1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
10 #include "mlir/Dialect/Complex/IR/Complex.h"
11 #include "mlir/Dialect/StandardOps/Utils/Utils.h"
12 #include "mlir/Dialect/Tensor/IR/Tensor.h"
13 #include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
14 #include "mlir/Dialect/Utils/StaticValueUtils.h"
15 #include "mlir/IR/BlockAndValueMapping.h"
16 #include "mlir/IR/Builders.h"
17 #include "mlir/IR/BuiltinAttributeInterfaces.h"
18 #include "mlir/IR/Matchers.h"
19 #include "mlir/IR/PatternMatch.h"
20 #include "mlir/IR/TypeUtilities.h"
21 #include "llvm/ADT/STLExtras.h"
22 
23 using namespace mlir;
24 using namespace mlir::tensor;
25 
26 /// Materialize a single constant operation from a given attribute value with
27 /// the desired resultant type.
28 Operation *TensorDialect::materializeConstant(OpBuilder &builder,
29                                               Attribute value, Type type,
30                                               Location loc) {
31   if (arith::ConstantOp::isBuildableWith(value, type))
32     return builder.create<arith::ConstantOp>(loc, value, type);
33   if (complex::ConstantOp::isBuildableWith(value, type))
34     return builder.create<complex::ConstantOp>(loc, type,
35                                                value.cast<ArrayAttr>());
36   if (ConstantOp::isBuildableWith(value, type))
37     return builder.create<ConstantOp>(loc, value, type);
38   return nullptr;
39 }
40 
41 //===----------------------------------------------------------------------===//
42 // CastOp
43 //===----------------------------------------------------------------------===//
44 
45 /// Returns true if `target` is a ranked tensor type that preserves static
46 /// information available in the `source` ranked tensor type.
47 bool mlir::tensor::preservesStaticInformation(Type source, Type target) {
48   auto sourceType = source.dyn_cast<RankedTensorType>();
49   auto targetType = target.dyn_cast<RankedTensorType>();
50 
51   // Requires RankedTensorType.
52   if (!sourceType || !targetType)
53     return false;
54 
55   // Requires same elemental type.
56   if (sourceType.getElementType() != targetType.getElementType())
57     return false;
58 
59   // Requires same rank.
60   if (sourceType.getRank() != targetType.getRank())
61     return false;
62 
63   // If cast is towards more static sizes along any dimension, don't fold.
64   for (auto t : llvm::zip(sourceType.getShape(), targetType.getShape())) {
65     if (!ShapedType::isDynamic(std::get<0>(t)) &&
66         ShapedType::isDynamic(std::get<1>(t)))
67       return false;
68   }
69 
70   return true;
71 }
72 
73 /// Determines whether tensor::CastOp casts to a more dynamic version of the
74 /// source tensor. This is useful to fold a tensor.cast into a consuming op and
75 /// implement canonicalization patterns for ops in different dialects that may
76 /// consume the results of tensor.cast operations. Such foldable tensor.cast
77 /// operations are typically inserted as `slice` ops and are canonicalized,
78 /// to preserve the type compatibility of their uses.
79 ///
80 /// Returns true when all conditions are met:
81 /// 1. source and result are ranked tensors with same element type and rank.
82 /// 2. the tensor type has more static information than the result
83 ///
84 /// Example:
85 /// ```mlir
86 ///   %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
87 ///   %2 = consumer %1 ... : tensor<?x?xf32> ...
88 /// ```
89 ///
90 /// folds into:
91 ///
92 /// ```mlir
93 ///   %2 = consumer %0 ... : tensor<8x16xf32> ...
94 /// ```
95 bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) {
96   if (!castOp)
97     return false;
98 
99   // Can fold if the source of cast has at least as much static information as
100   // its results.
101   return preservesStaticInformation(castOp.getType(),
102                                     castOp.source().getType());
103 }
104 
105 /// Performs folding of any operand of `op` if it comes from a tensor::CastOp
106 /// that can be folded.
107 LogicalResult mlir::tensor::foldTensorCast(Operation *op) {
108   bool folded = false;
109   for (OpOperand &operand : op->getOpOperands()) {
110     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
111     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
112       operand.set(castOp.getOperand());
113       folded = true;
114     }
115   }
116   return success(folded);
117 }
118 
119 bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
120   if (inputs.size() != 1 || outputs.size() != 1)
121     return false;
122   Type a = inputs.front(), b = outputs.front();
123   auto aT = a.dyn_cast<TensorType>();
124   auto bT = b.dyn_cast<TensorType>();
125   if (!aT || !bT)
126     return false;
127 
128   if (aT.getElementType() != bT.getElementType())
129     return false;
130 
131   return succeeded(verifyCompatibleShape(aT, bT));
132 }
133 
134 /// Compute a TensorType that has the joined shape knowledge of the two
135 /// given TensorTypes. The element types need to match.
136 static TensorType joinShapes(TensorType one, TensorType two) {
137   assert(one.getElementType() == two.getElementType());
138 
139   if (!one.hasRank())
140     return two;
141   if (!two.hasRank())
142     return one;
143 
144   int64_t rank = one.getRank();
145   if (rank != two.getRank())
146     return {};
147 
148   SmallVector<int64_t, 4> join;
149   join.reserve(rank);
150   for (int64_t i = 0; i < rank; ++i) {
151     if (one.isDynamicDim(i)) {
152       join.push_back(two.getDimSize(i));
153       continue;
154     }
155     if (two.isDynamicDim(i)) {
156       join.push_back(one.getDimSize(i));
157       continue;
158     }
159     if (one.getDimSize(i) != two.getDimSize(i))
160       return {};
161     join.push_back(one.getDimSize(i));
162   }
163   return RankedTensorType::get(join, one.getElementType());
164 }
165 
166 namespace {
167 
168 /// Replaces chains of two tensor.cast operations by a single tensor.cast
169 /// operation if doing so does not remove runtime constraints.
170 struct ChainedTensorCast : public OpRewritePattern<CastOp> {
171   using OpRewritePattern<CastOp>::OpRewritePattern;
172 
173   LogicalResult matchAndRewrite(CastOp tensorCast,
174                                 PatternRewriter &rewriter) const final {
175     auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>();
176 
177     if (!tensorCastOperand)
178       return failure();
179 
180     auto sourceType =
181         tensorCastOperand.getOperand().getType().cast<TensorType>();
182     auto intermediateType = tensorCastOperand.getType().cast<TensorType>();
183     auto resultType = tensorCast.getType().cast<TensorType>();
184 
185     // We can remove the intermediate cast if joining all three produces the
186     // same result as just joining the source and result shapes.
187     auto firstJoin =
188         joinShapes(joinShapes(sourceType, intermediateType), resultType);
189 
190     // The join might not exist if the cast sequence would fail at runtime.
191     if (!firstJoin)
192       return failure();
193 
194     // The newJoin always exists if the above join exists, it might just contain
195     // less information. If so, we cannot drop the intermediate cast, as doing
196     // so would remove runtime checks.
