1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
10 #include "mlir/Dialect/StandardOps/Utils/Utils.h"
11 #include "mlir/Dialect/Tensor/IR/Tensor.h"
12 #include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
13 #include "mlir/Dialect/Utils/StaticValueUtils.h"
14 #include "mlir/IR/BlockAndValueMapping.h"
15 #include "mlir/IR/Builders.h"
16 #include "mlir/IR/BuiltinAttributeInterfaces.h"
17 #include "mlir/IR/Matchers.h"
18 #include "mlir/IR/PatternMatch.h"
19 #include "mlir/IR/TypeUtilities.h"
20 #include "llvm/ADT/STLExtras.h"
21 
22 using namespace mlir;
23 using namespace mlir::tensor;
24 
25 /// Materialize a single constant operation from a given attribute value with
26 /// the desired resultant type.
27 Operation *TensorDialect::materializeConstant(OpBuilder &builder,
28                                               Attribute value, Type type,
29                                               Location loc) {
30   if (arith::ConstantOp::isBuildableWith(value, type))
31     return builder.create<arith::ConstantOp>(loc, value, type);
32   if (ConstantOp::isBuildableWith(value, type))
33     return builder.create<ConstantOp>(loc, value, type);
34   return nullptr;
35 }
36 
37 //===----------------------------------------------------------------------===//
38 // CastOp
39 //===----------------------------------------------------------------------===//
40 
41 /// Returns true if `target` is a ranked tensor type that preserves static
42 /// information available in the `source` ranked tensor type.
43 bool mlir::tensor::preservesStaticInformation(Type source, Type target) {
44   auto sourceType = source.dyn_cast<RankedTensorType>();
45   auto targetType = target.dyn_cast<RankedTensorType>();
46 
47   // Requires RankedTensorType.
48   if (!sourceType || !targetType)
49     return false;
50 
51   // Requires same elemental type.
52   if (sourceType.getElementType() != targetType.getElementType())
53     return false;
54 
55   // Requires same rank.
56   if (sourceType.getRank() != targetType.getRank())
57     return false;
58 
59   // If cast is towards more static sizes along any dimension, don't fold.
60   for (auto t : llvm::zip(sourceType.getShape(), targetType.getShape())) {
61     if (!ShapedType::isDynamic(std::get<0>(t)) &&
62         ShapedType::isDynamic(std::get<1>(t)))
63       return false;
64   }
65 
66   return true;
67 }
68 
69 /// Determines whether tensor::CastOp casts to a more dynamic version of the
70 /// source tensor. This is useful to fold a tensor.cast into a consuming op and
71 /// implement canonicalization patterns for ops in different dialects that may
72 /// consume the results of tensor.cast operations. Such foldable tensor.cast
73 /// operations are typically inserted as `slice` ops and are canonicalized,
74 /// to preserve the type compatibility of their uses.
75 ///
76 /// Returns true when all conditions are met:
77 /// 1. source and result are ranked tensors with same element type and rank.
78 /// 2. the tensor type has more static information than the result
79 ///
80 /// Example:
81 /// ```mlir
82 ///   %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
83 ///   %2 = consumer %1 ... : tensor<?x?xf32> ...
84 /// ```
85 ///
86 /// folds into:
87 ///
88 /// ```mlir
89 ///   %2 = consumer %0 ... : tensor<8x16xf32> ...
90 /// ```
91 bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) {
92   if (!castOp)
93     return false;
94 
95   // Can fold if the source of cast has at least as much static information as
96   // its results.
97   return preservesStaticInformation(castOp.getType(),
98                                     castOp.source().getType());
99 }
100 
101 /// Performs folding of any operand of `op` if it comes from a tensor::CastOp
102 /// that can be folded.
103 LogicalResult mlir::tensor::foldTensorCast(Operation *op) {
104   bool folded = false;
105   for (OpOperand &operand : op->getOpOperands()) {
106     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
107     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
108       operand.set(castOp.getOperand());
109       folded = true;
110     }
111   }
112   return success(folded);
113 }
114 
115 bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
116   if (inputs.size() != 1 || outputs.size() != 1)
117     return false;
118   Type a = inputs.front(), b = outputs.front();
119   auto aT = a.dyn_cast<TensorType>();
120   auto bT = b.dyn_cast<TensorType>();
121   if (!aT || !bT)
122     return false;
123 
124   if (aT.getElementType() != bT.getElementType())
125     return false;
126 
127   return succeeded(verifyCompatibleShape(aT, bT));
128 }
129 
130 /// Compute a TensorType that has the joined shape knowledge of the two
131 /// given TensorTypes. The element types need to match.
132 static TensorType joinShapes(TensorType one, TensorType two) {
133   assert(one.getElementType() == two.getElementType());
134 
135   if (!one.hasRank())
136     return two;
137   if (!two.hasRank())
138     return one;
139 
140   int64_t rank = one.getRank();
141   if (rank != two.getRank())
142     return {};
143 
144   SmallVector<int64_t, 4> join;
145   join.reserve(rank);
146   for (int64_t i = 0; i < rank; ++i) {
147     if (one.isDynamicDim(i)) {
148       join.push_back(two.getDimSize(i));
149       continue;
150     }
151     if (two.isDynamicDim(i)) {
152       join.push_back(one.getDimSize(i));
153       continue;
154     }
155     if (one.getDimSize(i) != two.getDimSize(i))
156       return {};
157     join.push_back(one.getDimSize(i));
158   }
159   return RankedTensorType::get(join, one.getElementType());
160 }
161 
162 namespace {
163 
164 /// Replaces chains of two tensor.cast operations by a single tensor.cast
165 /// operation if doing so does not remove runtime constraints.
166 struct ChainedTensorCast : public OpRewritePattern<CastOp> {
167   using OpRewritePattern<CastOp>::OpRewritePattern;
168 
169   LogicalResult matchAndRewrite(CastOp tensorCast,
170                                 PatternRewriter &rewriter) const final {
171     auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>();
172 
173     if (!tensorCastOperand)
174       return failure();
175 
176     auto sourceType =
177         tensorCastOperand.getOperand().getType().cast<TensorType>();
178     auto intermediateType = tensorCastOperand.getType().cast<TensorType>();
179     auto resultType = tensorCast.getType().cast<TensorType>();
180 
181     // We can remove the intermediate cast if joining all three produces the
182     // same result as just joining the source and result shapes.
183     auto firstJoin =
184         joinShapes(joinShapes(sourceType, intermediateType), resultType);
185 
186     // The join might not exist if the cast sequence would fail at runtime.
187     if (!firstJoin)
188       return failure();
189 
190     // The newJoin always exists if the above join exists, it might just contain
191     // less information. If so, we cannot drop the intermediate cast, as doing
192     // so would remove runtime checks.
193     auto newJoin = joinShapes(sourceType, resultType);
194     if (firstJoin != newJoin)
195       return failure();
196 
197     rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType,
198                                         tensorCastOperand.getOperand());
199     return success();
200   }
201 };
202 
203 } // namespace
204 
205 void CastOp::getCanonicalizationPatterns(RewritePatternSet &results,
206                                          MLIRContext *context) {
207   results.add<ChainedTensorCast>(context);
208 }
209 
210 //===----------------------------------------------------------------------===//
211 // DimOp
212 //===----------------------------------------------------------------------===//
213 
214 void DimOp::build(OpBuilder &builder, OperationState &result, Value source,
215                   int64_t index) {
216   auto loc = result.location;
217   Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index);
218   build(builder, result, source, indexValue);
219 }
220 
221 Optional<int64_t> DimOp::getConstantIndex() {
222   if (auto constantOp = index().getDefiningOp<arith::ConstantOp>())
223     return constantOp.getValue().cast<IntegerAttr>().getInt();
224   return {};
225 }
226 
227 static LogicalResult verify(DimOp op) {
228   // Assume unknown index to be in range.
229   Optional<int64_t> index = op.getConstantIndex();
230   if (!index.hasValue())
231     return success();
232 
233   // Check that constant index is not knowingly out of range.
234   auto type = op.source().getType();
235   if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
236     if (index.getValue() >= tensorType.getRank())
237       return op.emitOpError("index is out of range");
238   } else if (type.isa<UnrankedTensorType>()) {
239     // Assume index to be in range.
240   } else {
241     llvm_unreachable("expected operand with tensor type");
242   }
243   return success();
244 }
245 
246 OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
247   // All forms of folding require a known index.
248   auto index = operands[1].dyn_cast_or_null<IntegerAttr>();
249   if (!index)
250     return {};
251 
252   // Folding for unranked types (UnrankedTensorType) is not supported.
253   auto tensorType = source().getType().dyn_cast<RankedTensorType>();
254   if (!tensorType)
255     return {};
256 
257   // Fold if the shape extent along the given index is known.
