1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 10 #include "mlir/Dialect/StandardOps/Utils/Utils.h" 11 #include "mlir/Dialect/Tensor/IR/Tensor.h" 12 #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" 13 #include "mlir/Dialect/Utils/StaticValueUtils.h" 14 #include "mlir/IR/BlockAndValueMapping.h" 15 #include "mlir/IR/Builders.h" 16 #include "mlir/IR/BuiltinAttributeInterfaces.h" 17 #include "mlir/IR/Matchers.h" 18 #include "mlir/IR/PatternMatch.h" 19 #include "mlir/IR/TypeUtilities.h" 20 #include "llvm/ADT/STLExtras.h" 21 22 using namespace mlir; 23 using namespace mlir::tensor; 24 25 /// Materialize a single constant operation from a given attribute value with 26 /// the desired resultant type. 27 Operation *TensorDialect::materializeConstant(OpBuilder &builder, 28 Attribute value, Type type, 29 Location loc) { 30 if (arith::ConstantOp::isBuildableWith(value, type)) 31 return builder.create<arith::ConstantOp>(loc, value, type); 32 if (ConstantOp::isBuildableWith(value, type)) 33 return builder.create<ConstantOp>(loc, value, type); 34 return nullptr; 35 } 36 37 //===----------------------------------------------------------------------===// 38 // CastOp 39 //===----------------------------------------------------------------------===// 40 41 /// Returns true if `target` is a ranked tensor type that preserves static 42 /// information available in the `source` ranked tensor type. 43 bool mlir::tensor::preservesStaticInformation(Type source, Type target) { 44 auto sourceType = source.dyn_cast<RankedTensorType>(); 45 auto targetType = target.dyn_cast<RankedTensorType>(); 46 47 // Requires RankedTensorType. 48 if (!sourceType || !targetType) 49 return false; 50 51 // Requires same elemental type. 52 if (sourceType.getElementType() != targetType.getElementType()) 53 return false; 54 55 // Requires same rank. 56 if (sourceType.getRank() != targetType.getRank()) 57 return false; 58 59 // If cast is towards more static sizes along any dimension, don't fold. 60 for (auto t : llvm::zip(sourceType.getShape(), targetType.getShape())) { 61 if (!ShapedType::isDynamic(std::get<0>(t)) && 62 ShapedType::isDynamic(std::get<1>(t))) 63 return false; 64 } 65 66 return true; 67 } 68 69 /// Determines whether tensor::CastOp casts to a more dynamic version of the 70 /// source tensor. This is useful to fold a tensor.cast into a consuming op and 71 /// implement canonicalization patterns for ops in different dialects that may 72 /// consume the results of tensor.cast operations. Such foldable tensor.cast 73 /// operations are typically inserted as `slice` ops and are canonicalized, 74 /// to preserve the type compatibility of their uses. 75 /// 76 /// Returns true when all conditions are met: 77 /// 1. source and result are ranked tensors with same element type and rank. 78 /// 2. the tensor type has more static information than the result 79 /// 80 /// Example: 81 /// ```mlir 82 /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> 83 /// %2 = consumer %1 ... : tensor<?x?xf32> ... 84 /// ``` 85 /// 86 /// folds into: 87 /// 88 /// ```mlir 89 /// %2 = consumer %0 ... : tensor<8x16xf32> ... 90 /// ``` 91 bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) { 92 if (!castOp) 93 return false; 94 95 // Can fold if the source of cast has at least as much static information as 96 // its results. 97 return preservesStaticInformation(castOp.getType(), 98 castOp.source().getType()); 99 } 100 101 /// Performs folding of any operand of `op` if it comes from a tensor::CastOp 102 /// that can be folded. 103 LogicalResult mlir::tensor::foldTensorCast(Operation *op) { 104 bool folded = false; 105 for (OpOperand &operand : op->getOpOperands()) { 106 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 107 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 108 operand.set(castOp.getOperand()); 109 folded = true; 110 } 111 } 112 return success(folded); 113 } 114 115 bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 116 if (inputs.size() != 1 || outputs.size() != 1) 117 return false; 118 Type a = inputs.front(), b = outputs.front(); 119 auto aT = a.dyn_cast<TensorType>(); 120 auto bT = b.dyn_cast<TensorType>(); 121 if (!aT || !bT) 122 return false; 123 124 if (aT.getElementType() != bT.getElementType()) 125 return false; 126 127 return succeeded(verifyCompatibleShape(aT, bT)); 128 } 129 130 /// Compute a TensorType that has the joined shape knowledge of the two 131 /// given TensorTypes. The element types need to match. 132 static TensorType joinShapes(TensorType one, TensorType two) { 133 assert(one.getElementType() == two.getElementType()); 134 135 if (!one.hasRank()) 136 return two; 137 if (!two.hasRank()) 138 return one; 139 140 int64_t rank = one.getRank(); 141 if (rank != two.getRank()) 142 return {}; 143 144 SmallVector<int64_t, 4> join; 145 join.reserve(rank); 146 for (int64_t i = 0; i < rank; ++i) { 147 if (one.isDynamicDim(i)) { 148 join.push_back(two.getDimSize(i)); 149 continue; 150 } 151 if (two.isDynamicDim(i)) { 152 join.push_back(one.getDimSize(i)); 153 continue; 154 } 155 if (one.getDimSize(i) != two.getDimSize(i)) 156 return {}; 157 join.push_back(one.getDimSize(i)); 158 } 159 return RankedTensorType::get(join, one.getElementType()); 160 } 161 162 namespace { 163 164 /// Replaces chains of two tensor.cast operations by a single tensor.cast 165 /// operation if doing so does not remove runtime constraints. 166 struct ChainedTensorCast : public OpRewritePattern<CastOp> { 167 using OpRewritePattern<CastOp>::OpRewritePattern; 168 169 LogicalResult matchAndRewrite(CastOp tensorCast, 170 PatternRewriter &rewriter) const final { 171 auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>(); 172 173 if (!tensorCastOperand) 174 return failure(); 175 176 auto sourceType = 177 tensorCastOperand.getOperand().getType().cast<TensorType>(); 178 auto intermediateType = tensorCastOperand.getType().cast<TensorType>(); 179 auto resultType = tensorCast.getType().cast<TensorType>(); 180 181 // We can remove the intermediate cast if joining all three produces the 182 // same result as just joining the source and result shapes. 183 auto firstJoin = 184 joinShapes(joinShapes(sourceType, intermediateType), resultType); 185 186 // The join might not exist if the cast sequence would fail at runtime. 187 if (!firstJoin) 188 return failure(); 189 190 // The newJoin always exists if the above join exists, it might just contain 191 // less information. If so, we cannot drop the intermediate cast, as doing 192 // so would remove runtime checks. 193 auto newJoin = joinShapes(sourceType, resultType); 194 if (firstJoin != newJoin) 195 return failure(); 196 197 rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType, 198 tensorCastOperand.getOperand()); 199 return success(); 200 } 201 }; 202 203 } // namespace 204 205 void CastOp::getCanonicalizationPatterns(RewritePatternSet &results, 206 MLIRContext *context) { 207 results.add<ChainedTensorCast>(context); 208 } 209 210 //===----------------------------------------------------------------------===// 211 // DimOp 212 //===----------------------------------------------------------------------===// 213 214 void DimOp::build(OpBuilder &builder, OperationState &result, Value source, 215 int64_t index) { 216 auto loc = result.location; 217 Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index); 218 build(builder, result, source, indexValue); 219 } 220 221 Optional<int64_t> DimOp::getConstantIndex() { 222 if (auto constantOp = index().getDefiningOp<arith::ConstantOp>()) 223 return constantOp.getValue().cast<IntegerAttr>().getInt(); 224 return {}; 225 } 226 227 static LogicalResult verify(DimOp op) { 228 // Assume unknown index to be in range. 