpp.inc" 41 42 using namespace mlir; 43 using namespace mlir::vector; 44 45 /// Helper enum to classify mask value. 46 enum class MaskFormat { 47 AllTrue = 0, 48 AllFalse = 1, 49 Unknown = 2, 50 }; 51 52 /// Helper method to classify a 1-D mask value. Currently, the method 53 /// looks "under the hood" of a constant value with dense attributes 54 /// and a constant mask operation (since the client may be called at 55 /// various stages during progressive lowering). 56 static MaskFormat get1DMaskFormat(Value mask) { 57 if (auto c = mask.getDefiningOp<arith::ConstantOp>()) { 58 // Inspect constant dense values. We count up for bits that 59 // are set, count down for bits that are cleared, and bail 60 // when a mix is detected. 61 if (auto denseElts = c.getValue().dyn_cast<DenseIntElementsAttr>()) { 62 int64_t val = 0; 63 for (bool b : denseElts.getValues<bool>()) 64 if (b && val >= 0) 65 val++; 66 else if (!b && val <= 0) 67 val--; 68 else 69 return MaskFormat::Unknown; 70 if (val > 0) 71 return MaskFormat::AllTrue; 72 if (val < 0) 73 return MaskFormat::AllFalse; 74 } 75 } else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) { 76 // Inspect constant mask index. If the index exceeds the 77 // dimension size, all bits are set. If the index is zero 78 // or less, no bits are set. 79 ArrayAttr masks = m.getMaskDimSizes(); 80 assert(masks.size() == 1); 81 int64_t i = masks[0].cast<IntegerAttr>().getInt(); 82 int64_t u = m.getType().getDimSize(0); 83 if (i >= u) 84 return MaskFormat::AllTrue; 85 if (i <= 0) 86 return MaskFormat::AllFalse; 87 } 88 return MaskFormat::Unknown; 89 } 90 91 // Helper for verifying combining kinds in contractions and reductions. 92 static bool isSupportedCombiningKind(CombiningKind combiningKind, 93 Type elementType) { 94 switch (combiningKind) { 95 case CombiningKind::ADD: 96 case CombiningKind::MUL: 97 return elementType.isIntOrIndexOrFloat(); 98 case CombiningKind::MINUI: 99 case CombiningKind::MINSI: 100 case CombiningKind::MAXUI: 101 case CombiningKind::MAXSI: 102 case CombiningKind::AND: 103 case CombiningKind::OR: 104 case CombiningKind::XOR: 105 return elementType.isIntOrIndex(); 106 case CombiningKind::MINF: 107 case CombiningKind::MAXF: 108 return elementType.isa<FloatType>(); 109 } 110 return false; 111 } 112 113 /// Return true if the last dimension of the MemRefType has unit stride. Also 114 /// return true for memrefs with no strides. 115 bool mlir::vector::isLastMemrefDimUnitStride(MemRefType type) { 116 int64_t offset; 117 SmallVector<int64_t> strides; 118 auto successStrides = getStridesAndOffset(type, strides, offset); 119 return succeeded(successStrides) && (strides.empty() || strides.back() == 1); 120 } 121 122 AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, 123 VectorType vectorType) { 124 int64_t elementVectorRank = 0; 125 VectorType elementVectorType = 126 shapedType.getElementType().dyn_cast<VectorType>(); 127 if (elementVectorType) 128 elementVectorRank += elementVectorType.getRank(); 129 // 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>. 130 // TODO: replace once we have 0-d vectors. 131 if (shapedType.getRank() == 0 && 132 vectorType.getShape() == ArrayRef<int64_t>{1}) 133 return AffineMap::get( 134 /*numDims=*/0, /*numSymbols=*/0, 135 getAffineConstantExpr(0, shapedType.getContext())); 136 return AffineMap::getMinorIdentityMap( 137 shapedType.getRank(), vectorType.getRank() - elementVectorRank, 138 shapedType.getContext()); 139 } 140 141 bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, 142 vector::TransferReadOp read) { 143 return !defWrite.hasOutOfBoundsDim() && !defWrite.getMask() && 144 !read.getMask() && defWrite.getIndices() == read.getIndices() && 145 defWrite.getVectorType() == read.getVectorType() && 146 defWrite.getPermutationMap() == read.getPermutationMap(); 147 } 148 149 bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, 150 vector::TransferWriteOp priorWrite) { 151 return priorWrite.getIndices() == write.getIndices() && 152 priorWrite.getMask() == write.getMask() && 153 priorWrite.getVectorType() == write.getVectorType() && 154 priorWrite.getPermutationMap() == write.getPermutationMap(); 155 } 156 157 bool mlir::vector::isDisjointTransferIndices( 158 VectorTransferOpInterface transferA, VectorTransferOpInterface transferB) { 159 // For simplicity only look at transfer of same type. 160 if (transferA.getVectorType() != transferB.getVectorType()) 161 return false; 162 unsigned rankOffset = transferA.getLeadingShapedRank(); 163 for (unsigned i = 0, e = transferA.indices().size(); i < e; i++) { 164 auto indexA = transferA.indices()[i].getDefiningOp<arith::ConstantOp>(); 165 auto indexB = transferB.indices()[i].getDefiningOp<arith::ConstantOp>(); 166 // If any of the indices are dynamic we cannot prove anything. 167 if (!indexA || !indexB) 168 continue; 169 170 if (i < rankOffset) { 171 // For leading dimensions, if we can prove that index are different we 172 // know we are accessing disjoint slices. 173 if (indexA.getValue().cast<IntegerAttr>().getInt() != 174 indexB.getValue().cast<IntegerAttr>().getInt()) 175 return true; 176 } else { 177 // For this dimension, we slice a part of the memref we need to make sure 178 // the intervals accessed don't overlap. 179 int64_t distance = 180 std::abs(indexA.getValue().cast<IntegerAttr>().getInt() - 181 indexB.getValue().cast<IntegerAttr>().getInt()); 182 if (distance >= transferA.getVectorType().getDimSize(i - rankOffset)) 183 return true; 184 } 185 } 186 return false; 187 } 188 189 bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, 190 VectorTransferOpInterface transferB) { 191 if (transferA.source() != transferB.source()) 192 return false; 193 return isDisjointTransferIndices(transferA, transferB); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // CombiningKindAttr 198 //===----------------------------------------------------------------------===// 199 200 namespace mlir { 201 namespace vector { 202 namespace detail { 203 struct BitmaskEnumStorage : public AttributeStorage { 204 using KeyTy = uint64_t; 205 206 BitmaskEnumStorage(KeyTy val) : value(val) {} 207 208 bool operator==(const KeyTy &key) const { return value == key; } 209 210 static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, 211 const KeyTy &key) { 212 return new (allocator.allocate<BitmaskEnumStorage>()) 213 BitmaskEnumStorage(key); 214 } 215 216 KeyTy value = 0; 217 }; 218 } // namespace detail 219 } // namespace vector 220 } // namespace mlir 221 222 CombiningKindAttr CombiningKindAttr::get(CombiningKind kind, 223 MLIRContext *context) { 224 return Base::get(context, static_cast<uint64_t>(kind)); 225 } 226 227 CombiningKind CombiningKindAttr::getKind() const { 228 return static_cast<CombiningKind>(getImpl()->value); 229 } 230 231 static constexpr const CombiningKind combiningKindsList[] = { 232 // clang-format off 233 CombiningKind::ADD, 234 CombiningKind::MUL, 235 CombiningKind::MINUI, 236 CombiningKind::MINSI, 237 CombiningKind::MINF, 238 CombiningKind::MAXUI, 239 CombiningKind::MAXSI, 240 CombiningKind::MAXF, 241 CombiningKind::AND, 242 CombiningKind::OR, 243 CombiningKind::XOR, 244 // clang-format on 245 }; 246 247 void CombiningKindAttr::print(AsmPrinter &printer) const { 248 printer << "<"; 249 auto kinds = llvm::make_filter_range(combiningKindsList, [&](auto kind) { 250 return bitEnumContains(this->getKind(), kind); 251 }); 252 llvm::interleaveComma(kinds, printer, 253 [&](auto kind) { printer << stringifyEnum(kind); }); 254 printer << ">"; 255 } 256 257 Attribute CombiningKindAttr::parse(AsmParser &parser, Type type) { 258 if (failed(parser.parseLess())) 259 return {}; 260 261 StringRef elemName; 262 if (failed(parser.parseKeyword(&elemName))) 263 return {}; 264 265 auto kind = symbolizeCombiningKind(elemName); 266 if (!kind) { 267 parser.emitError(parser.getNameLoc(), "Unknown combining kind: ") 268 << elemName; 269 return {}; 270 } 271 272 if (failed(parser.parseGreater())) 273 return {}; 274 275 return CombiningKindAttr::get(*kind, parser.getContext()); 276 } 277 278 Attribute VectorDialect::parseAttribute(DialectAsmParser &parser, 279 Type type) const { 280 StringRef attrKind; 281 if (parser.parseKeyword(&attrKind)) 282 return {}; 283 284 if (attrKind == "kind") 285 return CombiningKindAttr::parse(parser, {}); 286 287 parser.emitError(parser.getNameLoc(), "Unknown attribute type: ") << attrKind; 288 return {}; 289 } 290 291 void VectorDialect::printAttribute(Attribute attr, 292 DialectAsmPrinter &os) const { 293 if (auto ck = attr.dyn_cast<CombiningKindAttr>()) { 294 os << "kind"; 295 ck.print(os); 296 return; 297 } 298 llvm_unreachable("Unknown attribute type"); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // VectorDialect 303 //===----------------------------------------------------------------------===// 304 305 void VectorDialect::initialize() { 306 addAttributes<CombiningKindAttr>(); 307 308 addOperations< 309 #define GET_OP_LIST 310 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 311 >(); 312 } 313 314 /// Materialize a single constant operation from a given attribute value with 315 /// the desired resultant type. 316 Operation *VectorDialect::materializeConstant(OpBuilder &builder, 317 Attribute value, Type type, 318 Location loc) { 319 return builder.create<arith::ConstantOp>(loc, type, value); 320 } 321 322 IntegerType vector::getVectorSubscriptType(Builder &builder) { 323 return builder.getIntegerType(64); 324 } 325 326 ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, 327 ArrayRef<int64_t> values) { 328 return builder.getI64ArrayAttr(values); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // MultiDimReductionOp 333 //===----------------------------------------------------------------------===// 334 335 void vector::MultiDimReductionOp::build(OpBuilder &builder, 336 OperationState &result, Value source, 337 ArrayRef<bool> reductionMask, 338 CombiningKind kind) { 339 SmallVector<int64_t> reductionDims; 340 for (const auto &en : llvm::enumerate(reductionMask)) 341 if (en.value()) 342 reductionDims.push_back(en.index()); 343 build(builder, result, kind, source, builder.getI64ArrayAttr(reductionDims)); 344 } 345 346 LogicalResult MultiDimReductionOp::inferReturnTypes( 347 MLIRContext *, Optional<Location>, ValueRange operands, 348 DictionaryAttr attributes, RegionRange, 349 SmallVectorImpl<Type> &inferredReturnTypes) { 350 MultiDimReductionOp::Adaptor op(operands, attributes); 351 auto vectorType = op.getSource().getType().cast<VectorType>(); 352 SmallVector<int64_t> targetShape; 353 for (auto it : llvm::enumerate(vectorType.getShape())) 354 if (!llvm::any_of(op.getReductionDims().getValue(), [&](Attribute attr) { 355 return attr.cast<IntegerAttr>().getValue() == it.index(); 356 })) 357 targetShape.push_back(it.value()); 358 // TODO: update to also allow 0-d vectors when available. 359 if (targetShape.empty()) 360 inferredReturnTypes.push_back(vectorType.getElementType()); 361 else 362 inferredReturnTypes.push_back( 363 VectorType::get(targetShape, vectorType.getElementType())); 364 return success(); 365 } 366 367 OpFoldResult MultiDimReductionOp::fold(ArrayRef<Attribute> operands) { 368 // Single parallel dim, this is a noop. 369 if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) 370 return getSource(); 371 return {}; 372 } 373 374 Optional<SmallVector<int64_t, 4>> MultiDimReductionOp::getShapeForUnroll() { 375 return llvm::to_vector<4>(getSourceVectorType().getShape()); 376 } 377 378 //===----------------------------------------------------------------------===// 379 // ReductionOp 380 //===----------------------------------------------------------------------===// 381 382 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 383 CombiningKind kind, Value vector) { 384 build(builder, result, kind, vector, /*acc=*/Value()); 385 } 386 387 void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, 388 CombiningKind kind, Value vector, Value acc) { 389 build(builder, result, vector.getType().cast<VectorType>().getElementType(), 390 kind, vector, acc); 391 } 392 393 LogicalResult ReductionOp::verify() { 394 // Verify for 1-D vector. 395 int64_t rank = getVectorType().getRank(); 396 if (rank != 1) 397 return emitOpError("unsupported reduction rank: ") << rank; 398 399 // Verify supported reduction kind. 400 Type eltType = getDest().getType(); 401 if (!isSupportedCombiningKind(getKind(), eltType)) 402 return emitOpError("unsupported reduction type '") 403 << eltType << "' for kind '" << stringifyCombiningKind(getKind()) 404 << "'"; 405 406 return success(); 407 } 408 409 ParseResult ReductionOp::parse(OpAsmParser &parser, OperationState &result) { 410 SmallVector<OpAsmParser::UnresolvedOperand, 2> operandsInfo; 411 Type redType; 412 Type resType; 413 CombiningKindAttr kindAttr; 414 if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}, "kind", 415 result.attributes) || 416 parser.parseComma() || parser.parseOperandList(operandsInfo) || 417 parser.parseColonType(redType) || 418 parser.parseKeywordType("into", resType) || 419 (!operandsInfo.empty() && 420 parser.resolveOperand(operandsInfo[0], redType, result.operands)) || 421 (operandsInfo.size() > 1 && 422 parser.resolveOperand(operandsInfo[1], resType, result.operands)) || 423 parser.addTypeToList(resType, result.types)) 424 return failure(); 425 if (operandsInfo.empty() || operandsInfo.size() > 2) 426 return parser.emitError(parser.getNameLoc(), 427 "unsupported number of operands"); 428 return success(); 429 } 430 431 void ReductionOp::print(OpAsmPrinter &p) { 432 p << " "; 433 getKindAttr().print(p); 434 p << ", " << getVector(); 435 if (getAcc()) 436 p << ", " << getAcc(); 437 p << " : " << getVector().getType() << " into " << getDest().getType(); 438 } 439 440 Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, 441 OpBuilder &builder, Location loc, 442 Value vector) { 443 switch (op) { 444 case arith::AtomicRMWKind::addf: 445 case arith::AtomicRMWKind::addi: 446 return builder.create<vector::ReductionOp>(vector.getLoc(), 447 CombiningKind::ADD, vector); 448 case arith::AtomicRMWKind::mulf: 449 case arith::AtomicRMWKind::muli: 450 return builder.create<vector::ReductionOp>(vector.getLoc(), 451 CombiningKind::MUL, vector); 452 case arith::AtomicRMWKind::minf: 453 return builder.create<vector::ReductionOp>(vector.getLoc(), 454 CombiningKind::MINF, vector); 455 case arith::AtomicRMWKind::mins: 456 return builder.create<vector::ReductionOp>(vector.getLoc(), 457 CombiningKind::MINSI, vector); 458 case arith::AtomicRMWKind::minu: 459 return builder.create<vector::ReductionOp>(vector.getLoc(), 460 CombiningKind::MINUI, vector); 461 case arith::AtomicRMWKind::maxf: 462 return builder.create<vector::ReductionOp>(vector.getLoc(), 463 CombiningKind::MAXF, vector); 464 case arith::AtomicRMWKind::maxs: 465 return builder.create<vector::ReductionOp>(vector.getLoc(), 466 CombiningKind::MAXSI, vector); 467 case arith::AtomicRMWKind::maxu: 468 return builder.create<vector::ReductionOp>(vector.getLoc(), 469 CombiningKind::MAXUI, vector); 470 case arith::AtomicRMWKind::andi: 471 return builder.create<vector::ReductionOp>(vector.getLoc(), 472 CombiningKind::AND, vector); 473 case arith::AtomicRMWKind::ori: 474 return builder.create<vector::ReductionOp>(vector.getLoc(), 475 CombiningKind::OR, vector); 476 // TODO: Add remaining reduction operations. 477 default: 478 (void)emitOptionalError(loc, "Reduction operation type not supported"); 479 break; 480 } 481 return nullptr; 482 } 483 484 Optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() { 485 return llvm::to_vector<4>(getVectorType().getShape()); 486 } 487 488 namespace { 489 struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> { 490 using OpRewritePattern::OpRewritePattern; 491 492 LogicalResult matchAndRewrite(ReductionOp reductionOp, 493 PatternRewriter &rewriter) const override { 494 if (reductionOp.getVectorType().getDimSize(0) != 1) 495 return failure(); 496 497 Location loc = reductionOp.getLoc(); 498 Value result = rewriter.create<ExtractOp>(loc, reductionOp.getType(), 499 reductionOp.getVector(), 500 rewriter.getI64ArrayAttr(0)); 501 502 if (Value acc = reductionOp.getAcc()) { 503 assert(reductionOp.getType().isa<FloatType>()); 504 switch (reductionOp.getKind()) { 505 case CombiningKind::ADD: 506 result = rewriter.create<arith::AddFOp>(loc, result, acc); 507 break; 508 case CombiningKind::MUL: 509 result = rewriter.create<arith::MulFOp>(loc, result, acc); 510 break; 511 default: 512 assert(false && "invalid op!"); 513 } 514 } 515 516 rewriter.replaceOp(reductionOp, result); 517 return success(); 518 } 519 }; 520 } // namespace 521 522 void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results, 523 MLIRContext *context) { 524 results.add<ElideSingleElementReduction>(context); 525 } 526 527 //===----------------------------------------------------------------------===// 528 // ContractionOp 529 //===----------------------------------------------------------------------===// 530 531 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 532 Value lhs, Value rhs, Value acc, 533 ArrayRef<ArrayRef<AffineExpr>> indexingExprs, 534 ArrayRef<StringRef> iteratorTypes) { 535 result.addOperands({lhs, rhs, acc}); 536 result.addTypes(acc.getType()); 537 result.addAttribute(::mlir::getIndexingMapsAttrName(), 538 builder.getAffineMapArrayAttr( 539 AffineMap::inferFromExprList(indexingExprs))); 540 result.addAttribute(::mlir::getIteratorTypesAttrName(), 541 builder.getStrArrayAttr(iteratorTypes)); 542 } 543 544 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 545 Value lhs, Value rhs, Value acc, 546 ArrayAttr indexingMaps, 547 ArrayAttr iteratorTypes) { 548 build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, 549 ContractionOp::getDefaultKind()); 550 } 551 552 void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, 553 Value lhs, Value rhs, Value acc, 554 ArrayAttr indexingMaps, 555 ArrayAttr iteratorTypes, CombiningKind kind) { 556 result.addOperands({lhs, rhs, acc}); 557 result.addTypes(acc.getType()); 558 result.addAttribute(::mlir::getIndexingMapsAttrName(), indexingMaps); 559 result.addAttribute(::mlir::getIteratorTypesAttrName(), iteratorTypes); 560 result.addAttribute(ContractionOp::getKindAttrStrName(), 561 CombiningKindAttr::get(kind, builder.getContext())); 562 } 563 564 ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { 565 OpAsmParser::UnresolvedOperand lhsInfo; 566 OpAsmParser::UnresolvedOperand rhsInfo; 567 OpAsmParser::UnresolvedOperand accInfo; 568 SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo; 569 SmallVector<Type, 2> types; 570 Type resultType; 571 auto loc = parser.getCurrentLocation(); 572 DictionaryAttr dictAttr; 573 // TODO: Unify linalg op attribute parsing. 574 if (parser.parseAttribute(dictAttr, "_", result.attributes) || 575 parser.parseOperand(lhsInfo) || parser.parseComma() || 576 parser.parseOperand(rhsInfo) || parser.parseComma() || 577 parser.parseOperand(accInfo) || 578 parser.parseTrailingOperandList(masksInfo) || 579 parser.parseOptionalAttrDict(result.attributes) || 580 parser.parseColonTypeList(types) || 581 parser.parseKeywordType("into", resultType) || 582 parser.resolveOperand(lhsInfo, types[0], result.operands) || 583 parser.resolveOperand(rhsInfo, types[1], result.operands) || 584 parser.resolveOperand(accInfo, resultType, result.operands) || 585 parser.addTypeToList(resultType, result.types)) 586 return failure(); 587 result.attributes.assign(dictAttr.getValue().begin(), 588 dictAttr.getValue().end()); 589 if (!result.attributes.get(ContractionOp::getKindAttrStrName())) { 590 result.addAttribute(ContractionOp::getKindAttrStrName(), 591 CombiningKindAttr::get(ContractionOp::getDefaultKind(), 592 result.getContext())); 593 } 594 if (masksInfo.empty()) 595 return success(); 596 if (masksInfo.size() != 2) 597 return parser.emitError(parser.getNameLoc(), 598 "expected zero or exactly 2 vector mask operands"); 599 auto lhsType = types[0].cast<VectorType>(); 600 auto rhsType = types[1].cast<VectorType>(); 601 auto maskElementType = parser.getBuilder().getI1Type(); 602 std::array<Type, 2> maskTypes = { 603 VectorType::Builder(lhsType).setElementType(maskElementType), 604 VectorType::Builder(rhsType).setElementType(maskElementType)}; 605 if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) 606 return failure(); 607 return success(); 608 } 609 610 void ContractionOp::print(OpAsmPrinter &p) { 611 // TODO: Unify printing code with linalg ops. 612 auto attrNames = getTraitAttrNames(); 613 llvm::StringSet<> traitAttrsSet; 614 traitAttrsSet.insert(attrNames.begin(), attrNames.end()); 615 SmallVector<NamedAttribute, 8> attrs; 616 for (auto attr : (*this)->getAttrs()) 617 if (traitAttrsSet.count(attr.getName().strref()) > 0) 618 attrs.push_back(attr); 619 620 auto dictAttr = DictionaryAttr::get(getContext(), attrs); 621 p << " " << dictAttr << " " << getLhs() << ", "; 622 p << getRhs() << ", " << getAcc(); 623 if (getMasks().size() == 2) 624 p << ", " << getMasks(); 625 626 p.printOptionalAttrDict((*this)->getAttrs(), attrNames); 627 p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " 628 << getResultType(); 629 } 630 631 static bool verifyDimMap(VectorType lhsType, VectorType rhsType, 632 const std::vector<std::pair<int64_t, int64_t>> &map) { 633 for (auto &dimPair : map) { 634 if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || 635 dimPair.second < 0 || dimPair.second >= rhsType.getRank() || 636 lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) 637 return false; 638 } 639 return true; 640 } 641 642 static LogicalResult verifyOutputShape( 643 ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, 644 Type resType, 645 const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap, 646 const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) { 647 DenseSet<int64_t> lhsContractingDimSet; 648 DenseSet<int64_t> rhsContractingDimSet; 649 for (auto &dimPair : contractingDimMap) { 650 lhsContractingDimSet.insert(dimPair.first); 651 rhsContractingDimSet.insert(dimPair.second); 652 } 653 DenseSet<int64_t> rhsBatchDimSet; 654 for (auto &dimPair : batchDimMap) 655 rhsBatchDimSet.insert(dimPair.second); 656 657 // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. 658 SmallVector<int64_t, 4> expectedResultDims; 659 for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { 660 if (lhsContractingDimSet.count(i) > 0) 661 continue; 662 expectedResultDims.push_back(lhsType.getDimSize(i)); 663 } 664 665 // Add free dimensions from 'rhsType' to 'expectedResultDims'. 666 for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { 667 if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) 668 continue; 669 expectedResultDims.push_back(rhsType.getDimSize(i)); 670 } 671 672 // Verify 'expectedResultDims'. 673 if (expectedResultDims.empty()) { 674 // No batch or free dimension implies a scalar result. 675 if (resType.isa<VectorType>() || accType.isa<VectorType>()) 676 return op.emitOpError("invalid accumulator/result vector shape"); 677 } else { 678 // At least one batch or free dimension implies a vector result. 679 auto resVectorType = resType.dyn_cast<VectorType>(); 680 auto accVectorType = accType.dyn_cast<VectorType>(); 681 if (!resVectorType || !accVectorType) 682 return op.emitOpError("invalid accumulator/result vector shape"); 683 684 // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector 685 // types fully define the result vector type. This assumes the affine maps 686 // are well-formed, which must have been verified already. 