197     auto newJoin = joinShapes(sourceType, resultType);
198     if (firstJoin != newJoin)
199       return failure();
200 
201     rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType,
202                                         tensorCastOperand.getOperand());
203     return success();
204   }
205 };
206 
207 } // namespace
208 
209 void CastOp::getCanonicalizationPatterns(RewritePatternSet &results,
210                                          MLIRContext *context) {
211   results.add<ChainedTensorCast>(context);
212 }
213 
214 //===----------------------------------------------------------------------===//
215 // DimOp
216 //===----------------------------------------------------------------------===//
217 
218 void DimOp::build(OpBuilder &builder, OperationState &result, Value source,
219                   int64_t index) {
220   auto loc = result.location;
221   Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index);
222   build(builder, result, source, indexValue);
223 }
224 
225 Optional<int64_t> DimOp::getConstantIndex() {
226   if (auto constantOp = index().getDefiningOp<arith::ConstantOp>())
227     return constantOp.getValue().cast<IntegerAttr>().getInt();
228   return {};
229 }
230 
231 LogicalResult DimOp::verify() {
232   // Assume unknown index to be in range.
233   Optional<int64_t> index = getConstantIndex();
234   if (!index.hasValue())
235     return success();
236 
237   // Check that constant index is not knowingly out of range.
238   auto type = source().getType();
239   if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
240     if (index.getValue() >= tensorType.getRank())
241       return emitOpError("index is out of range");
242   } else if (type.isa<UnrankedTensorType>()) {
243     // Assume index to be in range.
244   } else {
245     llvm_unreachable("expected operand with tensor type");
246   }
247   return success();
248 }
249 
250 OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
251   // All forms of folding require a known index.
252   auto index = operands[1].dyn_cast_or_null<IntegerAttr>();
253   if (!index)
254     return {};
255 
256   // Folding for unranked types (UnrankedTensorType) is not supported.
257   auto tensorType = source().getType().dyn_cast<RankedTensorType>();
258   if (!tensorType)
259     return {};
260 
261   // Fold if the shape extent along the given index is known.
262   if (!tensorType.isDynamicDim(index.getInt())) {
263     Builder builder(getContext());
264     return builder.getIndexAttr(tensorType.getShape()[index.getInt()]);
265   }
266 
267   Operation *definingOp = source().getDefiningOp();
268 
269   // Fold dim to the operand of tensor.generate.
270   if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) {
271     auto resultType =
272         fromElements.getResult().getType().cast<RankedTensorType>();
273     // The case where the type encodes the size of the dimension is handled
274     // above.
275     assert(ShapedType::isDynamic(resultType.getShape()[index.getInt()]));
276 
277     // Find the operand of the fromElements that corresponds to this index.
278     auto dynExtents = fromElements.dynamicExtents().begin();
279     for (auto dim : resultType.getShape().take_front(index.getInt()))
280       if (ShapedType::isDynamic(dim))
281         dynExtents++;
282 
283     return Value{*dynExtents};
284   }
285 
286   // The size at the given index is now known to be a dynamic size.
287   unsigned unsignedIndex = index.getValue().getZExtValue();
288 
289   if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) {
290     // Fold only for non-rank reduced ops. For the rank-reduced version, rely on
291     // `resolve-shaped-type-result-dims` pass.
292     if (sliceOp.getType().getRank() == sliceOp.getSourceType().getRank() &&
293         sliceOp.isDynamicSize(unsignedIndex)) {
294       return {sliceOp.getDynamicSize(unsignedIndex)};
295     }
296   }
297 
298   // dim(cast) -> dim
299   if (succeeded(foldTensorCast(*this)))
300     return getResult();
301 
302   return {};
303 }
304 
305 namespace {
306 /// Fold dim of a cast into the dim of the source of the tensor cast.
307 struct DimOfCastOp : public OpRewritePattern<DimOp> {
308   using OpRewritePattern<DimOp>::OpRewritePattern;
309 
310   LogicalResult matchAndRewrite(DimOp dimOp,
311                                 PatternRewriter &rewriter) const override {
312     auto castOp = dimOp.source().getDefiningOp<CastOp>();
313     if (!castOp)
314       return failure();
315     Value newSource = castOp.getOperand();
316     rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.index());
317     return success();
318   }
319 };
320 } // namespace
321 
322 void DimOp::getCanonicalizationPatterns(RewritePatternSet &results,
323                                         MLIRContext *context) {
324   results.add<DimOfCastOp>(context);
325 }
326 
327 //===----------------------------------------------------------------------===//
328 // ExtractOp
329 //===----------------------------------------------------------------------===//
330 
331 LogicalResult ExtractOp::verify() {
332   // Verify the # indices match if we have a ranked type.
333   if (auto tensorType = tensor().getType().dyn_cast<RankedTensorType>())
334     if (tensorType.getRank() != static_cast<int64_t>(indices().size()))
335       return emitOpError("incorrect number of indices for extract_element");
336 
337   return success();
338 }
339 
340 OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) {
341   // The tensor operand must be a known constant.
342   Attribute tensor = operands.front();
343   if (!tensor)
344     return {};
345   // If this is a splat elements attribute, simply return the value. All of the
346   // elements of a splat attribute are the same.
347   if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>())
348     return splatTensor.getSplatValue<Attribute>();
349 
350   // Otherwise, collect the constant indices into the tensor.
351   SmallVector<uint64_t, 8> indices;
352   for (Attribute indice : llvm::drop_begin(operands, 1)) {
353     if (!indice || !indice.isa<IntegerAttr>())
354       return {};
355     indices.push_back(indice.cast<IntegerAttr>().getInt());
356   }
357 
358   // If this is an elements attribute, query the value at the given indices.
359   auto elementsAttr = tensor.dyn_cast<ElementsAttr>();
360   if (elementsAttr && elementsAttr.isValidIndex(indices))
361     return elementsAttr.getValues<Attribute>()[indices];
362   return {};
363 }
364 
365 //===----------------------------------------------------------------------===//
366 // FromElementsOp
367 //===----------------------------------------------------------------------===//
368 
369 void FromElementsOp::build(OpBuilder &builder, OperationState &result,
370                            Type resultType, ValueRange elements) {
371   result.addOperands(elements);
372   result.addTypes(resultType);
373 }
374 
375 void FromElementsOp::build(OpBuilder &builder, OperationState &result,
376                            ValueRange elements) {
377   assert(!elements.empty() && "expected at least one element");
378   Type resultType = RankedTensorType::get(
379       {static_cast<int64_t>(elements.size())}, elements.front().getType());
380   build(builder, result, resultType, elements);
381 }
382 
383 OpFoldResult FromElementsOp::fold(ArrayRef<Attribute> operands) {
384   if (!llvm::is_contained(operands, nullptr))
385     return DenseElementsAttr::get(getType(), operands);
386   return {};
387 }
388 
389 namespace {
390 
391 // Canonicalizes the pattern of the form
392 //
393 // %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32>
394 // %extracted_element = tensor.extract %tensor[%c0] : tensor<1xi32>
395 //
396 // to just %element.