258   if (!tensorType.isDynamicDim(index.getInt())) {
259     Builder builder(getContext());
260     return builder.getIndexAttr(tensorType.getShape()[index.getInt()]);
261   }
262 
263   Operation *definingOp = source().getDefiningOp();
264 
265   // Fold dim to the operand of tensor.generate.
266   if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) {
267     auto resultType =
268         fromElements.getResult().getType().cast<RankedTensorType>();
269     // The case where the type encodes the size of the dimension is handled
270     // above.
271     assert(ShapedType::isDynamic(resultType.getShape()[index.getInt()]));
272 
273     // Find the operand of the fromElements that corresponds to this index.
274     auto dynExtents = fromElements.dynamicExtents().begin();
275     for (auto dim : resultType.getShape().take_front(index.getInt()))
276       if (ShapedType::isDynamic(dim))
277         dynExtents++;
278 
279     return Value{*dynExtents};
280   }
281 
282   // The size at the given index is now known to be a dynamic size.
283   unsigned unsignedIndex = index.getValue().getZExtValue();
284 
285   if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) {
286     // Fold only for non-rank reduced ops. For the rank-reduced version, rely on
287     // `resolve-shaped-type-result-dims` pass.
288     if (sliceOp.getType().getRank() == sliceOp.getSourceType().getRank() &&
289         sliceOp.isDynamicSize(unsignedIndex)) {
290       return {sliceOp.getDynamicSize(unsignedIndex)};
291     }
292   }
293 
294   // dim(cast) -> dim
295   if (succeeded(foldTensorCast(*this)))
296     return getResult();
297 
298   return {};
299 }
300 
301 namespace {
302 /// Fold dim of a cast into the dim of the source of the tensor cast.
303 struct DimOfCastOp : public OpRewritePattern<DimOp> {
304   using OpRewritePattern<DimOp>::OpRewritePattern;
305 
306   LogicalResult matchAndRewrite(DimOp dimOp,
307                                 PatternRewriter &rewriter) const override {
308     auto castOp = dimOp.source().getDefiningOp<CastOp>();
309     if (!castOp)
310       return failure();
311     Value newSource = castOp.getOperand();
312     rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.index());
313     return success();
314   }
315 };
316 } // namespace
317 
318 void DimOp::getCanonicalizationPatterns(RewritePatternSet &results,
319                                         MLIRContext *context) {
320   results.add<DimOfCastOp>(context);
321 }
322 
323 //===----------------------------------------------------------------------===//
324 // ExtractOp
325 //===----------------------------------------------------------------------===//
326 
327 static LogicalResult verify(ExtractOp op) {
328   // Verify the # indices match if we have a ranked type.
329   if (auto tensorType = op.tensor().getType().dyn_cast<RankedTensorType>())
330     if (tensorType.getRank() != static_cast<int64_t>(op.indices().size()))
331       return op.emitOpError("incorrect number of indices for extract_element");
332 
333   return success();
334 }
335 
336 OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) {
337   // The tensor operand must be a known constant.
338   Attribute tensor = operands.front();
339   if (!tensor)
340     return {};
341   // If this is a splat elements attribute, simply return the value. All of the
342   // elements of a splat attribute are the same.
343   if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>())
344     return splatTensor.getSplatValue<Attribute>();
345 
346   // Otherwise, collect the constant indices into the tensor.
347   SmallVector<uint64_t, 8> indices;
348   for (Attribute indice : llvm::drop_begin(operands, 1)) {
349     if (!indice || !indice.isa<IntegerAttr>())
350       return {};
351     indices.push_back(indice.cast<IntegerAttr>().getInt());
352   }
353 
354   // If this is an elements attribute, query the value at the given indices.
355   auto elementsAttr = tensor.dyn_cast<ElementsAttr>();
356   if (elementsAttr && elementsAttr.isValidIndex(indices))
357     return elementsAttr.getValues<Attribute>()[indices];
358   return {};
359 }
360 
361 //===----------------------------------------------------------------------===//
362 // FromElementsOp
363 //===----------------------------------------------------------------------===//
364 
365 void FromElementsOp::build(OpBuilder &builder, OperationState &result,
366                            Type resultType, ValueRange elements) {
367   result.addOperands(elements);
368   result.addTypes(resultType);
369 }
370 
371 void FromElementsOp::build(OpBuilder &builder, OperationState &result,
372                            ValueRange elements) {
373   assert(!elements.empty() && "expected at least one element");
374   Type resultType = RankedTensorType::get(
375       {static_cast<int64_t>(elements.size())}, elements.front().getType());
376   build(builder, result, resultType, elements);
377 }
378 
379 OpFoldResult FromElementsOp::fold(ArrayRef<Attribute> operands) {
380   if (!llvm::is_contained(operands, nullptr))
381     return DenseElementsAttr::get(getType(), operands);
382   return {};
383 }
384 
385 namespace {
386 
387 // Canonicalizes the pattern of the form
388 //
389 // %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32>
390 // %extracted_element = tensor.extract %tensor[%c0] : tensor<1xi32>
391 //
392 // to just %element.
393 struct ExtractElementFromTensorFromElements
394     : public OpRewritePattern<tensor::ExtractOp> {
395   using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
396 
397   LogicalResult matchAndRewrite(tensor::ExtractOp extract,
398                                 PatternRewriter &rewriter) const final {
399     auto tensorFromElements = extract.tensor().getDefiningOp<FromElementsOp>();
400     if (!tensorFromElements)
401       return failure();
402     auto tensorType = tensorFromElements.getType().cast<RankedTensorType>();
403     auto rank = tensorType.getRank();
404     if (rank == 0) {
405       rewriter.replaceOp(extract, tensorFromElements.getOperand(0));
406       return success();
407     }
408     SmallVector<APInt, 3> indices(rank);
409     int64_t flatIndex = 0;
410     int64_t stride = 1;
411     for (int i = rank - 1; i >= 0; --i) {
412       APInt index;
413       if (!matchPattern(extract.indices()[i], m_ConstantInt(&index)))
414         return failure();
415       if (i < rank - 1)
416         stride *= tensorType.getDimSize(i);
417       flatIndex += index.getSExtValue() * stride;
418     }
419     // Prevent out of bounds accesses. This can happen in invalid code that will
420     // never execute.
421     if (tensorFromElements->getNumOperands() <= flatIndex || flatIndex < 0)
422       return failure();
423     rewriter.replaceOp(extract, tensorFromElements.getOperand(flatIndex));
424     return success();
425   }
426 };
427 
428 // Pushes the index_casts that occur before extractions to after the extract.
429 // This minimizes type conversion in some cases and enables the extract
430 // canonicalizer. This changes:
431 //
432 // %cast = arith.index_cast %tensor : tensor<1xi32> to tensor<1xindex>
433 // %extract = tensor.extract %cast[%index] : tensor<1xindex>
434 //
435 // to the following:
436 //
437 // %extract = tensor.extract %tensor[%index] : tensor<1xindex>
438 // %cast = arith.index_cast %extract : i32 to index
439 //
440 // to just %element.
441 //
442 // Consider expanding this to a template and handle all tensor cast operations.
443 struct ExtractElementFromIndexCast
444     : public OpRewritePattern<tensor::ExtractOp> {
445   using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
446 
447   LogicalResult matchAndRewrite(tensor::ExtractOp extract,
448                                 PatternRewriter &rewriter) const final {
449     Location loc = extract.getLoc();
450     auto indexCast = extract.tensor().getDefiningOp<arith::IndexCastOp>();
451     if (!indexCast)
452       return failure();
453 
454     Type elementTy = getElementTypeOrSelf(indexCast.getIn());
455 
456     auto newExtract = rewriter.create<tensor::ExtractOp>(
457         loc, elementTy, indexCast.getIn(), extract.indices());
458 
459     rewriter.replaceOpWithNewOp<arith::IndexCastOp>(extract, extract.getType(),
460                                                     newExtract);
461 
462     return success();
463   }
464 };
465 
466 } // namespace
467 
468 void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results,
469                                                  MLIRContext *context) {
470   results
471       .add<ExtractElementFromIndexCast, ExtractElementFromTensorFromElements>(
472           context);
473 }
474 
475 //===----------------------------------------------------------------------===//
476 // InsertOp
477 //===----------------------------------------------------------------------===//
478 
479 static LogicalResult verify(InsertOp op) {
480   // Verify the # indices match if we have a ranked type.
481   if (auto destType = op.dest().getType().dyn_cast<RankedTensorType>())
482     if (destType.getRank() != static_cast<int64_t>(op.indices().size()))
483       return op.emitOpError("incorrect number of indices");
484   return success();
485 }
486 
487 OpFoldResult InsertOp::fold(ArrayRef<Attribute> operands) {
488   Attribute scalar = operands[0];
489   Attribute dest = operands[1];
490   if (scalar && dest)
491     if (auto splatDest = dest.dyn_cast<SplatElementsAttr>())
492       if (scalar == splatDest.getSplatValue<Attribute>())
493         return dest;
494   return {};
495 }
496 
497 //===----------------------------------------------------------------------===//
498 // GenerateOp
499 //===----------------------------------------------------------------------===//
500 
501 static LogicalResult verify(GenerateOp op) {
502   // Ensure that the tensor type has as many dynamic dimensions as are specified
503   // by the operands.