229 Optional<int64_t> index = op.getConstantIndex(); 230 if (!index.hasValue()) 231 return success(); 232 233 // Check that constant index is not knowingly out of range. 234 auto type = op.source().getType(); 235 if (auto tensorType = type.dyn_cast<RankedTensorType>()) { 236 if (index.getValue() >= tensorType.getRank()) 237 return op.emitOpError("index is out of range"); 238 } else if (type.isa<UnrankedTensorType>()) { 239 // Assume index to be in range. 240 } else { 241 llvm_unreachable("expected operand with tensor type"); 242 } 243 return success(); 244 } 245 246 OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) { 247 // All forms of folding require a known index. 248 auto index = operands[1].dyn_cast_or_null<IntegerAttr>(); 249 if (!index) 250 return {}; 251 252 // Folding for unranked types (UnrankedTensorType) is not supported. 253 auto tensorType = source().getType().dyn_cast<RankedTensorType>(); 254 if (!tensorType) 255 return {}; 256 257 // Fold if the shape extent along the given index is known. 258 if (!tensorType.isDynamicDim(index.getInt())) { 259 Builder builder(getContext()); 260 return builder.getIndexAttr(tensorType.getShape()[index.getInt()]); 261 } 262 263 Operation *definingOp = source().getDefiningOp(); 264 265 // Fold dim to the operand of tensor.generate. 266 if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) { 267 auto resultType = 268 fromElements.getResult().getType().cast<RankedTensorType>(); 269 // The case where the type encodes the size of the dimension is handled 270 // above. 271 assert(ShapedType::isDynamic(resultType.getShape()[index.getInt()])); 272 273 // Find the operand of the fromElements that corresponds to this index. 274 auto dynExtents = fromElements.dynamicExtents().begin(); 275 for (auto dim : resultType.getShape().take_front(index.getInt())) 276 if (ShapedType::isDynamic(dim)) 277 dynExtents++; 278 279 return Value{*dynExtents}; 280 } 281 282 // The size at the given index is now known to be a dynamic size. 283 unsigned unsignedIndex = index.getValue().getZExtValue(); 284 285 if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) { 286 // Fold only for non-rank reduced ops. For the rank-reduced version, rely on 287 // `resolve-shaped-type-result-dims` pass. 288 if (sliceOp.getType().getRank() == sliceOp.getSourceType().getRank() && 289 sliceOp.isDynamicSize(unsignedIndex)) { 290 return {sliceOp.getDynamicSize(unsignedIndex)}; 291 } 292 } 293 294 // dim(cast) -> dim 295 if (succeeded(foldTensorCast(*this))) 296 return getResult(); 297 298 return {}; 299 } 300 301 namespace { 302 /// Fold dim of a cast into the dim of the source of the tensor cast. 303 struct DimOfCastOp : public OpRewritePattern<DimOp> { 304 using OpRewritePattern<DimOp>::OpRewritePattern; 305 306 LogicalResult matchAndRewrite(DimOp dimOp, 307 PatternRewriter &rewriter) const override { 308 auto castOp = dimOp.source().getDefiningOp<CastOp>(); 309 if (!castOp) 310 return failure(); 311 Value newSource = castOp.getOperand(); 312 rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.index()); 313 return success(); 314 } 315 }; 316 } // namespace 317 318 void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, 319 MLIRContext *context) { 320 results.add<DimOfCastOp>(context); 321 } 322 323 //===----------------------------------------------------------------------===// 324 // ExtractOp 325 //===----------------------------------------------------------------------===// 326 327 static LogicalResult verify(ExtractOp op) { 328 // Verify the # indices match if we have a ranked type. 329 if (auto tensorType = op.tensor().getType().dyn_cast<RankedTensorType>()) 330 if (tensorType.getRank() != static_cast<int64_t>(op.indices().size())) 331 return op.emitOpError("incorrect number of indices for extract_element"); 332 333 return success(); 334 } 335 336 OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) { 337 // The tensor operand must be a known constant. 338 Attribute tensor = operands.front(); 339 if (!tensor) 340 return {}; 341 // If this is a splat elements attribute, simply return the value. All of the 342 // elements of a splat attribute are the same. 343 if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>()) 344 return splatTensor.getSplatValue<Attribute>(); 345 346 // Otherwise, collect the constant indices into the tensor. 347 SmallVector<uint64_t, 8> indices; 348 for (Attribute indice : llvm::drop_begin(operands, 1)) { 349 if (!indice || !indice.isa<IntegerAttr>()) 350 return {}; 351 indices.push_back(indice.cast<IntegerAttr>().getInt()); 352 } 353 354 // If this is an elements attribute, query the value at the given indices. 355 auto elementsAttr = tensor.dyn_cast<ElementsAttr>(); 356 if (elementsAttr && elementsAttr.isValidIndex(indices)) 357 return elementsAttr.getValues<Attribute>()[indices]; 358 return {}; 359 } 360 361 //===----------------------------------------------------------------------===// 362 // FromElementsOp 363 //===----------------------------------------------------------------------===// 364 365 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 366 Type resultType, ValueRange elements) { 367 result.addOperands(elements); 368 result.addTypes(resultType); 369 } 370 371 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 372 ValueRange elements) { 373 assert(!elements.empty() && "expected at least one element"); 374 Type resultType = RankedTensorType::get( 375 {static_cast<int64_t>(elements.size())}, elements.front().getType()); 376 build(builder, result, resultType, elements); 377 } 378 379 OpFoldResult FromElementsOp::fold(ArrayRef<Attribute> operands) { 380 if (!llvm::is_contained(operands, nullptr)) 381 return DenseElementsAttr::get(getType(), operands); 382 return {}; 383 } 384 385 namespace { 386 387 // Canonicalizes the pattern of the form 388 // 389 // %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32> 390 // %extracted_element = tensor.extract %tensor[%c0] : tensor<1xi32> 391 // 392 // to just %element. 393 struct ExtractElementFromTensorFromElements 394 : public OpRewritePattern<tensor::ExtractOp> { 395 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 396 397 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 398 PatternRewriter &rewriter) const final { 399 auto tensorFromElements = extract.tensor().getDefiningOp<FromElementsOp>(); 400 if (!tensorFromElements) 401 return failure(); 402 auto tensorType = tensorFromElements.getType().cast<RankedTensorType>(); 403 auto rank = tensorType.getRank(); 404 if (rank == 0) { 405 rewriter.replaceOp(extract, tensorFromElements.getOperand(0)); 406 return success(); 407 } 408 SmallVector<APInt, 3> indices(rank); 409 int64_t flatIndex = 0; 410 int64_t stride = 1; 411 for (int i = rank - 1; i >= 0; --i) { 412 APInt index; 413 if (!matchPattern(extract.indices()[i], m_ConstantInt(&index))) 414 return failure(); 415 if (i < rank - 1) 416 stride *= tensorType.getDimSize(i); 417 flatIndex += index.getSExtValue() * stride; 418 } 419 // Prevent out of bounds accesses. This can happen in invalid code that will 420 // never execute. 