397 struct ExtractElementFromTensorFromElements
398     : public OpRewritePattern<tensor::ExtractOp> {
399   using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
400 
401   LogicalResult matchAndRewrite(tensor::ExtractOp extract,
402                                 PatternRewriter &rewriter) const final {
403     auto tensorFromElements = extract.tensor().getDefiningOp<FromElementsOp>();
404     if (!tensorFromElements)
405       return failure();
406     auto tensorType = tensorFromElements.getType().cast<RankedTensorType>();
407     auto rank = tensorType.getRank();
408     if (rank == 0) {
409       rewriter.replaceOp(extract, tensorFromElements.getOperand(0));
410       return success();
411     }
412     SmallVector<APInt, 3> indices(rank);
413     int64_t flatIndex = 0;
414     int64_t stride = 1;
415     for (int i = rank - 1; i >= 0; --i) {
416       APInt index;
417       if (!matchPattern(extract.indices()[i], m_ConstantInt(&index)))
418         return failure();
419       if (i < rank - 1)
420         stride *= tensorType.getDimSize(i);
421       flatIndex += index.getSExtValue() * stride;
422     }
423     // Prevent out of bounds accesses. This can happen in invalid code that will
424     // never execute.
425     if (tensorFromElements->getNumOperands() <= flatIndex || flatIndex < 0)
426       return failure();
427     rewriter.replaceOp(extract, tensorFromElements.getOperand(flatIndex));
428     return success();
429   }
430 };
431 
432 // Pushes the index_casts that occur before extractions to after the extract.
433 // This minimizes type conversion in some cases and enables the extract
434 // canonicalizer. This changes:
435 //
436 // %cast = arith.index_cast %tensor : tensor<1xi32> to tensor<1xindex>
437 // %extract = tensor.extract %cast[%index] : tensor<1xindex>
438 //
439 // to the following:
440 //
441 // %extract = tensor.extract %tensor[%index] : tensor<1xindex>
442 // %cast = arith.index_cast %extract : i32 to index
443 //
444 // to just %element.
445 //
446 // Consider expanding this to a template and handle all tensor cast operations.
447 struct ExtractElementFromIndexCast
448     : public OpRewritePattern<tensor::ExtractOp> {
449   using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
450 
451   LogicalResult matchAndRewrite(tensor::ExtractOp extract,
452                                 PatternRewriter &rewriter) const final {
453     Location loc = extract.getLoc();
454     auto indexCast = extract.tensor().getDefiningOp<arith::IndexCastOp>();
455     if (!indexCast)
456       return failure();
457 
458     Type elementTy = getElementTypeOrSelf(indexCast.getIn());
459 
460     auto newExtract = rewriter.create<tensor::ExtractOp>(
461         loc, elementTy, indexCast.getIn(), extract.indices());
462 
463     rewriter.replaceOpWithNewOp<arith::IndexCastOp>(extract, extract.getType(),
464                                                     newExtract);
465 
466     return success();
467   }
468 };
469 
470 } // namespace
471 
472 void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results,
473                                                  MLIRContext *context) {
474   results
475       .add<ExtractElementFromIndexCast, ExtractElementFromTensorFromElements>(
476           context);
477 }
478 
479 //===----------------------------------------------------------------------===//
480 // InsertOp
481 //===----------------------------------------------------------------------===//
482 
483 LogicalResult InsertOp::verify() {
484   // Verify the # indices match if we have a ranked type.
485   if (auto destType = dest().getType().dyn_cast<RankedTensorType>())
486     if (destType.getRank() != static_cast<int64_t>(indices().size()))
487       return emitOpError("incorrect number of indices");
488   return success();
489 }
490 
491 OpFoldResult InsertOp::fold(ArrayRef<Attribute> operands) {
492   Attribute scalar = operands[0];
493   Attribute dest = operands[1];
494   if (scalar && dest)
495     if (auto splatDest = dest.dyn_cast<SplatElementsAttr>())
496       if (scalar == splatDest.getSplatValue<Attribute>())
497         return dest;
498   return {};
499 }
500 
501 //===----------------------------------------------------------------------===//
502 // GenerateOp
503 //===----------------------------------------------------------------------===//
504 
505 LogicalResult GenerateOp::verify() {
506   // Ensure that the tensor type has as many dynamic dimensions as are specified
507   // by the operands.
508   RankedTensorType resultTy = getType().cast<RankedTensorType>();
509   if (getNumOperands() != resultTy.getNumDynamicDims())
510     return emitError("must have as many index operands as dynamic extents "
511                      "in the result type");
512 
513   // Ensure that region arguments span the index space.
514   if (!llvm::all_of(body().getArgumentTypes(),
515                     [](Type ty) { return ty.isIndex(); }))
516     return emitError("all body arguments must be index");
517   if (body().getNumArguments() != resultTy.getRank())
518     return emitError("must have one body argument per input dimension");
519 
520   // Ensure that the region yields an element of the right type.
521   auto yieldOp = cast<YieldOp>(body().getBlocks().front().getTerminator());
522 
523   if (yieldOp.value().getType() != resultTy.getElementType())
524     return emitOpError(
525         "body must be terminated with a `yield` operation of the tensor "
526         "element type");
527 
528   return success();
529 }
530 
531 void GenerateOp::build(
532     OpBuilder &b, OperationState &result, Type resultTy,
533     ValueRange dynamicExtents,
534     function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
535   build(b, result, resultTy, dynamicExtents);
536 
537   // Build and populate body.
538   OpBuilder::InsertionGuard guard(b);
539   Region *bodyRegion = result.regions.front().get();
540   auto rank = resultTy.cast<RankedTensorType>().getRank();
541   SmallVector<Type, 2> argumentTypes(rank, b.getIndexType());
542   SmallVector<Location, 2> argumentLocs(rank, result.location);
543   Block *bodyBlock =
544       b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes, argumentLocs);
545   bodyBuilder(b, result.location, bodyBlock->getArguments());
546 }
547 
548 namespace {
549 
550 /// Canonicalizes tensor.generate operations with a constant
551 /// operand into the equivalent operation with the operand expressed in the
552 /// result type, instead. We also insert a type cast to make sure that the
553 /// resulting IR is still well-typed.
554 struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> {
555   using OpRewritePattern<GenerateOp>::OpRewritePattern;
556 
557   LogicalResult matchAndRewrite(GenerateOp tensorFromElements,
558                                 PatternRewriter &rewriter) const final {
559     auto resultType =
560         tensorFromElements.getResult().getType().cast<RankedTensorType>();
561 
562     if (resultType.hasStaticShape())
563       return failure();
564 
565     SmallVector<Value, 4> newOperands;
566     SmallVector<int64_t, 4> newShape;
567     auto operandsIt = tensorFromElements.dynamicExtents().begin();
568 
569     for (int64_t dim : resultType.getShape()) {
570       if (!ShapedType::isDynamic(dim)) {
571         newShape.push_back(dim);
572         continue;
573       }
574       APInt index;
575       if (!matchPattern(*operandsIt, m_ConstantInt(&index))) {
576         newShape.push_back(ShapedType::kDynamicSize);
577         newOperands.push_back(*operandsIt++);
578         continue;
579       }
580       newShape.push_back(index.getSExtValue());
581       operandsIt++;
582     }
583 
584     if (newOperands.size() == tensorFromElements.dynamicExtents().size())
585       return failure();
586 
587     auto loc = tensorFromElements.getLoc();
588     auto newOp = rewriter.create<GenerateOp>(
589         loc, RankedTensorType::get(newShape, resultType.getElementType()),
590         newOperands);
591     rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(),
592                                 newOp.body().begin());
593     rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType,
594                                                 newOp);
595     return success();
596   }
597 };
598 
599 /// Canonicalizes the pattern of the form
600 ///
601 /// %tensor = tensor.generate %x {
602 ///   ^bb0(%arg0: index):
603 ///   <computation>
604 ///   yield %1 : index
605 /// } : tensor<?xindex>
606 /// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32>
607 ///
608 /// to just <computation> with %arg0 replaced by %c0. We only do this if the
609 /// tensor.generate operation has no side-effects.