504   RankedTensorType resultTy = op.getType().cast<RankedTensorType>();
505   if (op.getNumOperands() != resultTy.getNumDynamicDims())
506     return op.emitError("must have as many index operands as dynamic extents "
507                         "in the result type");
508 
509   // Ensure that region arguments span the index space.
510   if (!llvm::all_of(op.body().getArgumentTypes(),
511                     [](Type ty) { return ty.isIndex(); }))
512     return op.emitError("all body arguments must be index");
513   if (op.body().getNumArguments() != resultTy.getRank())
514     return op.emitError("must have one body argument per input dimension");
515 
516   // Ensure that the region yields an element of the right type.
517   auto yieldOp =
518       llvm::cast<YieldOp>(op.body().getBlocks().front().getTerminator());
519 
520   if (yieldOp.value().getType() != resultTy.getElementType())
521     return op.emitOpError(
522         "body must be terminated with a `yield` operation of the tensor "
523         "element type");
524 
525   return success();
526 }
527 
528 void GenerateOp::build(
529     OpBuilder &b, OperationState &result, Type resultTy,
530     ValueRange dynamicExtents,
531     function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
532   build(b, result, resultTy, dynamicExtents);
533 
534   // Build and populate body.
535   OpBuilder::InsertionGuard guard(b);
536   Region *bodyRegion = result.regions.front().get();
537   auto rank = resultTy.cast<RankedTensorType>().getRank();
538   SmallVector<Type, 2> argumentTypes(rank, b.getIndexType());
539   SmallVector<Location, 2> argumentLocs(rank, result.location);
540   Block *bodyBlock =
541       b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes, argumentLocs);
542   bodyBuilder(b, result.location, bodyBlock->getArguments());
543 }
544 
545 namespace {
546 
547 /// Canonicalizes tensor.generate operations with a constant
548 /// operand into the equivalent operation with the operand expressed in the
549 /// result type, instead. We also insert a type cast to make sure that the
550 /// resulting IR is still well-typed.
551 struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> {
552   using OpRewritePattern<GenerateOp>::OpRewritePattern;
553 
554   LogicalResult matchAndRewrite(GenerateOp tensorFromElements,
555                                 PatternRewriter &rewriter) const final {
556     auto resultType =
557         tensorFromElements.getResult().getType().cast<RankedTensorType>();
558 
559     if (resultType.hasStaticShape())
560       return failure();
561 
562     SmallVector<Value, 4> newOperands;
563     SmallVector<int64_t, 4> newShape;
564     auto operandsIt = tensorFromElements.dynamicExtents().begin();
565 
566     for (int64_t dim : resultType.getShape()) {
567       if (!ShapedType::isDynamic(dim)) {
568         newShape.push_back(dim);
569         continue;
570       }
571       APInt index;
572       if (!matchPattern(*operandsIt, m_ConstantInt(&index))) {
573         newShape.push_back(ShapedType::kDynamicSize);
574         newOperands.push_back(*operandsIt++);
575         continue;
576       }
577       newShape.push_back(index.getSExtValue());
578       operandsIt++;
579     }
580 
581     if (newOperands.size() == tensorFromElements.dynamicExtents().size())
582       return failure();
583 
584     auto loc = tensorFromElements.getLoc();
585     auto newOp = rewriter.create<GenerateOp>(
586         loc, RankedTensorType::get(newShape, resultType.getElementType()),
587         newOperands);
588     rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(),
589                                 newOp.body().begin());
590     rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType,
591                                                 newOp);
592     return success();
593   }
594 };
595 
596 /// Canonicalizes the pattern of the form
597 ///
598 /// %tensor = tensor.generate %x {
599 ///   ^bb0(%arg0: index):
600 ///   <computation>
601 ///   yield %1 : index
602 /// } : tensor<?xindex>
603 /// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32>
604 ///
605 /// to just <computation> with %arg0 replaced by %c0. We only do this if the
606 /// tensor.generate operation has no side-effects.
607 struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> {
608   using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
609 
610   LogicalResult matchAndRewrite(tensor::ExtractOp extract,
611                                 PatternRewriter &rewriter) const final {
612     auto tensorFromElements = extract.tensor().getDefiningOp<GenerateOp>();
613     if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements))
614       return failure();
615 
616     BlockAndValueMapping mapping;
617     Block *body = tensorFromElements.getBody();
618     mapping.map(body->getArguments(), extract.indices());
619     for (auto &op : body->without_terminator())
620       rewriter.clone(op, mapping);
621 
622     auto yield = cast<YieldOp>(body->getTerminator());
623 
624     rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value()));
625     return success();
626   }
627 };
628 
629 /// Canonicalizes the pattern of the form
630 ///
631 /// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32>
632 /// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32>
633 ///
634 /// to
635 ///
636 /// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32>
637 struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> {
638   using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
639 
640   LogicalResult matchAndRewrite(tensor::ExtractOp extract,
641                                 PatternRewriter &rewriter) const final {
642     auto tensorCast = extract.tensor().getDefiningOp<tensor::CastOp>();
643     if (!tensorCast)
644       return failure();
645 
646     rewriter.replaceOpWithNewOp<tensor::ExtractOp>(extract, tensorCast.source(),
647                                                    extract.indices());
648     return success();
649   }
650 };
651 
652 } // namespace
653 
654 void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results,
655                                              MLIRContext *context) {
656   // TODO: Move extract patterns to tensor::ExtractOp.
657   results.add<ExtractFromTensorGenerate, ExtractFromTensorCast,
658               StaticTensorGenerate>(context);
659 }
660 
661 //===----------------------------------------------------------------------===//
662 // RankOp
663 //===----------------------------------------------------------------------===//
664 
665 OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) {
666   // Constant fold rank when the rank of the operand is known.
667   auto type = getOperand().getType();
668   auto shapedType = type.dyn_cast<ShapedType>();
669   if (shapedType && shapedType.hasRank())
670     return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank());
671   return IntegerAttr();
672 }
673 
674 //===----------------------------------------------------------------------===//
675 // ReshapeOp
676 //===----------------------------------------------------------------------===//
677 
678 static int64_t getNumElements(ShapedType type) {
679   int64_t numElements = 1;
680   for (auto dim : type.getShape())
681     numElements *= dim;
682   return numElements;
683 }
684 
685 static LogicalResult verify(ReshapeOp op) {
686   TensorType operandType = op.source().getType().cast<TensorType>();
687   TensorType resultType = op.result().getType().cast<TensorType>();
688 
689   if (operandType.getElementType() != resultType.getElementType())
690     return op.emitOpError("element types of source and destination tensor "
691                           "types should be the same");
692 
693   int64_t shapeSize =
694       op.shape().getType().cast<RankedTensorType>().getDimSize(0);
695   auto resultRankedType = resultType.dyn_cast<RankedTensorType>();
696   auto operandRankedType = operandType.dyn_cast<RankedTensorType>();
697 
698   if (resultRankedType) {
699     if (operandRankedType && resultRankedType.hasStaticShape() &&
700         operandRankedType.hasStaticShape()) {
701       if (getNumElements(operandRankedType) != getNumElements(resultRankedType))
702         return op.emitOpError("source and destination tensor should have the "
703                               "same number of elements");
704     }
705     if (ShapedType::isDynamic(shapeSize))
706       return op.emitOpError("cannot use shape operand with dynamic length to "
707                             "reshape to statically-ranked tensor type");
708     if (shapeSize != resultRankedType.getRank())
709       return op.emitOpError(
710           "length of shape operand differs from the result's tensor rank");
711   }
712   return success();
713 }
714 
715 //===----------------------------------------------------------------------===//
716 // Reassociative reshape ops
717 //===----------------------------------------------------------------------===//
718 
719 SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() {
720   return getSymbolLessAffineMaps(getReassociationExprs());
721 }
722 SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() {
723   return convertReassociationIndicesToExprs(getContext(),
724                                             getReassociationIndices());
725 }
726 
727 SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() {
728   return getSymbolLessAffineMaps(getReassociationExprs());
729 }
730 SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() {
731   return convertReassociationIndicesToExprs(getContext(),
732                                             getReassociationIndices());
733 }
734 
735 static void print(OpAsmPrinter &p, ExpandShapeOp op) {
736   ::mlir::printReshapeOp<ExpandShapeOp>(p, op);
737 }
738 
739 static void print(OpAsmPrinter &p, CollapseShapeOp op) {
740   ::mlir::printReshapeOp<CollapseShapeOp>(p, op);
741 }
742 
743 /// Compute the RankedTensorType obtained by applying `reassociation` to `type`.