687 MLIRContext *ctx = op.getContext(); 688 AffineMap lhsMap = op.getIndexingMaps()[0]; 689 AffineMap rhsMap = op.getIndexingMaps()[1]; 690 SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs()); 691 for (auto pair : 692 {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { 693 VectorType v = pair.first; 694 auto map = pair.second; 695 for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { 696 unsigned pos = map.getDimPosition(idx); 697 if (!extents[pos]) 698 extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); 699 } 700 } 701 if (!llvm::all_of(extents, [](AffineExpr e) { return e; })) 702 return op.emitOpError("expected all input dimensions to be used by " 703 "either the LHS or the RHS"); 704 705 AffineMap resMap = op.getIndexingMaps()[2]; 706 auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), 707 /*symCount=*/0, extents, ctx); 708 // Compose the resMap with the extentsMap, which is a constant map. 709 AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); 710 assert(llvm::all_of( 711 expectedMap.getResults(), 712 [](AffineExpr e) { return e.isa<AffineConstantExpr>(); }) && 713 "expected constant extent along all dimensions."); 714 // Extract the expected shape and build the type. 715 auto expectedShape = llvm::to_vector<4>( 716 llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { 717 return e.cast<AffineConstantExpr>().getValue(); 718 })); 719 auto expected = 720 VectorType::get(expectedShape, resVectorType.getElementType()); 721 if (resVectorType != expected || accVectorType != expected) 722 return op.emitOpError( 723 "invalid accumulator/result vector shape, expected: ") 724 << expected; 725 } 726 return success(); 727 } 728 729 LogicalResult ContractionOp::verify() { 730 auto lhsType = getLhsType(); 731 auto rhsType = getRhsType(); 732 auto accType = getAccType(); 733 auto resType = getResultType(); 734 735 // Verify that an indexing map was specified for each vector operand. 736 if (getIndexingMaps().size() != 3) 737 return emitOpError("expected an indexing map for each vector operand"); 738 739 // Verify that each index map has 'numIterators' inputs, no symbols, and 740 // that the number of map outputs equals the rank of its associated 741 // vector operand. 742 unsigned numIterators = getIteratorTypes().getValue().size(); 743 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 744 auto index = it.index(); 745 auto map = it.value(); 746 if (map.getNumSymbols() != 0) 747 return emitOpError("expected indexing map ") 748 << index << " to have no symbols"; 749 auto vectorType = getOperand(index).getType().dyn_cast<VectorType>(); 750 unsigned rank = vectorType ? vectorType.getShape().size() : 0; 751 // Verify that the map has the right number of inputs, outputs, and indices. 752 // This also correctly accounts for (..) -> () for rank-0 results. 753 if (map.getNumDims() != numIterators) 754 return emitOpError("expected indexing map ") 755 << index << " to have " << numIterators << " number of inputs"; 756 if (map.getNumResults() != rank) 757 return emitOpError("expected indexing map ") 758 << index << " to have " << rank << " number of outputs"; 759 if (!map.isProjectedPermutation()) 760 return emitOpError("expected indexing map ") 761 << index << " to be a projected permutation of its inputs"; 762 } 763 764 auto contractingDimMap = getContractingDimMap(); 765 auto batchDimMap = getBatchDimMap(); 766 767 // Verify at least one contracting dimension pair was specified. 768 if (contractingDimMap.empty()) 769 return emitOpError("expected at least one contracting dimension pair"); 770 771 // Verify contracting dimension map was properly constructed. 772 if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) 773 return emitOpError("invalid contracting dimension map"); 774 775 // Verify batch dimension map was properly constructed. 776 if (!verifyDimMap(lhsType, rhsType, batchDimMap)) 777 return emitOpError("invalid batch dimension map"); 778 779 // Verify 'accType' and 'resType' shape. 780 if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, 781 contractingDimMap, batchDimMap))) 782 return failure(); 783 784 // Verify that either two vector masks are set or none are set. 785 auto lhsMaskType = getLHSVectorMaskType(); 786 auto rhsMaskType = getRHSVectorMaskType(); 787 if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) 788 return emitOpError("invalid number of vector masks specified"); 789 if (lhsMaskType && rhsMaskType) { 790 // Verify mask rank == argument rank. 791 if (lhsMaskType.getShape().size() != lhsType.getShape().size() || 792 rhsMaskType.getShape().size() != rhsType.getShape().size()) 793 return emitOpError("invalid vector mask rank"); 794 } 795 796 // Verify supported combining kind. 797 auto vectorType = resType.dyn_cast<VectorType>(); 798 auto elementType = vectorType ? vectorType.getElementType() : resType; 799 if (!isSupportedCombiningKind(getKind(), elementType)) 800 return emitOpError("unsupported contraction type"); 801 802 return success(); 803 } 804 805 ArrayRef<StringRef> ContractionOp::getTraitAttrNames() { 806 static constexpr StringRef names[3] = {::mlir::getIndexingMapsAttrName(), 807 ::mlir::getIteratorTypesAttrName(), 808 ContractionOp::getKindAttrStrName()}; 809 return llvm::makeArrayRef(names); 810 } 811 812 static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { 813 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) 814 if (targetExpr == map.getResult(i)) 815 return i; 816 return -1; 817 } 818 819 static std::vector<std::pair<int64_t, int64_t>> 820 getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes, 821 StringRef targetIteratorTypeName, MLIRContext *context) { 822 std::vector<std::pair<int64_t, int64_t>> dimMap; 823 for (const auto &it : llvm::enumerate(iteratorTypes)) { 824 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 825 if (iteratorTypeName != targetIteratorTypeName) 826 continue; 827 // Search lhs/rhs map results for 'targetExpr'. 828 auto targetExpr = getAffineDimExpr(it.index(), context); 829 int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); 830 int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); 831 if (lhsDim >= 0 && rhsDim >= 0) 832 dimMap.emplace_back(lhsDim, rhsDim); 833 } 834 return dimMap; 835 } 836 837 void ContractionOp::getIterationBounds( 838 SmallVectorImpl<int64_t> &iterationBounds) { 839 auto lhsShape = getLhsType().getShape(); 840 auto resVectorType = getResultType().dyn_cast<VectorType>(); 841 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 842 SmallVector<int64_t, 2> iterationShape; 843 for (const auto &it : llvm::enumerate(getIteratorTypes())) { 844 // Search lhs/rhs map results for 'targetExpr'. 845 auto targetExpr = getAffineDimExpr(it.index(), getContext()); 846 auto iteratorTypeName = it.value().cast<StringAttr>().getValue(); 847 if (iteratorTypeName == getReductionIteratorTypeName()) { 848 // Get reduction dim size from lhs shape (same size in rhsShape). 849 int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); 850 assert(lhsDimIndex >= 0); 851 iterationBounds.push_back(lhsShape[lhsDimIndex]); 852 continue; 853 } 854 // Get parallel dimension size from result shape. 855 int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); 856 assert(resDimIndex >= 0); 857 assert(resVectorType != nullptr); 858 iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); 859 } 860 } 861 862 void ContractionOp::getIterationIndexMap( 863 std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) { 864 unsigned numMaps = getIndexingMaps().size(); 865 iterationIndexMap.resize(numMaps); 866 for (const auto &it : llvm::enumerate(getIndexingMaps())) { 867 auto index = it.index(); 868 auto map = it.value(); 869 for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { 870 auto dim = map.getResult(i).cast<AffineDimExpr>(); 871 iterationIndexMap[index][dim.getPosition()] = i; 872 } 873 } 874 } 875 876 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() { 877 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 878 return getDimMap(indexingMaps, getIteratorTypes(), 879 getReductionIteratorTypeName(), getContext()); 880 } 881 882 std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() { 883 SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps()); 884 return getDimMap(indexingMaps, getIteratorTypes(), 885 getParallelIteratorTypeName(), getContext()); 886 } 887 888 Optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() { 889 SmallVector<int64_t, 4> shape; 890 getIterationBounds(shape); 891 return shape; 892 } 893 894 /// Return a fused vector::ContractionOp which represents a patterns such as: 895 /// 896 /// ```mlir 897 /// %c0 = vector.constant 0: ... 898 /// %c = vector.contract %a, %b, %c0: ... 899 /// %e = add %c, %d: ... 900 /// ``` 901 /// 902 /// by: 903 /// 904 /// ```mlir 905 /// %e = vector.contract %a, %b, %d: ... 906 /// ``` 907 /// 908 /// Return null if the canonicalization does not apply. 909 // TODO: This should be a folding of Add into Contract in core but while they 910 // live in different dialects, it is not possible without unnatural 911 // dependencies. 912 template <typename AddOpType> 913 struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> { 914 using OpRewritePattern<AddOpType>::OpRewritePattern; 915 916 LogicalResult matchAndRewrite(AddOpType addOp, 917 PatternRewriter &rewriter) const override { 918 auto canonicalize = [&](Value maybeContraction, 919 Value otherOperand) -> vector::ContractionOp { 920 vector::ContractionOp contractionOp = 921 dyn_cast_or_null<vector::ContractionOp>( 922 maybeContraction.getDefiningOp()); 923 if (!contractionOp) 924 return vector::ContractionOp(); 925 if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>( 926 contractionOp.getAcc().getDefiningOp())) { 927 if (maybeZero.getValue() == 928 rewriter.getZeroAttr(contractionOp.getAcc().getType())) { 929 BlockAndValueMapping bvm; 930 bvm.map(contractionOp.getAcc(), otherOperand); 931 auto newContraction = 932 cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm)); 933 rewriter.replaceOp(addOp, newContraction.getResult()); 934 return newContraction; 935 } 936 } 937 return vector::ContractionOp(); 938 }; 939 940 Value a = addOp->getOperand(0), b = addOp->getOperand(1); 941 vector::ContractionOp contract = canonicalize(a, b); 942 contract = contract ? contract : canonicalize(b, a); 943 return contract ? success() : failure(); 944 } 945 }; 946 947 void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, 948 MLIRContext *context) { 949 results.add<CanonicalizeContractAdd<arith::AddIOp>, 950 CanonicalizeContractAdd<arith::AddFOp>>(context); 951 } 952 953 //===----------------------------------------------------------------------===// 954 // ExtractElementOp 955 //===----------------------------------------------------------------------===// 956 957 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 958 Value source) { 959 result.addOperands({source}); 960 result.addTypes(source.getType().cast<VectorType>().getElementType()); 961 } 962 963 void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, 964 Value source, Value position) { 965 result.addOperands({source, position}); 966 result.addTypes(source.getType().cast<VectorType>().getElementType()); 967 } 968 969 LogicalResult vector::ExtractElementOp::verify() { 970 VectorType vectorType = getVectorType(); 971 if (vectorType.getRank() == 0) { 972 if (getPosition()) 973 return emitOpError("expected position to be empty with 0-D vector"); 974 return success(); 975 } 976 if (vectorType.getRank() != 1) 977 return emitOpError("unexpected >1 vector rank"); 978 if (!getPosition()) 979 return emitOpError("expected position for 1-D vector"); 980 return success(); 981 } 982 983 OpFoldResult vector::ExtractElementOp::fold(ArrayRef<Attribute> operands) { 984 // Skip the 0-D vector here now. 985 if (operands.size() < 2) 986 return {}; 987 988 Attribute src = operands[0]; 989 Attribute pos = operands[1]; 990 991 // Fold extractelement (splat X) -> X. 992 if (auto splat = getVector().getDefiningOp<vector::SplatOp>()) 993 return splat.getInput(); 994 995 if (!pos || !src) 996 return {}; 997 998 auto srcElements = src.cast<DenseElementsAttr>().getValues<Attribute>(); 999 1000 auto attr = pos.dyn_cast<IntegerAttr>(); 1001 uint64_t posIdx = attr.getInt(); 1002 1003 return srcElements[posIdx]; 1004 } 1005 1006 //===----------------------------------------------------------------------===// 1007 // ExtractOp 1008 //===----------------------------------------------------------------------===// 1009 1010 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1011 Value source, ArrayRef<int64_t> position) { 1012 build(builder, result, source, getVectorSubscriptAttr(builder, position)); 1013 } 1014 1015 // Convenience builder which assumes the values are constant indices. 1016 void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, 1017 Value source, ValueRange position) { 1018 SmallVector<int64_t, 4> positionConstants = 1019 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1020 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1021 })); 1022 build(builder, result, source, positionConstants); 1023 } 1024 1025 LogicalResult 1026 ExtractOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1027 ValueRange operands, DictionaryAttr attributes, 1028 RegionRange, 1029 SmallVectorImpl<Type> &inferredReturnTypes) { 1030 ExtractOp::Adaptor op(operands, attributes); 1031 auto vectorType = op.getVector().getType().cast<VectorType>(); 1032 if (static_cast<int64_t>(op.getPosition().size()) == vectorType.getRank()) { 1033 inferredReturnTypes.push_back(vectorType.getElementType()); 1034 } else { 1035 auto n = 1036 std::min<size_t>(op.getPosition().size(), vectorType.getRank() - 1); 1037 inferredReturnTypes.push_back(VectorType::get( 1038 vectorType.getShape().drop_front(n), vectorType.getElementType())); 1039 } 1040 return success(); 1041 } 1042 1043 bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { 1044 // Allow extracting 1-element vectors instead of scalars. 1045 auto isCompatible = [](TypeRange l, TypeRange r) { 1046 auto vectorType = l.front().dyn_cast<VectorType>(); 1047 return vectorType && vectorType.getShape().equals({1}) && 1048 vectorType.getElementType() == r.front(); 1049 }; 1050 if (l.size() == 1 && r.size() == 1 && 1051 (isCompatible(l, r) || isCompatible(r, l))) 1052 return true; 1053 return l == r; 1054 } 1055 1056 LogicalResult vector::ExtractOp::verify() { 1057 auto positionAttr = getPosition().getValue(); 1058 if (positionAttr.size() > static_cast<unsigned>(getVectorType().getRank())) 1059 return emitOpError( 1060 "expected position attribute of rank smaller than vector rank"); 1061 for (const auto &en : llvm::enumerate(positionAttr)) { 1062 auto attr = en.value().dyn_cast<IntegerAttr>(); 1063 if (!attr || attr.getInt() < 0 || 1064 attr.getInt() >= getVectorType().getDimSize(en.index())) 1065 return emitOpError("expected position attribute #") 1066 << (en.index() + 1) 1067 << " to be a non-negative integer smaller than the corresponding " 1068 "vector dimension"; 1069 } 1070 return success(); 1071 } 1072 1073 template <typename IntType> 1074 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 1075 return llvm::to_vector<4>(llvm::map_range( 1076 arrayAttr.getAsRange<IntegerAttr>(), 1077 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 1078 } 1079 1080 /// Fold the result of chains of ExtractOp in place by simply concatenating the 1081 /// positions. 1082 static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { 1083 if (!extractOp.getVector().getDefiningOp<ExtractOp>()) 1084 return failure(); 1085 1086 SmallVector<int64_t, 4> globalPosition; 1087 ExtractOp currentOp = extractOp; 1088 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1089 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1090 while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) { 1091 currentOp = nextOp; 1092 auto extrPos = extractVector<int64_t>(currentOp.getPosition()); 1093 globalPosition.append(extrPos.rbegin(), extrPos.rend()); 1094 } 1095 extractOp.setOperand(currentOp.getVector()); 1096 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1097 OpBuilder b(extractOp.getContext()); 1098 std::reverse(globalPosition.begin(), globalPosition.end()); 1099 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1100 b.getI64ArrayAttr(globalPosition)); 1101 return success(); 1102 } 1103 1104 namespace { 1105 /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. 1106 /// Walk back a chain of InsertOp/TransposeOp until we hit a match. 1107 /// Compose TransposeOp permutations as we walk back. 1108 /// This helper class keeps an updated extraction position `extractPosition` 1109 /// with extra trailing sentinels. 1110 /// The sentinels encode the internal transposition status of the result vector. 1111 /// As we iterate, extractPosition is permuted and updated. 1112 class ExtractFromInsertTransposeChainState { 1113 public: 1114 ExtractFromInsertTransposeChainState(ExtractOp e); 1115 1116 /// Iterate over producing insert and transpose ops until we find a fold. 1117 Value fold(); 1118 1119 private: 1120 /// Return true if the vector at position `a` is contained within the vector 1121 /// at position `b`. Under insert/extract semantics, this is the same as `a` 1122 /// is a prefix of `b`. 1123 template <typename ContainerA, typename ContainerB> 1124 bool isContainedWithin(const ContainerA &a, const ContainerB &b) { 1125 return a.size() <= b.size() && 1126 std::equal(a.begin(), a.begin() + a.size(), b.begin()); 1127 } 1128 1129 /// Return true if the vector at position `a` intersects the vector at 1130 /// position `b`. Under insert/extract semantics, this is the same as equality 1131 /// of all entries of `a` that are >=0 with the corresponding entries of b. 1132 /// Comparison is on the common prefix (i.e. zip). 1133 template <typename ContainerA, typename ContainerB> 1134 bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { 1135 for (auto it : llvm::zip(a, b)) { 1136 if (std::get<0>(it) < 0 || std::get<0>(it) < 0) 1137 continue; 1138 if (std::get<0>(it) != std::get<1>(it)) 1139 return false; 1140 } 1141 return true; 1142 } 1143 1144 /// Folding is only possible in the absence of an internal permutation in the 1145 /// result vector. 1146 bool canFold() { 1147 return (sentinels == 1148 makeArrayRef(extractPosition).drop_front(extractedRank)); 1149 } 1150 1151 // Helper to get the next defining op of interest. 1152 void updateStateForNextIteration(Value v) { 1153 nextInsertOp = v.getDefiningOp<vector::InsertOp>(); 1154 nextTransposeOp = v.getDefiningOp<vector::TransposeOp>(); 1155 }; 1156 1157 // Case 1. If we hit a transpose, just compose the map and iterate. 1158 // Invariant: insert + transpose do not change rank, we can always compose. 1159 LogicalResult handleTransposeOp(); 1160 1161 // Case 2: the insert position matches extractPosition exactly, early return. 1162 LogicalResult handleInsertOpWithMatchingPos(Value &res); 1163 1164 /// Case 3: if the insert position is a prefix of extractPosition, extract a 1165 /// portion of the source of the insert. 1166 /// Example: 1167 /// ``` 1168 /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> 1169 /// // extractPosition == [1, 2, 3] 1170 /// %ext = vector.extract %ins[1, 0]: vector<3x4x5> 1171 /// // can fold to vector.extract %source[0, 3] 1172 /// %ext = vector.extract %source[3]: vector<5x6> 1173 /// ``` 1174 /// To traverse through %source, we need to set the leading dims to 0 and 1175 /// drop the extra leading dims. 1176 /// This method updates the internal state. 1177 LogicalResult handleInsertOpWithPrefixPos(Value &res); 1178 1179 /// Try to fold in place to extract(source, extractPosition) and return the 1180 /// folded result. Return null if folding is not possible (e.g. due to an 1181 /// internal tranposition in the result). 1182 Value tryToFoldExtractOpInPlace(Value source); 1183 1184 ExtractOp extractOp; 1185 int64_t vectorRank; 1186 int64_t extractedRank; 1187 1188 InsertOp nextInsertOp; 1189 TransposeOp nextTransposeOp; 1190 1191 /// Sentinel values that encode the internal permutation status of the result. 1192 /// They are set to (-1, ... , -k) at the beginning and appended to 1193 /// `extractPosition`. 1194 /// In the end, the tail of `extractPosition` must be exactly `sentinels` to 1195 /// ensure that there is no internal transposition. 1196 /// Internal transposition cannot be accounted for with a folding pattern. 1197 // TODO: We could relax the internal transposition with an extra transposition 1198 // operation in a future canonicalizer. 1199 SmallVector<int64_t> sentinels; 1200 SmallVector<int64_t> extractPosition; 1201 }; 1202 } // namespace 1203 1204 ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( 1205 ExtractOp e) 1206 : extractOp(e), vectorRank(extractOp.getVectorType().getRank()), 1207 extractedRank(extractOp.getPosition().size()) { 1208 assert(vectorRank >= extractedRank && "extracted pos overflow"); 1209 sentinels.reserve(vectorRank - extractedRank); 1210 for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) 1211 sentinels.push_back(-(i + 1)); 1212 extractPosition = extractVector<int64_t>(extractOp.getPosition()); 1213 llvm::append_range(extractPosition, sentinels); 1214 } 1215 1216 // Case 1. If we hit a transpose, just compose the map and iterate. 1217 // Invariant: insert + transpose do not change rank, we can always compose. 1218 LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { 1219 if (!nextTransposeOp) 1220 return failure(); 1221 auto permutation = extractVector<unsigned>(nextTransposeOp.getTransp()); 1222 AffineMap m = inversePermutation( 1223 AffineMap::getPermutationMap(permutation, extractOp.getContext())); 1224 extractPosition = applyPermutationMap(m, makeArrayRef(extractPosition)); 1225 return success(); 1226 } 1227 1228 // Case 2: the insert position matches extractPosition exactly, early return. 1229 LogicalResult 1230 ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( 1231 Value &res) { 1232 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1233 if (makeArrayRef(insertedPos) != 1234 llvm::makeArrayRef(extractPosition).take_front(extractedRank)) 1235 return failure(); 1236 // Case 2.a. early-exit fold. 1237 res = nextInsertOp.getSource(); 1238 // Case 2.b. if internal transposition is present, canFold will be false. 1239 return success(); 1240 } 1241 1242 /// Case 3: if inserted position is a prefix of extractPosition, 1243 /// extract a portion of the source of the insertion. 1244 /// This method updates the internal state. 1245 LogicalResult 1246 ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { 1247 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1248 if (!isContainedWithin(insertedPos, extractPosition)) 1249 return failure(); 1250 // Set leading dims to zero. 1251 std::fill_n(extractPosition.begin(), insertedPos.size(), 0); 1252 // Drop extra leading dims. 1253 extractPosition.erase(extractPosition.begin(), 1254 extractPosition.begin() + insertedPos.size()); 1255 extractedRank = extractPosition.size() - sentinels.size(); 1256 // Case 3.a. early-exit fold (break and delegate to post-while path). 1257 res = nextInsertOp.getSource(); 1258 // Case 3.b. if internal transposition is present, canFold will be false. 1259 return success(); 1260 } 1261 1262 /// Try to fold in place to extract(source, extractPosition) and return the 1263 /// folded result. Return null if folding is not possible (e.g. due to an 1264 /// internal tranposition in the result). 1265 Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( 1266 Value source) { 1267 // If we can't fold (either internal transposition, or nothing to fold), bail. 1268 bool nothingToFold = (source == extractOp.getVector()); 1269 if (nothingToFold || !canFold()) 1270 return Value(); 1271 // Otherwise, fold by updating the op inplace and return its result. 1272 OpBuilder b(extractOp.getContext()); 1273 extractOp->setAttr( 1274 extractOp.getPositionAttrName(), 1275 b.getI64ArrayAttr( 1276 makeArrayRef(extractPosition).take_front(extractedRank))); 1277 extractOp.getVectorMutable().assign(source); 1278 return extractOp.getResult(); 1279 } 1280 1281 /// Iterate over producing insert and transpose ops until we find a fold. 1282 Value ExtractFromInsertTransposeChainState::fold() { 1283 Value valueToExtractFrom = extractOp.getVector(); 1284 updateStateForNextIteration(valueToExtractFrom); 1285 while (nextInsertOp || nextTransposeOp) { 1286 // Case 1. If we hit a transpose, just compose the map and iterate. 1287 // Invariant: insert + transpose do not change rank, we can always compose. 