421 if (tensorFromElements->getNumOperands() <= flatIndex || flatIndex < 0) 422 return failure(); 423 rewriter.replaceOp(extract, tensorFromElements.getOperand(flatIndex)); 424 return success(); 425 } 426 }; 427 428 } // namespace 429 430 void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results, 431 MLIRContext *context) { 432 results.add<ExtractElementFromTensorFromElements>(context); 433 } 434 435 //===----------------------------------------------------------------------===// 436 // InsertOp 437 //===----------------------------------------------------------------------===// 438 439 static LogicalResult verify(InsertOp op) { 440 // Verify the # indices match if we have a ranked type. 441 if (auto destType = op.dest().getType().dyn_cast<RankedTensorType>()) 442 if (destType.getRank() != static_cast<int64_t>(op.indices().size())) 443 return op.emitOpError("incorrect number of indices"); 444 return success(); 445 } 446 447 OpFoldResult InsertOp::fold(ArrayRef<Attribute> operands) { 448 Attribute scalar = operands[0]; 449 Attribute dest = operands[1]; 450 if (scalar && dest) 451 if (auto splatDest = dest.dyn_cast<SplatElementsAttr>()) 452 if (scalar == splatDest.getSplatValue<Attribute>()) 453 return dest; 454 return {}; 455 } 456 457 //===----------------------------------------------------------------------===// 458 // GenerateOp 459 //===----------------------------------------------------------------------===// 460 461 static LogicalResult verify(GenerateOp op) { 462 // Ensure that the tensor type has as many dynamic dimensions as are specified 463 // by the operands. 464 RankedTensorType resultTy = op.getType().cast<RankedTensorType>(); 465 if (op.getNumOperands() != resultTy.getNumDynamicDims()) 466 return op.emitError("must have as many index operands as dynamic extents " 467 "in the result type"); 468 469 // Ensure that region arguments span the index space. 470 if (!llvm::all_of(op.body().getArgumentTypes(), 471 [](Type ty) { return ty.isIndex(); })) 472 return op.emitError("all body arguments must be index"); 473 if (op.body().getNumArguments() != resultTy.getRank()) 474 return op.emitError("must have one body argument per input dimension"); 475 476 // Ensure that the region yields an element of the right type. 477 auto yieldOp = 478 llvm::cast<YieldOp>(op.body().getBlocks().front().getTerminator()); 479 if (yieldOp.value().getType() != resultTy.getElementType()) 480 return op.emitOpError( 481 "body must be terminated with a `yield` operation of the tensor " 482 "element type"); 483 484 return success(); 485 } 486 487 void GenerateOp::build( 488 OpBuilder &b, OperationState &result, Type resultTy, 489 ValueRange dynamicExtents, 490 function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) { 491 build(b, result, resultTy, dynamicExtents); 492 493 // Build and populate body. 494 OpBuilder::InsertionGuard guard(b); 495 Region *bodyRegion = result.regions.front().get(); 496 auto rank = resultTy.cast<RankedTensorType>().getRank(); 497 SmallVector<Type, 2> argumentTypes(rank, b.getIndexType()); 498 Block *bodyBlock = 499 b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes); 500 bodyBuilder(b, result.location, bodyBlock->getArguments()); 501 } 502 503 namespace { 504 505 /// Canonicalizes tensor.generate operations with a constant 506 /// operand into the equivalent operation with the operand expressed in the 507 /// result type, instead. We also insert a type cast to make sure that the 508 /// resulting IR is still well-typed. 509 struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> { 510 using OpRewritePattern<GenerateOp>::OpRewritePattern; 511 512 LogicalResult matchAndRewrite(GenerateOp tensorFromElements, 513 PatternRewriter &rewriter) const final { 514 auto resultType = 515 tensorFromElements.getResult().getType().cast<RankedTensorType>(); 516 517 if (resultType.hasStaticShape()) 518 return failure(); 519 520 SmallVector<Value, 4> newOperands; 521 SmallVector<int64_t, 4> newShape; 522 auto operandsIt = tensorFromElements.dynamicExtents().begin(); 523 524 for (int64_t dim : resultType.getShape()) { 525 if (!ShapedType::isDynamic(dim)) { 526 newShape.push_back(dim); 527 continue; 528 } 529 APInt index; 530 if (!matchPattern(*operandsIt, m_ConstantInt(&index))) { 531 newShape.push_back(ShapedType::kDynamicSize); 532 newOperands.push_back(*operandsIt++); 533 continue; 534 } 535 newShape.push_back(index.getSExtValue()); 536 operandsIt++; 537 } 538 539 if (newOperands.size() == tensorFromElements.dynamicExtents().size()) 540 return failure(); 541 542 auto loc = tensorFromElements.getLoc(); 543 auto newOp = rewriter.create<GenerateOp>( 544 loc, RankedTensorType::get(newShape, resultType.getElementType()), 545 newOperands); 546 rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(), 547 newOp.body().begin()); 548 rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType, 549 newOp); 550 return success(); 551 } 552 }; 553 554 /// Canonicalizes the pattern of the form 555 /// 556 /// %tensor = tensor.generate %x { 557 /// ^bb0(%arg0: index): // no predecessors 558 /// <computation> 559 /// yield %1 : index 560 /// } : tensor<?xindex> 561 /// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32> 562 /// 563 /// to just <computation> with %arg0 replaced by %c0. We only do this if the 564 /// tensor.generate operation has no side-effects. 565 struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> { 566 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 567 568 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 569 PatternRewriter &rewriter) const final { 570 auto tensorFromElements = extract.tensor().getDefiningOp<GenerateOp>(); 571 if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements)) 572 return failure(); 573 574 BlockAndValueMapping mapping; 575 Block *body = tensorFromElements.getBody(); 576 mapping.map(body->getArguments(), extract.indices()); 577 for (auto &op : body->without_terminator()) 578 rewriter.clone(op, mapping); 579 580 auto yield = cast<YieldOp>(body->getTerminator()); 581 582 rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value())); 583 return success(); 584 } 585 }; 586 587 /// Canonicalizes the pattern of the form 588 /// 589 /// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32> 590 /// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32> 591 /// 592 /// to 593 /// 594 /// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32> 595 struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> { 596 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 597 598 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 599 PatternRewriter &rewriter) const final { 600 auto tensorCast = extract.tensor().getDefiningOp<tensor::CastOp>(); 601 if (!tensorCast) 602 return failure(); 603 604 rewriter.replaceOpWithNewOp<tensor::ExtractOp>(extract, tensorCast.source(), 605 extract.indices()); 606 return success(); 607 } 608 }; 609 610 } // namespace 611 612 void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results, 613 MLIRContext *context) { 614 // TODO: Move extract patterns to tensor::ExtractOp. 