744 static RankedTensorType
745 computeTensorReshapeCollapsedType(RankedTensorType type,
746                                   ArrayRef<AffineMap> reassociation) {
747   auto shape = type.getShape();
748   SmallVector<int64_t, 4> newShape;
749   newShape.reserve(reassociation.size());
750 
751   // Use the fact that reassociation is valid to simplify the logic: only use
752   // each map's rank.
753   assert(isReassociationValid(reassociation) && "invalid reassociation");
754   unsigned currentDim = 0;
755   for (AffineMap m : reassociation) {
756     unsigned dim = m.getNumResults();
757     auto band = shape.slice(currentDim, dim);
758     int64_t size = 1;
759     if (llvm::is_contained(band, ShapedType::kDynamicSize))
760       size = ShapedType::kDynamicSize;
761     else
762       for (unsigned d = 0; d < dim; ++d)
763         size *= shape[currentDim + d];
764     newShape.push_back(size);
765     currentDim += dim;
766   }
767 
768   return RankedTensorType::get(newShape, type.getElementType());
769 }
770 
771 void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src,
772                             ArrayRef<ReassociationIndices> reassociation,
773                             ArrayRef<NamedAttribute> attrs) {
774   auto resultType = computeTensorReshapeCollapsedType(
775       src.getType().cast<RankedTensorType>(),
776       getSymbolLessAffineMaps(
777           convertReassociationIndicesToExprs(b.getContext(), reassociation)));
778   build(b, result, resultType, src, attrs);
779   result.addAttribute(getReassociationAttrName(),
780                       getReassociationIndicesAttribute(b, reassociation));
781 }
782 
783 void ExpandShapeOp::build(OpBuilder &b, OperationState &result, Value src,
784                           ArrayRef<ReassociationIndices> reassociation,
785                           ArrayRef<NamedAttribute> attrs) {
786   auto resultType = computeTensorReshapeCollapsedType(
787       src.getType().cast<RankedTensorType>(),
788       getSymbolLessAffineMaps(
789           convertReassociationIndicesToExprs(b.getContext(), reassociation)));
790   build(b, result, resultType, src, attrs);
791   result.addAttribute(getReassociationAttrName(),
792                       getReassociationIndicesAttribute(b, reassociation));
793 }
794 
795 template <typename TensorReshapeOp, bool isExpansion = std::is_same<
796                                         TensorReshapeOp, ExpandShapeOp>::value>
797 static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op,
798                                            RankedTensorType expandedType,
799                                            RankedTensorType collapsedType) {
800   if (failed(
801           verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion)))
802     return failure();
803 
804   auto maps = op.getReassociationMaps();
805   RankedTensorType expectedType =
806       computeTensorReshapeCollapsedType(expandedType, maps);
807   if (collapsedType != expectedType)
808     return op.emitOpError("expected collapsed type to be ")
809            << expectedType << ", but got " << collapsedType;
810   return success();
811 }
812 
813 static LogicalResult verify(ExpandShapeOp op) {
814   return verifyTensorReshapeOp(op, op.getResultType(), op.getSrcType());
815 }
816 
817 static LogicalResult verify(CollapseShapeOp op) {
818   return verifyTensorReshapeOp(op, op.getSrcType(), op.getResultType());
819 }
820 
821 namespace {
822 /// Reshape of a splat constant can be replaced with a constant of the result
823 /// type.
824 template <typename TensorReshapeOp>
825 struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> {
826   using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
827   LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
828                                 PatternRewriter &rewriter) const override {
829     DenseElementsAttr attr;
830     if (!matchPattern(reshapeOp.src(), m_Constant(&attr)))
831       return failure();
832     if (!attr || !attr.isSplat())
833       return failure();
834     DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer(
835         reshapeOp.getResultType(), attr.getRawData(), true);
836     rewriter.replaceOpWithNewOp<arith::ConstantOp>(reshapeOp, newAttr);
837     return success();
838   }
839 };
840 
841 /// Reshape of a FromElements can be replaced with a FromElements of the result
842 /// type
843 template <typename TensorReshapeOp>
844 struct FoldReshapeWithFromElements : OpRewritePattern<TensorReshapeOp> {
845   using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
846   LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
847                                 PatternRewriter &rewriter) const override {
848     auto fromElements =
849         reshapeOp.src().template getDefiningOp<FromElementsOp>();
850     if (!fromElements)
851       return failure();
852 
853     auto shapedTy = reshapeOp.getType().template cast<ShapedType>();
854 
855     if (!shapedTy.hasStaticShape())
856       return failure();
857 
858     rewriter.replaceOpWithNewOp<FromElementsOp>(reshapeOp, reshapeOp.getType(),
859                                                 fromElements.elements());
860     return success();
861   }
862 };
863 
864 } // namespace
865 
866 void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
867                                                 MLIRContext *context) {
868   results.add<CollapseReshapeOps<ExpandShapeOp>,
869               CollapseMixedReshapeOps<ExpandShapeOp, CollapseShapeOp>,
870               FoldReshapeWithConstant<ExpandShapeOp>,
871               FoldReshapeWithFromElements<ExpandShapeOp>>(context);
872 }
873 
874 void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
875                                                   MLIRContext *context) {
876   results.add<CollapseReshapeOps<CollapseShapeOp>,
877               CollapseMixedReshapeOps<CollapseShapeOp, ExpandShapeOp>,
878               FoldReshapeWithConstant<CollapseShapeOp>,
879               FoldReshapeWithFromElements<CollapseShapeOp>>(context);
880 }
881 
882 OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) {
883   return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands);
884 }
885 OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) {
886   return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands);
887 }
888 
889 //===----------------------------------------------------------------------===//
890 // ExtractSliceOp
891 //===----------------------------------------------------------------------===//
892 
893 /// An extract_slice op result type can be fully inferred from the source type
894 /// and the static representation of offsets, sizes and strides. Special
895 /// sentinels encode the dynamic case.
896 RankedTensorType ExtractSliceOp::inferResultType(
897     RankedTensorType sourceRankedTensorType, ArrayRef<int64_t> staticOffsets,
898     ArrayRef<int64_t> staticSizes, ArrayRef<int64_t> staticStrides) {
899   // An extract_slice op may specify only a leading subset of offset/sizes/
900   // strides in which case we complete with offset=0, sizes from memref type and
901   // strides=1.
902   unsigned rank = sourceRankedTensorType.getRank();
903   (void)rank;
904   assert(staticSizes.size() == rank &&
905          "unexpected staticSizes not equal to rank of source");
906   return RankedTensorType::get(staticSizes,
907                                sourceRankedTensorType.getElementType());
908 }
909 
910 RankedTensorType ExtractSliceOp::inferResultType(
911     RankedTensorType sourceRankedTensorType, ArrayRef<OpFoldResult> offsets,
912     ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) {
913   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
914   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
915   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
916                              ShapedType::kDynamicStrideOrOffset);
917   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
918                              ShapedType::kDynamicSize);
919   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
920                              ShapedType::kDynamicStrideOrOffset);
921   return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
922                                          staticSizes, staticStrides);
923 }
924 
925 /// An extract_slice op result type can be fully inferred from the source type
926 /// and the static representation of offsets, sizes and strides. Special
927 /// sentinels encode the dynamic case.
928 RankedTensorType ExtractSliceOp::inferRankReducedResultType(
929     unsigned resultRank, RankedTensorType sourceRankedTensorType,
930     ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
931     ArrayRef<int64_t> strides) {
932   auto inferredType =
933       inferResultType(sourceRankedTensorType, offsets, sizes, strides)
934           .cast<RankedTensorType>();
935   int rankDiff = inferredType.getRank() - resultRank;
936   if (rankDiff > 0) {
937     auto shape = inferredType.getShape();
938     llvm::SmallDenseSet<unsigned> dimsToProject;
939     mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject);
940     SmallVector<int64_t> projectedShape;
941     for (unsigned pos = 0, e = shape.size(); pos < e; ++pos)
942       if (!dimsToProject.contains(pos))
943         projectedShape.push_back(shape[pos]);
944     inferredType =
945         RankedTensorType::get(projectedShape, inferredType.getElementType());
946   }
947   return inferredType;
948 }
949 
950 RankedTensorType ExtractSliceOp::inferRankReducedResultType(
951     unsigned resultRank, RankedTensorType sourceRankedTensorType,
952     ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes,
953     ArrayRef<OpFoldResult> strides) {
954   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
955   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
956   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
957                              ShapedType::kDynamicStrideOrOffset);
958   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
959                              ShapedType::kDynamicSize);
960   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
961                              ShapedType::kDynamicStrideOrOffset);
962   return ExtractSliceOp::inferRankReducedResultType(
963       resultRank, sourceRankedTensorType, staticOffsets, staticSizes,
964       staticStrides);
965 }
966 
967 /// Build an ExtractSliceOp with mixed static and dynamic entries and custom
968 /// result type. If the type passed is nullptr, it is inferred.