1288 if (succeeded(handleTransposeOp())) { 1289 valueToExtractFrom = nextTransposeOp.getVector(); 1290 updateStateForNextIteration(valueToExtractFrom); 1291 continue; 1292 } 1293 1294 Value result; 1295 // Case 2: the position match exactly. 1296 if (succeeded(handleInsertOpWithMatchingPos(result))) 1297 return result; 1298 1299 // Case 3: if the inserted position is a prefix of extractPosition, we can 1300 // just extract a portion of the source of the insert. 1301 if (succeeded(handleInsertOpWithPrefixPos(result))) 1302 return tryToFoldExtractOpInPlace(result); 1303 1304 // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel 1305 // values. This is a more difficult case and we bail. 1306 auto insertedPos = extractVector<int64_t>(nextInsertOp.getPosition()); 1307 if (isContainedWithin(extractPosition, insertedPos) || 1308 intersectsWhereNonNegative(extractPosition, insertedPos)) 1309 return Value(); 1310 1311 // Case 5: No intersection, we forward the extract to insertOp.dest(). 1312 valueToExtractFrom = nextInsertOp.getDest(); 1313 updateStateForNextIteration(valueToExtractFrom); 1314 } 1315 // If after all this we can fold, go for it. 1316 return tryToFoldExtractOpInPlace(valueToExtractFrom); 1317 } 1318 1319 /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. 1320 static Value foldExtractFromBroadcast(ExtractOp extractOp) { 1321 Operation *defOp = extractOp.getVector().getDefiningOp(); 1322 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1323 return Value(); 1324 Value source = defOp->getOperand(0); 1325 if (extractOp.getType() == source.getType()) 1326 return source; 1327 auto getRank = [](Type type) { 1328 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1329 }; 1330 unsigned broadcastSrcRank = getRank(source.getType()); 1331 unsigned extractResultRank = getRank(extractOp.getType()); 1332 if (extractResultRank >= broadcastSrcRank) 1333 return Value(); 1334 // Check that the dimension of the result haven't been broadcasted. 1335 auto extractVecType = extractOp.getType().dyn_cast<VectorType>(); 1336 auto broadcastVecType = source.getType().dyn_cast<VectorType>(); 1337 if (extractVecType && broadcastVecType && 1338 extractVecType.getShape() != 1339 broadcastVecType.getShape().take_back(extractResultRank)) 1340 return Value(); 1341 auto extractPos = extractVector<int64_t>(extractOp.getPosition()); 1342 unsigned rankDiff = broadcastSrcRank - extractResultRank; 1343 extractPos.erase(extractPos.begin(), 1344 std::next(extractPos.begin(), extractPos.size() - rankDiff)); 1345 extractOp.setOperand(source); 1346 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1347 OpBuilder b(extractOp.getContext()); 1348 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1349 b.getI64ArrayAttr(extractPos)); 1350 return extractOp.getResult(); 1351 } 1352 1353 // Fold extractOp with source coming from ShapeCast op. 1354 static Value foldExtractFromShapeCast(ExtractOp extractOp) { 1355 auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>(); 1356 if (!shapeCastOp) 1357 return Value(); 1358 // Get the nth dimension size starting from lowest dimension. 1359 auto getDimReverse = [](VectorType type, int64_t n) { 1360 return type.getShape().take_back(n + 1).front(); 1361 }; 1362 int64_t destinationRank = 1363 extractOp.getType().isa<VectorType>() 1364 ? extractOp.getType().cast<VectorType>().getRank() 1365 : 0; 1366 if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) 1367 return Value(); 1368 if (destinationRank > 0) { 1369 auto destinationType = extractOp.getResult().getType().cast<VectorType>(); 1370 for (int64_t i = 0; i < destinationRank; i++) { 1371 // The lowest dimension of of the destination must match the lowest 1372 // dimension of the shapecast op source. 1373 // TODO: This case could be support in a canonicalization pattern. 1374 if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != 1375 getDimReverse(destinationType, i)) 1376 return Value(); 1377 } 1378 } 1379 // Extract the strides associated with the extract op vector source. Then use 1380 // this to calculate a linearized position for the extract. 1381 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1382 std::reverse(extractedPos.begin(), extractedPos.end()); 1383 SmallVector<int64_t, 4> strides; 1384 int64_t stride = 1; 1385 for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { 1386 strides.push_back(stride); 1387 stride *= getDimReverse(extractOp.getVectorType(), i + destinationRank); 1388 } 1389 1390 int64_t position = linearize(extractedPos, strides); 1391 // Then extract the strides associated to the shapeCast op vector source and 1392 // delinearize the position using those strides. 1393 SmallVector<int64_t, 4> newStrides; 1394 int64_t numDimension = 1395 shapeCastOp.getSourceVectorType().getRank() - destinationRank; 1396 stride = 1; 1397 for (int64_t i = 0; i < numDimension; i++) { 1398 newStrides.push_back(stride); 1399 stride *= 1400 getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); 1401 } 1402 std::reverse(newStrides.begin(), newStrides.end()); 1403 SmallVector<int64_t, 4> newPosition = delinearize(newStrides, position); 1404 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1405 OpBuilder b(extractOp.getContext()); 1406 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1407 b.getI64ArrayAttr(newPosition)); 1408 extractOp.setOperand(shapeCastOp.getSource()); 1409 return extractOp.getResult(); 1410 } 1411 1412 /// Fold an ExtractOp from ExtractStridedSliceOp. 1413 static Value foldExtractFromExtractStrided(ExtractOp extractOp) { 1414 auto extractStridedSliceOp = 1415 extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>(); 1416 if (!extractStridedSliceOp) 1417 return Value(); 1418 // Return if 'extractStridedSliceOp' has non-unit strides. 1419 if (extractStridedSliceOp.hasNonUnitStrides()) 1420 return Value(); 1421 1422 // Trim offsets for dimensions fully extracted. 1423 auto sliceOffsets = 1424 extractVector<int64_t>(extractStridedSliceOp.getOffsets()); 1425 while (!sliceOffsets.empty()) { 1426 size_t lastOffset = sliceOffsets.size() - 1; 1427 if (sliceOffsets.back() != 0 || 1428 extractStridedSliceOp.getType().getDimSize(lastOffset) != 1429 extractStridedSliceOp.getVectorType().getDimSize(lastOffset)) 1430 break; 1431 sliceOffsets.pop_back(); 1432 } 1433 unsigned destinationRank = 0; 1434 if (auto vecType = extractOp.getType().dyn_cast<VectorType>()) 1435 destinationRank = vecType.getRank(); 1436 // The dimensions of the result need to be untouched by the 1437 // extractStridedSlice op. 1438 if (destinationRank > 1439 extractStridedSliceOp.getVectorType().getRank() - sliceOffsets.size()) 1440 return Value(); 1441 auto extractedPos = extractVector<int64_t>(extractOp.getPosition()); 1442 assert(extractedPos.size() >= sliceOffsets.size()); 1443 for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) 1444 extractedPos[i] = extractedPos[i] + sliceOffsets[i]; 1445 extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); 1446 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1447 OpBuilder b(extractOp.getContext()); 1448 extractOp->setAttr(ExtractOp::getPositionAttrStrName(), 1449 b.getI64ArrayAttr(extractedPos)); 1450 return extractOp.getResult(); 1451 } 1452 1453 /// Fold extract_op fed from a chain of insertStridedSlice ops. 1454 static Value foldExtractStridedOpFromInsertChain(ExtractOp op) { 1455 int64_t destinationRank = op.getType().isa<VectorType>() 1456 ? op.getType().cast<VectorType>().getRank() 1457 : 0; 1458 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 1459 while (insertOp) { 1460 int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - 1461 insertOp.getSourceVectorType().getRank(); 1462 if (destinationRank > insertOp.getSourceVectorType().getRank()) 1463 return Value(); 1464 auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets()); 1465 auto extractOffsets = extractVector<int64_t>(op.getPosition()); 1466 1467 if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { 1468 return attr.cast<IntegerAttr>().getInt() != 1; 1469 })) 1470 return Value(); 1471 bool disjoint = false; 1472 SmallVector<int64_t, 4> offsetDiffs; 1473 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 1474 int64_t start = insertOffsets[dim]; 1475 int64_t size = 1476 (dim < insertRankDiff) 1477 ? 1 1478 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); 1479 int64_t end = start + size; 1480 int64_t offset = extractOffsets[dim]; 1481 // Check if the start of the extract offset is in the interval inserted. 1482 if (start <= offset && offset < end) { 1483 if (dim >= insertRankDiff) 1484 offsetDiffs.push_back(offset - start); 1485 continue; 1486 } 1487 disjoint = true; 1488 break; 1489 } 1490 // The extract element chunk overlap with the vector inserted. 1491 if (!disjoint) { 1492 // If any of the inner dimensions are only partially inserted we have a 1493 // partial overlap. 1494 int64_t srcRankDiff = 1495 insertOp.getSourceVectorType().getRank() - destinationRank; 1496 for (int64_t i = 0; i < destinationRank; i++) { 1497 if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != 1498 insertOp.getDestVectorType().getDimSize(i + srcRankDiff + 1499 insertRankDiff)) 1500 return Value(); 1501 } 1502 op.getVectorMutable().assign(insertOp.getSource()); 1503 // OpBuilder is only used as a helper to build an I64ArrayAttr. 1504 OpBuilder b(op.getContext()); 1505 op->setAttr(ExtractOp::getPositionAttrStrName(), 1506 b.getI64ArrayAttr(offsetDiffs)); 1507 return op.getResult(); 1508 } 1509 // If the chunk extracted is disjoint from the chunk inserted, keep 1510 // looking in the insert chain. 1511 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 1512 } 1513 return Value(); 1514 } 1515 1516 OpFoldResult ExtractOp::fold(ArrayRef<Attribute>) { 1517 if (getPosition().empty()) 1518 return getVector(); 1519 if (succeeded(foldExtractOpFromExtractChain(*this))) 1520 return getResult(); 1521 if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) 1522 return res; 1523 if (auto res = foldExtractFromBroadcast(*this)) 1524 return res; 1525 if (auto res = foldExtractFromShapeCast(*this)) 1526 return res; 1527 if (auto val = foldExtractFromExtractStrided(*this)) 1528 return val; 1529 if (auto val = foldExtractStridedOpFromInsertChain(*this)) 1530 return val; 1531 return OpFoldResult(); 1532 } 1533 1534 namespace { 1535 1536 // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. 1537 class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> { 1538 public: 1539 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1540 1541 LogicalResult matchAndRewrite(ExtractOp extractOp, 1542 PatternRewriter &rewriter) const override { 1543 Operation *defOp = extractOp.getVector().getDefiningOp(); 1544 if (!defOp || !isa<vector::BroadcastOp, SplatOp>(defOp)) 1545 return failure(); 1546 1547 Value source = defOp->getOperand(0); 1548 if (extractOp.getType() == source.getType()) 1549 return failure(); 1550 auto getRank = [](Type type) { 1551 return type.isa<VectorType>() ? type.cast<VectorType>().getRank() : 0; 1552 }; 1553 unsigned broadcastSrcRank = getRank(source.getType()); 1554 unsigned extractResultRank = getRank(extractOp.getType()); 1555 // We only consider the case where the rank of the source is less than or 1556 // equal to the rank of the extract dst. The other cases are handled in the 1557 // folding patterns. 1558 if (extractResultRank < broadcastSrcRank) 1559 return failure(); 1560 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1561 extractOp, extractOp.getType(), source); 1562 return success(); 1563 } 1564 }; 1565 1566 // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. 1567 class ExtractOpConstantFolder final : public OpRewritePattern<ExtractOp> { 1568 public: 1569 using OpRewritePattern<ExtractOp>::OpRewritePattern; 1570 1571 LogicalResult matchAndRewrite(ExtractOp extractOp, 1572 PatternRewriter &rewriter) const override { 1573 // Return if 'extractStridedSliceOp' operand is not defined by a 1574 // ConstantOp. 1575 auto constantOp = extractOp.getVector().getDefiningOp<arith::ConstantOp>(); 1576 if (!constantOp) 1577 return failure(); 1578 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 1579 if (!dense) 1580 return failure(); 1581 Attribute newAttr = dense.getSplatValue<Attribute>(); 1582 if (auto vecDstType = extractOp.getType().dyn_cast<VectorType>()) 1583 newAttr = DenseElementsAttr::get(vecDstType, newAttr); 1584 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractOp, newAttr); 1585 return success(); 1586 } 1587 }; 1588 1589 } // namespace 1590 1591 void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, 1592 MLIRContext *context) { 1593 results.add<ExtractOpConstantFolder, ExtractOpFromBroadcast>(context); 1594 } 1595 1596 static void populateFromInt64AttrArray(ArrayAttr arrayAttr, 1597 SmallVectorImpl<int64_t> &results) { 1598 for (auto attr : arrayAttr) 1599 results.push_back(attr.cast<IntegerAttr>().getInt()); 1600 } 1601 1602 //===----------------------------------------------------------------------===// 1603 // ExtractMapOp 1604 //===----------------------------------------------------------------------===// 1605 1606 void ExtractMapOp::build(OpBuilder &builder, OperationState &result, 1607 Value vector, ValueRange ids, 1608 ArrayRef<int64_t> multiplicity, 1609 AffineMap permutationMap) { 1610 assert(ids.size() == multiplicity.size() && 1611 ids.size() == permutationMap.getNumResults()); 1612 assert(permutationMap.isProjectedPermutation()); 1613 VectorType type = vector.getType().cast<VectorType>(); 1614 SmallVector<int64_t, 4> newShape(type.getShape().begin(), 1615 type.getShape().end()); 1616 for (unsigned i = 0, e = permutationMap.getNumResults(); i < e; i++) { 1617 AffineExpr expr = permutationMap.getResult(i); 1618 auto dim = expr.cast<AffineDimExpr>(); 1619 newShape[dim.getPosition()] = newShape[dim.getPosition()] / multiplicity[i]; 1620 } 1621 VectorType resultType = VectorType::get(newShape, type.getElementType()); 1622 ExtractMapOp::build(builder, result, resultType, vector, ids); 1623 } 1624 1625 LogicalResult ExtractMapOp::verify() { 1626 if (getSourceVectorType().getRank() != getResultType().getRank()) 1627 return emitOpError("expected source and destination vectors of same rank"); 1628 unsigned numId = 0; 1629 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; ++i) { 1630 if (getSourceVectorType().getDimSize(i) % getResultType().getDimSize(i) != 1631 0) 1632 return emitOpError("source vector dimensions must be a multiple of " 1633 "destination vector dimensions"); 1634 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1635 numId++; 1636 } 1637 if (numId != getIds().size()) 1638 return emitOpError("expected number of ids must match the number of " 1639 "dimensions distributed"); 1640 return success(); 1641 } 1642 1643 OpFoldResult ExtractMapOp::fold(ArrayRef<Attribute> operands) { 1644 auto insert = getVector().getDefiningOp<vector::InsertMapOp>(); 1645 if (insert == nullptr || getType() != insert.getVector().getType() || 1646 getIds() != insert.getIds()) 1647 return {}; 1648 return insert.getVector(); 1649 } 1650 1651 void ExtractMapOp::getMultiplicity(SmallVectorImpl<int64_t> &multiplicity) { 1652 assert(multiplicity.empty()); 1653 for (unsigned i = 0, e = getSourceVectorType().getRank(); i < e; i++) { 1654 if (getSourceVectorType().getDimSize(i) != getResultType().getDimSize(i)) 1655 multiplicity.push_back(getSourceVectorType().getDimSize(i) / 1656 getResultType().getDimSize(i)); 1657 } 1658 } 1659 1660 template <typename MapOp> 1661 AffineMap calculateImplicitMap(MapOp op) { 1662 SmallVector<AffineExpr, 4> perm; 1663 // Check which dimension have a multiplicity greater than 1 and associated 1664 // them to the IDs in order. 1665 for (unsigned i = 0, e = op.getSourceVectorType().getRank(); i < e; i++) { 1666 if (op.getSourceVectorType().getDimSize(i) != 1667 op.getResultType().getDimSize(i)) 1668 perm.push_back(getAffineDimExpr(i, op.getContext())); 1669 } 1670 auto map = AffineMap::get(op.getSourceVectorType().getRank(), 0, perm, 1671 op.getContext()); 1672 return map; 1673 } 1674 1675 AffineMap ExtractMapOp::map() { return calculateImplicitMap(*this); } 1676 1677 //===----------------------------------------------------------------------===// 1678 // FmaOp 1679 //===----------------------------------------------------------------------===// 1680 1681 Optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() { 1682 return llvm::to_vector<4>(getVectorType().getShape()); 1683 } 1684 1685 //===----------------------------------------------------------------------===// 1686 // BroadcastOp 1687 //===----------------------------------------------------------------------===// 1688 1689 BroadcastableToResult 1690 mlir::vector::isBroadcastableTo(Type srcType, VectorType dstVectorType, 1691 std::pair<int, int> *mismatchingDims) { 1692 // Broadcast scalar to vector of the same element type. 1693 if (srcType.isIntOrIndexOrFloat() && dstVectorType && 1694 getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) 1695 return BroadcastableToResult::Success; 1696 // From now on, only vectors broadcast. 1697 VectorType srcVectorType = srcType.dyn_cast<VectorType>(); 1698 if (!srcVectorType) 1699 return BroadcastableToResult::SourceTypeNotAVector; 1700 1701 int64_t srcRank = srcVectorType.getRank(); 1702 int64_t dstRank = dstVectorType.getRank(); 1703 if (srcRank > dstRank) 1704 return BroadcastableToResult::SourceRankHigher; 1705 // Source has an exact match or singleton value for all trailing dimensions 1706 // (all leading dimensions are simply duplicated). 1707 int64_t lead = dstRank - srcRank; 1708 for (int64_t r = 0; r < srcRank; ++r) { 1709 int64_t srcDim = srcVectorType.getDimSize(r); 1710 int64_t dstDim = dstVectorType.getDimSize(lead + r); 1711 if (srcDim != 1 && srcDim != dstDim) { 1712 if (mismatchingDims) { 1713 mismatchingDims->first = srcDim; 1714 mismatchingDims->second = dstDim; 1715 } 1716 return BroadcastableToResult::DimensionMismatch; 1717 } 1718 } 1719 1720 return BroadcastableToResult::Success; 1721 } 1722 1723 LogicalResult BroadcastOp::verify() { 1724 std::pair<int, int> mismatchingDims; 1725 BroadcastableToResult res = 1726 isBroadcastableTo(getSourceType(), getVectorType(), &mismatchingDims); 1727 if (res == BroadcastableToResult::Success) 1728 return success(); 1729 if (res == BroadcastableToResult::SourceRankHigher) 1730 return emitOpError("source rank higher than destination rank"); 1731 if (res == BroadcastableToResult::DimensionMismatch) 1732 return emitOpError("dimension mismatch (") 1733 << mismatchingDims.first << " vs. " << mismatchingDims.second << ")"; 1734 if (res == BroadcastableToResult::SourceTypeNotAVector) 1735 return emitOpError("source type is not a vector"); 1736 llvm_unreachable("unexpected vector.broadcast op error"); 1737 } 1738 1739 OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) { 1740 if (getSourceType() == getVectorType()) 1741 return getSource(); 1742 if (!operands[0]) 1743 return {}; 1744 auto vectorType = getVectorType(); 1745 if (operands[0].getType().isIntOrIndexOrFloat()) 1746 return DenseElementsAttr::get(vectorType, operands[0]); 1747 if (auto attr = operands[0].dyn_cast<SplatElementsAttr>()) 1748 return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>()); 1749 return {}; 1750 } 1751 1752 namespace { 1753 1754 // Fold broadcast1(broadcast2(x)) into broadcast1(x). 1755 struct BroadcastFolder : public OpRewritePattern<BroadcastOp> { 1756 using OpRewritePattern<BroadcastOp>::OpRewritePattern; 1757 1758 LogicalResult matchAndRewrite(BroadcastOp broadcastOp, 1759 PatternRewriter &rewriter) const override { 1760 auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>(); 1761 if (!srcBroadcast) 1762 return failure(); 1763 rewriter.replaceOpWithNewOp<BroadcastOp>( 1764 broadcastOp, broadcastOp.getVectorType(), srcBroadcast.getSource()); 1765 return success(); 1766 } 1767 }; 1768 } // namespace 1769 1770 void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, 1771 MLIRContext *context) { 1772 // BroadcastToShapeCast is not a default canonicalization, it is opt-in by 1773 // calling `populateCastAwayVectorLeadingOneDimPatterns` 1774 results.add<BroadcastFolder>(context); 1775 } 1776 1777 //===----------------------------------------------------------------------===// 1778 // ShuffleOp 1779 //===----------------------------------------------------------------------===// 1780 1781 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value v1, 1782 Value v2, ArrayRef<int64_t> mask) { 1783 build(builder, result, v1, v2, getVectorSubscriptAttr(builder, mask)); 1784 } 1785 1786 LogicalResult ShuffleOp::verify() { 1787 VectorType resultType = getVectorType(); 1788 VectorType v1Type = getV1VectorType(); 1789 VectorType v2Type = getV2VectorType(); 1790 // Verify ranks. 1791 int64_t resRank = resultType.getRank(); 1792 int64_t v1Rank = v1Type.getRank(); 1793 int64_t v2Rank = v2Type.getRank(); 1794 if (resRank != v1Rank || v1Rank != v2Rank) 1795 return emitOpError("rank mismatch"); 1796 // Verify all but leading dimension sizes. 1797 for (int64_t r = 1; r < v1Rank; ++r) { 1798 int64_t resDim = resultType.getDimSize(r); 1799 int64_t v1Dim = v1Type.getDimSize(r); 1800 int64_t v2Dim = v2Type.getDimSize(r); 1801 if (resDim != v1Dim || v1Dim != v2Dim) 1802 return emitOpError("dimension mismatch"); 1803 } 1804 // Verify mask length. 1805 auto maskAttr = getMask().getValue(); 1806 int64_t maskLength = maskAttr.size(); 1807 if (maskLength <= 0) 1808 return emitOpError("invalid mask length"); 1809 if (maskLength != resultType.getDimSize(0)) 1810 return emitOpError("mask length mismatch"); 1811 // Verify all indices. 1812 int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0); 1813 for (const auto &en : llvm::enumerate(maskAttr)) { 1814 auto attr = en.value().dyn_cast<IntegerAttr>(); 1815 if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize) 1816 return emitOpError("mask index #") << (en.index() + 1) << " out of range"; 1817 } 1818 return success(); 1819 } 1820 1821 LogicalResult 1822 ShuffleOp::inferReturnTypes(MLIRContext *, Optional<Location>, 1823 ValueRange operands, DictionaryAttr attributes, 1824 RegionRange, 1825 SmallVectorImpl<Type> &inferredReturnTypes) { 1826 ShuffleOp::Adaptor op(operands, attributes); 1827 auto v1Type = op.getV1().getType().cast<VectorType>(); 1828 // Construct resulting type: leading dimension matches mask length, 1829 // all trailing dimensions match the operands. 1830 SmallVector<int64_t, 4> shape; 1831 shape.reserve(v1Type.getRank()); 1832 shape.push_back(std::max<size_t>(1, op.getMask().size())); 1833 llvm::append_range(shape, v1Type.getShape().drop_front()); 1834 inferredReturnTypes.push_back( 1835 VectorType::get(shape, v1Type.getElementType())); 1836 return success(); 1837 } 1838 1839 static bool isStepIndexArray(ArrayAttr idxArr, uint64_t begin, size_t width) { 1840 uint64_t expected = begin; 1841 return idxArr.size() == width && 1842 llvm::all_of(idxArr.getAsValueRange<IntegerAttr>(), 1843 [&expected](auto attr) { 1844 return attr.getZExtValue() == expected++; 1845 }); 1846 } 1847 1848 OpFoldResult vector::ShuffleOp::fold(ArrayRef<Attribute> operands) { 1849 // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 1850 if (!getV1VectorType().isScalable() && 1851 isStepIndexArray(getMask(), 0, getV1VectorType().getDimSize(0))) 1852 return getV1(); 1853 // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 1854 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && 1855 isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), 1856 getV2VectorType().getDimSize(0))) 1857 return getV2(); 1858 1859 Attribute lhs = operands.front(), rhs = operands.back(); 1860 if (!lhs || !rhs) 1861 return {}; 1862 1863 auto lhsType = lhs.getType().cast<VectorType>(); 1864 // Only support 1-D for now to avoid complicated n-D DenseElementsAttr 1865 // manipulation. 