610 struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> {
611   using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
612 
613   LogicalResult matchAndRewrite(tensor::ExtractOp extract,
614                                 PatternRewriter &rewriter) const final {
615     auto tensorFromElements = extract.tensor().getDefiningOp<GenerateOp>();
616     if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements))
617       return failure();
618 
619     BlockAndValueMapping mapping;
620     Block *body = tensorFromElements.getBody();
621     mapping.map(body->getArguments(), extract.indices());
622     for (auto &op : body->without_terminator())
623       rewriter.clone(op, mapping);
624 
625     auto yield = cast<YieldOp>(body->getTerminator());
626 
627     rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value()));
628     return success();
629   }
630 };
631 
632 /// Canonicalizes the pattern of the form
633 ///
634 /// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32>
635 /// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32>
636 ///
637 /// to
638 ///
639 /// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32>
640 struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> {
641   using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
642 
643   LogicalResult matchAndRewrite(tensor::ExtractOp extract,
644                                 PatternRewriter &rewriter) const final {
645     auto tensorCast = extract.tensor().getDefiningOp<tensor::CastOp>();
646     if (!tensorCast)
647       return failure();
648 
649     rewriter.replaceOpWithNewOp<tensor::ExtractOp>(extract, tensorCast.source(),
650                                                    extract.indices());
651     return success();
652   }
653 };
654 
655 } // namespace
656 
657 void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results,
658                                              MLIRContext *context) {
659   // TODO: Move extract patterns to tensor::ExtractOp.
660   results.add<ExtractFromTensorGenerate, ExtractFromTensorCast,
661               StaticTensorGenerate>(context);
662 }
663 
664 //===----------------------------------------------------------------------===//
665 // RankOp
666 //===----------------------------------------------------------------------===//
667 
668 OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) {
669   // Constant fold rank when the rank of the operand is known.
670   auto type = getOperand().getType();
671   auto shapedType = type.dyn_cast<ShapedType>();
672   if (shapedType && shapedType.hasRank())
673     return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank());
674   return IntegerAttr();
675 }
676 
677 //===----------------------------------------------------------------------===//
678 // ReshapeOp
679 //===----------------------------------------------------------------------===//
680 
681 static int64_t getNumElements(ShapedType type) {
682   int64_t numElements = 1;
683   for (auto dim : type.getShape())
684     numElements *= dim;
685   return numElements;
686 }
687 
688 LogicalResult ReshapeOp::verify() {
689   TensorType operandType = source().getType().cast<TensorType>();
690   TensorType resultType = result().getType().cast<TensorType>();
691 
692   if (operandType.getElementType() != resultType.getElementType())
693     return emitOpError("element types of source and destination tensor "
694                        "types should be the same");
695 
696   int64_t shapeSize = shape().getType().cast<RankedTensorType>().getDimSize(0);
697   auto resultRankedType = resultType.dyn_cast<RankedTensorType>();
698   auto operandRankedType = operandType.dyn_cast<RankedTensorType>();
699 
700   if (resultRankedType) {
701     if (operandRankedType && resultRankedType.hasStaticShape() &&
702         operandRankedType.hasStaticShape()) {
703       if (getNumElements(operandRankedType) != getNumElements(resultRankedType))
704         return emitOpError("source and destination tensor should have the "
705                            "same number of elements");
706     }
707     if (ShapedType::isDynamic(shapeSize))
708       return emitOpError("cannot use shape operand with dynamic length to "
709                          "reshape to statically-ranked tensor type");
710     if (shapeSize != resultRankedType.getRank())
711       return emitOpError(
712           "length of shape operand differs from the result's tensor rank");
713   }
714   return success();
715 }
716 
717 //===----------------------------------------------------------------------===//
718 // Reassociative reshape ops
719 //===----------------------------------------------------------------------===//
720 
721 SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() {
722   return getSymbolLessAffineMaps(getReassociationExprs());
723 }
724 SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() {
725   return convertReassociationIndicesToExprs(getContext(),
726                                             getReassociationIndices());
727 }
728 
729 SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() {
730   return getSymbolLessAffineMaps(getReassociationExprs());
731 }
732 SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() {
733   return convertReassociationIndicesToExprs(getContext(),
734                                             getReassociationIndices());
735 }
736 
737 static void print(OpAsmPrinter &p, ExpandShapeOp op) {
738   ::mlir::printReshapeOp<ExpandShapeOp>(p, op);
739 }
740 
741 static void print(OpAsmPrinter &p, CollapseShapeOp op) {
742   ::mlir::printReshapeOp<CollapseShapeOp>(p, op);
743 }
744 
745 /// Compute the RankedTensorType obtained by applying `reassociation` to `type`.
746 static RankedTensorType
747 computeTensorReshapeCollapsedType(RankedTensorType type,
748                                   ArrayRef<AffineMap> reassociation) {
749   auto shape = type.getShape();
750   SmallVector<int64_t, 4> newShape;
751   newShape.reserve(reassociation.size());
752 
753   // Use the fact that reassociation is valid to simplify the logic: only use
754   // each map's rank.