969 void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
970                            RankedTensorType resultType, Value source,
971                            ArrayRef<OpFoldResult> offsets,
972                            ArrayRef<OpFoldResult> sizes,
973                            ArrayRef<OpFoldResult> strides,
974                            ArrayRef<NamedAttribute> attrs) {
975   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
976   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
977   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
978                              ShapedType::kDynamicStrideOrOffset);
979   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
980                              ShapedType::kDynamicSize);
981   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
982                              ShapedType::kDynamicStrideOrOffset);
983   auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
984   // Structuring implementation this way avoids duplication between builders.
985   if (!resultType) {
986     resultType =
987         ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
988                                         staticSizes, staticStrides)
989             .cast<RankedTensorType>();
990   }
991   build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
992         dynamicStrides, b.getI64ArrayAttr(staticOffsets),
993         b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
994   result.addAttributes(attrs);
995 }
996 
997 /// Build an ExtractSliceOp with mixed static and dynamic entries and inferred
998 /// result type.
999 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
1000                            ArrayRef<OpFoldResult> offsets,
1001                            ArrayRef<OpFoldResult> sizes,
1002                            ArrayRef<OpFoldResult> strides,
1003                            ArrayRef<NamedAttribute> attrs) {
1004   build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
1005 }
1006 
1007 /// Build an ExtractSliceOp with dynamic entries and custom result type. If the
1008 /// type passed is nullptr, it is inferred.
1009 void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
1010                            RankedTensorType resultType, Value source,
1011                            ValueRange offsets, ValueRange sizes,
1012                            ValueRange strides, ArrayRef<NamedAttribute> attrs) {
1013   SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
1014       llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
1015   SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
1016       llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
1017   SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
1018       llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
1019   build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
1020 }
1021 
1022 /// Build an ExtractSliceOp with dynamic entries and inferred result type.
1023 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
1024                            ValueRange offsets, ValueRange sizes,
1025                            ValueRange strides, ArrayRef<NamedAttribute> attrs) {
1026   build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
1027 }
1028 
1029 template <typename OpTy>
1030 static LogicalResult produceSliceErrorMsg(SliceVerificationResult result,
1031                                           OpTy op, Type expectedType) {
1032   auto memrefType = expectedType.cast<ShapedType>();
1033   switch (result) {
1034   case SliceVerificationResult::Success:
1035     return success();
1036   case SliceVerificationResult::RankTooLarge:
1037     return op.emitError("expected rank to be smaller or equal to ")
1038            << "the other rank. ";
1039   case SliceVerificationResult::SizeMismatch:
1040     return op.emitError("expected type to be ")
1041            << expectedType << " or a rank-reduced version. (size mismatch) ";
1042   case SliceVerificationResult::ElemTypeMismatch:
1043     return op.emitError("expected element type to be ")
1044            << memrefType.getElementType();
1045   default:
1046     llvm_unreachable("unexpected extract_slice op verification result");
1047   }
1048 }
1049 
1050 /// Verifier for ExtractSliceOp.
1051 static LogicalResult verify(ExtractSliceOp op) {
1052   // Verify result type against inferred type.
1053   auto expectedType =
1054       ExtractSliceOp::inferResultType(op.getSourceType(), op.getMixedOffsets(),
1055                                       op.getMixedSizes(), op.getMixedStrides());
1056   auto result =
1057       isRankReducedType(expectedType.cast<ShapedType>(), op.getType());
1058   return produceSliceErrorMsg(result, op, expectedType);
1059 }
1060 
1061 /// Infer the canonical type of the result of an extract_slice op. Returns a
1062 /// type with rank `resultRank` that is either the rank of the rank-reduced
1063 /// type, or the non-rank-reduced type.
1064 static RankedTensorType
1065 getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType,
1066                             ArrayRef<OpFoldResult> mixedOffsets,
1067                             ArrayRef<OpFoldResult> mixedSizes,
1068                             ArrayRef<OpFoldResult> mixedStrides) {
1069   auto resultType =
1070       ExtractSliceOp::inferRankReducedResultType(
1071           resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides)
1072           .cast<RankedTensorType>();
1073   if (resultType.getRank() != resultRank) {
1074     resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets,
1075                                                  mixedSizes, mixedStrides)
1076                      .cast<RankedTensorType>();
1077   }
1078   return resultType;
1079 }
1080 
1081 llvm::SmallDenseSet<unsigned> ExtractSliceOp::getDroppedDims() {
1082   llvm::SmallDenseSet<unsigned> droppedDims;
1083   ArrayRef<int64_t> resultShape = getType().getShape();
1084   SmallVector<OpFoldResult> mixedSizes = getMixedSizes();
1085   unsigned shapePos = 0;
1086   for (const auto &size : enumerate(mixedSizes)) {
1087     Optional<int64_t> sizeVal = getConstantIntValue(size.value());
1088     // If the size is not 1, or if the current matched dimension of the result
1089     // is the same static shape as the size value (which is 1), then the
1090     // dimension is preserved.
1091     if (!sizeVal || sizeVal.getValue() != 1 ||
1092         (shapePos < resultShape.size() && resultShape[shapePos] == 1)) {
1093       shapePos++;
1094       continue;
1095     }
1096     droppedDims.insert(size.index());
1097   }
1098   return droppedDims;
1099 }
1100 
1101 LogicalResult ExtractSliceOp::reifyResultShapes(
1102     OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
1103   reifiedReturnShapes.resize(1);
1104   reifiedReturnShapes[0].reserve(getType().getRank());
1105   SmallVector<OpFoldResult> mixedSizes = getMixedSizes();
1106   llvm::SmallDenseSet<unsigned> droppedDims = getDroppedDims();
1107   Location loc = getLoc();
1108   for (const auto &size : enumerate(mixedSizes)) {
1109     if (droppedDims.count(size.index()))
1110       continue;
1111     if (auto attr = size.value().dyn_cast<Attribute>()) {
1112       reifiedReturnShapes[0].push_back(builder.create<arith::ConstantIndexOp>(
1113           loc, attr.cast<IntegerAttr>().getInt()));
1114       continue;
1115     }
1116     reifiedReturnShapes[0].push_back(size.value().get<Value>());
1117   }
1118   return success();
1119 }
1120 
1121 namespace {
1122 /// Pattern to rewrite an extract_slice op with tensor::Cast arguments.
1123 /// This essentially pushes memref_cast past its consuming slice when
1124 /// `canFoldIntoConsumerOp` is true.
1125 ///
1126 /// Example:
1127 /// ```
1128 ///   %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32>
1129 ///   %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to
1130 ///   tensor<3x4xf32>
1131 /// ```
1132 /// is rewritten into:
1133 /// ```
1134 ///   %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to
1135 ///   tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32>
1136 /// ```
1137 class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> {
1138 public:
1139   using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;
1140 
1141   LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
1142                                 PatternRewriter &rewriter) const override {
1143     // Any constant operand, just return to let SubViewOpConstantFolder kick in.
1144     if (llvm::any_of(sliceOp.getOperands(), [](Value operand) {
1145           return matchPattern(operand, matchConstantIndex());
1146         }))
1147       return failure();
1148 
1149     auto castOp = sliceOp.source().getDefiningOp<tensor::CastOp>();
1150     if (!castOp)
1151       return failure();
1152 
1153     if (!canFoldIntoConsumerOp(castOp))
1154       return failure();
1155 
1156     /// Deduce the type of the result to use for the canonicalized operation.
1157     RankedTensorType resultType = getCanonicalSliceResultType(
1158         sliceOp.getType().getRank(), sliceOp.getSourceType(),
1159         sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(),
1160         sliceOp.getMixedStrides());
1161     Value newSlice = rewriter.create<ExtractSliceOp>(
1162         sliceOp.getLoc(), resultType, castOp.source(), sliceOp.offsets(),
1163         sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(),
1164         sliceOp.static_sizes(), sliceOp.static_strides());
1165     rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(),
1166                                                 newSlice);
1167     return success();
1168   }
1169 };
1170 } // namespace
1171 
1172 /// Return the canonical type of the result of an extract_slice op.
1173 struct SliceReturnTypeCanonicalizer {
1174   RankedTensorType operator()(ExtractSliceOp op,
1175                               ArrayRef<OpFoldResult> mixedOffsets,
1176                               ArrayRef<OpFoldResult> mixedSizes,
1177                               ArrayRef<OpFoldResult> mixedStrides) {
1178     return getCanonicalSliceResultType(op.getType().getRank(),
1179                                        op.getSourceType(), mixedOffsets,
1180                                        mixedSizes, mixedStrides);
1181   }
1182 };
1183 
1184 /// A canonicalizer wrapper to replace ExtractSliceOps.