1866 if (lhsType.getRank() != 1) 1867 return {}; 1868 int64_t lhsSize = lhsType.getDimSize(0); 1869 1870 SmallVector<Attribute> results; 1871 auto lhsElements = lhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1872 auto rhsElements = rhs.cast<DenseElementsAttr>().getValues<Attribute>(); 1873 for (const auto &index : this->getMask().getAsValueRange<IntegerAttr>()) { 1874 int64_t i = index.getZExtValue(); 1875 if (i >= lhsSize) { 1876 results.push_back(rhsElements[i - lhsSize]); 1877 } else { 1878 results.push_back(lhsElements[i]); 1879 } 1880 } 1881 1882 return DenseElementsAttr::get(getVectorType(), results); 1883 } 1884 1885 //===----------------------------------------------------------------------===// 1886 // InsertElementOp 1887 //===----------------------------------------------------------------------===// 1888 1889 void InsertElementOp::build(OpBuilder &builder, OperationState &result, 1890 Value source, Value dest) { 1891 build(builder, result, source, dest, {}); 1892 } 1893 1894 LogicalResult InsertElementOp::verify() { 1895 auto dstVectorType = getDestVectorType(); 1896 if (dstVectorType.getRank() == 0) { 1897 if (getPosition()) 1898 return emitOpError("expected position to be empty with 0-D vector"); 1899 return success(); 1900 } 1901 if (dstVectorType.getRank() != 1) 1902 return emitOpError("unexpected >1 vector rank"); 1903 if (!getPosition()) 1904 return emitOpError("expected position for 1-D vector"); 1905 return success(); 1906 } 1907 1908 OpFoldResult vector::InsertElementOp::fold(ArrayRef<Attribute> operands) { 1909 // Skip the 0-D vector here. 1910 if (operands.size() < 3) 1911 return {}; 1912 1913 Attribute src = operands[0]; 1914 Attribute dst = operands[1]; 1915 Attribute pos = operands[2]; 1916 if (!src || !dst || !pos) 1917 return {}; 1918 1919 auto dstElements = dst.cast<DenseElementsAttr>().getValues<Attribute>(); 1920 1921 SmallVector<Attribute> results(dstElements); 1922 1923 auto attr = pos.dyn_cast<IntegerAttr>(); 1924 uint64_t posIdx = attr.getInt(); 1925 1926 results[posIdx] = src; 1927 1928 return DenseElementsAttr::get(getDestVectorType(), results); 1929 } 1930 1931 //===----------------------------------------------------------------------===// 1932 // InsertOp 1933 //===----------------------------------------------------------------------===// 1934 1935 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1936 Value dest, ArrayRef<int64_t> position) { 1937 result.addOperands({source, dest}); 1938 auto positionAttr = getVectorSubscriptAttr(builder, position); 1939 result.addTypes(dest.getType()); 1940 result.addAttribute(getPositionAttrStrName(), positionAttr); 1941 } 1942 1943 // Convenience builder which assumes the values are constant indices. 1944 void InsertOp::build(OpBuilder &builder, OperationState &result, Value source, 1945 Value dest, ValueRange position) { 1946 SmallVector<int64_t, 4> positionConstants = 1947 llvm::to_vector<4>(llvm::map_range(position, [](Value pos) { 1948 return pos.getDefiningOp<arith::ConstantIndexOp>().value(); 1949 })); 1950 build(builder, result, source, dest, positionConstants); 1951 } 1952 1953 LogicalResult InsertOp::verify() { 1954 auto positionAttr = getPosition().getValue(); 1955 auto destVectorType = getDestVectorType(); 1956 if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank())) 1957 return emitOpError( 1958 "expected position attribute of rank smaller than dest vector rank"); 1959 auto srcVectorType = getSourceType().dyn_cast<VectorType>(); 1960 if (srcVectorType && 1961 (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() != 1962 static_cast<unsigned>(destVectorType.getRank()))) 1963 return emitOpError("expected position attribute rank + source rank to " 1964 "match dest vector rank"); 1965 if (!srcVectorType && 1966 (positionAttr.size() != static_cast<unsigned>(destVectorType.getRank()))) 1967 return emitOpError( 1968 "expected position attribute rank to match the dest vector rank"); 1969 for (const auto &en : llvm::enumerate(positionAttr)) { 1970 auto attr = en.value().dyn_cast<IntegerAttr>(); 1971 if (!attr || attr.getInt() < 0 || 1972 attr.getInt() >= destVectorType.getDimSize(en.index())) 1973 return emitOpError("expected position attribute #") 1974 << (en.index() + 1) 1975 << " to be a non-negative integer smaller than the corresponding " 1976 "dest vector dimension"; 1977 } 1978 return success(); 1979 } 1980 1981 namespace { 1982 1983 // If insertOp is only inserting unit dimensions it can be transformed to a 1984 // broadcast. 1985 class InsertToBroadcast final : public OpRewritePattern<InsertOp> { 1986 public: 1987 using OpRewritePattern<InsertOp>::OpRewritePattern; 1988 1989 LogicalResult matchAndRewrite(InsertOp insertOp, 1990 PatternRewriter &rewriter) const override { 1991 auto srcVecType = insertOp.getSourceType().dyn_cast<VectorType>(); 1992 if (!srcVecType || insertOp.getDestVectorType().getNumElements() != 1993 srcVecType.getNumElements()) 1994 return failure(); 1995 rewriter.replaceOpWithNewOp<BroadcastOp>( 1996 insertOp, insertOp.getDestVectorType(), insertOp.getSource()); 1997 return success(); 1998 } 1999 }; 2000 2001 } // namespace 2002 2003 void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, 2004 MLIRContext *context) { 2005 results.add<InsertToBroadcast, BroadcastFolder>(context); 2006 } 2007 2008 // Eliminates insert operations that produce values identical to their source 2009 // value. This happens when the source and destination vectors have identical 2010 // sizes. 2011 OpFoldResult vector::InsertOp::fold(ArrayRef<Attribute> operands) { 2012 if (getPosition().empty()) 2013 return getSource(); 2014 return {}; 2015 } 2016 2017 //===----------------------------------------------------------------------===// 2018 // InsertMapOp 2019 //===----------------------------------------------------------------------===// 2020 2021 LogicalResult InsertMapOp::verify() { 2022 if (getSourceVectorType().getRank() != getResultType().getRank()) 2023 return emitOpError("expected source and destination vectors of same rank"); 2024 unsigned numId = 0; 2025 for (unsigned i = 0, e = getResultType().getRank(); i < e; i++) { 2026 if (getResultType().getDimSize(i) % getSourceVectorType().getDimSize(i) != 2027 0) 2028 return emitOpError( 2029 "destination vector size must be a multiple of source vector size"); 2030 if (getResultType().getDimSize(i) != getSourceVectorType().getDimSize(i)) 2031 numId++; 2032 } 2033 if (numId != getIds().size()) 2034 return emitOpError("expected number of ids must match the number of " 2035 "dimensions distributed"); 2036 return success(); 2037 } 2038 2039 AffineMap InsertMapOp::map() { return calculateImplicitMap(*this); } 2040 2041 //===----------------------------------------------------------------------===// 2042 // InsertStridedSliceOp 2043 //===----------------------------------------------------------------------===// 2044 2045 void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2046 Value source, Value dest, 2047 ArrayRef<int64_t> offsets, 2048 ArrayRef<int64_t> strides) { 2049 result.addOperands({source, dest}); 2050 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2051 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2052 result.addTypes(dest.getType()); 2053 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2054 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2055 } 2056 2057 // TODO: Should be moved to Tablegen Confined attributes. 2058 template <typename OpType> 2059 static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, 2060 ArrayAttr arrayAttr, 2061 ArrayRef<int64_t> shape, 2062 StringRef attrName) { 2063 if (arrayAttr.size() > shape.size()) 2064 return op.emitOpError("expected ") 2065 << attrName << " attribute of rank smaller than vector rank"; 2066 return success(); 2067 } 2068 2069 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2070 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2071 // Otherwise, the admissible interval is [min, max]. 2072 template <typename OpType> 2073 static LogicalResult 2074 isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, 2075 int64_t max, StringRef attrName, 2076 bool halfOpen = true) { 2077 for (auto attr : arrayAttr) { 2078 auto val = attr.cast<IntegerAttr>().getInt(); 2079 auto upper = max; 2080 if (!halfOpen) 2081 upper += 1; 2082 if (val < min || val >= upper) 2083 return op.emitOpError("expected ") << attrName << " to be confined to [" 2084 << min << ", " << upper << ")"; 2085 } 2086 return success(); 2087 } 2088 2089 // Returns true if all integers in `arrayAttr` are in the half-open [min, max} 2090 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2091 // Otherwise, the admissible interval is [min, max]. 2092 template <typename OpType> 2093 static LogicalResult 2094 isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, 2095 ArrayRef<int64_t> shape, StringRef attrName, 2096 bool halfOpen = true, int64_t min = 0) { 2097 assert(arrayAttr.size() <= shape.size()); 2098 unsigned index = 0; 2099 for (auto it : llvm::zip(arrayAttr, shape)) { 2100 auto val = std::get<0>(it).cast<IntegerAttr>().getInt(); 2101 auto max = std::get<1>(it); 2102 if (!halfOpen) 2103 max += 1; 2104 if (val < min || val >= max) 2105 return op.emitOpError("expected ") 2106 << attrName << " dimension " << index << " to be confined to [" 2107 << min << ", " << max << ")"; 2108 ++index; 2109 } 2110 return success(); 2111 } 2112 2113 // Returns true if all integers in `arrayAttr` are in the interval [min, max}. 2114 // interval. If `halfOpen` is true then the admissible interval is [min, max). 2115 // Otherwise, the admissible interval is [min, max]. 2116 template <typename OpType> 2117 static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( 2118 OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, 2119 ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2, 2120 bool halfOpen = true, int64_t min = 1) { 2121 assert(arrayAttr1.size() <= shape.size()); 2122 assert(arrayAttr2.size() <= shape.size()); 2123 unsigned index = 0; 2124 for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) { 2125 auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt(); 2126 auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt(); 2127 auto max = std::get<2>(it); 2128 if (!halfOpen) 2129 max += 1; 2130 if (val1 + val2 < 0 || val1 + val2 >= max) 2131 return op.emitOpError("expected sum(") 2132 << attrName1 << ", " << attrName2 << ") dimension " << index 2133 << " to be confined to [" << min << ", " << max << ")"; 2134 ++index; 2135 } 2136 return success(); 2137 } 2138 2139 static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values, 2140 MLIRContext *context) { 2141 auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { 2142 return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); 2143 }); 2144 return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); 2145 } 2146 2147 LogicalResult InsertStridedSliceOp::verify() { 2148 auto sourceVectorType = getSourceVectorType(); 2149 auto destVectorType = getDestVectorType(); 2150 auto offsets = getOffsetsAttr(); 2151 auto strides = getStridesAttr(); 2152 if (offsets.size() != static_cast<unsigned>(destVectorType.getRank())) 2153 return emitOpError( 2154 "expected offsets of same size as destination vector rank"); 2155 if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank())) 2156 return emitOpError("expected strides of same size as source vector rank"); 2157 if (sourceVectorType.getRank() > destVectorType.getRank()) 2158 return emitOpError( 2159 "expected source rank to be smaller than destination rank"); 2160 2161 auto sourceShape = sourceVectorType.getShape(); 2162 auto destShape = destVectorType.getShape(); 2163 SmallVector<int64_t, 4> sourceShapeAsDestShape( 2164 destShape.size() - sourceShape.size(), 0); 2165 sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); 2166 auto offName = InsertStridedSliceOp::getOffsetsAttrName(); 2167 auto stridesName = InsertStridedSliceOp::getStridesAttrName(); 2168 if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, 2169 offName)) || 2170 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2171 stridesName, 2172 /*halfOpen=*/false)) || 2173 failed(isSumOfIntegerArrayAttrConfinedToShape( 2174 *this, offsets, 2175 makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, 2176 offName, "source vector shape", 2177 /*halfOpen=*/false, /*min=*/1))) 2178 return failure(); 2179 2180 return success(); 2181 } 2182 2183 OpFoldResult InsertStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2184 if (getSourceVectorType() == getDestVectorType()) 2185 return getSource(); 2186 return {}; 2187 } 2188 2189 //===----------------------------------------------------------------------===// 2190 // OuterProductOp 2191 //===----------------------------------------------------------------------===// 2192 2193 /// Build an op without mask, use the type of `acc` as the return type. 2194 void OuterProductOp::build(OpBuilder &builder, OperationState &result, 2195 Value lhs, Value rhs, Value acc) { 2196 result.addOperands({lhs, rhs, acc}); 2197 result.addTypes(acc.getType()); 2198 } 2199 2200 void OuterProductOp::print(OpAsmPrinter &p) { 2201 p << " " << getLhs() << ", " << getRhs(); 2202 if (!getAcc().empty()) { 2203 p << ", " << getAcc(); 2204 p.printOptionalAttrDict((*this)->getAttrs()); 2205 } 2206 p << " : " << getLhs().getType() << ", " << getRhs().getType(); 2207 } 2208 2209 ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { 2210 SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo; 2211 Type tLHS, tRHS; 2212 if (parser.parseOperandList(operandsInfo) || 2213 parser.parseOptionalAttrDict(result.attributes) || 2214 parser.parseColonType(tLHS) || parser.parseComma() || 2215 parser.parseType(tRHS)) 2216 return failure(); 2217 if (operandsInfo.size() < 2) 2218 return parser.emitError(parser.getNameLoc(), 2219 "expected at least 2 operands"); 2220 VectorType vLHS = tLHS.dyn_cast<VectorType>(); 2221 VectorType vRHS = tRHS.dyn_cast<VectorType>(); 2222 if (!vLHS) 2223 return parser.emitError(parser.getNameLoc(), 2224 "expected vector type for operand #1"); 2225 VectorType resType = 2226 vRHS ? VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, 2227 vLHS.getElementType()) 2228 : VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType()); 2229 2230 if (!result.attributes.get(OuterProductOp::getKindAttrStrName())) { 2231 result.attributes.append( 2232 OuterProductOp::getKindAttrStrName(), 2233 CombiningKindAttr::get(OuterProductOp::getDefaultKind(), 2234 result.getContext())); 2235 } 2236 2237 return failure( 2238 parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || 2239 parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || 2240 (operandsInfo.size() > 2 && 2241 parser.resolveOperand(operandsInfo[2], resType, result.operands)) || 2242 parser.addTypeToList(resType, result.types)); 2243 } 2244 2245 LogicalResult OuterProductOp::verify() { 2246 Type tRHS = getOperandTypeRHS(); 2247 VectorType vLHS = getOperandVectorTypeLHS(), 2248 vRHS = tRHS.dyn_cast<VectorType>(), 2249 vACC = getOperandVectorTypeACC(), vRES = getVectorType(); 2250 2251 if (vLHS.getRank() != 1) 2252 return emitOpError("expected 1-d vector for operand #1"); 2253 2254 if (vRHS) { 2255 // Proper OUTER operation. 2256 if (vRHS.getRank() != 1) 2257 return emitOpError("expected 1-d vector for operand #2"); 2258 if (vRES.getRank() != 2) 2259 return emitOpError("expected 2-d vector result"); 2260 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2261 return emitOpError("expected #1 operand dim to match result dim #1"); 2262 if (vRHS.getDimSize(0) != vRES.getDimSize(1)) 2263 return emitOpError("expected #2 operand dim to match result dim #2"); 2264 } else { 2265 // An AXPY operation. 2266 if (vRES.getRank() != 1) 2267 return emitOpError("expected 1-d vector result"); 2268 if (vLHS.getDimSize(0) != vRES.getDimSize(0)) 2269 return emitOpError("expected #1 operand dim to match result dim #1"); 2270 } 2271 2272 if (vACC && vACC != vRES) 2273 return emitOpError("expected operand #3 of same type as result type"); 2274 2275 // Verify supported combining kind. 2276 if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) 2277 return emitOpError("unsupported outerproduct type"); 2278 2279 return success(); 2280 } 2281 2282 //===----------------------------------------------------------------------===// 2283 // ReshapeOp 2284 //===----------------------------------------------------------------------===// 2285 2286 LogicalResult ReshapeOp::verify() { 2287 // Verify that rank(numInputs/outputs) + numFixedVec dim matches vec rank. 2288 auto inputVectorType = getInputVectorType(); 2289 auto outputVectorType = getOutputVectorType(); 2290 int64_t inputShapeRank = getNumInputShapeSizes(); 2291 int64_t outputShapeRank = getNumOutputShapeSizes(); 2292 SmallVector<int64_t, 4> fixedVectorSizes; 2293 getFixedVectorSizes(fixedVectorSizes); 2294 int64_t numFixedVectorSizes = fixedVectorSizes.size(); 2295 2296 if (inputVectorType.getRank() != inputShapeRank + numFixedVectorSizes) 2297 return emitError("invalid input shape for vector type ") << inputVectorType; 2298 2299 if (outputVectorType.getRank() != outputShapeRank + numFixedVectorSizes) 2300 return emitError("invalid output shape for vector type ") 2301 << outputVectorType; 2302 2303 // Verify that the 'fixedVectorSizes' match an input/output vector shape 2304 // suffix. 2305 unsigned inputVectorRank = inputVectorType.getRank(); 2306 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2307 unsigned index = inputVectorRank - numFixedVectorSizes - i; 2308 if (fixedVectorSizes[i] != inputVectorType.getShape()[index]) 2309 return emitError("fixed vector size must match input vector for dim ") 2310 << i; 2311 } 2312 2313 unsigned outputVectorRank = outputVectorType.getRank(); 2314 for (unsigned i = 0; i < numFixedVectorSizes; ++i) { 2315 unsigned index = outputVectorRank - numFixedVectorSizes - i; 2316 if (fixedVectorSizes[i] != outputVectorType.getShape()[index]) 2317 return emitError("fixed vector size must match output vector for dim ") 2318 << i; 2319 } 2320 2321 // If all shape operands are produced by constant ops, verify that product 2322 // of dimensions for input/output shape match. 2323 auto isDefByConstant = [](Value operand) { 2324 return isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 2325 }; 2326 if (llvm::all_of(getInputShape(), isDefByConstant) && 2327 llvm::all_of(getOutputShape(), isDefByConstant)) { 2328 int64_t numInputElements = 1; 2329 for (auto operand : getInputShape()) 2330 numInputElements *= 2331 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2332 int64_t numOutputElements = 1; 2333 for (auto operand : getOutputShape()) 2334 numOutputElements *= 2335 cast<arith::ConstantIndexOp>(operand.getDefiningOp()).value(); 2336 if (numInputElements != numOutputElements) 2337 return emitError("product of input and output shape sizes must match"); 2338 } 2339 return success(); 2340 } 2341 2342 void ReshapeOp::getFixedVectorSizes(SmallVectorImpl<int64_t> &results) { 2343 populateFromInt64AttrArray(getFixedVectorSizes(), results); 2344 } 2345 2346 //===----------------------------------------------------------------------===// 2347 // ExtractStridedSliceOp 2348 //===----------------------------------------------------------------------===// 2349 2350 // Inference works as follows: 2351 // 1. Add 'sizes' from prefix of dims in 'offsets'. 2352 // 2. Add sizes from 'vectorType' for remaining dims. 2353 static Type inferStridedSliceOpResultType(VectorType vectorType, 2354 ArrayAttr offsets, ArrayAttr sizes, 2355 ArrayAttr strides) { 2356 assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); 2357 SmallVector<int64_t, 4> shape; 2358 shape.reserve(vectorType.getRank()); 2359 unsigned idx = 0; 2360 for (unsigned e = offsets.size(); idx < e; ++idx) 2361 shape.push_back(sizes[idx].cast<IntegerAttr>().getInt()); 2362 for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) 2363 shape.push_back(vectorType.getShape()[idx]); 2364 2365 return VectorType::get(shape, vectorType.getElementType()); 2366 } 2367 2368 void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, 2369 Value source, ArrayRef<int64_t> offsets, 2370 ArrayRef<int64_t> sizes, 2371 ArrayRef<int64_t> strides) { 2372 result.addOperands(source); 2373 auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); 2374 auto sizesAttr = getVectorSubscriptAttr(builder, sizes); 2375 auto stridesAttr = getVectorSubscriptAttr(builder, strides); 2376 result.addTypes( 2377 inferStridedSliceOpResultType(source.getType().cast<VectorType>(), 2378 offsetsAttr, sizesAttr, stridesAttr)); 2379 result.addAttribute(getOffsetsAttrStrName(), offsetsAttr); 2380 result.addAttribute(getSizesAttrStrName(), sizesAttr); 2381 result.addAttribute(getStridesAttrStrName(), stridesAttr); 2382 } 2383 2384 LogicalResult ExtractStridedSliceOp::verify() { 2385 auto type = getVectorType(); 2386 auto offsets = getOffsetsAttr(); 2387 auto sizes = getSizesAttr(); 2388 auto strides = getStridesAttr(); 2389 if (offsets.size() != sizes.size() || offsets.size() != strides.size()) 2390 return emitOpError( 2391 "expected offsets, sizes and strides attributes of same size"); 2392 2393 auto shape = type.getShape(); 2394 auto offName = getOffsetsAttrName(); 2395 auto sizesName = getSizesAttrName(); 2396 auto stridesName = getStridesAttrName(); 2397 if (failed( 2398 isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || 2399 failed( 2400 isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || 2401 failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, 2402 stridesName)) || 2403 failed( 2404 isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || 2405 failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, 2406 /*halfOpen=*/false, 2407 /*min=*/1)) || 2408 failed(isIntegerArrayAttrConfinedToRange(*this, strides, 1, 1, 2409 stridesName, 2410 /*halfOpen=*/false)) || 2411 failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, 2412 shape, offName, sizesName, 2413 /*halfOpen=*/false))) 2414 return failure(); 2415 2416 auto resultType = 2417 inferStridedSliceOpResultType(getVectorType(), offsets, sizes, strides); 2418 if (getResult().getType() != resultType) 2419 return emitOpError("expected result type to be ") << resultType; 2420 2421 return success(); 2422 } 2423 2424 // When the source of ExtractStrided comes from a chain of InsertStrided ops try 2425 // to use the source of the InsertStrided ops if we can detect that the 2426 // extracted vector is a subset of one of the vector inserted. 2427 static LogicalResult 2428 foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { 2429 // Helper to extract integer out of ArrayAttr. 2430 auto getElement = [](ArrayAttr array, int idx) { 2431 return array[idx].cast<IntegerAttr>().getInt(); 2432 }; 2433 ArrayAttr extractOffsets = op.getOffsets(); 2434 ArrayAttr extractStrides = op.getStrides(); 2435 ArrayAttr extractSizes = op.getSizes(); 2436 auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>(); 2437 while (insertOp) { 2438 if (op.getVectorType().getRank() != 2439 insertOp.getSourceVectorType().getRank()) 2440 return failure(); 2441 ArrayAttr insertOffsets = insertOp.getOffsets(); 2442 ArrayAttr insertStrides = insertOp.getStrides(); 2443 // If the rank of extract is greater than the rank of insert, we are likely 2444 // extracting a partial chunk of the vector inserted. 2445 if (extractOffsets.size() > insertOffsets.size()) 2446 return failure(); 2447 bool patialoverlap = false; 2448 bool disjoint = false; 2449 SmallVector<int64_t, 4> offsetDiffs; 2450 for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { 2451 if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) 2452 return failure(); 2453 int64_t start = getElement(insertOffsets, dim); 2454 int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); 2455 int64_t offset = getElement(extractOffsets, dim); 2456 int64_t size = getElement(extractSizes, dim); 2457 // Check if the start of the extract offset is in the interval inserted. 2458 if (start <= offset && offset < end) { 2459 // If the extract interval overlaps but is not fully included we may 2460 // have a partial overlap that will prevent any folding. 