615 results.add<ExtractFromTensorGenerate, ExtractFromTensorCast, 616 StaticTensorGenerate>(context); 617 } 618 619 //===----------------------------------------------------------------------===// 620 // RankOp 621 //===----------------------------------------------------------------------===// 622 623 OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) { 624 // Constant fold rank when the rank of the operand is known. 625 auto type = getOperand().getType(); 626 auto shapedType = type.dyn_cast<ShapedType>(); 627 if (shapedType && shapedType.hasRank()) 628 return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank()); 629 return IntegerAttr(); 630 } 631 632 //===----------------------------------------------------------------------===// 633 // ReshapeOp 634 //===----------------------------------------------------------------------===// 635 636 static int64_t getNumElements(ShapedType type) { 637 int64_t numElements = 1; 638 for (auto dim : type.getShape()) 639 numElements *= dim; 640 return numElements; 641 } 642 643 static LogicalResult verify(ReshapeOp op) { 644 TensorType operandType = op.source().getType().cast<TensorType>(); 645 TensorType resultType = op.result().getType().cast<TensorType>(); 646 647 if (operandType.getElementType() != resultType.getElementType()) 648 return op.emitOpError("element types of source and destination tensor " 649 "types should be the same"); 650 651 int64_t shapeSize = 652 op.shape().getType().cast<RankedTensorType>().getDimSize(0); 653 auto resultRankedType = resultType.dyn_cast<RankedTensorType>(); 654 auto operandRankedType = operandType.dyn_cast<RankedTensorType>(); 655 656 if (resultRankedType) { 657 if (operandRankedType && resultRankedType.hasStaticShape() && 658 operandRankedType.hasStaticShape()) { 659 if (getNumElements(operandRankedType) != getNumElements(resultRankedType)) 660 return op.emitOpError("source and destination tensor should have the " 661 "same number of elements"); 662 } 663 if (ShapedType::isDynamic(shapeSize)) 664 return op.emitOpError("cannot use shape operand with dynamic length to " 665 "reshape to statically-ranked tensor type"); 666 if (shapeSize != resultRankedType.getRank()) 667 return op.emitOpError( 668 "length of shape operand differs from the result's tensor rank"); 669 } 670 return success(); 671 } 672 673 //===----------------------------------------------------------------------===// 674 // Reassociative reshape ops 675 //===----------------------------------------------------------------------===// 676 677 SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() { 678 return getSymbolLessAffineMaps(getReassociationExprs()); 679 } 680 SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() { 681 return convertReassociationIndicesToExprs(getContext(), 682 getReassociationIndices()); 683 } 684 685 SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() { 686 return getSymbolLessAffineMaps(getReassociationExprs()); 687 } 688 SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() { 689 return convertReassociationIndicesToExprs(getContext(), 690 getReassociationIndices()); 691 } 692 693 static void print(OpAsmPrinter &p, ExpandShapeOp op) { 694 ::mlir::printReshapeOp<ExpandShapeOp>(p, op); 695 } 696 697 static void print(OpAsmPrinter &p, CollapseShapeOp op) { 698 ::mlir::printReshapeOp<CollapseShapeOp>(p, op); 699 } 700 701 /// Compute the RankedTensorType obtained by applying `reassociation` to `type`. 702 static RankedTensorType 703 computeTensorReshapeCollapsedType(RankedTensorType type, 704 ArrayRef<AffineMap> reassociation) { 705 auto shape = type.getShape(); 706 SmallVector<int64_t, 4> newShape; 707 newShape.reserve(reassociation.size()); 708 709 // Use the fact that reassociation is valid to simplify the logic: only use 710 // each map's rank. 711 assert(isReassociationValid(reassociation) && "invalid reassociation"); 712 unsigned currentDim = 0; 713 for (AffineMap m : reassociation) { 714 unsigned dim = m.getNumResults(); 715 auto band = shape.slice(currentDim, dim); 716 int64_t size = 1; 717 if (llvm::is_contained(band, ShapedType::kDynamicSize)) 718 size = ShapedType::kDynamicSize; 719 else 720 for (unsigned d = 0; d < dim; ++d) 721 size *= shape[currentDim + d]; 722 newShape.push_back(size); 723 currentDim += dim; 724 } 725 726 return RankedTensorType::get(newShape, type.getElementType()); 727 } 728 729 void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src, 730 ArrayRef<ReassociationIndices> reassociation, 731 ArrayRef<NamedAttribute> attrs) { 732 auto resultType = computeTensorReshapeCollapsedType( 733 src.getType().cast<RankedTensorType>(), 734 getSymbolLessAffineMaps( 735 convertReassociationIndicesToExprs(b.getContext(), reassociation))); 736 build(b, result, resultType, src, attrs); 737 result.addAttribute(getReassociationAttrName(), 738 getReassociationIndicesAttribute(b, reassociation)); 739 } 740 741 void ExpandShapeOp::build(OpBuilder &b, OperationState &result, Value src, 742 ArrayRef<ReassociationIndices> reassociation, 743 ArrayRef<NamedAttribute> attrs) { 744 auto resultType = computeTensorReshapeCollapsedType( 745 src.getType().cast<RankedTensorType>(), 746 getSymbolLessAffineMaps( 747 convertReassociationIndicesToExprs(b.getContext(), reassociation))); 748 build(b, result, resultType, src, attrs); 749 result.addAttribute(getReassociationAttrName(), 750 getReassociationIndicesAttribute(b, reassociation)); 751 } 752 753 template <typename TensorReshapeOp, bool isExpansion = std::is_same< 754 TensorReshapeOp, ExpandShapeOp>::value> 755 static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op, 756 RankedTensorType expandedType, 757 RankedTensorType collapsedType) { 758 if (failed( 759 verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion))) 760 return failure(); 761 762 auto maps = op.getReassociationMaps(); 763 RankedTensorType expectedType = 764 computeTensorReshapeCollapsedType(expandedType, maps); 765 if (collapsedType != expectedType) 766 return op.emitOpError("expected collapsed type to be ") 767 << expectedType << ", but got " << collapsedType; 768 return success(); 769 } 770 771 static LogicalResult verify(ExpandShapeOp op) { 772 return verifyTensorReshapeOp(op, op.getResultType(), op.getSrcType()); 773 } 774 775 static LogicalResult verify(CollapseShapeOp op) { 776 return verifyTensorReshapeOp(op, op.getSrcType(), op.getResultType()); 777 } 778 779 namespace { 780 /// Reshape of a splat constant can be replaced with a constant of the result 781 /// type. 782 template <typename TensorReshapeOp> 783 struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> { 784 using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; 785 LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, 786 PatternRewriter &rewriter) const override { 787 DenseElementsAttr attr; 788 if (!matchPattern(reshapeOp.src(), m_Constant(&attr))) 789 return failure(); 790 if (!attr || !attr.isSplat()) 791 return failure(); 