1185 struct SliceCanonicalizer {
1186   void operator()(PatternRewriter &rewriter, ExtractSliceOp op,
1187                   ExtractSliceOp newOp) {
1188     Value replacement = newOp.getResult();
1189     if (replacement.getType() != op.getType())
1190       replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(),
1191                                                     replacement);
1192     rewriter.replaceOp(op, replacement);
1193   }
1194 };
1195 
1196 void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
1197                                                  MLIRContext *context) {
1198   results.add<
1199       OpWithOffsetSizesAndStridesConstantArgumentFolder<
1200           ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>,
1201       ExtractSliceOpCastFolder>(context);
1202 }
1203 
1204 //
1205 static LogicalResult
1206 foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op,
1207                                            ShapedType shapedType) {
1208   OpBuilder b(op.getContext());
1209   for (OpFoldResult ofr : op.getMixedOffsets())
1210     if (getConstantIntValue(ofr) != static_cast<int64_t>(0))
1211       return failure();
1212   // Rank-reducing noops only need to inspect the leading dimensions: llvm::zip
1213   // is appropriate.
1214   auto shape = shapedType.getShape();
1215   for (auto it : llvm::zip(op.getMixedSizes(), shape))
1216     if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it))
1217       return failure();
1218   for (OpFoldResult ofr : op.getMixedStrides())
1219     if (getConstantIntValue(ofr) != static_cast<int64_t>(1))
1220       return failure();
1221   return success();
1222 }
1223 
1224 /// If we have an ExtractSliceOp consuming an InsertSliceOp with the same slice,
1225 /// we can return the InsertSliceOp's source directly.
1226 // TODO: This only checks the immediate producer; extend to go up the
1227 // insert/extract chain if the slices are disjoint.
1228 static Value foldExtractAfterInsertSlice(ExtractSliceOp extractOp) {
1229   auto insertOp = extractOp.source().getDefiningOp<InsertSliceOp>();
1230 
1231   auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
1232   if (insertOp && insertOp.source().getType() == extractOp.getType() &&
1233       insertOp.isSameAs(extractOp, isSame))
1234     return insertOp.source();
1235 
1236   return {};
1237 }
1238 
1239 OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute>) {
1240   if (getSourceType() == getType() &&
1241       succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
1242     return this->source();
1243   if (Value slice = foldExtractAfterInsertSlice(*this))
1244     return slice;
1245   return OpFoldResult();
1246 }
1247 
1248 Value mlir::tensor::createCanonicalRankReducingExtractSliceOp(
1249     OpBuilder &b, Location loc, Value tensor, RankedTensorType targetType) {
1250   auto rankedTensorType = tensor.getType().cast<RankedTensorType>();
1251   unsigned rank = rankedTensorType.getRank();
1252   auto shape = rankedTensorType.getShape();
1253   SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
1254   SmallVector<OpFoldResult> sizes;
1255   for (unsigned i = 0, e = rank; i < e; ++i) {
1256     OpFoldResult dim;
1257     if (rankedTensorType.isDynamicDim(i))
1258       dim = b.createOrFold<tensor::DimOp>(
1259           loc, tensor, b.create<arith::ConstantIndexOp>(loc, i));
1260     else
1261       dim = b.getIndexAttr(shape[i]);
1262     sizes.push_back(dim);
1263   }
1264   SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
1265   return b.createOrFold<tensor::ExtractSliceOp>(loc, targetType, tensor,
1266                                                 offsets, sizes, strides);
1267 }
1268 
1269 //===----------------------------------------------------------------------===//
1270 // InsertSliceOp
1271 //===----------------------------------------------------------------------===//
1272 
1273 // Build a InsertSliceOp with mixed static and dynamic entries.
1274 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
1275                           Value dest, ArrayRef<OpFoldResult> offsets,
1276                           ArrayRef<OpFoldResult> sizes,
1277                           ArrayRef<OpFoldResult> strides,
1278                           ArrayRef<NamedAttribute> attrs) {
1279   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
1280   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
1281   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
1282                              ShapedType::kDynamicStrideOrOffset);
1283   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
1284                              ShapedType::kDynamicSize);
1285   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
1286                              ShapedType::kDynamicStrideOrOffset);
1287   build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes,
1288         dynamicStrides, b.getI64ArrayAttr(staticOffsets),
1289         b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
1290   result.addAttributes(attrs);
1291 }
1292 
1293 // Build a InsertSliceOp with dynamic entries.
1294 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
1295                           Value dest, ValueRange offsets, ValueRange sizes,
1296                           ValueRange strides, ArrayRef<NamedAttribute> attrs) {
1297   SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
1298       llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
1299   SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
1300       llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
1301   SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
1302       llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
1303   build(b, result, source, dest, offsetValues, sizeValues, strideValues);
1304 }
1305 
1306 /// Verifier for InsertSliceOp.
1307 static LogicalResult verify(InsertSliceOp op) {
1308   // insert_slice is the inverse of extract_slice, use the same type inference.
1309   auto expectedType = ExtractSliceOp::inferRankReducedResultType(
1310       op.getSourceType().getRank(), op.getType(),
1311       extractFromI64ArrayAttr(op.static_offsets()),
1312       extractFromI64ArrayAttr(op.static_sizes()),
1313       extractFromI64ArrayAttr(op.static_strides()));
1314   auto result =
1315       isRankReducedType(expectedType.cast<ShapedType>(), op.getSourceType());
1316   return produceSliceErrorMsg(result, op, expectedType);
1317 }
1318 
1319 /// If we have two consecutive InsertSliceOp writing to the same slice, we
1320 /// can mutate the second InsertSliceOp's destination to the first one's.
1321 ///
1322 /// Example:
1323 ///
1324 /// ```mlir
1325 ///   %0 = tensor.insert_slice %slice0 into %input[0, 0] [64, 64] [1, 1]
1326 ///   %1 = tensor.insert_slice %slice1 into %0[0, 0] [64, 64] [1, 1]
1327 /// ```
1328 ///
1329 /// folds into:
1330 ///
1331 /// ```mlir
1332 ///   %1 = tensor.insert_slice %slice1 into %input[0, 0] [64, 64] [1, 1]
1333 /// ```
1334 static LogicalResult foldInsertAfterInsertSlice(InsertSliceOp insertOp) {
1335   auto prevInsertOp = insertOp.dest().getDefiningOp<InsertSliceOp>();
1336 
1337   auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
1338   if (!prevInsertOp ||
1339       prevInsertOp.source().getType() != insertOp.source().getType() ||
1340       !prevInsertOp.isSameAs(insertOp, isSame))
1341     return failure();
1342 
1343   insertOp.destMutable().assign(prevInsertOp.dest());
1344   return success();
1345 }
1346 
1347 OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) {
1348   if (getSourceType().hasStaticShape() && getType().hasStaticShape() &&
1349       getSourceType() == getType() &&
1350       succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
1351     return this->source();
1352   if (succeeded(foldInsertAfterInsertSlice(*this)))
1353     return getResult();
1354   return OpFoldResult();
1355 }
1356 
1357 LogicalResult InsertSliceOp::reifyResultShapes(
1358     OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
1359   reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank()));
1360   for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) {
1361     reifiedReturnShapes[0][dim] =
1362         builder.createOrFold<tensor::DimOp>(getLoc(), dest(), dim);
1363   }
1364   return success();
1365 }
1366 
1367 namespace {
1368 /// Pattern to rewrite a insert_slice op with constant arguments.
1369 class InsertSliceOpConstantArgumentFolder final
1370     : public OpRewritePattern<InsertSliceOp> {
1371 public:
1372   using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
1373 
1374   LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
1375                                 PatternRewriter &rewriter) const override {
1376     // No constant operand, just return.
1377     if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) {
1378           return matchPattern(operand, matchConstantIndex());
1379         }))
1380       return failure();
1381 
1382     // At least one of offsets/sizes/strides is a new constant.
1383     // Form the new list of operands and constant attributes from the
1384     // existing.
1385     SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets());
1386     SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes());
1387     SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides());
1388     canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset);
1389     canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic);
1390     canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset);
1391 
1392     // Create the new op in canonical form.
1393     auto sourceType = ExtractSliceOp::inferRankReducedResultType(
1394         insertSliceOp.getSourceType().getRank(), insertSliceOp.getType(),
1395         mixedOffsets, mixedSizes, mixedStrides);
1396     Value toInsert = insertSliceOp.source();
1397     if (sourceType != insertSliceOp.getSourceType())
1398       toInsert = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(),
1399                                                  sourceType, toInsert);
1400     rewriter.replaceOpWithNewOp<InsertSliceOp>(
1401         insertSliceOp, toInsert, insertSliceOp.dest(), mixedOffsets, mixedSizes,
1402         mixedStrides);
1403     return success();
1404   }
1405 };
1406 
1407 /// Fold tensor_casts with insert_slice operations. If the source or destination
1408 /// tensor is a tensor_cast that removes static type information, the cast is
1409 /// folded into the insert_slice operation. E.g.:
1410 ///
1411 /// ```mlir
1412 ///   %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
1413 ///   %2 = tensor.insert_slice %1 into ... : tensor<?x?xf32> into ...