2461 if (offset + size > end) 2462 patialoverlap = true; 2463 offsetDiffs.push_back(offset - start); 2464 continue; 2465 } 2466 disjoint = true; 2467 break; 2468 } 2469 // The extract element chunk is a subset of the insert element. 2470 if (!disjoint && !patialoverlap) { 2471 op.setOperand(insertOp.getSource()); 2472 // OpBuilder is only used as a helper to build an I64ArrayAttr. 2473 OpBuilder b(op.getContext()); 2474 op->setAttr(ExtractStridedSliceOp::getOffsetsAttrStrName(), 2475 b.getI64ArrayAttr(offsetDiffs)); 2476 return success(); 2477 } 2478 // If the chunk extracted is disjoint from the chunk inserted, keep looking 2479 // in the insert chain. 2480 if (disjoint) 2481 insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>(); 2482 else { 2483 // The extracted vector partially overlap the inserted vector, we cannot 2484 // fold. 2485 return failure(); 2486 } 2487 } 2488 return failure(); 2489 } 2490 2491 OpFoldResult ExtractStridedSliceOp::fold(ArrayRef<Attribute> operands) { 2492 if (getVectorType() == getResult().getType()) 2493 return getVector(); 2494 if (succeeded(foldExtractStridedOpFromInsertChain(*this))) 2495 return getResult(); 2496 return {}; 2497 } 2498 2499 void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) { 2500 populateFromInt64AttrArray(getOffsets(), results); 2501 } 2502 2503 namespace { 2504 2505 // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to 2506 // ConstantMaskOp. 2507 class StridedSliceConstantMaskFolder final 2508 : public OpRewritePattern<ExtractStridedSliceOp> { 2509 public: 2510 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2511 2512 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2513 PatternRewriter &rewriter) const override { 2514 // Return if 'extractStridedSliceOp' operand is not defined by a 2515 // ConstantMaskOp. 2516 auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); 2517 auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp); 2518 if (!constantMaskOp) 2519 return failure(); 2520 // Return if 'extractStridedSliceOp' has non-unit strides. 2521 if (extractStridedSliceOp.hasNonUnitStrides()) 2522 return failure(); 2523 // Gather constant mask dimension sizes. 2524 SmallVector<int64_t, 4> maskDimSizes; 2525 populateFromInt64AttrArray(constantMaskOp.getMaskDimSizes(), maskDimSizes); 2526 // Gather strided slice offsets and sizes. 2527 SmallVector<int64_t, 4> sliceOffsets; 2528 populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), 2529 sliceOffsets); 2530 SmallVector<int64_t, 4> sliceSizes; 2531 populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); 2532 2533 // Compute slice of vector mask region. 2534 SmallVector<int64_t, 4> sliceMaskDimSizes; 2535 assert(sliceOffsets.size() == maskDimSizes.size()); 2536 for (auto it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { 2537 int64_t maskDimSize = std::get<0>(it); 2538 int64_t sliceOffset = std::get<1>(it); 2539 int64_t sliceSize = std::get<2>(it); 2540 int64_t sliceMaskDimSize = std::max( 2541 static_cast<int64_t>(0), 2542 std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); 2543 sliceMaskDimSizes.push_back(sliceMaskDimSize); 2544 } 2545 // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked 2546 // region is a conjunction of mask dim intervals). 2547 if (llvm::is_contained(sliceMaskDimSizes, 0)) 2548 sliceMaskDimSizes.assign(maskDimSizes.size(), 0); 2549 2550 // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask 2551 // region. 2552 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 2553 extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), 2554 vector::getVectorSubscriptAttr(rewriter, sliceMaskDimSizes)); 2555 return success(); 2556 } 2557 }; 2558 2559 // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. 2560 class StridedSliceConstantFolder final 2561 : public OpRewritePattern<ExtractStridedSliceOp> { 2562 public: 2563 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2564 2565 LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, 2566 PatternRewriter &rewriter) const override { 2567 // Return if 'extractStridedSliceOp' operand is not defined by a 2568 // ConstantOp. 2569 auto constantOp = 2570 extractStridedSliceOp.getVector().getDefiningOp<arith::ConstantOp>(); 2571 if (!constantOp) 2572 return failure(); 2573 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 2574 if (!dense) 2575 return failure(); 2576 auto newAttr = DenseElementsAttr::get(extractStridedSliceOp.getType(), 2577 dense.getSplatValue<Attribute>()); 2578 rewriter.replaceOpWithNewOp<arith::ConstantOp>(extractStridedSliceOp, 2579 newAttr); 2580 return success(); 2581 } 2582 }; 2583 2584 // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to 2585 // BroadcastOp(ExtractStrideSliceOp). 2586 class StridedSliceBroadcast final 2587 : public OpRewritePattern<ExtractStridedSliceOp> { 2588 public: 2589 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2590 2591 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2592 PatternRewriter &rewriter) const override { 2593 auto broadcast = op.getVector().getDefiningOp<BroadcastOp>(); 2594 if (!broadcast) 2595 return failure(); 2596 auto srcVecType = broadcast.getSource().getType().dyn_cast<VectorType>(); 2597 unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; 2598 auto dstVecType = op.getType().cast<VectorType>(); 2599 unsigned dstRank = dstVecType.getRank(); 2600 unsigned rankDiff = dstRank - srcRank; 2601 // Check if the most inner dimensions of the source of the broadcast are the 2602 // same as the destination of the extract. If this is the case we can just 2603 // use a broadcast as the original dimensions are untouched. 2604 bool lowerDimMatch = true; 2605 for (unsigned i = 0; i < srcRank; i++) { 2606 if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { 2607 lowerDimMatch = false; 2608 break; 2609 } 2610 } 2611 Value source = broadcast.getSource(); 2612 // If the inner dimensions don't match, it means we need to extract from the 2613 // source of the orignal broadcast and then broadcast the extracted value. 2614 // We also need to handle degenerated cases where the source is effectively 2615 // just a single scalar. 2616 bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); 2617 if (!lowerDimMatch && !isScalarSrc) { 2618 source = rewriter.create<ExtractStridedSliceOp>( 2619 op->getLoc(), source, 2620 getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), 2621 getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), 2622 getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); 2623 } 2624 rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source); 2625 return success(); 2626 } 2627 }; 2628 2629 /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. 2630 class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> { 2631 public: 2632 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 2633 2634 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 2635 PatternRewriter &rewriter) const override { 2636 auto splat = op.getVector().getDefiningOp<SplatOp>(); 2637 if (!splat) 2638 return failure(); 2639 rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput()); 2640 return success(); 2641 } 2642 }; 2643 2644 } // namespace 2645 2646 void ExtractStridedSliceOp::getCanonicalizationPatterns( 2647 RewritePatternSet &results, MLIRContext *context) { 2648 // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> 2649 // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. 2650 results.add<StridedSliceConstantMaskFolder, StridedSliceConstantFolder, 2651 StridedSliceBroadcast, StridedSliceSplat>(context); 2652 } 2653 2654 //===----------------------------------------------------------------------===// 2655 // TransferReadOp 2656 //===----------------------------------------------------------------------===// 2657 2658 /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). 2659 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2660 VectorType vectorType, Value source, 2661 ValueRange indices, AffineMapAttr permutationMapAttr, 2662 /*optional*/ ArrayAttr inBoundsAttr) { 2663 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2664 Value padding = builder.create<arith::ConstantOp>( 2665 result.location, elemType, builder.getZeroAttr(elemType)); 2666 build(builder, result, vectorType, source, indices, permutationMapAttr, 2667 padding, /*mask=*/Value(), inBoundsAttr); 2668 } 2669 2670 /// 2. Builder that sets padding to zero an empty mask (variant without attrs). 2671 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2672 VectorType vectorType, Value source, 2673 ValueRange indices, AffineMap permutationMap, 2674 Optional<ArrayRef<bool>> inBounds) { 2675 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2676 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2677 ? builder.getBoolArrayAttr(inBounds.getValue()) 2678 : ArrayAttr(); 2679 build(builder, result, vectorType, source, indices, permutationMapAttr, 2680 inBoundsAttr); 2681 } 2682 2683 /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. 2684 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2685 VectorType vectorType, Value source, 2686 ValueRange indices, Value padding, 2687 Optional<ArrayRef<bool>> inBounds) { 2688 AffineMap permutationMap = getTransferMinorIdentityMap( 2689 source.getType().cast<ShapedType>(), vectorType); 2690 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 2691 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 2692 ? builder.getBoolArrayAttr(inBounds.getValue()) 2693 : ArrayAttr(); 2694 build(builder, result, vectorType, source, indices, permutationMapAttr, 2695 padding, 2696 /*mask=*/Value(), inBoundsAttr); 2697 } 2698 2699 /// 4. Builder that sets padding to zero and permutation map to 2700 /// 'getMinorIdentityMap'. 2701 void TransferReadOp::build(OpBuilder &builder, OperationState &result, 2702 VectorType vectorType, Value source, 2703 ValueRange indices, 2704 Optional<ArrayRef<bool>> inBounds) { 2705 Type elemType = source.getType().cast<ShapedType>().getElementType(); 2706 Value padding = builder.create<arith::ConstantOp>( 2707 result.location, elemType, builder.getZeroAttr(elemType)); 2708 build(builder, result, vectorType, source, indices, padding, inBounds); 2709 } 2710 2711 template <typename EmitFun> 2712 static LogicalResult verifyPermutationMap(AffineMap permutationMap, 2713 EmitFun emitOpError) { 2714 SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false); 2715 for (auto expr : permutationMap.getResults()) { 2716 auto dim = expr.dyn_cast<AffineDimExpr>(); 2717 auto zero = expr.dyn_cast<AffineConstantExpr>(); 2718 if (zero) { 2719 if (zero.getValue() != 0) { 2720 return emitOpError( 2721 "requires a projected permutation_map (at most one dim or the zero " 2722 "constant can appear in each result)"); 2723 } 2724 continue; 2725 } 2726 if (!dim) { 2727 return emitOpError("requires a projected permutation_map (at most one " 2728 "dim or the zero constant can appear in each result)"); 2729 } 2730 if (seen[dim.getPosition()]) { 2731 return emitOpError( 2732 "requires a permutation_map that is a permutation (found one dim " 2733 "used more than once)"); 2734 } 2735 seen[dim.getPosition()] = true; 2736 } 2737 return success(); 2738 } 2739 2740 static LogicalResult 2741 verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, 2742 VectorType vectorType, VectorType maskType, 2743 AffineMap permutationMap, ArrayAttr inBounds) { 2744 if (op->hasAttr("masked")) { 2745 return op->emitOpError("masked attribute has been removed. " 2746 "Use in_bounds instead."); 2747 } 2748 2749 if (!shapedType.isa<MemRefType, RankedTensorType>()) 2750 return op->emitOpError( 2751 "requires source to be a memref or ranked tensor type"); 2752 2753 auto elementType = shapedType.getElementType(); 2754 DataLayout dataLayout = DataLayout::closest(op); 2755 if (auto vectorElementType = elementType.dyn_cast<VectorType>()) { 2756 // Memref or tensor has vector element type. 2757 unsigned sourceVecSize = 2758 dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * 2759 vectorElementType.getShape().back(); 2760 unsigned resultVecSize = 2761 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * 2762 vectorType.getShape().back(); 2763 if (resultVecSize % sourceVecSize != 0) 2764 return op->emitOpError( 2765 "requires the bitwidth of the minor 1-D vector to be an integral " 2766 "multiple of the bitwidth of the minor 1-D vector of the source"); 2767 2768 unsigned sourceVecEltRank = vectorElementType.getRank(); 2769 unsigned resultVecRank = vectorType.getRank(); 2770 if (sourceVecEltRank > resultVecRank) 2771 return op->emitOpError( 2772 "requires source vector element and vector result ranks to match."); 2773 unsigned rankOffset = resultVecRank - sourceVecEltRank; 2774 // Check that permutation map results match 'rankOffset' of vector type. 2775 if (permutationMap.getNumResults() != rankOffset) 2776 return op->emitOpError("requires a permutation_map with result dims of " 2777 "the same rank as the vector type"); 2778 2779 if (maskType) 2780 return op->emitOpError("does not support masks with vector element type"); 2781 } else { 2782 // Memref or tensor has scalar element type. 2783 unsigned minorSize = 2784 vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); 2785 unsigned resultVecSize = 2786 dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; 2787 if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) 2788 return op->emitOpError( 2789 "requires the bitwidth of the minor 1-D vector to be an integral " 2790 "multiple of the bitwidth of the source element type"); 2791 2792 // Check that permutation map results match rank of vector type. 2793 if (permutationMap.getNumResults() != vectorType.getRank()) 2794 return op->emitOpError("requires a permutation_map with result dims of " 2795 "the same rank as the vector type"); 2796 2797 VectorType expectedMaskType = 2798 vector::detail::transferMaskType(vectorType, permutationMap); 2799 if (maskType && expectedMaskType != maskType) 2800 return op->emitOpError("expects mask type consistent with permutation " 2801 "map: ") 2802 << maskType; 2803 } 2804 2805 if (permutationMap.getNumSymbols() != 0) 2806 return op->emitOpError("requires permutation_map without symbols"); 2807 2808 if (permutationMap.getNumInputs() != shapedType.getRank()) 2809 return op->emitOpError("requires a permutation_map with input dims of the " 2810 "same rank as the source type"); 2811 2812 if (inBounds) { 2813 if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size())) 2814 return op->emitOpError("expects the optional in_bounds attr of same rank " 2815 "as permutation_map results: ") 2816 << AffineMapAttr::get(permutationMap) 2817 << " vs inBounds of size: " << inBounds.size(); 2818 for (unsigned int i = 0; i < permutationMap.getNumResults(); ++i) 2819 if (permutationMap.getResult(i).isa<AffineConstantExpr>() && 2820 !inBounds.getValue()[i].cast<BoolAttr>().getValue()) 2821 return op->emitOpError("requires broadcast dimensions to be in-bounds"); 2822 } 2823 2824 return success(); 2825 } 2826 2827 static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { 2828 SmallVector<StringRef, 3> elidedAttrs; 2829 elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); 2830 if (op.permutation_map().isMinorIdentity()) 2831 elidedAttrs.push_back(op.getPermutationMapAttrStrName()); 2832 bool elideInBounds = true; 2833 if (auto inBounds = op.in_bounds()) { 2834 for (auto attr : *inBounds) { 2835 if (attr.template cast<BoolAttr>().getValue()) { 2836 elideInBounds = false; 2837 break; 2838 } 2839 } 2840 } 2841 if (elideInBounds) 2842 elidedAttrs.push_back(op.getInBoundsAttrStrName()); 2843 p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); 2844 } 2845 2846 void TransferReadOp::print(OpAsmPrinter &p) { 2847 p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); 2848 if (getMask()) 2849 p << ", " << getMask(); 2850 printTransferAttrs(p, *this); 2851 p << " : " << getShapedType() << ", " << getVectorType(); 2852 } 2853 2854 ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { 2855 auto &builder = parser.getBuilder(); 2856 SMLoc typesLoc; 2857 OpAsmParser::UnresolvedOperand sourceInfo; 2858 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 2859 OpAsmParser::UnresolvedOperand paddingInfo; 2860 SmallVector<Type, 2> types; 2861 OpAsmParser::UnresolvedOperand maskInfo; 2862 // Parsing with support for paddingValue. 2863 if (parser.parseOperand(sourceInfo) || 2864 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 2865 parser.parseComma() || parser.parseOperand(paddingInfo)) 2866 return failure(); 2867 ParseResult hasMask = parser.parseOptionalComma(); 2868 if (hasMask.succeeded()) { 2869 if (parser.parseOperand(maskInfo)) 2870 return failure(); 2871 } 2872 if (parser.parseOptionalAttrDict(result.attributes) || 2873 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 2874 return failure(); 2875 if (types.size() != 2) 2876 return parser.emitError(typesLoc, "requires two types"); 2877 auto indexType = builder.getIndexType(); 2878 auto shapedType = types[0].dyn_cast<ShapedType>(); 2879 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 2880 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 2881 VectorType vectorType = types[1].dyn_cast<VectorType>(); 2882 if (!vectorType) 2883 return parser.emitError(typesLoc, "requires vector type"); 2884 auto permutationAttrName = TransferReadOp::getPermutationMapAttrStrName(); 2885 Attribute mapAttr = result.attributes.get(permutationAttrName); 2886 if (!mapAttr) { 2887 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 2888 // Update `mapAttr` that is used later to determine mask type. 2889 mapAttr = AffineMapAttr::get(permMap); 2890 result.attributes.set(permutationAttrName, mapAttr); 2891 } 2892 if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || 2893 parser.resolveOperands(indexInfo, indexType, result.operands) || 2894 parser.resolveOperand(paddingInfo, shapedType.getElementType(), 2895 result.operands)) 2896 return failure(); 2897 if (hasMask.succeeded()) { 2898 if (shapedType.getElementType().dyn_cast<VectorType>()) 2899 return parser.emitError( 2900 maskInfo.location, "does not support masks with vector element type"); 2901 auto map = mapAttr.dyn_cast<AffineMapAttr>().getValue(); 2902 // Instead of adding the mask type as an op type, compute it based on the 2903 // vector type and the permutation map (to keep the type signature small). 2904 auto maskType = mlir::vector::detail::transferMaskType(vectorType, map); 2905 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 2906 return failure(); 2907 } 2908 result.addAttribute( 2909 TransferReadOp::getOperandSegmentSizeAttr(), 2910 builder.getI32VectorAttr({1, static_cast<int32_t>(indexInfo.size()), 1, 2911 static_cast<int32_t>(hasMask.succeeded())})); 2912 return parser.addTypeToList(vectorType, result.types); 2913 } 2914 2915 LogicalResult TransferReadOp::verify() { 2916 // Consistency of elemental types in source and vector. 2917 ShapedType shapedType = getShapedType(); 2918 VectorType vectorType = getVectorType(); 2919 VectorType maskType = getMaskType(); 2920 auto paddingType = getPadding().getType(); 2921 auto permutationMap = getPermutationMap(); 2922 auto sourceElementType = shapedType.getElementType(); 2923 2924 if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank()) 2925 return emitOpError("requires ") << shapedType.getRank() << " indices"; 2926 2927 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 2928 shapedType, vectorType, maskType, permutationMap, 2929 getInBounds() ? *getInBounds() : ArrayAttr()))) 2930 return failure(); 2931 2932 if (auto sourceVectorElementType = sourceElementType.dyn_cast<VectorType>()) { 2933 // Source has vector element type. 2934 // Check that 'sourceVectorElementType' and 'paddingType' types match. 2935 if (sourceVectorElementType != paddingType) 2936 return emitOpError( 2937 "requires source element type and padding type to match."); 2938 2939 } else { 2940 // Check that 'paddingType' is valid to store in a vector type. 2941 if (!VectorType::isValidElementType(paddingType)) 2942 return emitOpError("requires valid padding vector elemental type"); 2943 2944 // Check that padding type and vector element types match. 2945 if (paddingType != sourceElementType) 2946 return emitOpError( 2947 "requires formal padding and source of the same elemental type"); 2948 } 2949 2950 return verifyPermutationMap(permutationMap, 2951 [&](Twine t) { return emitOpError(t); }); 2952 } 2953 2954 /// This is a common class used for patterns of the form 2955 /// ``` 2956 /// someop(memrefcast) -> someop 2957 /// ``` 2958 /// It folds the source of the memref.cast into the root operation directly. 2959 static LogicalResult foldMemRefCast(Operation *op) { 2960 bool folded = false; 2961 for (OpOperand &operand : op->getOpOperands()) { 2962 auto castOp = operand.get().getDefiningOp<memref::CastOp>(); 2963 if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { 2964 operand.set(castOp.getOperand()); 2965 folded = true; 2966 } 2967 } 2968 return success(folded); 2969 } 2970 2971 static LogicalResult foldTensorCast(Operation *op) { 2972 bool folded = false; 2973 for (OpOperand &operand : op->getOpOperands()) { 2974 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 2975 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 2976 operand.set(castOp.getOperand()); 2977 folded = true; 2978 } 2979 } 2980 return success(folded); 2981 } 2982 2983 template <typename TransferOp> 2984 static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { 2985 // TODO: support more aggressive createOrFold on: 2986 // `op.indices()[indicesIdx] + vectorType < dim(op.source(), indicesIdx)` 2987 if (op.getShapedType().isDynamicDim(indicesIdx)) 2988 return false; 2989 Value index = op.getIndices()[indicesIdx]; 2990 auto cstOp = index.getDefiningOp<arith::ConstantIndexOp>(); 2991 if (!cstOp) 2992 return false; 2993 2994 int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); 2995 int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); 2996 2997 return cstOp.value() + vectorSize <= sourceSize; 2998 } 2999 3000 template <typename TransferOp> 3001 static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { 3002 // TODO: support 0-d corner case. 3003 // TODO: Be less conservative. 3004 if (op.getTransferRank() == 0) 3005 return failure(); 3006 AffineMap permutationMap = op.getPermutationMap(); 3007 bool changed = false; 3008 SmallVector<bool, 4> newInBounds; 3009 newInBounds.reserve(op.getTransferRank()); 3010 for (unsigned i = 0; i < op.getTransferRank(); ++i) { 3011 // Already marked as in-bounds, nothing to see here. 3012 if (op.isDimInBounds(i)) { 3013 newInBounds.push_back(true); 3014 continue; 3015 } 3016 // Currently out-of-bounds, check whether we can statically determine it is 3017 // inBounds. 3018 auto dimExpr = permutationMap.getResult(i).dyn_cast<AffineDimExpr>(); 3019 assert(dimExpr && "Broadcast dims must be in-bounds"); 3020 auto inBounds = 3021 isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); 3022 newInBounds.push_back(inBounds); 3023 // We commit the pattern if it is "more inbounds". 3024 changed |= inBounds; 3025 } 3026 if (!changed) 3027 return failure(); 3028 // OpBuilder is only used as a helper to build an I64ArrayAttr. 