755   assert(isReassociationValid(reassociation) && "invalid reassociation");
756   unsigned currentDim = 0;
757   for (AffineMap m : reassociation) {
758     unsigned dim = m.getNumResults();
759     auto band = shape.slice(currentDim, dim);
760     int64_t size = 1;
761     if (llvm::is_contained(band, ShapedType::kDynamicSize))
762       size = ShapedType::kDynamicSize;
763     else
764       for (unsigned d = 0; d < dim; ++d)
765         size *= shape[currentDim + d];
766     newShape.push_back(size);
767     currentDim += dim;
768   }
769 
770   return RankedTensorType::get(newShape, type.getElementType());
771 }
772 
773 void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src,
774                             ArrayRef<ReassociationIndices> reassociation,
775                             ArrayRef<NamedAttribute> attrs) {
776   auto resultType = computeTensorReshapeCollapsedType(
777       src.getType().cast<RankedTensorType>(),
778       getSymbolLessAffineMaps(
779           convertReassociationIndicesToExprs(b.getContext(), reassociation)));
780   build(b, result, resultType, src, attrs);
781   result.addAttribute(getReassociationAttrName(),
782                       getReassociationIndicesAttribute(b, reassociation));
783 }
784 
785 void ExpandShapeOp::build(OpBuilder &b, OperationState &result, Value src,
786                           ArrayRef<ReassociationIndices> reassociation,
787                           ArrayRef<NamedAttribute> attrs) {
788   auto resultType = computeTensorReshapeCollapsedType(
789       src.getType().cast<RankedTensorType>(),
790       getSymbolLessAffineMaps(
791           convertReassociationIndicesToExprs(b.getContext(), reassociation)));
792   build(b, result, resultType, src, attrs);
793   result.addAttribute(getReassociationAttrName(),
794                       getReassociationIndicesAttribute(b, reassociation));
795 }
796 
797 template <typename TensorReshapeOp, bool isExpansion = std::is_same<
798                                         TensorReshapeOp, ExpandShapeOp>::value>
799 static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op,
800                                            RankedTensorType expandedType,
801                                            RankedTensorType collapsedType) {
802   if (failed(
803           verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion)))
804     return failure();
805 
806   auto maps = op.getReassociationMaps();
807   RankedTensorType expectedType =
808       computeTensorReshapeCollapsedType(expandedType, maps);
809   if (collapsedType != expectedType)
810     return op.emitOpError("expected collapsed type to be ")
811            << expectedType << ", but got " << collapsedType;
812   return success();
813 }
814 
815 LogicalResult ExpandShapeOp::verify() {
816   return verifyTensorReshapeOp(*this, getResultType(), getSrcType());
817 }
818 
819 LogicalResult CollapseShapeOp::verify() {
820   return verifyTensorReshapeOp(*this, getSrcType(), getResultType());
821 }
822 
823 namespace {
824 /// Reshape of a splat constant can be replaced with a constant of the result
825 /// type.
826 template <typename TensorReshapeOp>
827 struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> {
828   using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
829   LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
830                                 PatternRewriter &rewriter) const override {
831     DenseElementsAttr attr;
832     if (!matchPattern(reshapeOp.src(), m_Constant(&attr)))
833       return failure();
834     if (!attr || !attr.isSplat())
835       return failure();
836     DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer(
837         reshapeOp.getResultType(), attr.getRawData(), true);
838     rewriter.replaceOpWithNewOp<arith::ConstantOp>(reshapeOp, newAttr);
839     return success();
840   }
841 };
842 
843 /// Reshape of a FromElements can be replaced with a FromElements of the result
844 /// type
845 template <typename TensorReshapeOp>
846 struct FoldReshapeWithFromElements : OpRewritePattern<TensorReshapeOp> {
847   using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
848   LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
849                                 PatternRewriter &rewriter) const override {
850     auto fromElements =
851         reshapeOp.src().template getDefiningOp<FromElementsOp>();
852     if (!fromElements)
853       return failure();
854 
855     auto shapedTy = reshapeOp.getType().template cast<ShapedType>();
856 
857     if (!shapedTy.hasStaticShape())
858       return failure();
859 
860     rewriter.replaceOpWithNewOp<FromElementsOp>(reshapeOp, reshapeOp.getType(),
861                                                 fromElements.elements());
862     return success();
863   }
864 };
865 
866 } // namespace
867 
868 void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
869                                                 MLIRContext *context) {
870   results.add<CollapseReshapeOps<ExpandShapeOp>,
871               CollapseMixedReshapeOps<ExpandShapeOp, CollapseShapeOp>,
872               FoldReshapeWithConstant<ExpandShapeOp>,
873               FoldReshapeWithFromElements<ExpandShapeOp>>(context);
874 }
875 
876 void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
877                                                   MLIRContext *context) {
878   results.add<CollapseReshapeOps<CollapseShapeOp>,
879               CollapseMixedReshapeOps<CollapseShapeOp, ExpandShapeOp>,
880               FoldReshapeWithConstant<CollapseShapeOp>,
881               FoldReshapeWithFromElements<CollapseShapeOp>>(context);
882 }
883 
884 OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) {
885   return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands);
886 }
887 OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) {
888   return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands);
889 }
890 
891 //===----------------------------------------------------------------------===//
892 // ExtractSliceOp
893 //===----------------------------------------------------------------------===//
894 
895 /// An extract_slice op result type can be fully inferred from the source type
896 /// and the static representation of offsets, sizes and strides. Special
897 /// sentinels encode the dynamic case.
898 RankedTensorType ExtractSliceOp::inferResultType(
899     RankedTensorType sourceRankedTensorType, ArrayRef<int64_t> staticOffsets,
900     ArrayRef<int64_t> staticSizes, ArrayRef<int64_t> staticStrides) {
901   // An extract_slice op may specify only a leading subset of offset/sizes/
902   // strides in which case we complete with offset=0, sizes from memref type and
903   // strides=1.
904   unsigned rank = sourceRankedTensorType.getRank();
905   (void)rank;
906   assert(staticSizes.size() == rank &&
907          "unexpected staticSizes not equal to rank of source");
908   return RankedTensorType::get(staticSizes,
909                                sourceRankedTensorType.getElementType());
910 }
911 
912 RankedTensorType ExtractSliceOp::inferResultType(
913     RankedTensorType sourceRankedTensorType, ArrayRef<OpFoldResult> offsets,
914     ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) {
915   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
916   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
917   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
918                              ShapedType::kDynamicStrideOrOffset);
919   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
920                              ShapedType::kDynamicSize);
921   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
922                              ShapedType::kDynamicStrideOrOffset);
923   return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
924                                          staticSizes, staticStrides);
925 }
926 
927 /// An extract_slice op result type can be fully inferred from the source type
928 /// and the static representation of offsets, sizes and strides. Special
929 /// sentinels encode the dynamic case.
930 RankedTensorType ExtractSliceOp::inferRankReducedResultType(
931     unsigned resultRank, RankedTensorType sourceRankedTensorType,
932     ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
933     ArrayRef<int64_t> strides) {
934   auto inferredType =
935       inferResultType(sourceRankedTensorType, offsets, sizes, strides)
936           .cast<RankedTensorType>();
937   int rankDiff = inferredType.getRank() - resultRank;
938   if (rankDiff > 0) {
939     auto shape = inferredType.getShape();
940     llvm::SmallDenseSet<unsigned> dimsToProject;
941     mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject);
942     SmallVector<int64_t> projectedShape;
943     for (unsigned pos = 0, e = shape.size(); pos < e; ++pos)
944       if (!dimsToProject.contains(pos))
945         projectedShape.push_back(shape[pos]);
946     inferredType =
947         RankedTensorType::get(projectedShape, inferredType.getElementType());
948   }
949   return inferredType;
950 }
951 
952 RankedTensorType ExtractSliceOp::inferRankReducedResultType(
953     unsigned resultRank, RankedTensorType sourceRankedTensorType,
954     ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes,
955     ArrayRef<OpFoldResult> strides) {
956   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
957   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
958   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
959                              ShapedType::kDynamicStrideOrOffset);
960   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
961                              ShapedType::kDynamicSize);
962   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
963                              ShapedType::kDynamicStrideOrOffset);
964   return ExtractSliceOp::inferRankReducedResultType(
965       resultRank, sourceRankedTensorType, staticOffsets, staticSizes,
966       staticStrides);
967 }
968 
969 /// Build an ExtractSliceOp with mixed static and dynamic entries and custom
970 /// result type. If the type passed is nullptr, it is inferred.