792 DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer( 793 reshapeOp.getResultType(), attr.getRawData(), true); 794 rewriter.replaceOpWithNewOp<arith::ConstantOp>(reshapeOp, newAttr); 795 return success(); 796 } 797 }; 798 799 } // namespace 800 801 void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 802 MLIRContext *context) { 803 results.add<CollapseReshapeOps<ExpandShapeOp>, 804 CollapseMixedReshapeOps<ExpandShapeOp, CollapseShapeOp>, 805 FoldReshapeWithConstant<ExpandShapeOp>>(context); 806 } 807 808 void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 809 MLIRContext *context) { 810 results.add<CollapseReshapeOps<CollapseShapeOp>, 811 CollapseMixedReshapeOps<CollapseShapeOp, ExpandShapeOp>, 812 FoldReshapeWithConstant<CollapseShapeOp>>(context); 813 } 814 815 OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) { 816 return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands); 817 } 818 OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) { 819 return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands); 820 } 821 822 //===----------------------------------------------------------------------===// 823 // ExtractSliceOp 824 //===----------------------------------------------------------------------===// 825 826 /// An extract_slice op result type can be fully inferred from the source type 827 /// and the static representation of offsets, sizes and strides. Special 828 /// sentinels encode the dynamic case. 829 RankedTensorType ExtractSliceOp::inferResultType( 830 RankedTensorType sourceRankedTensorType, ArrayRef<int64_t> staticOffsets, 831 ArrayRef<int64_t> staticSizes, ArrayRef<int64_t> staticStrides) { 832 // An extract_slice op may specify only a leading subset of offset/sizes/ 833 // strides in which case we complete with offset=0, sizes from memref type and 834 // strides=1. 835 unsigned rank = sourceRankedTensorType.getRank(); 836 (void)rank; 837 assert(staticSizes.size() == rank && 838 "unexpected staticSizes not equal to rank of source"); 839 return RankedTensorType::get(staticSizes, 840 sourceRankedTensorType.getElementType()); 841 } 842 843 RankedTensorType ExtractSliceOp::inferResultType( 844 RankedTensorType sourceRankedTensorType, ArrayRef<OpFoldResult> offsets, 845 ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) { 846 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 847 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 848 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 849 ShapedType::kDynamicStrideOrOffset); 850 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 851 ShapedType::kDynamicSize); 852 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 853 ShapedType::kDynamicStrideOrOffset); 854 return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, 855 staticSizes, staticStrides); 856 } 857 858 /// An extract_slice op result type can be fully inferred from the source type 859 /// and the static representation of offsets, sizes and strides. Special 860 /// sentinels encode the dynamic case. 861 RankedTensorType ExtractSliceOp::inferRankReducedResultType( 862 unsigned resultRank, RankedTensorType sourceRankedTensorType, 863 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, 864 ArrayRef<int64_t> strides) { 865 auto inferredType = 866 inferResultType(sourceRankedTensorType, offsets, sizes, strides) 867 .cast<RankedTensorType>(); 868 int rankDiff = inferredType.getRank() - resultRank; 869 if (rankDiff > 0) { 870 auto shape = inferredType.getShape(); 871 llvm::SmallDenseSet<unsigned> dimsToProject; 872 mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject); 873 SmallVector<int64_t> projectedShape; 874 for (unsigned pos = 0, e = shape.size(); pos < e; ++pos) 875 if (!dimsToProject.contains(pos)) 876 projectedShape.push_back(shape[pos]); 877 inferredType = 878 RankedTensorType::get(projectedShape, inferredType.getElementType()); 879 } 880 return inferredType; 881 } 882 883 RankedTensorType ExtractSliceOp::inferRankReducedResultType( 884 unsigned resultRank, RankedTensorType sourceRankedTensorType, 885 ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes, 886 ArrayRef<OpFoldResult> strides) { 887 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 888 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 889 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 890 ShapedType::kDynamicStrideOrOffset); 891 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 892 ShapedType::kDynamicSize); 893 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 894 ShapedType::kDynamicStrideOrOffset); 895 return ExtractSliceOp::inferRankReducedResultType( 896 resultRank, sourceRankedTensorType, staticOffsets, staticSizes, 897 staticStrides); 898 } 899 900 /// Build an ExtractSliceOp with mixed static and dynamic entries and custom 901 /// result type. If the type passed is nullptr, it is inferred. 902 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, 903 RankedTensorType resultType, Value source, 904 ArrayRef<OpFoldResult> offsets, 905 ArrayRef<OpFoldResult> sizes, 906 ArrayRef<OpFoldResult> strides, 907 ArrayRef<NamedAttribute> attrs) { 908 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 909 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 910 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 911 ShapedType::kDynamicStrideOrOffset); 912 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 913 ShapedType::kDynamicSize); 914 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 915 ShapedType::kDynamicStrideOrOffset); 916 auto sourceRankedTensorType = source.getType().cast<RankedTensorType>(); 917 // Structuring implementation this way avoids duplication between builders. 918 if (!resultType) { 919 resultType = 920 ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, 921 staticSizes, staticStrides) 922 .cast<RankedTensorType>(); 923 } 924 build(b, result, resultType, source, dynamicOffsets, dynamicSizes, 925 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 926 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 927 result.addAttributes(attrs); 928 } 929 930 /// Build an ExtractSliceOp with mixed static and dynamic entries and inferred 931 /// result type. 932 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, 933 ArrayRef<OpFoldResult> offsets, 934 ArrayRef<OpFoldResult> sizes, 935 ArrayRef<OpFoldResult> strides, 936 ArrayRef<NamedAttribute> attrs) { 937 build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); 938 } 939 940 /// Build an ExtractSliceOp with dynamic entries and custom result type. If the 941 /// type passed is nullptr, it is inferred. 