3029 OpBuilder b(op.getContext()); 3030 op->setAttr(TransferOp::getInBoundsAttrStrName(), 3031 b.getBoolArrayAttr(newInBounds)); 3032 return success(); 3033 } 3034 3035 /// ``` 3036 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3037 /// : vector<1x4xf32>, tensor<4x4xf32> 3038 /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} 3039 /// : tensor<4x4xf32>, vector<1x4xf32> 3040 /// ``` 3041 /// -> Folds into 3042 /// ``` 3043 /// %v0 3044 /// ``` 3045 static Value foldRAW(TransferReadOp readOp) { 3046 if (!readOp.getShapedType().isa<RankedTensorType>()) 3047 return {}; 3048 auto defWrite = readOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3049 while (defWrite) { 3050 if (checkSameValueRAW(defWrite, readOp)) 3051 return defWrite.getVector(); 3052 if (!isDisjointTransferIndices( 3053 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3054 cast<VectorTransferOpInterface>(readOp.getOperation()))) 3055 break; 3056 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3057 } 3058 return {}; 3059 } 3060 3061 OpFoldResult TransferReadOp::fold(ArrayRef<Attribute>) { 3062 if (Value vec = foldRAW(*this)) 3063 return vec; 3064 /// transfer_read(memrefcast) -> transfer_read 3065 if (succeeded(foldTransferInBoundsAttribute(*this))) 3066 return getResult(); 3067 if (succeeded(foldMemRefCast(*this))) 3068 return getResult(); 3069 if (succeeded(foldTensorCast(*this))) 3070 return getResult(); 3071 return OpFoldResult(); 3072 } 3073 3074 Optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() { 3075 return llvm::to_vector<4>(getVectorType().getShape()); 3076 } 3077 3078 void TransferReadOp::getEffects( 3079 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3080 &effects) { 3081 if (getShapedType().isa<MemRefType>()) 3082 effects.emplace_back(MemoryEffects::Read::get(), getSource(), 3083 SideEffects::DefaultResource::get()); 3084 } 3085 3086 namespace { 3087 /// Fold transfer_reads of a tensor.extract_slice op. E.g.: 3088 /// 3089 /// ``` 3090 /// %0 = tensor.extract_slice %t[%a, %b] [%c, %d] [1, 1] 3091 /// : tensor<?x?xf32> to tensor<?x?xf32> 3092 /// %1 = vector.transfer_read %0[%e, %f], %cst {in_bounds = [true, true]} 3093 /// : tensor<?x?xf32>, vector<4x5xf32> 3094 /// ``` 3095 /// is rewritten to: 3096 /// ``` 3097 /// %p0 = arith.addi %a, %e : index 3098 /// %p1 = arith.addi %b, %f : index 3099 /// %1 = vector.transfer_read %t[%p0, %p1], %cst {in_bounds = [true, true]} 3100 /// : tensor<?x?xf32>, vector<4x5xf32> 3101 /// ``` 3102 struct FoldExtractSliceIntoTransferRead 3103 : public OpRewritePattern<TransferReadOp> { 3104 public: 3105 using OpRewritePattern<TransferReadOp>::OpRewritePattern; 3106 3107 LogicalResult matchAndRewrite(TransferReadOp xferOp, 3108 PatternRewriter &rewriter) const override { 3109 // TODO: support 0-d corner case. 3110 if (xferOp.getTransferRank() == 0) 3111 return failure(); 3112 if (xferOp.hasOutOfBoundsDim()) 3113 return failure(); 3114 if (!xferOp.getPermutationMap().isIdentity()) 3115 return failure(); 3116 if (xferOp.getMask()) 3117 return failure(); 3118 auto extractOp = xferOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3119 if (!extractOp) 3120 return failure(); 3121 if (!extractOp.hasUnitStride()) 3122 return failure(); 3123 3124 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3125 // dims are exactly the leading dims. I.e. the following is illegal: 3126 // ``` 3127 // %0 = tensor.extract_slice %t[0,0,0][2,1,4][1,1,1] : 3128 // tensor<2x1x4xf32> to tensor<2x4xf32> 3129 // %1 = vector.transfer_read %0[0,0], %cst : 3130 // tensor<2x4xf32>, vector<2x4xf32> 3131 // ``` 3132 // 3133 // Cannot fold into: 3134 // ``` 3135 // %0 = vector.transfer_read %t[0,0,0], %cst : 3136 // tensor<2x1x4xf32>, vector<2x4xf32> 3137 // ``` 3138 // For this, check the trailing `vectorRank` dims of the extract_slice 3139 // result tensor match the trailing dims of the inferred result tensor. 3140 int64_t rankReduced = 3141 extractOp.getSourceType().getRank() - extractOp.getType().getRank(); 3142 int64_t vectorRank = xferOp.getVectorType().getRank(); 3143 RankedTensorType inferredDestTensorType = 3144 tensor::ExtractSliceOp::inferResultType( 3145 extractOp.getSourceType(), extractOp.getMixedOffsets(), 3146 extractOp.getMixedSizes(), extractOp.getMixedStrides()); 3147 auto actualDestTensorShape = extractOp.getType().getShape(); 3148 if (rankReduced > 0 && 3149 actualDestTensorShape.take_back(vectorRank) != 3150 inferredDestTensorType.getShape().take_back(vectorRank)) 3151 return failure(); 3152 3153 SmallVector<Value> newIndices; 3154 // In case this is a rank-reducing ExtractSliceOp, copy rank-reduced 3155 // indices first. 3156 for (int64_t i = 0; i < rankReduced; ++i) { 3157 OpFoldResult offset = extractOp.getMixedOffsets()[i]; 3158 newIndices.push_back(getValueOrCreateConstantIndexOp( 3159 rewriter, extractOp.getLoc(), offset)); 3160 } 3161 for (const auto &it : llvm::enumerate(xferOp.getIndices())) { 3162 OpFoldResult offset = 3163 extractOp.getMixedOffsets()[it.index() + rankReduced]; 3164 newIndices.push_back(rewriter.create<arith::AddIOp>( 3165 xferOp->getLoc(), it.value(), 3166 getValueOrCreateConstantIndexOp(rewriter, extractOp.getLoc(), 3167 offset))); 3168 } 3169 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3170 rewriter.replaceOpWithNewOp<TransferReadOp>( 3171 xferOp, xferOp.getVectorType(), extractOp.getSource(), newIndices, 3172 xferOp.getPadding(), ArrayRef<bool>{inBounds}); 3173 3174 return success(); 3175 } 3176 }; 3177 } // namespace 3178 3179 void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3180 MLIRContext *context) { 3181 results.add<FoldExtractSliceIntoTransferRead>(context); 3182 } 3183 3184 //===----------------------------------------------------------------------===// 3185 // TransferWriteOp 3186 //===----------------------------------------------------------------------===// 3187 3188 /// 1. Builder with type inference. 3189 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3190 Value vector, Value dest, ValueRange indices, 3191 AffineMapAttr permutationMapAttr, 3192 /*optional*/ Value mask, 3193 /*optional*/ ArrayAttr inBoundsAttr) { 3194 Type resultType = dest.getType().dyn_cast<RankedTensorType>(); 3195 build(builder, result, resultType, vector, dest, indices, permutationMapAttr, 3196 mask, inBoundsAttr); 3197 } 3198 3199 /// 2. Builder with type inference that sets an empty mask (variant with attrs). 3200 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3201 Value vector, Value dest, ValueRange indices, 3202 AffineMapAttr permutationMapAttr, 3203 /*optional*/ ArrayAttr inBoundsAttr) { 3204 build(builder, result, vector, dest, indices, permutationMapAttr, 3205 /*mask=*/Value(), inBoundsAttr); 3206 } 3207 3208 /// 3. Builder with type inference that sets an empty mask (variant without 3209 /// attrs) 3210 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3211 Value vector, Value dest, ValueRange indices, 3212 AffineMap permutationMap, 3213 Optional<ArrayRef<bool>> inBounds) { 3214 auto permutationMapAttr = AffineMapAttr::get(permutationMap); 3215 auto inBoundsAttr = (inBounds && !inBounds.getValue().empty()) 3216 ? builder.getBoolArrayAttr(inBounds.getValue()) 3217 : ArrayAttr(); 3218 build(builder, result, vector, dest, indices, permutationMapAttr, 3219 /*mask=*/Value(), inBoundsAttr); 3220 } 3221 3222 /// 4. Builder with type inference that sets an empty mask and sets permutation 3223 /// map to 'getMinorIdentityMap'. 3224 void TransferWriteOp::build(OpBuilder &builder, OperationState &result, 3225 Value vector, Value dest, ValueRange indices, 3226 Optional<ArrayRef<bool>> inBounds) { 3227 auto vectorType = vector.getType().cast<VectorType>(); 3228 AffineMap permutationMap = getTransferMinorIdentityMap( 3229 dest.getType().cast<ShapedType>(), vectorType); 3230 build(builder, result, vector, dest, indices, permutationMap, inBounds); 3231 } 3232 3233 ParseResult TransferWriteOp::parse(OpAsmParser &parser, 3234 OperationState &result) { 3235 auto &builder = parser.getBuilder(); 3236 SMLoc typesLoc; 3237 OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; 3238 SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo; 3239 SmallVector<Type, 2> types; 3240 OpAsmParser::UnresolvedOperand maskInfo; 3241 if (parser.parseOperand(vectorInfo) || parser.parseComma() || 3242 parser.parseOperand(sourceInfo) || 3243 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) 3244 return failure(); 3245 ParseResult hasMask = parser.parseOptionalComma(); 3246 if (hasMask.succeeded() && parser.parseOperand(maskInfo)) 3247 return failure(); 3248 if (parser.parseOptionalAttrDict(result.attributes) || 3249 parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) 3250 return failure(); 3251 if (types.size() != 2) 3252 return parser.emitError(typesLoc, "requires two types"); 3253 auto indexType = builder.getIndexType(); 3254 VectorType vectorType = types[0].dyn_cast<VectorType>(); 3255 if (!vectorType) 3256 return parser.emitError(typesLoc, "requires vector type"); 3257 ShapedType shapedType = types[1].dyn_cast<ShapedType>(); 3258 if (!shapedType || !shapedType.isa<MemRefType, RankedTensorType>()) 3259 return parser.emitError(typesLoc, "requires memref or ranked tensor type"); 3260 auto permutationAttrName = TransferWriteOp::getPermutationMapAttrStrName(); 3261 auto attr = result.attributes.get(permutationAttrName); 3262 if (!attr) { 3263 auto permMap = getTransferMinorIdentityMap(shapedType, vectorType); 3264 result.attributes.set(permutationAttrName, AffineMapAttr::get(permMap)); 3265 } 3266 if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || 3267 parser.resolveOperand(sourceInfo, shapedType, result.operands) || 3268 parser.resolveOperands(indexInfo, indexType, result.operands)) 3269 return failure(); 3270 if (hasMask.succeeded()) { 3271 if (shapedType.getElementType().dyn_cast<VectorType>()) 3272 return parser.emitError( 3273 maskInfo.location, "does not support masks with vector element type"); 3274 auto maskType = VectorType::get(vectorType.getShape(), builder.getI1Type()); 3275 if (parser.resolveOperand(maskInfo, maskType, result.operands)) 3276 return failure(); 3277 } 3278 result.addAttribute( 3279 TransferWriteOp::getOperandSegmentSizeAttr(), 3280 builder.getI32VectorAttr({1, 1, static_cast<int32_t>(indexInfo.size()), 3281 static_cast<int32_t>(hasMask.succeeded())})); 3282 return failure(shapedType.isa<RankedTensorType>() && 3283 parser.addTypeToList(shapedType, result.types)); 3284 } 3285 3286 void TransferWriteOp::print(OpAsmPrinter &p) { 3287 p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; 3288 if (getMask()) 3289 p << ", " << getMask(); 3290 printTransferAttrs(p, *this); 3291 p << " : " << getVectorType() << ", " << getShapedType(); 3292 } 3293 3294 LogicalResult TransferWriteOp::verify() { 3295 // Consistency of elemental types in shape and vector. 3296 ShapedType shapedType = getShapedType(); 3297 VectorType vectorType = getVectorType(); 3298 VectorType maskType = getMaskType(); 3299 auto permutationMap = getPermutationMap(); 3300 3301 if (llvm::size(getIndices()) != shapedType.getRank()) 3302 return emitOpError("requires ") << shapedType.getRank() << " indices"; 3303 3304 // We do not allow broadcast dimensions on TransferWriteOps for the moment, 3305 // as the semantics is unclear. This can be revisited later if necessary. 3306 if (hasBroadcastDim()) 3307 return emitOpError("should not have broadcast dimensions"); 3308 3309 if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()), 3310 shapedType, vectorType, maskType, permutationMap, 3311 getInBounds() ? *getInBounds() : ArrayAttr()))) 3312 return failure(); 3313 3314 return verifyPermutationMap(permutationMap, 3315 [&](Twine t) { return emitOpError(t); }); 3316 } 3317 3318 /// Fold: 3319 /// ``` 3320 /// %t1 = ... 3321 /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : 3322 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3323 /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : 3324 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3325 /// ``` 3326 /// 3327 /// into: 3328 /// 3329 /// ``` 3330 /// %t0 3331 /// ``` 3332 /// 3333 /// The producer of t1 may or may not be DCE'd depending on whether it is a 3334 /// block argument or has side effects. 3335 static LogicalResult foldReadInitWrite(TransferWriteOp write, 3336 ArrayRef<Attribute>, 3337 SmallVectorImpl<OpFoldResult> &results) { 3338 // TODO: support 0-d corner case. 3339 if (write.getTransferRank() == 0) 3340 return failure(); 3341 auto rankedTensorType = 3342 write.getSource().getType().dyn_cast<RankedTensorType>(); 3343 // If not operating on tensors, bail. 3344 if (!rankedTensorType) 3345 return failure(); 3346 // If no read, bail. 3347 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3348 if (!read) 3349 return failure(); 3350 // TODO: support 0-d corner case. 3351 if (read.getTransferRank() == 0) 3352 return failure(); 3353 // For now, only accept minor identity. Future: composition is minor identity. 3354 if (!read.getPermutationMap().isMinorIdentity() || 3355 !write.getPermutationMap().isMinorIdentity()) 3356 return failure(); 3357 // Bail on mismatching ranks. 3358 if (read.getTransferRank() != write.getTransferRank()) 3359 return failure(); 3360 // Bail on potential out-of-bounds accesses. 3361 if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) 3362 return failure(); 3363 // Tensor types must be the same. 3364 if (read.getSource().getType() != rankedTensorType) 3365 return failure(); 3366 // Vector types must be the same. 3367 if (read.getVectorType() != write.getVectorType()) 3368 return failure(); 3369 // Vector and Tensor shapes must match. 3370 if (read.getVectorType().getShape() != rankedTensorType.getShape()) 3371 return failure(); 3372 // If any index is nonzero. 3373 auto isNotConstantZero = [](Value v) { 3374 auto cstOp = v.getDefiningOp<arith::ConstantIndexOp>(); 3375 return !cstOp || cstOp.value() != 0; 3376 }; 3377 if (llvm::any_of(read.getIndices(), isNotConstantZero) || 3378 llvm::any_of(write.getIndices(), isNotConstantZero)) 3379 return failure(); 3380 // Success. 3381 results.push_back(read.getSource()); 3382 return success(); 3383 } 3384 3385 static bool checkSameValueWAR(vector::TransferReadOp read, 3386 vector::TransferWriteOp write) { 3387 return read.getSource() == write.getSource() && 3388 read.getIndices() == write.getIndices() && 3389 read.getPermutationMap() == write.getPermutationMap() && 3390 read.getVectorType() == write.getVectorType() && !read.getMask() && 3391 !write.getMask(); 3392 } 3393 /// Fold transfer_write write after read: 3394 /// ``` 3395 /// %t0 = ... 3396 /// %v = vector.transfer_read %t0[%c0...] : 3397 /// tensor<static_sizesxf32>, vector<static_sizesxf32> 3398 /// %t1 = vector.transfer_write %v, %t0[%c0...] : 3399 /// vector<static_sizesxf32>, tensor<static_sizesxf32> 3400 /// ``` 3401 /// 3402 /// into: 3403 /// 3404 /// ``` 3405 /// %t0 3406 /// ``` 3407 static LogicalResult foldWAR(TransferWriteOp write, 3408 SmallVectorImpl<OpFoldResult> &results) { 3409 if (!write.getSource().getType().isa<RankedTensorType>()) 3410 return failure(); 3411 auto read = write.getVector().getDefiningOp<vector::TransferReadOp>(); 3412 if (!read) 3413 return failure(); 3414 3415 if (!checkSameValueWAR(read, write)) 3416 return failure(); 3417 results.push_back(read.getSource()); 3418 return success(); 3419 } 3420 3421 LogicalResult TransferWriteOp::fold(ArrayRef<Attribute> operands, 3422 SmallVectorImpl<OpFoldResult> &results) { 3423 if (succeeded(foldReadInitWrite(*this, operands, results))) 3424 return success(); 3425 if (succeeded(foldWAR(*this, results))) 3426 return success(); 3427 if (succeeded(foldTransferInBoundsAttribute(*this))) 3428 return success(); 3429 return foldMemRefCast(*this); 3430 } 3431 3432 Optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() { 3433 return llvm::to_vector<4>(getVectorType().getShape()); 3434 } 3435 3436 void TransferWriteOp::getEffects( 3437 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 3438 &effects) { 3439 if (getShapedType().isa<MemRefType>()) 3440 effects.emplace_back(MemoryEffects::Write::get(), getSource(), 3441 SideEffects::DefaultResource::get()); 3442 } 3443 3444 namespace { 3445 /// Remove dead transfer write from the SSA chain so that it an be eliminated by 3446 /// DCE 3447 /// ``` 3448 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3449 /// : vector<1x4xf32>, tensor<4x4xf32> 3450 /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} 3451 /// : vector<1x4xf32>, tensor<4x4xf32> 3452 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3453 /// : vector<1x4xf32>, tensor<4x4xf32> 3454 /// ``` 3455 /// 3456 /// into: 3457 /// 3458 /// ``` 3459 /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} 3460 /// : vector<1x4xf32>, tensor<4x4xf32> 3461 /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} 3462 /// : vector<1x4xf32>, tensor<4x4xf32> 3463 /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} 3464 /// : vector<1x4xf32>, tensor<4x4xf32> 3465 /// ``` 3466 /// 3467 /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have 3468 /// any other uses. 3469 class FoldWaw final : public OpRewritePattern<TransferWriteOp> { 3470 public: 3471 using OpRewritePattern<TransferWriteOp>::OpRewritePattern; 3472 LogicalResult matchAndRewrite(TransferWriteOp writeOp, 3473 PatternRewriter &rewriter) const override { 3474 if (!writeOp.getShapedType().isa<RankedTensorType>()) 3475 return failure(); 3476 vector::TransferWriteOp writeToModify = writeOp; 3477 3478 auto defWrite = 3479 writeOp.getSource().getDefiningOp<vector::TransferWriteOp>(); 3480 while (defWrite) { 3481 if (checkSameValueWAW(writeOp, defWrite)) { 3482 writeToModify.getSourceMutable().assign(defWrite.getSource()); 3483 return success(); 3484 } 3485 if (!isDisjointTransferIndices( 3486 cast<VectorTransferOpInterface>(defWrite.getOperation()), 3487 cast<VectorTransferOpInterface>(writeOp.getOperation()))) 3488 break; 3489 // If the previous write op doesn't have any other use we an safely look 3490 // at the previous store to see if it can be removed. 3491 if (!defWrite->hasOneUse()) 3492 break; 3493 writeToModify = defWrite; 3494 defWrite = defWrite.getSource().getDefiningOp<vector::TransferWriteOp>(); 3495 } 3496 return failure(); 3497 } 3498 }; 3499 3500 /// Fold tensor.insert_slice into vector.transfer_write if the transfer_write 3501 /// could directly write to the insert_slice's destination. E.g.: 3502 /// 3503 /// ``` 3504 /// %0 = vector.transfer_write %v, %t1[%c0, %c0] {in_bounds = [true, true]} 3505 /// : vector<4x5xf32>, tensor<4x5xf32> 3506 /// %1 = tensor.insert_slice %0 into %t2[%a, %b] [4, 5] [1, 1] 3507 /// : tensor<4x5xf32> into tensor<?x?xf32> 3508 /// ``` 3509 /// is rewritten to: 3510 /// ``` 3511 /// %1 = vector.transfer_write %v, %t2[%a, %b] {in_bounds = [true, true]} 3512 /// : vector<4x5xf32>, tensor<?x?xf32> 3513 /// ``` 3514 struct FoldInsertSliceIntoTransferWrite 3515 : public OpRewritePattern<tensor::InsertSliceOp> { 3516 public: 3517 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3518 3519 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3520 PatternRewriter &rewriter) const override { 3521 if (!insertOp.hasUnitStride()) 3522 return failure(); 3523 3524 auto xferOp = insertOp.getSource().getDefiningOp<TransferWriteOp>(); 3525 if (!xferOp) 3526 return failure(); 3527 // TODO: support 0-d corner case. 3528 if (xferOp.getTransferRank() == 0) 3529 return failure(); 3530 3531 if (xferOp.hasOutOfBoundsDim()) 3532 return failure(); 3533 if (xferOp.getVectorType().getRank() != xferOp.getShapedType().getRank()) 3534 return failure(); 3535 if (xferOp.getMask()) 3536 return failure(); 3537 // Fold only if the TransferWriteOp completely overwrites the `source` with 3538 // a vector. I.e., the result of the TransferWriteOp is a new tensor whose 3539 // content is the data of the vector. 3540 if (!llvm::equal(xferOp.getVectorType().getShape(), 3541 xferOp.getShapedType().getShape())) 3542 return failure(); 3543 if (!xferOp.getPermutationMap().isIdentity()) 3544 return failure(); 3545 3546 // Bail on illegal rank-reduction: we need to check that the rank-reduced 3547 // dims are exactly the leading dims. I.e. the following is illegal: 3548 // ``` 3549 // %0 = vector.transfer_write %v, %t[0,0], %cst : 3550 // vector<2x4xf32>, tensor<2x4xf32> 3551 // %1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] : 3552 // tensor<2x4xf32> into tensor<2x1x4xf32> 3553 // ``` 3554 // 3555 // Cannot fold into: 3556 // ``` 3557 // %0 = vector.transfer_write %v, %t[0,0,0], %cst : 3558 // vector<2x4xf32>, tensor<2x1x4xf32> 3559 // ``` 3560 // For this, check the trailing `vectorRank` dims of the insert_slice result 3561 // tensor match the trailing dims of the inferred result tensor. 3562 int64_t rankReduced = 3563 insertOp.getType().getRank() - insertOp.getSourceType().getRank(); 3564 int64_t vectorRank = xferOp.getVectorType().getRank(); 3565 RankedTensorType inferredSourceTensorType = 3566 tensor::ExtractSliceOp::inferResultType( 3567 insertOp.getType(), insertOp.getMixedOffsets(), 3568 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 3569 auto actualSourceTensorShape = insertOp.getSourceType().getShape(); 3570 if (rankReduced > 0 && 3571 actualSourceTensorShape.take_back(vectorRank) != 3572 inferredSourceTensorType.getShape().take_back(vectorRank)) 3573 return failure(); 3574 3575 SmallVector<Value> indices = getValueOrCreateConstantIndexOp( 3576 rewriter, insertOp.getLoc(), insertOp.getMixedOffsets()); 3577 SmallVector<bool> inBounds(xferOp.getTransferRank(), true); 3578 rewriter.replaceOpWithNewOp<TransferWriteOp>(insertOp, xferOp.getVector(), 3579 insertOp.getDest(), indices, 3580 ArrayRef<bool>{inBounds}); 3581 return success(); 3582 } 3583 }; 3584 3585 /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to 3586 /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is 3587 /// overwritten and inserted into another tensor. After this rewrite, the 3588 /// operations bufferize in-place since all of them work on the same slice. 3589 /// 3590 /// For example: 3591 /// ```mlir 3592 /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] 3593 /// : vector<8x16xf32>, tensor<8x16xf32> 3594 /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] 3595 /// : tensor<8x16xf32> to tensor<?x?xf32> 3596 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3597 /// : tensor<?x?xf32> into tensor<27x37xf32> 3598 /// ``` 3599 /// folds to 3600 /// ```mlir 3601 /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3602 /// : tensor<27x37xf32> to tensor<?x?xf32> 3603 /// %1 = vector.transfer_write %vec, %0[%c0, %c0] 3604 /// : vector<8x16xf32>, tensor<?x?xf32> 3605 /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] 3606 /// : tensor<?x?xf32> into tensor<27x37xf32> 3607 /// ``` 3608 struct SwapExtractSliceOfTransferWrite 3609 : public OpRewritePattern<tensor::InsertSliceOp> { 3610 public: 3611 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 3612 3613 LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, 3614 PatternRewriter &rewriter) const override { 3615 if (!insertOp.hasUnitStride()) 3616 return failure(); 3617 auto extractOp = 3618 insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 3619 if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) 3620 return failure(); 3621 auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>(); 3622 if (!transferOp || !transferOp->hasOneUse()) 3623 return failure(); 3624 3625 // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is 3626 // rank-reducing. 3627 if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { 3628 return rewriter.notifyMatchFailure(insertOp, 3629 "use-def chain is rank-reducing"); 3630 } 3631 3632 // Fail if tensor::ExtractSliceOp has non-zero offset. 3633 if (!extractOp.hasZeroOffset()) { 3634 return rewriter.notifyMatchFailure(insertOp, 3635 "ExtractSliceOp has non-zero offset"); 3636 } 3637 3638 // Fail if tensor::TransferWriteOp has non-zero offset. 3639 if (!llvm::all_of(transferOp.getIndices(), [](Value value) { 3640 return getConstantIntValue(value) == static_cast<int64_t>(0); 3641 })) { 3642 return rewriter.notifyMatchFailure(insertOp, 3643 "TranferWriteOp has non-zero offset"); 3644 } 3645 3646 // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. 3647 for (const auto &it : 3648 llvm::zip(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { 3649 if (!isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it))) { 3650 return rewriter.notifyMatchFailure( 3651 insertOp, "InsertSliceOp and ExtractSliceOp sizes differ"); 3652 } 3653 } 3654 3655 // Fail if the vector::TransferWriteOp may not overwrite the full tensor. 3656 assert(transferOp.getVectorType().hasStaticShape() && 3657 "expected vector to have a static shape"); 3658 ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape(); 3659 SmallVector<int64_t> resultShape = applyPermutationMap( 3660 transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); 3661 if (transferOp.getMask() || !vectorShape.equals(resultShape)) { 3662 return rewriter.notifyMatchFailure( 3663 insertOp, "TransferWriteOp may not write the full tensor."); 3664 } 3665 3666 // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. 