971 void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
972                            RankedTensorType resultType, Value source,
973                            ArrayRef<OpFoldResult> offsets,
974                            ArrayRef<OpFoldResult> sizes,
975                            ArrayRef<OpFoldResult> strides,
976                            ArrayRef<NamedAttribute> attrs) {
977   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
978   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
979   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
980                              ShapedType::kDynamicStrideOrOffset);
981   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
982                              ShapedType::kDynamicSize);
983   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
984                              ShapedType::kDynamicStrideOrOffset);
985   auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
986   // Structuring implementation this way avoids duplication between builders.
987   if (!resultType) {
988     resultType =
989         ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
990                                         staticSizes, staticStrides)
991             .cast<RankedTensorType>();
992   }
993   build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
994         dynamicStrides, b.getI64ArrayAttr(staticOffsets),
995         b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
996   result.addAttributes(attrs);
997 }
998 
999 /// Build an ExtractSliceOp with mixed static and dynamic entries and inferred
1000 /// result type.
1001 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
1002                            ArrayRef<OpFoldResult> offsets,
1003                            ArrayRef<OpFoldResult> sizes,
1004                            ArrayRef<OpFoldResult> strides,
1005                            ArrayRef<NamedAttribute> attrs) {
1006   build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
1007 }
1008 
1009 /// Build an ExtractSliceOp with dynamic entries and custom result type. If the
1010 /// type passed is nullptr, it is inferred.
1011 void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
1012                            RankedTensorType resultType, Value source,
1013                            ValueRange offsets, ValueRange sizes,
1014                            ValueRange strides, ArrayRef<NamedAttribute> attrs) {
1015   SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
1016       llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
1017   SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
1018       llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
1019   SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
1020       llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
1021   build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
1022 }
1023 
1024 /// Build an ExtractSliceOp with dynamic entries and inferred result type.
1025 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
1026                            ValueRange offsets, ValueRange sizes,
1027                            ValueRange strides, ArrayRef<NamedAttribute> attrs) {
1028   build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
1029 }
1030 
1031 template <typename OpTy>
1032 static LogicalResult produceSliceErrorMsg(SliceVerificationResult result,
1033                                           OpTy op, Type expectedType) {
1034   auto memrefType = expectedType.cast<ShapedType>();
1035   switch (result) {
1036   case SliceVerificationResult::Success:
1037     return success();
1038   case SliceVerificationResult::RankTooLarge:
1039     return op.emitError("expected rank to be smaller or equal to ")
1040            << "the other rank. ";
1041   case SliceVerificationResult::SizeMismatch:
1042     return op.emitError("expected type to be ")
1043            << expectedType << " or a rank-reduced version. (size mismatch) ";
1044   case SliceVerificationResult::ElemTypeMismatch:
1045     return op.emitError("expected element type to be ")
1046            << memrefType.getElementType();
1047   default:
1048     llvm_unreachable("unexpected extract_slice op verification result");
1049   }
1050 }
1051 
1052 /// Verifier for ExtractSliceOp.
1053 LogicalResult ExtractSliceOp::verify() {
1054   // Verify result type against inferred type.
1055   auto expectedType = ExtractSliceOp::inferResultType(
1056       getSourceType(), getMixedOffsets(), getMixedSizes(), getMixedStrides());
1057   auto result = isRankReducedType(expectedType.cast<ShapedType>(), getType());
1058   return produceSliceErrorMsg(result, *this, expectedType);
1059 }
1060 
1061 /// Infer the canonical type of the result of an extract_slice op. Returns a
1062 /// type with rank `resultRank` that is either the rank of the rank-reduced
1063 /// type, or the non-rank-reduced type.
1064 static RankedTensorType
1065 getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType,
1066                             ArrayRef<OpFoldResult> mixedOffsets,
1067                             ArrayRef<OpFoldResult> mixedSizes,
1068                             ArrayRef<OpFoldResult> mixedStrides) {
1069   auto resultType =
1070       ExtractSliceOp::inferRankReducedResultType(
1071           resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides)
1072           .cast<RankedTensorType>();
1073   if (resultType.getRank() != resultRank) {
1074     resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets,
1075                                                  mixedSizes, mixedStrides)
1076                      .cast<RankedTensorType>();
1077   }
1078   return resultType;
1079 }
1080 
1081 llvm::SmallDenseSet<unsigned> ExtractSliceOp::getDroppedDims() {
1082   llvm::SmallDenseSet<unsigned> droppedDims;
1083   ArrayRef<int64_t> resultShape = getType().getShape();
1084   SmallVector<OpFoldResult> mixedSizes = getMixedSizes();
1085   unsigned shapePos = 0;
1086   for (const auto &size : enumerate(mixedSizes)) {
1087     Optional<int64_t> sizeVal = getConstantIntValue(size.value());
1088     // If the size is not 1, or if the current matched dimension of the result
1089     // is the same static shape as the size value (which is 1), then the
1090     // dimension is preserved.
1091     if (!sizeVal || sizeVal.getValue() != 1 ||
1092         (shapePos < resultShape.size() && resultShape[shapePos] == 1)) {
1093       shapePos++;
1094       continue;
1095     }
1096     droppedDims.insert(size.index());
1097   }
1098   return droppedDims;
1099 }
1100 
1101 LogicalResult ExtractSliceOp::reifyResultShapes(
1102     OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
1103   reifiedReturnShapes.resize(1);
1104   reifiedReturnShapes[0].reserve(getType().getRank());
1105   SmallVector<OpFoldResult> mixedSizes = getMixedSizes();
1106   llvm::SmallDenseSet<unsigned> droppedDims = getDroppedDims();
1107   Location loc = getLoc();
1108   for (const auto &size : enumerate(mixedSizes)) {
1109     if (droppedDims.count(size.index()))
1110       continue;
1111     if (auto attr = size.value().dyn_cast<Attribute>()) {
1112       reifiedReturnShapes[0].push_back(builder.create<arith::ConstantIndexOp>(
1113           loc, attr.cast<IntegerAttr>().getInt()));
1114       continue;
1115     }
1116     reifiedReturnShapes[0].push_back(size.value().get<Value>());
1117   }
1118   return success();
1119 }
1120 
1121 namespace {
1122 /// Pattern to rewrite an extract_slice op with tensor::Cast arguments.
1123 /// This essentially pushes memref_cast past its consuming slice when
1124 /// `canFoldIntoConsumerOp` is true.
1125 ///
1126 /// Example:
1127 /// ```
1128 ///   %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32>
1129 ///   %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to
1130 ///   tensor<3x4xf32>
1131 /// ```
1132 /// is rewritten into:
1133 /// ```
1134 ///   %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to
1135 ///   tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32>
1136 /// ```
1137 class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> {
1138 public:
1139   using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;
1140 
1141   LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
1142                                 PatternRewriter &rewriter) const override {
1143     // Any constant operand, just return to let SubViewOpConstantFolder kick in.