942 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, 943 RankedTensorType resultType, Value source, 944 ValueRange offsets, ValueRange sizes, 945 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 946 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 947 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 948 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 949 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 950 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 951 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 952 build(b, result, resultType, source, offsetValues, sizeValues, strideValues); 953 } 954 955 /// Build an ExtractSliceOp with dynamic entries and inferred result type. 956 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, 957 ValueRange offsets, ValueRange sizes, 958 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 959 build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); 960 } 961 962 template <typename OpTy> 963 static LogicalResult produceSliceErrorMsg(SliceVerificationResult result, 964 OpTy op, Type expectedType) { 965 auto memrefType = expectedType.cast<ShapedType>(); 966 switch (result) { 967 case SliceVerificationResult::Success: 968 return success(); 969 case SliceVerificationResult::RankTooLarge: 970 return op.emitError("expected rank to be smaller or equal to ") 971 << "the other rank. "; 972 case SliceVerificationResult::SizeMismatch: 973 return op.emitError("expected type to be ") 974 << expectedType << " or a rank-reduced version. (size mismatch) "; 975 case SliceVerificationResult::ElemTypeMismatch: 976 return op.emitError("expected element type to be ") 977 << memrefType.getElementType(); 978 default: 979 llvm_unreachable("unexpected extract_slice op verification result"); 980 } 981 } 982 983 /// Verifier for ExtractSliceOp. 984 static LogicalResult verify(ExtractSliceOp op) { 985 // Verify result type against inferred type. 986 auto expectedType = 987 ExtractSliceOp::inferResultType(op.getSourceType(), op.getMixedOffsets(), 988 op.getMixedSizes(), op.getMixedStrides()); 989 auto result = 990 isRankReducedType(expectedType.cast<ShapedType>(), op.getType()); 991 return produceSliceErrorMsg(result, op, expectedType); 992 } 993 994 /// Infer the canonical type of the result of an extract_slice op. Returns a 995 /// type with rank `resultRank` that is either the rank of the rank-reduced 996 /// type, or the non-rank-reduced type. 997 static RankedTensorType 998 getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType, 999 ArrayRef<OpFoldResult> mixedOffsets, 1000 ArrayRef<OpFoldResult> mixedSizes, 1001 ArrayRef<OpFoldResult> mixedStrides) { 1002 auto resultType = 1003 ExtractSliceOp::inferRankReducedResultType( 1004 resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides) 1005 .cast<RankedTensorType>(); 1006 if (resultType.getRank() != resultRank) { 1007 resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets, 1008 mixedSizes, mixedStrides) 1009 .cast<RankedTensorType>(); 1010 } 1011 return resultType; 1012 } 1013 1014 llvm::SmallDenseSet<unsigned> ExtractSliceOp::getDroppedDims() { 1015 llvm::SmallDenseSet<unsigned> droppedDims; 1016 ArrayRef<int64_t> resultShape = getType().getShape(); 1017 SmallVector<OpFoldResult> mixedSizes = getMixedSizes(); 1018 unsigned shapePos = 0; 1019 for (const auto &size : enumerate(mixedSizes)) { 1020 Optional<int64_t> sizeVal = getConstantIntValue(size.value()); 1021 // If the size is not 1, or if the current matched dimension of the result 1022 // is the same static shape as the size value (which is 1), then the 1023 // dimension is preserved. 1024 if (!sizeVal || sizeVal.getValue() != 1 || 1025 (shapePos < resultShape.size() && resultShape[shapePos] == 1)) { 1026 shapePos++; 1027 continue; 1028 } 1029 droppedDims.insert(size.index()); 1030 } 1031 return droppedDims; 1032 } 1033 1034 LogicalResult ExtractSliceOp::reifyResultShapes( 1035 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 1036 reifiedReturnShapes.resize(1); 1037 reifiedReturnShapes[0].reserve(getType().getRank()); 1038 SmallVector<OpFoldResult> mixedSizes = getMixedSizes(); 1039 llvm::SmallDenseSet<unsigned> droppedDims = getDroppedDims(); 1040 Location loc = getLoc(); 1041 for (const auto &size : enumerate(mixedSizes)) { 1042 if (droppedDims.count(size.index())) 1043 continue; 1044 if (auto attr = size.value().dyn_cast<Attribute>()) { 1045 reifiedReturnShapes[0].push_back(builder.create<arith::ConstantIndexOp>( 1046 loc, attr.cast<IntegerAttr>().getInt())); 1047 continue; 1048 } 1049 reifiedReturnShapes[0].push_back(size.value().get<Value>()); 1050 } 1051 return success(); 1052 } 1053 1054 namespace { 1055 /// Pattern to rewrite an extract_slice op with tensor::Cast arguments. 1056 /// This essentially pushes memref_cast past its consuming slice when 1057 /// `canFoldIntoConsumerOp` is true. 1058 /// 1059 /// Example: 1060 /// ``` 1061 /// %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32> 1062 /// %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to 1063 /// tensor<3x4xf32> 1064 /// ``` 1065 /// is rewritten into: 1066 /// ``` 1067 /// %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to 1068 /// tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32> 1069 /// ``` 1070 class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> { 1071 public: 1072 using OpRewritePattern<ExtractSliceOp>::OpRewritePattern; 1073 1074 LogicalResult matchAndRewrite(ExtractSliceOp sliceOp, 1075 PatternRewriter &rewriter) const override { 1076 // Any constant operand, just return to let SubViewOpConstantFolder kick in. 1077 if (llvm::any_of(sliceOp.getOperands(), [](Value operand) { 1078 return matchPattern(operand, matchConstantIndex()); 1079 })) 1080 return failure(); 1081 1082 auto castOp = sliceOp.source().getDefiningOp<tensor::CastOp>(); 1083 if (!castOp) 1084 return failure(); 1085 1086 if (!canFoldIntoConsumerOp(castOp)) 1087 return failure(); 1088 1089 /// Deduce the type of the result to use for the canonicalized operation. 1090 RankedTensorType resultType = getCanonicalSliceResultType( 1091 sliceOp.getType().getRank(), sliceOp.getSourceType(), 1092 sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(), 1093 sliceOp.getMixedStrides()); 1094 Value newSlice = rewriter.create<ExtractSliceOp>( 1095 sliceOp.getLoc(), resultType, castOp.source(), sliceOp.offsets(), 1096 sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(), 1097 sliceOp.static_sizes(), sliceOp.static_strides()); 1098 rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(), 1099 newSlice); 1100 return success(); 1101 } 1102 }; 1103 } // namespace 1104 1105 /// Return the canonical type of the result of an extract_slice op. 1106 struct SliceReturnTypeCanonicalizer { 1107 RankedTensorType operator()(ExtractSliceOp op, 1108 ArrayRef<OpFoldResult> mixedOffsets, 1109 ArrayRef<OpFoldResult> mixedSizes, 1110 ArrayRef<OpFoldResult> mixedStrides) { 1111 return getCanonicalSliceResultType(op.getType().getRank(), 1112 op.getSourceType(), mixedOffsets, 1113 mixedSizes, mixedStrides); 1114 } 1115 }; 1116 1117 /// A canonicalizer wrapper to replace ExtractSliceOps. 1118 struct SliceCanonicalizer { 1119 void operator()(PatternRewriter &rewriter, ExtractSliceOp op, 1120 ExtractSliceOp newOp) { 1121 Value replacement = newOp.getResult(); 1122 if (replacement.getType() != op.getType()) 1123 replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(), 1124 replacement); 1125 rewriter.replaceOp(op, replacement); 1126 } 1127 }; 1128 1129 void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, 1130 MLIRContext *context) { 1131 results.add< 1132 OpWithOffsetSizesAndStridesConstantArgumentFolder< 1133 ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>, 1134 ExtractSliceOpCastFolder>(context); 1135 } 1136 1137 // 1138 static LogicalResult 1139 foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op, 1140 ShapedType shapedType) { 1141 OpBuilder b(op.getContext()); 1142 for (OpFoldResult ofr : op.getMixedOffsets()) 1143 if (getConstantIntValue(ofr) != static_cast<int64_t>(0)) 1144 return failure(); 1145 // Rank-reducing noops only need to inspect the leading dimensions: llvm::zip 1146 // is appropriate. 