3667 SmallVector<int64_t> newResultShape = applyPermutationMap( 3668 transferOp.getPermutationMap(), insertOp.getSourceType().getShape()); 3669 SmallVector<bool> newInBounds; 3670 for (const auto &en : enumerate(newResultShape)) 3671 newInBounds.push_back(en.value() == vectorShape[en.index()]); 3672 auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>( 3673 extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(), 3674 insertOp.getMixedOffsets(), insertOp.getMixedSizes(), 3675 insertOp.getMixedStrides()); 3676 auto newTransferWriteOp = rewriter.create<TransferWriteOp>( 3677 transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), 3678 transferOp.getIndices(), transferOp.getPermutationMapAttr(), 3679 rewriter.getBoolArrayAttr(newInBounds)); 3680 rewriter.updateRootInPlace(insertOp, [&]() { 3681 insertOp.getSourceMutable().assign(newTransferWriteOp.getResult()); 3682 }); 3683 return success(); 3684 } 3685 }; 3686 3687 } // namespace 3688 3689 void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, 3690 MLIRContext *context) { 3691 results.add<FoldWaw, FoldInsertSliceIntoTransferWrite, 3692 SwapExtractSliceOfTransferWrite>(context); 3693 } 3694 3695 //===----------------------------------------------------------------------===// 3696 // LoadOp 3697 //===----------------------------------------------------------------------===// 3698 3699 static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, 3700 MemRefType memRefTy) { 3701 if (!isLastMemrefDimUnitStride(memRefTy)) 3702 return op->emitOpError("most minor memref dim must have unit stride"); 3703 return success(); 3704 } 3705 3706 LogicalResult vector::LoadOp::verify() { 3707 VectorType resVecTy = getVectorType(); 3708 MemRefType memRefTy = getMemRefType(); 3709 3710 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3711 return failure(); 3712 3713 // Checks for vector memrefs. 3714 Type memElemTy = memRefTy.getElementType(); 3715 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3716 if (memVecTy != resVecTy) 3717 return emitOpError("base memref and result vector types should match"); 3718 memElemTy = memVecTy.getElementType(); 3719 } 3720 3721 if (resVecTy.getElementType() != memElemTy) 3722 return emitOpError("base and result element types should match"); 3723 if (llvm::size(getIndices()) != memRefTy.getRank()) 3724 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3725 return success(); 3726 } 3727 3728 OpFoldResult LoadOp::fold(ArrayRef<Attribute>) { 3729 if (succeeded(foldMemRefCast(*this))) 3730 return getResult(); 3731 return OpFoldResult(); 3732 } 3733 3734 //===----------------------------------------------------------------------===// 3735 // StoreOp 3736 //===----------------------------------------------------------------------===// 3737 3738 LogicalResult vector::StoreOp::verify() { 3739 VectorType valueVecTy = getVectorType(); 3740 MemRefType memRefTy = getMemRefType(); 3741 3742 if (failed(verifyLoadStoreMemRefLayout(*this, memRefTy))) 3743 return failure(); 3744 3745 // Checks for vector memrefs. 3746 Type memElemTy = memRefTy.getElementType(); 3747 if (auto memVecTy = memElemTy.dyn_cast<VectorType>()) { 3748 if (memVecTy != valueVecTy) 3749 return emitOpError( 3750 "base memref and valueToStore vector types should match"); 3751 memElemTy = memVecTy.getElementType(); 3752 } 3753 3754 if (valueVecTy.getElementType() != memElemTy) 3755 return emitOpError("base and valueToStore element type should match"); 3756 if (llvm::size(getIndices()) != memRefTy.getRank()) 3757 return emitOpError("requires ") << memRefTy.getRank() << " indices"; 3758 return success(); 3759 } 3760 3761 LogicalResult StoreOp::fold(ArrayRef<Attribute> operands, 3762 SmallVectorImpl<OpFoldResult> &results) { 3763 return foldMemRefCast(*this); 3764 } 3765 3766 //===----------------------------------------------------------------------===// 3767 // MaskedLoadOp 3768 //===----------------------------------------------------------------------===// 3769 3770 LogicalResult MaskedLoadOp::verify() { 3771 VectorType maskVType = getMaskVectorType(); 3772 VectorType passVType = getPassThruVectorType(); 3773 VectorType resVType = getVectorType(); 3774 MemRefType memType = getMemRefType(); 3775 3776 if (resVType.getElementType() != memType.getElementType()) 3777 return emitOpError("base and result element type should match"); 3778 if (llvm::size(getIndices()) != memType.getRank()) 3779 return emitOpError("requires ") << memType.getRank() << " indices"; 3780 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3781 return emitOpError("expected result dim to match mask dim"); 3782 if (resVType != passVType) 3783 return emitOpError("expected pass_thru of same type as result type"); 3784 return success(); 3785 } 3786 3787 namespace { 3788 class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> { 3789 public: 3790 using OpRewritePattern<MaskedLoadOp>::OpRewritePattern; 3791 LogicalResult matchAndRewrite(MaskedLoadOp load, 3792 PatternRewriter &rewriter) const override { 3793 switch (get1DMaskFormat(load.getMask())) { 3794 case MaskFormat::AllTrue: 3795 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3796 load, load.getType(), load.getBase(), load.getIndices()); 3797 return success(); 3798 case MaskFormat::AllFalse: 3799 rewriter.replaceOp(load, load.getPassThru()); 3800 return success(); 3801 case MaskFormat::Unknown: 3802 return failure(); 3803 } 3804 llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); 3805 } 3806 }; 3807 } // namespace 3808 3809 void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 3810 MLIRContext *context) { 3811 results.add<MaskedLoadFolder>(context); 3812 } 3813 3814 OpFoldResult MaskedLoadOp::fold(ArrayRef<Attribute>) { 3815 if (succeeded(foldMemRefCast(*this))) 3816 return getResult(); 3817 return OpFoldResult(); 3818 } 3819 3820 //===----------------------------------------------------------------------===// 3821 // MaskedStoreOp 3822 //===----------------------------------------------------------------------===// 3823 3824 LogicalResult MaskedStoreOp::verify() { 3825 VectorType maskVType = getMaskVectorType(); 3826 VectorType valueVType = getVectorType(); 3827 MemRefType memType = getMemRefType(); 3828 3829 if (valueVType.getElementType() != memType.getElementType()) 3830 return emitOpError("base and valueToStore element type should match"); 3831 if (llvm::size(getIndices()) != memType.getRank()) 3832 return emitOpError("requires ") << memType.getRank() << " indices"; 3833 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3834 return emitOpError("expected valueToStore dim to match mask dim"); 3835 return success(); 3836 } 3837 3838 namespace { 3839 class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> { 3840 public: 3841 using OpRewritePattern<MaskedStoreOp>::OpRewritePattern; 3842 LogicalResult matchAndRewrite(MaskedStoreOp store, 3843 PatternRewriter &rewriter) const override { 3844 switch (get1DMaskFormat(store.getMask())) { 3845 case MaskFormat::AllTrue: 3846 rewriter.replaceOpWithNewOp<vector::StoreOp>( 3847 store, store.getValueToStore(), store.getBase(), store.getIndices()); 3848 return success(); 3849 case MaskFormat::AllFalse: 3850 rewriter.eraseOp(store); 3851 return success(); 3852 case MaskFormat::Unknown: 3853 return failure(); 3854 } 3855 llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); 3856 } 3857 }; 3858 } // namespace 3859 3860 void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 3861 MLIRContext *context) { 3862 results.add<MaskedStoreFolder>(context); 3863 } 3864 3865 LogicalResult MaskedStoreOp::fold(ArrayRef<Attribute> operands, 3866 SmallVectorImpl<OpFoldResult> &results) { 3867 return foldMemRefCast(*this); 3868 } 3869 3870 //===----------------------------------------------------------------------===// 3871 // GatherOp 3872 //===----------------------------------------------------------------------===// 3873 3874 LogicalResult GatherOp::verify() { 3875 VectorType indVType = getIndexVectorType(); 3876 VectorType maskVType = getMaskVectorType(); 3877 VectorType resVType = getVectorType(); 3878 MemRefType memType = getMemRefType(); 3879 3880 if (resVType.getElementType() != memType.getElementType()) 3881 return emitOpError("base and result element type should match"); 3882 if (llvm::size(getIndices()) != memType.getRank()) 3883 return emitOpError("requires ") << memType.getRank() << " indices"; 3884 if (resVType.getDimSize(0) != indVType.getDimSize(0)) 3885 return emitOpError("expected result dim to match indices dim"); 3886 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3887 return emitOpError("expected result dim to match mask dim"); 3888 if (resVType != getPassThruVectorType()) 3889 return emitOpError("expected pass_thru of same type as result type"); 3890 return success(); 3891 } 3892 3893 namespace { 3894 class GatherFolder final : public OpRewritePattern<GatherOp> { 3895 public: 3896 using OpRewritePattern<GatherOp>::OpRewritePattern; 3897 LogicalResult matchAndRewrite(GatherOp gather, 3898 PatternRewriter &rewriter) const override { 3899 switch (get1DMaskFormat(gather.getMask())) { 3900 case MaskFormat::AllTrue: 3901 return failure(); // no unmasked equivalent 3902 case MaskFormat::AllFalse: 3903 rewriter.replaceOp(gather, gather.getPassThru()); 3904 return success(); 3905 case MaskFormat::Unknown: 3906 return failure(); 3907 } 3908 llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); 3909 } 3910 }; 3911 } // namespace 3912 3913 void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, 3914 MLIRContext *context) { 3915 results.add<GatherFolder>(context); 3916 } 3917 3918 //===----------------------------------------------------------------------===// 3919 // ScatterOp 3920 //===----------------------------------------------------------------------===// 3921 3922 LogicalResult ScatterOp::verify() { 3923 VectorType indVType = getIndexVectorType(); 3924 VectorType maskVType = getMaskVectorType(); 3925 VectorType valueVType = getVectorType(); 3926 MemRefType memType = getMemRefType(); 3927 3928 if (valueVType.getElementType() != memType.getElementType()) 3929 return emitOpError("base and valueToStore element type should match"); 3930 if (llvm::size(getIndices()) != memType.getRank()) 3931 return emitOpError("requires ") << memType.getRank() << " indices"; 3932 if (valueVType.getDimSize(0) != indVType.getDimSize(0)) 3933 return emitOpError("expected valueToStore dim to match indices dim"); 3934 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 3935 return emitOpError("expected valueToStore dim to match mask dim"); 3936 return success(); 3937 } 3938 3939 namespace { 3940 class ScatterFolder final : public OpRewritePattern<ScatterOp> { 3941 public: 3942 using OpRewritePattern<ScatterOp>::OpRewritePattern; 3943 LogicalResult matchAndRewrite(ScatterOp scatter, 3944 PatternRewriter &rewriter) const override { 3945 switch (get1DMaskFormat(scatter.getMask())) { 3946 case MaskFormat::AllTrue: 3947 return failure(); // no unmasked equivalent 3948 case MaskFormat::AllFalse: 3949 rewriter.eraseOp(scatter); 3950 return success(); 3951 case MaskFormat::Unknown: 3952 return failure(); 3953 } 3954 llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); 3955 } 3956 }; 3957 } // namespace 3958 3959 void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, 3960 MLIRContext *context) { 3961 results.add<ScatterFolder>(context); 3962 } 3963 3964 //===----------------------------------------------------------------------===// 3965 // ExpandLoadOp 3966 //===----------------------------------------------------------------------===// 3967 3968 LogicalResult ExpandLoadOp::verify() { 3969 VectorType maskVType = getMaskVectorType(); 3970 VectorType passVType = getPassThruVectorType(); 3971 VectorType resVType = getVectorType(); 3972 MemRefType memType = getMemRefType(); 3973 3974 if (resVType.getElementType() != memType.getElementType()) 3975 return emitOpError("base and result element type should match"); 3976 if (llvm::size(getIndices()) != memType.getRank()) 3977 return emitOpError("requires ") << memType.getRank() << " indices"; 3978 if (resVType.getDimSize(0) != maskVType.getDimSize(0)) 3979 return emitOpError("expected result dim to match mask dim"); 3980 if (resVType != passVType) 3981 return emitOpError("expected pass_thru of same type as result type"); 3982 return success(); 3983 } 3984 3985 namespace { 3986 class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> { 3987 public: 3988 using OpRewritePattern<ExpandLoadOp>::OpRewritePattern; 3989 LogicalResult matchAndRewrite(ExpandLoadOp expand, 3990 PatternRewriter &rewriter) const override { 3991 switch (get1DMaskFormat(expand.getMask())) { 3992 case MaskFormat::AllTrue: 3993 rewriter.replaceOpWithNewOp<vector::LoadOp>( 3994 expand, expand.getType(), expand.getBase(), expand.getIndices()); 3995 return success(); 3996 case MaskFormat::AllFalse: 3997 rewriter.replaceOp(expand, expand.getPassThru()); 3998 return success(); 3999 case MaskFormat::Unknown: 4000 return failure(); 4001 } 4002 llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); 4003 } 4004 }; 4005 } // namespace 4006 4007 void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 4008 MLIRContext *context) { 4009 results.add<ExpandLoadFolder>(context); 4010 } 4011 4012 //===----------------------------------------------------------------------===// 4013 // CompressStoreOp 4014 //===----------------------------------------------------------------------===// 4015 4016 LogicalResult CompressStoreOp::verify() { 4017 VectorType maskVType = getMaskVectorType(); 4018 VectorType valueVType = getVectorType(); 4019 MemRefType memType = getMemRefType(); 4020 4021 if (valueVType.getElementType() != memType.getElementType()) 4022 return emitOpError("base and valueToStore element type should match"); 4023 if (llvm::size(getIndices()) != memType.getRank()) 4024 return emitOpError("requires ") << memType.getRank() << " indices"; 4025 if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) 4026 return emitOpError("expected valueToStore dim to match mask dim"); 4027 return success(); 4028 } 4029 4030 namespace { 4031 class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> { 4032 public: 4033 using OpRewritePattern<CompressStoreOp>::OpRewritePattern; 4034 LogicalResult matchAndRewrite(CompressStoreOp compress, 4035 PatternRewriter &rewriter) const override { 4036 switch (get1DMaskFormat(compress.getMask())) { 4037 case MaskFormat::AllTrue: 4038 rewriter.replaceOpWithNewOp<vector::StoreOp>( 4039 compress, compress.getValueToStore(), compress.getBase(), 4040 compress.getIndices()); 4041 return success(); 4042 case MaskFormat::AllFalse: 4043 rewriter.eraseOp(compress); 4044 return success(); 4045 case MaskFormat::Unknown: 4046 return failure(); 4047 } 4048 llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); 4049 } 4050 }; 4051 } // namespace 4052 4053 void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, 4054 MLIRContext *context) { 4055 results.add<CompressStoreFolder>(context); 4056 } 4057 4058 //===----------------------------------------------------------------------===// 4059 // ShapeCastOp 4060 //===----------------------------------------------------------------------===// 4061 4062 /// Returns true if each element of 'a' is equal to the product of a contiguous 4063 /// sequence of the elements of 'b'. Returns false otherwise. 4064 static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { 4065 unsigned rankA = a.size(); 4066 unsigned rankB = b.size(); 4067 assert(rankA < rankB); 4068 4069 unsigned i = 0; 4070 unsigned j = 0; 4071 while (i < rankA && j < rankB) { 4072 int64_t dimA = a[i]; 4073 int64_t dimB = 1; 4074 while (dimB < dimA && j < rankB) 4075 dimB *= b[j++]; 4076 if (dimA != dimB) 4077 break; 4078 ++i; 4079 4080 // Handle the case when trailing dimensions are of size 1. 4081 // Include them into the contiguous sequence. 4082 auto isOne = [](int64_t v) { return v == 1; }; 4083 if (i < rankA && llvm::all_of(a.slice(i), isOne)) 4084 i = rankA; 4085 if (j < rankB && llvm::all_of(b.slice(j), isOne)) 4086 j = rankB; 4087 } 4088 4089 return i == rankA && j == rankB; 4090 } 4091 4092 static LogicalResult verifyVectorShapeCast(Operation *op, 4093 VectorType sourceVectorType, 4094 VectorType resultVectorType) { 4095 // Check that element type is the same. 4096 if (sourceVectorType.getElementType() != resultVectorType.getElementType()) 4097 return op->emitOpError("source/result vectors must have same element type"); 4098 auto sourceShape = sourceVectorType.getShape(); 4099 auto resultShape = resultVectorType.getShape(); 4100 4101 // Check that product of source dim sizes matches product of result dim sizes. 4102 int64_t sourceDimProduct = std::accumulate( 4103 sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{}); 4104 int64_t resultDimProduct = std::accumulate( 4105 resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{}); 4106 if (sourceDimProduct != resultDimProduct) 4107 return op->emitOpError("source/result number of elements must match"); 4108 4109 // Check that expanding/contracting rank cases. 4110 unsigned sourceRank = sourceVectorType.getRank(); 4111 unsigned resultRank = resultVectorType.getRank(); 4112 if (sourceRank < resultRank) { 4113 if (!isValidShapeCast(sourceShape, resultShape)) 4114 return op->emitOpError("invalid shape cast"); 4115 } else if (sourceRank > resultRank) { 4116 if (!isValidShapeCast(resultShape, sourceShape)) 4117 return op->emitOpError("invalid shape cast"); 4118 } 4119 return success(); 4120 } 4121 4122 LogicalResult ShapeCastOp::verify() { 4123 auto sourceVectorType = getSource().getType().dyn_cast_or_null<VectorType>(); 4124 auto resultVectorType = getResult().getType().dyn_cast_or_null<VectorType>(); 4125 4126 // Check if source/result are of vector type. 4127 if (sourceVectorType && resultVectorType) 4128 return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); 4129 4130 return success(); 4131 } 4132 4133 OpFoldResult ShapeCastOp::fold(ArrayRef<Attribute> operands) { 4134 // No-op shape cast. 4135 if (getSource().getType() == getResult().getType()) 4136 return getSource(); 4137 4138 // Canceling shape casts. 4139 if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) { 4140 if (getResult().getType() == otherOp.getSource().getType()) 4141 return otherOp.getSource(); 4142 4143 // Only allows valid transitive folding. 4144 VectorType srcType = otherOp.getSource().getType().cast<VectorType>(); 4145 VectorType resultType = getResult().getType().cast<VectorType>(); 4146 if (srcType.getRank() < resultType.getRank()) { 4147 if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) 4148 return {}; 4149 } else if (srcType.getRank() > resultType.getRank()) { 4150 if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) 4151 return {}; 4152 } else { 4153 return {}; 4154 } 4155 4156 setOperand(otherOp.getSource()); 4157 return getResult(); 4158 } 4159 4160 // Cancelling broadcast and shape cast ops. 4161 if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) { 4162 if (bcastOp.getSourceType() == getType()) 4163 return bcastOp.getSource(); 4164 } 4165 4166 return {}; 4167 } 4168 4169 namespace { 4170 // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. 4171 class ShapeCastConstantFolder final : public OpRewritePattern<ShapeCastOp> { 4172 public: 4173 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4174 4175 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4176 PatternRewriter &rewriter) const override { 4177 auto constantOp = 4178 shapeCastOp.getSource().getDefiningOp<arith::ConstantOp>(); 4179 if (!constantOp) 4180 return failure(); 4181 // Only handle splat for now. 4182 auto dense = constantOp.getValue().dyn_cast<SplatElementsAttr>(); 4183 if (!dense) 4184 return failure(); 4185 auto newAttr = 4186 DenseElementsAttr::get(shapeCastOp.getType().cast<VectorType>(), 4187 dense.getSplatValue<Attribute>()); 4188 rewriter.replaceOpWithNewOp<arith::ConstantOp>(shapeCastOp, newAttr); 4189 return success(); 4190 } 4191 }; 4192 4193 /// Pattern to rewrite a ShapeCast(Broadcast) -> Broadcast. 4194 /// This only applies when the shape of the broadcast source is a suffix of the 4195 /// shape of the result (i.e. when broadcast without reshape is expressive 4196 /// enough to capture the result in a single op). 4197 class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> { 4198 public: 4199 using OpRewritePattern<ShapeCastOp>::OpRewritePattern; 4200 4201 LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, 4202 PatternRewriter &rewriter) const override { 4203 auto broadcastOp = 4204 shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>(); 4205 if (!broadcastOp) 4206 return failure(); 4207 4208 auto broadcastSourceVectorType = 4209 broadcastOp.getSourceType().dyn_cast<VectorType>(); 4210 auto broadcastSourceShape = broadcastSourceVectorType 4211 ? broadcastSourceVectorType.getShape() 4212 : ArrayRef<int64_t>{}; 4213 auto shapeCastTargetShape = shapeCastOp.getResultVectorType().getShape(); 4214 4215 // Bail if `broadcastSourceShape` is not a suffix of the result. 4216 bool isSuffix = (broadcastSourceShape == shapeCastTargetShape.take_back( 4217 broadcastSourceShape.size())); 4218 if (!isSuffix) 4219 return failure(); 4220 4221 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4222 shapeCastOp, shapeCastOp.getResultVectorType(), 4223 broadcastOp.getSource()); 4224 return success(); 4225 } 4226 }; 4227 4228 } // namespace 4229 4230 void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 4231 MLIRContext *context) { 4232 results.add<ShapeCastConstantFolder, ShapeCastBroadcastFolder>(context); 4233 } 4234 4235 //===----------------------------------------------------------------------===// 4236 // VectorBitCastOp 4237 //===----------------------------------------------------------------------===// 4238 4239 LogicalResult BitCastOp::verify() { 4240 auto sourceVectorType = getSourceVectorType(); 4241 auto resultVectorType = getResultVectorType(); 4242 4243 for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { 4244 if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) 4245 return emitOpError("dimension size mismatch at: ") << i; 4246 } 4247 4248 DataLayout dataLayout = DataLayout::closest(*this); 4249 auto sourceElementBits = 4250 dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); 4251 auto resultElementBits = 4252 dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); 4253 4254 if (sourceVectorType.getRank() == 0) { 4255 if (sourceElementBits != resultElementBits) 4256 return emitOpError("source/result bitwidth of the 0-D vector element " 4257 "types must be equal"); 4258 } else if (sourceElementBits * sourceVectorType.getShape().back() != 4259 resultElementBits * resultVectorType.getShape().back()) { 4260 return emitOpError( 4261 "source/result bitwidth of the minor 1-D vectors must be equal"); 4262 } 4263 4264 return success(); 4265 } 4266 4267 OpFoldResult BitCastOp::fold(ArrayRef<Attribute> operands) { 4268 // Nop cast. 4269 if (getSource().getType() == getResult().getType()) 4270 return getSource(); 4271 4272 // Canceling bitcasts. 4273 if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) { 4274 if (getResult().getType() == otherOp.getSource().getType()) 4275 return otherOp.getSource(); 4276 4277 setOperand(otherOp.getSource()); 4278 return getResult(); 4279 } 4280 4281 Attribute sourceConstant = operands.front(); 4282 if (!sourceConstant) 4283 return {}; 4284 4285 Type srcElemType = getSourceVectorType().getElementType(); 4286 Type dstElemType = getResultVectorType().getElementType(); 4287 4288 if (auto floatPack = sourceConstant.dyn_cast<DenseFPElementsAttr>()) { 4289 if (floatPack.isSplat()) { 4290 auto splat = floatPack.getSplatValue<FloatAttr>(); 4291 4292 // Casting fp16 into fp32. 