1144     if (llvm::any_of(sliceOp.getOperands(), [](Value operand) {
1145           return matchPattern(operand, matchConstantIndex());
1146         }))
1147       return failure();
1148 
1149     auto castOp = sliceOp.source().getDefiningOp<tensor::CastOp>();
1150     if (!castOp)
1151       return failure();
1152 
1153     if (!canFoldIntoConsumerOp(castOp))
1154       return failure();
1155 
1156     /// Deduce the type of the result to use for the canonicalized operation.
1157     RankedTensorType resultType = getCanonicalSliceResultType(
1158         sliceOp.getType().getRank(), sliceOp.getSourceType(),
1159         sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(),
1160         sliceOp.getMixedStrides());
1161     Value newSlice = rewriter.create<ExtractSliceOp>(
1162         sliceOp.getLoc(), resultType, castOp.source(), sliceOp.offsets(),
1163         sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(),
1164         sliceOp.static_sizes(), sliceOp.static_strides());
1165     rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(),
1166                                                 newSlice);
1167     return success();
1168   }
1169 };
1170 } // namespace
1171 
1172 /// Return the canonical type of the result of an extract_slice op.
1173 struct SliceReturnTypeCanonicalizer {
1174   RankedTensorType operator()(ExtractSliceOp op,
1175                               ArrayRef<OpFoldResult> mixedOffsets,
1176                               ArrayRef<OpFoldResult> mixedSizes,
1177                               ArrayRef<OpFoldResult> mixedStrides) {
1178     return getCanonicalSliceResultType(op.getType().getRank(),
1179                                        op.getSourceType(), mixedOffsets,
1180                                        mixedSizes, mixedStrides);
1181   }
1182 };
1183 
1184 /// A canonicalizer wrapper to replace ExtractSliceOps.
1185 struct SliceCanonicalizer {
1186   void operator()(PatternRewriter &rewriter, ExtractSliceOp op,
1187                   ExtractSliceOp newOp) {
1188     Value replacement = newOp.getResult();
1189     if (replacement.getType() != op.getType())
1190       replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(),
1191                                                     replacement);
1192     rewriter.replaceOp(op, replacement);
1193   }
1194 };
1195 
1196 void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
1197                                                  MLIRContext *context) {
1198   results.add<
1199       OpWithOffsetSizesAndStridesConstantArgumentFolder<
1200           ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>,
1201       ExtractSliceOpCastFolder>(context);
1202 }
1203 
1204 //
1205 static LogicalResult
1206 foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op,
1207                                            ShapedType shapedType) {
1208   OpBuilder b(op.getContext());
1209   for (OpFoldResult ofr : op.getMixedOffsets())
1210     if (getConstantIntValue(ofr) != static_cast<int64_t>(0))
1211       return failure();
1212   // Rank-reducing noops only need to inspect the leading dimensions: llvm::zip
1213   // is appropriate.
1214   auto shape = shapedType.getShape();
1215   for (auto it : llvm::zip(op.getMixedSizes(), shape))
1216     if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it))
1217       return failure();
1218   for (OpFoldResult ofr : op.getMixedStrides())
1219     if (getConstantIntValue(ofr) != static_cast<int64_t>(1))
1220       return failure();
1221   return success();
1222 }
1223 
1224 /// If we have an ExtractSliceOp consuming an InsertSliceOp with the same slice,
1225 /// we can return the InsertSliceOp's source directly.
1226 // TODO: This only checks the immediate producer; extend to go up the
1227 // insert/extract chain if the slices are disjoint.
1228 static Value foldExtractAfterInsertSlice(ExtractSliceOp extractOp) {
1229   auto insertOp = extractOp.source().getDefiningOp<InsertSliceOp>();
1230 
1231   auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
1232   if (insertOp && insertOp.source().getType() == extractOp.getType() &&
1233       insertOp.isSameAs(extractOp, isSame))
1234     return insertOp.source();
1235 
1236   return {};
1237 }
1238 
1239 OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute>) {
1240   if (getSourceType() == getType() &&
1241       succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
1242     return this->source();
1243   if (Value slice = foldExtractAfterInsertSlice(*this))
1244     return slice;
1245   return OpFoldResult();
1246 }
1247 
1248 Value mlir::tensor::createCanonicalRankReducingExtractSliceOp(
1249     OpBuilder &b, Location loc, Value tensor, RankedTensorType targetType) {
1250   auto rankedTensorType = tensor.getType().cast<RankedTensorType>();
1251   unsigned rank = rankedTensorType.getRank();
1252   auto shape = rankedTensorType.getShape();
1253   SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
1254   SmallVector<OpFoldResult> sizes;
1255   for (unsigned i = 0, e = rank; i < e; ++i) {
1256     OpFoldResult dim;
1257     if (rankedTensorType.isDynamicDim(i))
1258       dim = b.createOrFold<tensor::DimOp>(
1259           loc, tensor, b.create<arith::ConstantIndexOp>(loc, i));
1260     else
1261       dim = b.getIndexAttr(shape[i]);
1262     sizes.push_back(dim);
1263   }
1264   SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
1265   return b.createOrFold<tensor::ExtractSliceOp>(loc, targetType, tensor,
1266                                                 offsets, sizes, strides);
1267 }
1268 
1269 //===----------------------------------------------------------------------===//
1270 // InsertSliceOp
1271 //===----------------------------------------------------------------------===//
1272 
1273 // Build a InsertSliceOp with mixed static and dynamic entries.
1274 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
1275                           Value dest, ArrayRef<OpFoldResult> offsets,
1276                           ArrayRef<OpFoldResult> sizes,
1277                           ArrayRef<OpFoldResult> strides,
1278                           ArrayRef<NamedAttribute> attrs) {
1279   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
1280   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
1281   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
1282                              ShapedType::kDynamicStrideOrOffset);
1283   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
1284                              ShapedType::kDynamicSize);
1285   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
1286                              ShapedType::kDynamicStrideOrOffset);
1287   build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes,
1288         dynamicStrides, b.getI64ArrayAttr(staticOffsets),
1289         b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
1290   result.addAttributes(attrs);
1291 }
1292 
1293 // Build a InsertSliceOp with dynamic entries.
1294 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
1295                           Value dest, ValueRange offsets, ValueRange sizes,
1296                           ValueRange strides, ArrayRef<NamedAttribute> attrs) {
1297   SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
1298       llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
1299   SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
1300       llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
1301   SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
1302       llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
1303   build(b, result, source, dest, offsetValues, sizeValues, strideValues);
1304 }
1305 
1306 /// Verifier for InsertSliceOp.
1307 LogicalResult InsertSliceOp::verify() {
1308   // insert_slice is the inverse of extract_slice, use the same type inference.
1309   auto expectedType = ExtractSliceOp::inferRankReducedResultType(
1310       getSourceType().getRank(), getType(),
1311       extractFromI64ArrayAttr(static_offsets()),
1312       extractFromI64ArrayAttr(static_sizes()),
1313       extractFromI64ArrayAttr(static_strides()));
1314   auto result =
1315       isRankReducedType(expectedType.cast<ShapedType>(), getSourceType());
1316   return produceSliceErrorMsg(result, *this, expectedType);
1317 }
1318 
1319 /// If we have two consecutive InsertSliceOp writing to the same slice, we
1320 /// can mutate the second InsertSliceOp's destination to the first one's.