1414 /// ```
1415 ///
1416 /// folds into:
1417 ///
1418 /// ```mlir
1419 ///   %2 = tensor.insert_slice %0 into ... : tensor<8x16xf32> into ...
1420 /// ```
1421 ///
1422 /// Note: When folding a cast on the destination tensor, the result of the
1423 /// insert_slice operation is casted to ensure that the type of the result did
1424 /// not change.
1425 struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertSliceOp> {
1426   using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
1427 
1428   LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
1429                                 PatternRewriter &rewriter) const override {
1430     if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) {
1431           return matchPattern(operand, matchConstantIndex());
1432         }))
1433       return failure();
1434 
1435     auto getSourceOfCastOp = [](Value v) -> Optional<Value> {
1436       auto castOp = v.getDefiningOp<tensor::CastOp>();
1437       if (!castOp || !canFoldIntoConsumerOp(castOp))
1438         return llvm::None;
1439       return castOp.source();
1440     };
1441     Optional<Value> sourceCastSource =
1442         getSourceOfCastOp(insertSliceOp.source());
1443     Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.dest());
1444     if (!sourceCastSource && !destCastSource)
1445       return failure();
1446 
1447     Value replacement = rewriter.create<InsertSliceOp>(
1448         insertSliceOp.getLoc(),
1449         (sourceCastSource ? *sourceCastSource : insertSliceOp.source()),
1450         (destCastSource ? *destCastSource : insertSliceOp.dest()),
1451         insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
1452         insertSliceOp.getMixedStrides());
1453 
1454     if (replacement.getType() != insertSliceOp.getType()) {
1455       replacement = rewriter.create<tensor::CastOp>(
1456           insertSliceOp.getLoc(), insertSliceOp.getType(), replacement);
1457     }
1458     rewriter.replaceOp(insertSliceOp, replacement);
1459     return success();
1460   }
1461 };
1462 
1463 /// If additional static type information can be deduced from a insert_slice's
1464 /// size operands, insert an explicit cast of the op's source operand. This
1465 /// enables other canonicalization patterns that are matching for tensor_cast
1466 /// ops such as `ForOpTensorCastFolder` in SCF.
1467 ///
1468 /// Example:
1469 ///
1470 /// ```mlir
1471 ///   %r = tensor.insert_slice %0 into %1[...] [64, 64] [1, 1]
1472 ///       : tensor<?x?xf32> into ...
1473 /// ```
1474 ///
1475 /// folds into:
1476 ///
1477 /// ```mlir
1478 ///   %tmp = tensor.cast %0 : tensor<?x?xf32> to tensor<64x64xf32>
1479 ///   %r = tensor.insert_slice %tmp into %1[...] [64, 64] [1, 1]
1480 ///       : tensor<64x64xf32> into ...
1481 /// ```
1482 struct InsertSliceOpSourceCastInserter final
1483     : public OpRewritePattern<InsertSliceOp> {
1484   using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
1485 
1486   LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
1487                                 PatternRewriter &rewriter) const override {
1488     RankedTensorType srcType = insertSliceOp.getSourceType();
1489     if (srcType.getRank() != insertSliceOp.getType().getRank())
1490       return failure();
1491     SmallVector<int64_t> newSrcShape(srcType.getShape().begin(),
1492                                      srcType.getShape().end());
1493     for (int64_t i = 0; i < srcType.getRank(); ++i) {
1494       if (Optional<int64_t> constInt =
1495               getConstantIntValue(insertSliceOp.getMixedSizes()[i]))
1496         newSrcShape[i] = *constInt;
1497     }
1498 
1499     RankedTensorType newSrcType =
1500         RankedTensorType::get(newSrcShape, srcType.getElementType());
1501     if (srcType == newSrcType ||
1502         !preservesStaticInformation(srcType, newSrcType) ||
1503         !tensor::CastOp::areCastCompatible(srcType, newSrcType))
1504       return failure();
1505 
1506     // newSrcType is:
1507     //   1) Different from srcType.
1508     //   2) "More static" than srcType.
1509     //   3) Cast-compatible with srcType.
1510     // Insert the cast.
1511     Value cast = rewriter.create<tensor::CastOp>(
1512         insertSliceOp.getLoc(), newSrcType, insertSliceOp.source());
1513     rewriter.replaceOpWithNewOp<InsertSliceOp>(
1514         insertSliceOp, cast, insertSliceOp.dest(),
1515         insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
1516         insertSliceOp.getMixedStrides());
1517     return success();
1518   }
1519 };
1520 } // namespace
1521 
1522 void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
1523                                                 MLIRContext *context) {
1524   results.add<InsertSliceOpConstantArgumentFolder, InsertSliceOpCastFolder,
1525               InsertSliceOpSourceCastInserter>(context);
1526 }
1527 
1528 Value mlir::tensor::createCanonicalRankReducingInsertSliceOp(OpBuilder &b,
1529                                                              Location loc,
1530                                                              Value tensor,
1531                                                              Value dest) {
1532   auto rankedTensorType = dest.getType().cast<RankedTensorType>();
1533   unsigned rank = rankedTensorType.getRank();
1534   auto shape = rankedTensorType.getShape();
1535   SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
1536   SmallVector<OpFoldResult> sizes;
1537   for (unsigned i = 0, e = rank; i < e; ++i) {
1538     OpFoldResult dim;
1539     if (rankedTensorType.isDynamicDim(i))
1540       dim = b.createOrFold<tensor::DimOp>(
1541           loc, dest, b.create<arith::ConstantIndexOp>(loc, i));
1542     else
1543       dim = b.getIndexAttr(shape[i]);
1544     sizes.push_back(dim);
1545   }
1546   SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
1547   return b.createOrFold<tensor::InsertSliceOp>(loc, tensor, dest, offsets,
1548                                                sizes, strides);
1549 }
1550 
1551 //===----------------------------------------------------------------------===//
1552 // PadOp
1553 //===----------------------------------------------------------------------===//
1554 
1555 // TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it
1556 // supports optional types.
1557 void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand,
1558                     Type typeToInfer, Type typeToInferFrom) {}
1559 
1560 ParseResult parseInferType(OpAsmParser &parser,
1561                            Optional<OpAsmParser::OperandType> optOperand,
1562                            Type &typeToInfer, Type typeToInferFrom) {
1563   if (optOperand)
1564     typeToInfer = typeToInferFrom;
1565   return success();
1566 }
1567 
1568 static LogicalResult verify(PadOp op) {
1569   auto sourceType = op.source().getType().cast<RankedTensorType>();
1570   auto resultType = op.result().getType().cast<RankedTensorType>();
1571   auto expectedType = PadOp::inferResultType(
1572       sourceType, extractFromI64ArrayAttr(op.static_low()),
1573       extractFromI64ArrayAttr(op.static_high()));
1574   for (int i = 0, e = sourceType.getRank(); i < e; ++i) {
1575     if (resultType.getDimSize(i) == expectedType.getDimSize(i))
1576       continue;
1577     if (expectedType.isDynamicDim(i))
1578       continue;
1579     return op.emitError("specified type ")
1580            << resultType << " does not match the inferred type "
1581            << expectedType;
1582   }
1583 
1584   auto &region = op.region();
1585   unsigned rank = resultType.getRank();
1586   Block &block = region.front();
1587   if (block.getNumArguments() != rank)
1588     return op.emitError("expected the block to have ") << rank << " arguments";
1589 
1590   // Note: the number and type of yield values are checked in the YieldOp.
1591   for (const auto &en : llvm::enumerate(block.getArgumentTypes())) {
1592     if (!en.value().isIndex())
1593       return op.emitOpError("expected block argument ")
1594              << (en.index() + 1) << " to be an index";
1595   }
1596 
1597   // Ensure that the region yields an element of the right type.