4293 if (srcElemType.isF16() && dstElemType.isF32()) { 4294 uint32_t bits = static_cast<uint32_t>( 4295 splat.getValue().bitcastToAPInt().getZExtValue()); 4296 // Duplicate the 16-bit pattern. 4297 bits = (bits << 16) | (bits & 0xffff); 4298 APInt intBits(32, bits); 4299 APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); 4300 return DenseElementsAttr::get(getResultVectorType(), floatBits); 4301 } 4302 } 4303 } 4304 4305 return {}; 4306 } 4307 4308 //===----------------------------------------------------------------------===// 4309 // TypeCastOp 4310 //===----------------------------------------------------------------------===// 4311 4312 static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) { 4313 auto vectorType = memRefType.getElementType().dyn_cast<VectorType>(); 4314 SmallVector<int64_t, 8> res(memRefType.getShape().begin(), 4315 memRefType.getShape().end()); 4316 if (vectorType) 4317 res.append(vectorType.getShape().begin(), vectorType.getShape().end()); 4318 return res; 4319 } 4320 4321 /// Build the canonical memRefType with a single vector. 4322 /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>. 4323 void TypeCastOp::build(OpBuilder &builder, OperationState &result, 4324 Value source) { 4325 result.addOperands(source); 4326 MemRefType memRefType = source.getType().cast<MemRefType>(); 4327 VectorType vectorType = 4328 VectorType::get(extractShape(memRefType), 4329 getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); 4330 result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), 4331 memRefType.getMemorySpace())); 4332 } 4333 4334 LogicalResult TypeCastOp::verify() { 4335 MemRefType canonicalType = canonicalizeStridedLayout(getMemRefType()); 4336 if (!canonicalType.getLayout().isIdentity()) 4337 return emitOpError("expects operand to be a memref with identity layout"); 4338 if (!getResultMemRefType().getLayout().isIdentity()) 4339 return emitOpError("expects result to be a memref with identity layout"); 4340 if (getResultMemRefType().getMemorySpace() != 4341 getMemRefType().getMemorySpace()) 4342 return emitOpError("expects result in same memory space"); 4343 4344 auto sourceType = getMemRefType(); 4345 auto resultType = getResultMemRefType(); 4346 if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != 4347 getElementTypeOrSelf(getElementTypeOrSelf(resultType))) 4348 return emitOpError( 4349 "expects result and operand with same underlying scalar type: ") 4350 << resultType; 4351 if (extractShape(sourceType) != extractShape(resultType)) 4352 return emitOpError( 4353 "expects concatenated result and operand shapes to be equal: ") 4354 << resultType; 4355 return success(); 4356 } 4357 4358 //===----------------------------------------------------------------------===// 4359 // TransposeOp 4360 //===----------------------------------------------------------------------===// 4361 4362 void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, 4363 Value vector, ArrayRef<int64_t> transp) { 4364 VectorType vt = vector.getType().cast<VectorType>(); 4365 SmallVector<int64_t, 4> transposedShape(vt.getRank()); 4366 for (unsigned i = 0; i < transp.size(); ++i) 4367 transposedShape[i] = vt.getShape()[transp[i]]; 4368 4369 result.addOperands(vector); 4370 result.addTypes(VectorType::get(transposedShape, vt.getElementType())); 4371 result.addAttribute(getTranspAttrStrName(), builder.getI64ArrayAttr(transp)); 4372 } 4373 4374 OpFoldResult vector::TransposeOp::fold(ArrayRef<Attribute> operands) { 4375 // Eliminate splat constant transpose ops. 4376 if (auto attr = operands.front().dyn_cast_or_null<DenseElementsAttr>()) 4377 if (attr.isSplat()) 4378 return attr.reshape(getResultType()); 4379 4380 // Eliminate identity transpose ops. This happens when the dimensions of the 4381 // input vector remain in their original order after the transpose operation. 4382 SmallVector<int64_t, 4> transp; 4383 getTransp(transp); 4384 4385 // Check if the permutation of the dimensions contains sequential values: 4386 // {0, 1, 2, ...}. 4387 for (int64_t i = 0, e = transp.size(); i < e; i++) { 4388 if (transp[i] != i) 4389 return {}; 4390 } 4391 4392 return getVector(); 4393 } 4394 4395 LogicalResult vector::TransposeOp::verify() { 4396 VectorType vectorType = getVectorType(); 4397 VectorType resultType = getResultType(); 4398 int64_t rank = resultType.getRank(); 4399 if (vectorType.getRank() != rank) 4400 return emitOpError("vector result rank mismatch: ") << rank; 4401 // Verify transposition array. 4402 auto transpAttr = getTransp().getValue(); 4403 int64_t size = transpAttr.size(); 4404 if (rank != size) 4405 return emitOpError("transposition length mismatch: ") << size; 4406 SmallVector<bool, 8> seen(rank, false); 4407 for (const auto &ta : llvm::enumerate(transpAttr)) { 4408 int64_t i = ta.value().cast<IntegerAttr>().getInt(); 4409 if (i < 0 || i >= rank) 4410 return emitOpError("transposition index out of range: ") << i; 4411 if (seen[i]) 4412 return emitOpError("duplicate position index: ") << i; 4413 seen[i] = true; 4414 if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(i)) 4415 return emitOpError("dimension size mismatch at: ") << i; 4416 } 4417 return success(); 4418 } 4419 4420 Optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() { 4421 return llvm::to_vector<4>(getResultType().getShape()); 4422 } 4423 4424 namespace { 4425 4426 // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. 4427 class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> { 4428 public: 4429 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 4430 4431 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4432 PatternRewriter &rewriter) const override { 4433 // Wrapper around vector::TransposeOp::getTransp() for cleaner code. 4434 auto getPermutation = [](vector::TransposeOp transpose) { 4435 SmallVector<int64_t, 4> permutation; 4436 transpose.getTransp(permutation); 4437 return permutation; 4438 }; 4439 4440 // Composes two permutations: result[i] = permutation1[permutation2[i]]. 4441 auto composePermutations = [](ArrayRef<int64_t> permutation1, 4442 ArrayRef<int64_t> permutation2) { 4443 SmallVector<int64_t, 4> result; 4444 for (auto index : permutation2) 4445 result.push_back(permutation1[index]); 4446 return result; 4447 }; 4448 4449 // Return if the input of 'transposeOp' is not defined by another transpose. 4450 vector::TransposeOp parentTransposeOp = 4451 transposeOp.getVector().getDefiningOp<vector::TransposeOp>(); 4452 if (!parentTransposeOp) 4453 return failure(); 4454 4455 SmallVector<int64_t, 4> permutation = composePermutations( 4456 getPermutation(parentTransposeOp), getPermutation(transposeOp)); 4457 // Replace 'transposeOp' with a new transpose operation. 4458 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 4459 transposeOp, transposeOp.getResult().getType(), 4460 parentTransposeOp.getVector(), 4461 vector::getVectorSubscriptAttr(rewriter, permutation)); 4462 return success(); 4463 } 4464 }; 4465 4466 // Folds transpose(broadcast(<scalar>)) into brodcast(<scalar>). 4467 struct FoldTransposedScalarBroadcast final 4468 : public OpRewritePattern<vector::TransposeOp> { 4469 using OpRewritePattern::OpRewritePattern; 4470 4471 LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, 4472 PatternRewriter &rewriter) const override { 4473 auto bcastOp = transposeOp.getVector().getDefiningOp<vector::BroadcastOp>(); 4474 if (!bcastOp) 4475 return failure(); 4476 4477 auto srcVectorType = bcastOp.getSourceType().dyn_cast<VectorType>(); 4478 if (!srcVectorType || srcVectorType.getNumElements() == 1) { 4479 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 4480 transposeOp, transposeOp.getResultType(), bcastOp.getSource()); 4481 return success(); 4482 } 4483 4484 return failure(); 4485 } 4486 }; 4487 4488 // Folds transpose(splat x : src_type) : res_type into splat x : res_type. 4489 class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> { 4490 public: 4491 using OpRewritePattern<TransposeOp>::OpRewritePattern; 4492 4493 LogicalResult matchAndRewrite(TransposeOp transposeOp, 4494 PatternRewriter &rewriter) const override { 4495 auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>(); 4496 if (!splatOp) 4497 return failure(); 4498 4499 rewriter.replaceOpWithNewOp<vector::SplatOp>( 4500 transposeOp, transposeOp.getResultType(), splatOp.getInput()); 4501 return success(); 4502 } 4503 }; 4504 4505 } // namespace 4506 4507 void vector::TransposeOp::getCanonicalizationPatterns( 4508 RewritePatternSet &results, MLIRContext *context) { 4509 results 4510 .add<FoldTransposedScalarBroadcast, TransposeFolder, FoldTransposeSplat>( 4511 context); 4512 } 4513 4514 void vector::TransposeOp::getTransp(SmallVectorImpl<int64_t> &results) { 4515 populateFromInt64AttrArray(getTransp(), results); 4516 } 4517 4518 //===----------------------------------------------------------------------===// 4519 // ConstantMaskOp 4520 //===----------------------------------------------------------------------===// 4521 4522 LogicalResult ConstantMaskOp::verify() { 4523 auto resultType = getResult().getType().cast<VectorType>(); 4524 // Check the corner case of 0-D vectors first. 4525 if (resultType.getRank() == 0) { 4526 if (getMaskDimSizes().size() != 1) 4527 return emitError("array attr must have length 1 for 0-D vectors"); 4528 auto dim = getMaskDimSizes()[0].cast<IntegerAttr>().getInt(); 4529 if (dim != 0 && dim != 1) 4530 return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); 4531 return success(); 4532 } 4533 4534 // Verify that array attr size matches the rank of the vector result. 4535 if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank()) 4536 return emitOpError( 4537 "must specify array attr of size equal vector result rank"); 4538 // Verify that each array attr element is in bounds of corresponding vector 4539 // result dimension size. 4540 auto resultShape = resultType.getShape(); 4541 SmallVector<int64_t, 4> maskDimSizes; 4542 for (const auto &it : llvm::enumerate(getMaskDimSizes())) { 4543 int64_t attrValue = it.value().cast<IntegerAttr>().getInt(); 4544 if (attrValue < 0 || attrValue > resultShape[it.index()]) 4545 return emitOpError( 4546 "array attr of size out of bounds of vector result dimension size"); 4547 maskDimSizes.push_back(attrValue); 4548 } 4549 // Verify that if one mask dim size is zero, they all should be zero (because 4550 // the mask region is a conjunction of each mask dimension interval). 4551 bool anyZeros = llvm::is_contained(maskDimSizes, 0); 4552 bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); 4553 if (anyZeros && !allZeros) 4554 return emitOpError("expected all mask dim sizes to be zeros, " 4555 "as a result of conjunction with zero mask dim"); 4556 // Verify that if the mask type is scalable, dimensions should be zero because 4557 // constant scalable masks can only be defined for the "none set" or "all set" 4558 // cases, and there is no VLA way to define an "all set" case for 4559 // `vector.constant_mask`. In the future, a convention could be established 4560 // to decide if a specific dimension value could be considered as "all set". 4561 if (resultType.isScalable() && 4562 getMaskDimSizes()[0].cast<IntegerAttr>().getInt() != 0) 4563 return emitOpError("expected mask dim sizes for scalable masks to be 0"); 4564 return success(); 4565 } 4566 4567 //===----------------------------------------------------------------------===// 4568 // CreateMaskOp 4569 //===----------------------------------------------------------------------===// 4570 4571 LogicalResult CreateMaskOp::verify() { 4572 auto vectorType = getResult().getType().cast<VectorType>(); 4573 // Verify that an operand was specified for each result vector each dimension. 4574 if (vectorType.getRank() == 0) { 4575 if (getNumOperands() != 1) 4576 return emitOpError( 4577 "must specify exactly one operand for 0-D create_mask"); 4578 } else if (getNumOperands() != 4579 getResult().getType().cast<VectorType>().getRank()) { 4580 return emitOpError( 4581 "must specify an operand for each result vector dimension"); 4582 } 4583 return success(); 4584 } 4585 4586 namespace { 4587 4588 // Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. 4589 class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> { 4590 public: 4591 using OpRewritePattern<CreateMaskOp>::OpRewritePattern; 4592 4593 LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, 4594 PatternRewriter &rewriter) const override { 4595 // Return if any of 'createMaskOp' operands are not defined by a constant. 4596 auto isNotDefByConstant = [](Value operand) { 4597 return !isa_and_nonnull<arith::ConstantIndexOp>(operand.getDefiningOp()); 4598 }; 4599 if (llvm::any_of(createMaskOp.operands(), isNotDefByConstant)) 4600 return failure(); 4601 4602 // CreateMaskOp for scalable vectors can be folded only if all dimensions 4603 // are negative or zero. 4604 if (auto vType = createMaskOp.getType().dyn_cast<VectorType>()) { 4605 if (vType.isScalable()) 4606 for (auto opDim : createMaskOp.getOperands()) { 4607 APInt intVal; 4608 if (matchPattern(opDim, m_ConstantInt(&intVal)) && 4609 intVal.isStrictlyPositive()) 4610 return failure(); 4611 } 4612 } 4613 4614 // Gather constant mask dimension sizes. 4615 SmallVector<int64_t, 4> maskDimSizes; 4616 for (auto it : llvm::zip(createMaskOp.operands(), 4617 createMaskOp.getType().getShape())) { 4618 auto *defOp = std::get<0>(it).getDefiningOp(); 4619 int64_t maxDimSize = std::get<1>(it); 4620 int64_t dimSize = cast<arith::ConstantIndexOp>(defOp).value(); 4621 dimSize = std::min(dimSize, maxDimSize); 4622 // If one of dim sizes is zero, set all dims to zero. 4623 if (dimSize <= 0) { 4624 maskDimSizes.assign(createMaskOp.getType().getRank(), 0); 4625 break; 4626 } 4627 maskDimSizes.push_back(dimSize); 4628 } 4629 // Replace 'createMaskOp' with ConstantMaskOp. 4630 rewriter.replaceOpWithNewOp<ConstantMaskOp>( 4631 createMaskOp, createMaskOp.getResult().getType(), 4632 vector::getVectorSubscriptAttr(rewriter, maskDimSizes)); 4633 return success(); 4634 } 4635 }; 4636 4637 } // namespace 4638 4639 void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, 4640 MLIRContext *context) { 4641 results.add<CreateMaskFolder>(context); 4642 } 4643 4644 //===----------------------------------------------------------------------===// 4645 // ScanOp 4646 //===----------------------------------------------------------------------===// 4647 4648 LogicalResult ScanOp::verify() { 4649 VectorType srcType = getSourceType(); 4650 VectorType initialType = getInitialValueType(); 4651 // Check reduction dimension < rank. 4652 int64_t srcRank = srcType.getRank(); 4653 int64_t reductionDim = getReductionDim(); 4654 if (reductionDim >= srcRank) 4655 return emitOpError("reduction dimension ") 4656 << reductionDim << " has to be less than " << srcRank; 4657 4658 // Check that rank(initial_value) = rank(src) - 1. 4659 int64_t initialValueRank = initialType.getRank(); 4660 if (initialValueRank != srcRank - 1) 4661 return emitOpError("initial value rank ") 4662 << initialValueRank << " has to be equal to " << srcRank - 1; 4663 4664 // Check shapes of initial value and src. 4665 ArrayRef<int64_t> srcShape = srcType.getShape(); 4666 ArrayRef<int64_t> initialValueShapes = initialType.getShape(); 4667 SmallVector<int64_t> expectedShape; 4668 for (int i = 0; i < srcRank; i++) { 4669 if (i != reductionDim) 4670 expectedShape.push_back(srcShape[i]); 4671 } 4672 if (llvm::any_of(llvm::zip(initialValueShapes, expectedShape), 4673 [](std::tuple<int64_t, int64_t> s) { 4674 return std::get<0>(s) != std::get<1>(s); 4675 })) { 4676 return emitOpError("incompatible input/initial value shapes"); 4677 } 4678 4679 // Verify supported reduction kind. 4680 Type eltType = getDestType().getElementType(); 4681 if (!isSupportedCombiningKind(getKind(), eltType)) 4682 return emitOpError("unsupported reduction type ") 4683 << eltType << " for kind '" << stringifyCombiningKind(getKind()) 4684 << "'"; 4685 4686 return success(); 4687 } 4688 4689 void mlir::vector::populateVectorToVectorCanonicalizationPatterns( 4690 RewritePatternSet &patterns) { 4691 patterns 4692 .add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder, 4693 ScatterFolder, ExpandLoadFolder, CompressStoreFolder, 4694 StridedSliceConstantMaskFolder, TransposeFolder>( 4695 patterns.getContext()); 4696 } 4697 4698 //===----------------------------------------------------------------------===// 4699 // SplatOp 4700 //===----------------------------------------------------------------------===// 4701 4702 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 4703 auto constOperand = operands.front(); 4704 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 4705 return {}; 4706 4707 // SplatElementsAttr::get treats single value for second arg as being a splat. 4708 return SplatElementsAttr::get(getType(), {constOperand}); 4709 } 4710 4711 //===----------------------------------------------------------------------===// 4712 // WarpExecuteOnLane0Op 4713 //===----------------------------------------------------------------------===// 4714 4715 void WarpExecuteOnLane0Op::print(OpAsmPrinter &p) { 4716 p << "(" << getLaneid() << ")"; 4717 4718 SmallVector<StringRef> coreAttr = {getWarpSizeAttrName()}; 4719 auto warpSizeAttr = getOperation()->getAttr(getWarpSizeAttrName()); 4720 p << "[" << warpSizeAttr.cast<IntegerAttr>().getInt() << "]"; 4721 4722 if (!getArgs().empty()) 4723 p << " args(" << getArgs() << " : " << getArgs().getTypes() << ")"; 4724 if (!getResults().empty()) 4725 p << " -> (" << getResults().getTypes() << ')'; 4726 p << " "; 4727 p.printRegion(getRegion(), 4728 /*printEntryBlockArgs=*/true, 4729 /*printBlockTerminators=*/!getResults().empty()); 4730 p.printOptionalAttrDict(getOperation()->getAttrs(), coreAttr); 4731 } 4732 4733 ParseResult WarpExecuteOnLane0Op::parse(OpAsmParser &parser, 4734 OperationState &result) { 4735 // Create the region. 4736 result.regions.reserve(1); 4737 Region *warpRegion = result.addRegion(); 4738 4739 auto &builder = parser.getBuilder(); 4740 OpAsmParser::UnresolvedOperand laneId; 4741 4742 // Parse predicate operand. 4743 if (parser.parseLParen() || 4744 parser.parseOperand(laneId, /*allowResultNumber=*/false) || 4745 parser.parseRParen()) 4746 return failure(); 4747 4748 int64_t warpSize; 4749 if (parser.parseLSquare() || parser.parseInteger(warpSize) || 4750 parser.parseRSquare()) 4751 return failure(); 4752 result.addAttribute(getWarpSizeAttrName(OperationName(getOperationName(), 4753 builder.getContext())), 4754 builder.getI64IntegerAttr(warpSize)); 4755 4756 if (parser.resolveOperand(laneId, builder.getIndexType(), result.operands)) 4757 return failure(); 4758 4759 llvm::SMLoc inputsOperandsLoc; 4760 SmallVector<OpAsmParser::UnresolvedOperand> inputsOperands; 4761 SmallVector<Type> inputTypes; 4762 if (succeeded(parser.parseOptionalKeyword("args"))) { 4763 if (parser.parseLParen()) 4764 return failure(); 4765 4766 inputsOperandsLoc = parser.getCurrentLocation(); 4767 if (parser.parseOperandList(inputsOperands) || 4768 parser.parseColonTypeList(inputTypes) || parser.parseRParen()) 4769 return failure(); 4770 } 4771 if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc, 4772 result.operands)) 4773 return failure(); 4774 4775 // Parse optional results type list. 4776 if (parser.parseOptionalArrowTypeList(result.types)) 4777 return failure(); 4778 // Parse the region. 4779 if (parser.parseRegion(*warpRegion, /*arguments=*/{}, 4780 /*argTypes=*/{})) 4781 return failure(); 4782 WarpExecuteOnLane0Op::ensureTerminator(*warpRegion, builder, result.location); 4783 4784 // Parse the optional attribute list. 4785 if (parser.parseOptionalAttrDict(result.attributes)) 4786 return failure(); 4787 return success(); 4788 } 4789 4790 void WarpExecuteOnLane0Op::getSuccessorRegions( 4791 Optional<unsigned> index, ArrayRef<Attribute> operands, 4792 SmallVectorImpl<RegionSuccessor> ®ions) { 4793 if (index) { 4794 regions.push_back(RegionSuccessor(getResults())); 4795 return; 4796 } 4797 4798 // The warp region is always executed 4799 regions.push_back(RegionSuccessor(&getWarpRegion())); 4800 } 4801 4802 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4803 TypeRange resultTypes, Value laneId, 4804 int64_t warpSize) { 4805 build(builder, result, resultTypes, laneId, warpSize, 4806 /*operands=*/llvm::None, /*argTypes=*/llvm::None); 4807 } 4808 4809 void WarpExecuteOnLane0Op::build(OpBuilder &builder, OperationState &result, 4810 TypeRange resultTypes, Value laneId, 4811 int64_t warpSize, ValueRange args, 4812 TypeRange blockArgTypes) { 4813 result.addOperands(laneId); 4814 result.addAttribute(getAttributeNames()[0], 4815 builder.getI64IntegerAttr(warpSize)); 4816 result.addTypes(resultTypes); 4817 result.addOperands(args); 4818 assert(args.size() == blockArgTypes.size()); 4819 OpBuilder::InsertionGuard guard(builder); 4820 Region *warpRegion = result.addRegion(); 4821 Block *block = builder.createBlock(warpRegion); 4822 for (auto it : llvm::zip(blockArgTypes, args)) 4823 block->addArgument(std::get<0>(it), std::get<1>(it).getLoc()); 4824 } 4825 4826 /// Helper check if the distributed vector type is consistent with the expanded 4827 /// type and distributed size. 4828 static LogicalResult verifyDistributedType(Type expanded, Type distributed, 4829 int64_t warpSize, Operation *op) { 4830 // If the types matches there is no distribution. 4831 if (expanded == distributed) 4832 return success(); 4833 auto expandedVecType = expanded.dyn_cast<VectorType>(); 4834 auto distributedVecType = distributed.dyn_cast<VectorType>(); 4835 if (!expandedVecType || !distributedVecType) 4836 return op->emitOpError("expected vector type for distributed operands."); 4837 if (expandedVecType.getRank() != distributedVecType.getRank() || 4838 expandedVecType.getElementType() != distributedVecType.getElementType()) 4839 return op->emitOpError( 4840 "expected distributed vectors to have same rank and element type."); 4841 bool foundDistributedDim = false; 4842 for (int64_t i = 0, e = expandedVecType.getRank(); i < e; i++) { 4843 if (expandedVecType.getDimSize(i) == distributedVecType.getDimSize(i)) 4844 continue; 4845 if (expandedVecType.getDimSize(i) == 4846 distributedVecType.getDimSize(i) * warpSize) { 4847 if (foundDistributedDim) 4848 return op->emitOpError() 4849 << "expected only one dimension to be distributed from " 4850 << expandedVecType << " to " << distributedVecType; 4851 foundDistributedDim = true; 4852 continue; 4853 } 4854 return op->emitOpError() << "incompatible distribution dimensions from " 4855 << expandedVecType << " to " << distributedVecType; 4856 } 4857 return success(); 4858 } 4859 4860 LogicalResult WarpExecuteOnLane0Op::verify() { 4861 if (getArgs().size() != getWarpRegion().getNumArguments()) 4862 return emitOpError( 4863 "expected same number op arguments and block arguments."); 4864 auto yield = 4865 cast<YieldOp>(getWarpRegion().getBlocks().begin()->getTerminator()); 4866 if (yield.getNumOperands() != getNumResults()) 4867 return emitOpError( 4868 "expected same number of yield operands and return values."); 4869 int64_t warpSize = getWarpSize(); 4870 for (auto it : llvm::zip(getWarpRegion().getArguments(), getArgs())) { 4871 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4872 std::get<1>(it).getType(), warpSize, 4873 getOperation()))) 4874 return failure(); 4875 } 4876 for (auto it : llvm::zip(yield.getOperands(), getResults())) { 4877 if (failed(verifyDistributedType(std::get<0>(it).getType(), 4878 std::get<1>(it).getType(), warpSize, 4879 getOperation()))) 4880 return failure(); 4881 } 4882 return success(); 4883 } 4884 4885 bool WarpExecuteOnLane0Op::areTypesCompatible(Type lhs, Type rhs) { 4886 return succeeded( 4887 verifyDistributedType(lhs, rhs, getWarpSize(), getOperation())); 4888 } 4889 4890 //===----------------------------------------------------------------------===// 4891 // TableGen'd op method definitions 4892 //===----------------------------------------------------------------------===// 4893 4894 #define GET_OP_CLASSES 4895 #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" 4896