1147 auto shape = shapedType.getShape(); 1148 for (auto it : llvm::zip(op.getMixedSizes(), shape)) 1149 if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it)) 1150 return failure(); 1151 for (OpFoldResult ofr : op.getMixedStrides()) 1152 if (getConstantIntValue(ofr) != static_cast<int64_t>(1)) 1153 return failure(); 1154 return success(); 1155 } 1156 1157 /// If we have an ExtractSliceOp consuming an InsertSliceOp with the same slice, 1158 /// we can return the InsertSliceOp's source directly. 1159 // TODO: This only checks the immediate producer; extend to go up the 1160 // insert/extract chain if the slices are disjoint. 1161 static Value foldExtractAfterInsertSlice(ExtractSliceOp extractOp) { 1162 auto insertOp = extractOp.source().getDefiningOp<InsertSliceOp>(); 1163 1164 auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; 1165 if (insertOp && insertOp.source().getType() == extractOp.getType() && 1166 insertOp.isSameAs(extractOp, isSame)) 1167 return insertOp.source(); 1168 1169 return {}; 1170 } 1171 1172 OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute>) { 1173 if (getSourceType() == getType() && 1174 succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) 1175 return this->source(); 1176 if (Value slice = foldExtractAfterInsertSlice(*this)) 1177 return slice; 1178 return OpFoldResult(); 1179 } 1180 1181 Value mlir::tensor::createCanonicalRankReducingExtractSliceOp( 1182 OpBuilder &b, Location loc, Value tensor, RankedTensorType targetType) { 1183 auto rankedTensorType = tensor.getType().cast<RankedTensorType>(); 1184 unsigned rank = rankedTensorType.getRank(); 1185 auto shape = rankedTensorType.getShape(); 1186 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 1187 SmallVector<OpFoldResult> sizes; 1188 for (unsigned i = 0, e = rank; i < e; ++i) { 1189 OpFoldResult dim; 1190 if (rankedTensorType.isDynamicDim(i)) 1191 dim = b.createOrFold<tensor::DimOp>( 1192 loc, tensor, b.create<arith::ConstantIndexOp>(loc, i)); 1193 else 1194 dim = b.getIndexAttr(shape[i]); 1195 sizes.push_back(dim); 1196 } 1197 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 1198 return b.createOrFold<tensor::ExtractSliceOp>(loc, targetType, tensor, 1199 offsets, sizes, strides); 1200 } 1201 1202 //===----------------------------------------------------------------------===// 1203 // InsertSliceOp 1204 //===----------------------------------------------------------------------===// 1205 1206 // Build a InsertSliceOp with mixed static and dynamic entries. 1207 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1208 Value dest, ArrayRef<OpFoldResult> offsets, 1209 ArrayRef<OpFoldResult> sizes, 1210 ArrayRef<OpFoldResult> strides, 1211 ArrayRef<NamedAttribute> attrs) { 1212 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1213 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1214 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1215 ShapedType::kDynamicStrideOrOffset); 1216 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1217 ShapedType::kDynamicSize); 1218 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1219 ShapedType::kDynamicStrideOrOffset); 1220 build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes, 1221 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1222 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1223 result.addAttributes(attrs); 1224 } 1225 1226 // Build a InsertSliceOp with dynamic entries. 1227 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1228 Value dest, ValueRange offsets, ValueRange sizes, 1229 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 1230 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1231 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 1232 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1233 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1234 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1235 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1236 build(b, result, source, dest, offsetValues, sizeValues, strideValues); 1237 } 1238 1239 /// Verifier for InsertSliceOp. 1240 static LogicalResult verify(InsertSliceOp op) { 1241 // insert_slice is the inverse of extract_slice, use the same type inference. 1242 auto expectedType = ExtractSliceOp::inferRankReducedResultType( 1243 op.getSourceType().getRank(), op.getType(), 1244 extractFromI64ArrayAttr(op.static_offsets()), 1245 extractFromI64ArrayAttr(op.static_sizes()), 1246 extractFromI64ArrayAttr(op.static_strides())); 1247 auto result = 1248 isRankReducedType(expectedType.cast<ShapedType>(), op.getSourceType()); 1249 return produceSliceErrorMsg(result, op, expectedType); 1250 } 1251 1252 /// If we have two consecutive InsertSliceOp writing to the same slice, we 1253 /// can mutate the second InsertSliceOp's destination to the first one's. 1254 /// 1255 /// Example: 1256 /// 1257 /// ```mlir 1258 /// %0 = tensor.insert_slice %slice0 into %input[0, 0] [64, 64] [1, 1] 1259 /// %1 = tensor.insert_slice %slice1 into %0[0, 0] [64, 64] [1, 1] 1260 /// ``` 1261 /// 1262 /// folds into: 1263 /// 1264 /// ```mlir 1265 /// %1 = tensor.insert_slice %slice1 into %input[0, 0] [64, 64] [1, 1] 1266 /// ``` 1267 static LogicalResult foldInsertAfterInsertSlice(InsertSliceOp insertOp) { 1268 auto prevInsertOp = insertOp.dest().getDefiningOp<InsertSliceOp>(); 1269 1270 auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; 1271 if (!prevInsertOp || 1272 prevInsertOp.source().getType() != insertOp.source().getType() || 1273 !prevInsertOp.isSameAs(insertOp, isSame)) 1274 return failure(); 1275 1276 insertOp.destMutable().assign(prevInsertOp.dest()); 1277 return success(); 1278 } 1279 1280 OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) { 1281 if (getSourceType().hasStaticShape() && getType().hasStaticShape() && 1282 getSourceType() == getType() && 1283 succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) 1284 return this->source(); 1285 if (succeeded(foldInsertAfterInsertSlice(*this))) 1286 return getResult(); 1287 return OpFoldResult(); 1288 } 1289 1290 LogicalResult InsertSliceOp::reifyResultShapes( 1291 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 1292 reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank())); 1293 for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) { 1294 reifiedReturnShapes[0][dim] = 1295 builder.createOrFold<tensor::DimOp>(getLoc(), dest(), dim); 1296 } 1297 return success(); 1298 } 1299 1300 namespace { 1301 /// Pattern to rewrite a insert_slice op with constant arguments. 1302 class InsertSliceOpConstantArgumentFolder final 1303 : public OpRewritePattern<InsertSliceOp> { 1304 public: 1305 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1306 1307 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1308 PatternRewriter &rewriter) const override { 1309 // No constant operand, just return. 