1598   auto yieldOp = llvm::cast<YieldOp>(block.getTerminator());
1599   if (yieldOp.value().getType() !=
1600       op.getType().cast<ShapedType>().getElementType())
1601     return op.emitOpError("expected yield type to match shape element type");
1602 
1603   return success();
1604 }
1605 
1606 RankedTensorType PadOp::inferResultType(RankedTensorType sourceType,
1607                                         ArrayRef<int64_t> staticLow,
1608                                         ArrayRef<int64_t> staticHigh,
1609                                         ArrayRef<int64_t> resultShape) {
1610   unsigned rank = sourceType.getRank();
1611   assert(staticLow.size() == rank && "unexpected staticLow size mismatch");
1612   assert(staticHigh.size() == rank && "unexpected staticHigh size mismatch");
1613   assert((resultShape.empty() || resultShape.size() == rank) &&
1614          "unexpected resultShape size mismatch");
1615 
1616   SmallVector<int64_t, 4> inferredShape;
1617   for (auto i : llvm::seq<unsigned>(0, rank)) {
1618     if (sourceType.isDynamicDim(i) ||
1619         staticLow[i] == ShapedType::kDynamicSize ||
1620         staticHigh[i] == ShapedType::kDynamicSize) {
1621       inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamicSize
1622                                                   : resultShape[i]);
1623     } else {
1624       int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i];
1625       assert((resultShape.empty() || size == resultShape[i] ||
1626               resultShape[i] == ShapedType::kDynamicSize) &&
1627              "mismatch between inferred shape and result shape");
1628       inferredShape.push_back(size);
1629     }
1630   }
1631 
1632   return RankedTensorType::get(inferredShape, sourceType.getElementType());
1633 }
1634 
1635 void PadOp::build(OpBuilder &b, OperationState &result, Value source,
1636                   ArrayRef<int64_t> staticLow, ArrayRef<int64_t> staticHigh,
1637                   ValueRange low, ValueRange high, bool nofold,
1638                   ArrayRef<NamedAttribute> attrs) {
1639   auto sourceType = source.getType().cast<RankedTensorType>();
1640   auto resultType = inferResultType(sourceType, staticLow, staticHigh);
1641   build(b, result, resultType, source, low, high, b.getI64ArrayAttr(staticLow),
1642         b.getI64ArrayAttr(staticHigh), nofold ? b.getUnitAttr() : UnitAttr());
1643   result.addAttributes(attrs);
1644 }
1645 
1646 void PadOp::build(OpBuilder &b, OperationState &result, Value source,
1647                   ValueRange low, ValueRange high, bool nofold,
1648                   ArrayRef<NamedAttribute> attrs) {
1649   auto sourceType = source.getType().cast<RankedTensorType>();
1650   unsigned rank = sourceType.getRank();
1651   SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamicSize);
1652   build(b, result, source, staticVector, staticVector, low, high, nofold,
1653         attrs);
1654 }
1655 
1656 void PadOp::build(OpBuilder &b, OperationState &result, Type resultType,
1657                   Value source, ArrayRef<OpFoldResult> low,
1658                   ArrayRef<OpFoldResult> high, bool nofold,
1659                   ArrayRef<NamedAttribute> attrs) {
1660   assert(resultType.isa<RankedTensorType>());
1661   auto sourceType = source.getType().cast<RankedTensorType>();
1662   SmallVector<Value, 4> dynamicLow, dynamicHigh;
1663   SmallVector<int64_t, 4> staticLow, staticHigh;
1664   // staticLow and staticHigh have full information of the padding config.
1665   // This will grow staticLow and staticHigh with 1 value. If the config is
1666   // dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1
1667   // value as well.
1668   dispatchIndexOpFoldResults(low, dynamicLow, staticLow,
1669                              ShapedType::kDynamicSize);
1670   dispatchIndexOpFoldResults(high, dynamicHigh, staticHigh,
1671                              ShapedType::kDynamicSize);
1672   if (!resultType) {
1673     resultType = PadOp::inferResultType(sourceType, staticLow, staticHigh);
1674   }
1675   build(b, result, resultType, source, dynamicLow, dynamicHigh,
1676         b.getI64ArrayAttr(staticLow), b.getI64ArrayAttr(staticHigh),
1677         nofold ? b.getUnitAttr() : UnitAttr());
1678   result.addAttributes(attrs);
1679 }
1680 
1681 namespace {
1682 // Folds tensor.pad when padding is static zeros and the attribute
1683 // doesn't request otherwise.
1684 struct FoldStaticZeroPadding : public OpRewritePattern<PadOp> {
1685   using OpRewritePattern<PadOp>::OpRewritePattern;
1686 
1687   LogicalResult matchAndRewrite(PadOp padTensorOp,
1688                                 PatternRewriter &rewriter) const override {
1689     if (!padTensorOp.hasZeroLowPad() || !padTensorOp.hasZeroHighPad())
1690       return failure();
1691     if (padTensorOp.nofold())
1692       return failure();
1693     rewriter.replaceOpWithNewOp<tensor::CastOp>(
1694         padTensorOp, padTensorOp.result().getType(), padTensorOp.source());
1695     return success();
1696   }
1697 };
1698 
1699 // Fold CastOp into PadOp when adding static information.
1700 struct FoldSourceTensorCast : public OpRewritePattern<PadOp> {
1701   using OpRewritePattern<PadOp>::OpRewritePattern;
1702 
1703   LogicalResult matchAndRewrite(PadOp padTensorOp,
1704                                 PatternRewriter &rewriter) const override {
1705     auto castOp = padTensorOp.source().getDefiningOp<tensor::CastOp>();
1706     if (!tensor::canFoldIntoConsumerOp(castOp))
1707       return failure();
1708 
1709     auto newResultType = PadOp::inferResultType(
1710         castOp.source().getType().cast<RankedTensorType>(),
1711         extractFromI64ArrayAttr(padTensorOp.static_low()),
1712         extractFromI64ArrayAttr(padTensorOp.static_high()),
1713         padTensorOp.getResultType().getShape());
1714 
1715     if (newResultType == padTensorOp.getResultType()) {
1716       rewriter.updateRootInPlace(padTensorOp, [&]() {
1717         padTensorOp.sourceMutable().assign(castOp.source());
1718       });
1719     } else {
1720       auto newOp = rewriter.create<PadOp>(
1721           padTensorOp->getLoc(), newResultType, padTensorOp.source(),
1722           padTensorOp.low(), padTensorOp.high(), padTensorOp.static_low(),
1723           padTensorOp.static_high(), padTensorOp.nofold());
1724       BlockAndValueMapping mapper;
1725       padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper);
1726 
1727       rewriter.replaceOpWithNewOp<tensor::CastOp>(
1728           padTensorOp, padTensorOp.getResultType(), newOp);
1729     }
1730     return success();
1731   }
1732 };
1733 
1734 // Fold CastOp using the result of PadOp back into the latter if it adds
1735 // static information.
1736 struct FoldTargetTensorCast : public OpRewritePattern<PadOp> {
1737   using OpRewritePattern<PadOp>::OpRewritePattern;
1738 
1739   LogicalResult matchAndRewrite(PadOp padTensorOp,
1740                                 PatternRewriter &rewriter) const override {
1741     if (!padTensorOp.result().hasOneUse())
1742       return failure();
1743     auto tensorCastOp =
1744         dyn_cast<tensor::CastOp>(*padTensorOp->getUsers().begin());
1745     if (!tensorCastOp)
1746       return failure();
1747     if (!tensor::preservesStaticInformation(padTensorOp.result().getType(),
1748                                             tensorCastOp.dest().getType()))
1749       return failure();
1750 
1751     auto replacementOp = rewriter.create<PadOp>(
1752         padTensorOp.getLoc(), tensorCastOp.dest().getType(),
1753         padTensorOp.source(), padTensorOp.low(), padTensorOp.high(),
1754         padTensorOp.static_low(), padTensorOp.static_high(),
1755         padTensorOp.nofold());
1756     replacementOp.region().takeBody(padTensorOp.region());
1757 
1758     rewriter.replaceOp(padTensorOp, replacementOp.result());
1759     rewriter.replaceOp(tensorCastOp, replacementOp.result());
1760     return success();
1761   }
1762 };
1763 } // namespace
1764 
1765 void PadOp::getCanonicalizationPatterns(RewritePatternSet &results,
1766                                         MLIRContext *context) {
1767   results
1768       .add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast>(
1769           context);
1770 }
1771 
1772 /// Return the padding value of the PadOp if it constant. In this context,
1773 /// "constant" means an actual constant or "defined outside of the block".
1774 ///
1775 /// Values are considered constant in three cases:
1776 ///  - A ConstantLike value.
1777 ///  - A basic block argument from a different block.
1778 ///  - A value defined outside of the block.
1779 ///
1780 /// If the padding value is not constant, an empty Value is returned.
1781 Value PadOp::getConstantPaddingValue() {
1782   auto yieldOp = dyn_cast<YieldOp>(getRegion().front().getTerminator());
1783   if (!yieldOp)
1784     return {};
1785   Value padValue = yieldOp.value();
1786   // Check if yield value is a constant.
1787   if (matchPattern(padValue, m_Constant()))
1788     return padValue;
1789   // Check if yield value is defined inside the PadOp block.
1790   if (padValue.getParentBlock() == &getRegion().front())
1791     return {};
1792   // Else: Yield value defined outside of the PadOp block.
1793   return padValue;
1794 }
1795 
1796 OpFoldResult PadOp::fold(ArrayRef<Attribute>) {
1797   if (getResultType().hasStaticShape() && getResultType() == getSourceType() &&
1798       !nofold())
1799     return source();
1800   return {};
1801 }
1802 
1803 //===----------------------------------------------------------------------===//
1804 // TableGen'd op method definitions
1805 //===----------------------------------------------------------------------===//
1806 
1807 #define GET_OP_CLASSES
1808 #include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc"
1809