1310 if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) { 1311 return matchPattern(operand, matchConstantIndex()); 1312 })) 1313 return failure(); 1314 1315 // At least one of offsets/sizes/strides is a new constant. 1316 // Form the new list of operands and constant attributes from the 1317 // existing. 1318 SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets()); 1319 SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes()); 1320 SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides()); 1321 canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset); 1322 canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic); 1323 canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset); 1324 1325 // Create the new op in canonical form. 1326 auto sourceType = ExtractSliceOp::inferRankReducedResultType( 1327 insertSliceOp.getSourceType().getRank(), insertSliceOp.getType(), 1328 mixedOffsets, mixedSizes, mixedStrides); 1329 Value toInsert = insertSliceOp.source(); 1330 if (sourceType != insertSliceOp.getSourceType()) 1331 toInsert = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(), 1332 sourceType, toInsert); 1333 rewriter.replaceOpWithNewOp<InsertSliceOp>( 1334 insertSliceOp, toInsert, insertSliceOp.dest(), mixedOffsets, mixedSizes, 1335 mixedStrides); 1336 return success(); 1337 } 1338 }; 1339 1340 /// Fold tensor_casts with insert_slice operations. If the source or destination 1341 /// tensor is a tensor_cast that removes static type information, the cast is 1342 /// folded into the insert_slice operation. E.g.: 1343 /// 1344 /// ```mlir 1345 /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> 1346 /// %2 = tensor.insert_slice %1 into ... : tensor<?x?xf32> into ... 1347 /// ``` 1348 /// 1349 /// folds into: 1350 /// 1351 /// ```mlir 1352 /// %2 = tensor.insert_slice %0 into ... : tensor<8x16xf32> into ... 1353 /// ``` 1354 /// 1355 /// Note: When folding a cast on the destination tensor, the result of the 1356 /// insert_slice operation is casted to ensure that the type of the result did 1357 /// not change. 1358 struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertSliceOp> { 1359 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1360 1361 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1362 PatternRewriter &rewriter) const override { 1363 if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) { 1364 return matchPattern(operand, matchConstantIndex()); 1365 })) 1366 return failure(); 1367 1368 auto getSourceOfCastOp = [](Value v) -> Optional<Value> { 1369 auto castOp = v.getDefiningOp<tensor::CastOp>(); 1370 if (!castOp || !canFoldIntoConsumerOp(castOp)) 1371 return llvm::None; 1372 return castOp.source(); 1373 }; 1374 Optional<Value> sourceCastSource = 1375 getSourceOfCastOp(insertSliceOp.source()); 1376 Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.dest()); 1377 if (!sourceCastSource && !destCastSource) 1378 return failure(); 1379 1380 Value replacement = rewriter.create<InsertSliceOp>( 1381 insertSliceOp.getLoc(), 1382 (sourceCastSource ? *sourceCastSource : insertSliceOp.source()), 1383 (destCastSource ? *destCastSource : insertSliceOp.dest()), 1384 insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(), 1385 insertSliceOp.getMixedStrides()); 1386 1387 if (replacement.getType() != insertSliceOp.getType()) { 1388 replacement = rewriter.create<tensor::CastOp>( 1389 insertSliceOp.getLoc(), insertSliceOp.getType(), replacement); 1390 } 1391 rewriter.replaceOp(insertSliceOp, replacement); 1392 return success(); 1393 } 1394 }; 1395 1396 /// If additional static type information can be deduced from a insert_slice's 1397 /// size operands, insert an explicit cast of the op's source operand. This 1398 /// enables other canonicalization patterns that are matching for tensor_cast 1399 /// ops such as `ForOpTensorCastFolder` in SCF. 1400 /// 1401 /// Example: 1402 /// 1403 /// ```mlir 1404 /// %r = tensor.insert_slice %0 into %1[...] [64, 64] [1, 1] 1405 /// : tensor<?x?xf32> into ... 1406 /// ``` 1407 /// 1408 /// folds into: 1409 /// 1410 /// ```mlir 1411 /// %tmp = tensor.cast %0 : tensor<?x?xf32> to tensor<64x64xf32> 1412 /// %r = tensor.insert_slice %tmp into %1[...] [64, 64] [1, 1] 1413 /// : tensor<64x64xf32> into ... 1414 /// ``` 1415 struct InsertSliceOpSourceCastInserter final 1416 : public OpRewritePattern<InsertSliceOp> { 1417 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1418 1419 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1420 PatternRewriter &rewriter) const override { 1421 RankedTensorType srcType = insertSliceOp.getSourceType(); 1422 if (srcType.getRank() != insertSliceOp.getType().getRank()) 1423 return failure(); 1424 SmallVector<int64_t> newSrcShape(srcType.getShape().begin(), 1425 srcType.getShape().end()); 1426 for (int64_t i = 0; i < srcType.getRank(); ++i) { 1427 if (Optional<int64_t> constInt = 1428 getConstantIntValue(insertSliceOp.getMixedSizes()[i])) 1429 newSrcShape[i] = *constInt; 1430 } 1431 1432 RankedTensorType newSrcType = 1433 RankedTensorType::get(newSrcShape, srcType.getElementType()); 1434 if (srcType == newSrcType || 1435 !preservesStaticInformation(srcType, newSrcType) || 1436 !tensor::CastOp::areCastCompatible(srcType, newSrcType)) 1437 return failure(); 1438 1439 // newSrcType is: 1440 // 1) Different from srcType. 1441 // 2) "More static" than srcType. 1442 // 3) Cast-compatible with srcType. 1443 // Insert the cast. 1444 Value cast = rewriter.create<tensor::CastOp>( 1445 insertSliceOp.getLoc(), newSrcType, insertSliceOp.source()); 1446 rewriter.replaceOpWithNewOp<InsertSliceOp>( 1447 insertSliceOp, cast, insertSliceOp.dest(), 1448 insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(), 1449 insertSliceOp.getMixedStrides()); 1450 return success(); 1451 } 1452 }; 1453 } // namespace 1454 1455 void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, 1456 MLIRContext *context) { 1457 results.add<InsertSliceOpConstantArgumentFolder, InsertSliceOpCastFolder, 1458 InsertSliceOpSourceCastInserter>(context); 1459 } 1460 1461 Value mlir::tensor::createCanonicalRankReducingInsertSliceOp(OpBuilder &b, 1462 Location loc, 1463 Value tensor, 1464 Value dest) { 1465 auto rankedTensorType = dest.getType().cast<RankedTensorType>(); 1466 unsigned rank = rankedTensorType.getRank(); 1467 auto shape = rankedTensorType.getShape(); 1468 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 1469 SmallVector<OpFoldResult> sizes; 1470 for (unsigned i = 0, e = rank; i < e; ++i) { 1471 OpFoldResult dim; 1472 if (rankedTensorType.isDynamicDim(i)) 1473 dim = b.createOrFold<tensor::DimOp>( 1474 loc, dest, b.create<arith::ConstantIndexOp>(loc, i)); 1475 else 1476 dim = b.getIndexAttr(shape[i]); 1477 sizes.push_back(dim); 1478 } 1479 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 1480 return b.createOrFold<tensor::InsertSliceOp>(loc, tensor, dest, offsets, 1481 sizes, strides); 1482 } 1483 1484 //===----------------------------------------------------------------------===// 1485 // TableGen'd op method definitions 1486 //===----------------------------------------------------------------------===// 1487 1488 #define GET_OP_CLASSES 1489 #include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc" 1490