1321 ///
1322 /// Example:
1323 ///
1324 /// ```mlir
1325 ///   %0 = tensor.insert_slice %slice0 into %input[0, 0] [64, 64] [1, 1]
1326 ///   %1 = tensor.insert_slice %slice1 into %0[0, 0] [64, 64] [1, 1]
1327 /// ```
1328 ///
1329 /// folds into:
1330 ///
1331 /// ```mlir
1332 ///   %1 = tensor.insert_slice %slice1 into %input[0, 0] [64, 64] [1, 1]
1333 /// ```
1334 static LogicalResult foldInsertAfterInsertSlice(InsertSliceOp insertOp) {
1335   auto prevInsertOp = insertOp.dest().getDefiningOp<InsertSliceOp>();
1336 
1337   auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
1338   if (!prevInsertOp ||
1339       prevInsertOp.source().getType() != insertOp.source().getType() ||
1340       !prevInsertOp.isSameAs(insertOp, isSame))
1341     return failure();
1342 
1343   insertOp.destMutable().assign(prevInsertOp.dest());
1344   return success();
1345 }
1346 
1347 OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) {
1348   if (getSourceType().hasStaticShape() && getType().hasStaticShape() &&
1349       getSourceType() == getType() &&
1350       succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
1351     return this->source();
1352   if (succeeded(foldInsertAfterInsertSlice(*this)))
1353     return getResult();
1354   return OpFoldResult();
1355 }
1356 
1357 LogicalResult InsertSliceOp::reifyResultShapes(
1358     OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
1359   reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank()));
1360   for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) {
1361     reifiedReturnShapes[0][dim] =
1362         builder.createOrFold<tensor::DimOp>(getLoc(), dest(), dim);
1363   }
1364   return success();
1365 }
1366 
1367 namespace {
1368 /// Pattern to rewrite a insert_slice op with constant arguments.
1369 class InsertSliceOpConstantArgumentFolder final
1370     : public OpRewritePattern<InsertSliceOp> {
1371 public:
1372   using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
1373 
1374   LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
1375                                 PatternRewriter &rewriter) const override {
1376     // No constant operand, just return.
1377     if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) {
1378           return matchPattern(operand, matchConstantIndex());
1379         }))
1380       return failure();
1381 
1382     // At least one of offsets/sizes/strides is a new constant.
1383     // Form the new list of operands and constant attributes from the
1384     // existing.
1385     SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets());
1386     SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes());
1387     SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides());
1388     canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset);
1389     canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic);
1390     canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset);
1391 
1392     // Create the new op in canonical form.
1393     auto sourceType = ExtractSliceOp::inferRankReducedResultType(
1394         insertSliceOp.getSourceType().getRank(), insertSliceOp.getType(),
1395         mixedOffsets, mixedSizes, mixedStrides);
1396     Value toInsert = insertSliceOp.source();
1397     if (sourceType != insertSliceOp.getSourceType())
1398       toInsert = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(),
1399                                                  sourceType, toInsert);
1400     rewriter.replaceOpWithNewOp<InsertSliceOp>(
1401         insertSliceOp, toInsert, insertSliceOp.dest(), mixedOffsets, mixedSizes,
1402         mixedStrides);
1403     return success();
1404   }
1405 };
1406 
1407 /// Fold tensor_casts with insert_slice operations. If the source or destination
1408 /// tensor is a tensor_cast that removes static type information, the cast is
1409 /// folded into the insert_slice operation. E.g.:
1410 ///
1411 /// ```mlir
1412 ///   %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
1413 ///   %2 = tensor.insert_slice %1 into ... : tensor<?x?xf32> into ...
1414 /// ```
1415 ///
1416 /// folds into:
1417 ///
1418 /// ```mlir
1419 ///   %2 = tensor.insert_slice %0 into ... : tensor<8x16xf32> into ...
1420 /// ```
1421 ///
1422 /// Note: When folding a cast on the destination tensor, the result of the
1423 /// insert_slice operation is casted to ensure that the type of the result did
1424 /// not change.
1425 struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertSliceOp> {
1426   using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
1427 
1428   LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
1429                                 PatternRewriter &rewriter) const override {
1430     if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) {
1431           return matchPattern(operand, matchConstantIndex());
1432         }))
1433       return failure();
1434 
1435     auto getSourceOfCastOp = [](Value v) -> Optional<Value> {
1436       auto castOp = v.getDefiningOp<tensor::CastOp>();
1437       if (!castOp || !canFoldIntoConsumerOp(castOp))
1438         return llvm::None;
1439       return castOp.source();
1440     };
1441     Optional<Value> sourceCastSource =
1442         getSourceOfCastOp(insertSliceOp.source());
1443     Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.dest());
1444     if (!sourceCastSource && !destCastSource)
1445       return failure();
1446 
1447     Value replacement = rewriter.create<InsertSliceOp>(
1448         insertSliceOp.getLoc(),
1449         (sourceCastSource ? *sourceCastSource : insertSliceOp.source()),
1450         (destCastSource ? *destCastSource : insertSliceOp.dest()),
1451         insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
1452         insertSliceOp.getMixedStrides());
1453 
1454     if (replacement.getType() != insertSliceOp.getType()) {
1455       replacement = rewriter.create<tensor::CastOp>(
1456           insertSliceOp.getLoc(), insertSliceOp.getType(), replacement);
1457     }
1458     rewriter.replaceOp(insertSliceOp, replacement);
1459     return success();
1460   }
1461 };
1462 
1463 /// If additional static type information can be deduced from a insert_slice's
1464 /// size operands, insert an explicit cast of the op's source operand. This
1465 /// enables other canonicalization patterns that are matching for tensor_cast
1466 /// ops such as `ForOpTensorCastFolder` in SCF.
1467 ///
1468 /// Example:
1469 ///
1470 /// ```mlir
1471 ///   %r = tensor.insert_slice %0 into %1[...] [64, 64] [1, 1]
1472 ///       : tensor<?x?xf32> into ...
1473 /// ```
1474 ///
1475 /// folds into:
1476 ///
1477 /// ```mlir
1478 ///   %tmp = tensor.cast %0 : tensor<?x?xf32> to tensor<64x64xf32>
1479 ///   %r = tensor.insert_slice %tmp into %1[...] [64, 64] [1, 1]
1480 ///       : tensor<64x64xf32> into ...
1481 /// ```
1482 struct InsertSliceOpSourceCastInserter final
1483     : public OpRewritePattern<InsertSliceOp> {
1484   using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
1485 
1486   LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
1487                                 PatternRewriter &rewriter) const override {
1488     RankedTensorType srcType = insertSliceOp.getSourceType();
1489     if (srcType.getRank() != insertSliceOp.getType().getRank())
1490       return failure();
1491     SmallVector<int64_t> newSrcShape(srcType.getShape().begin(),
1492                                      srcType.getShape().end());
1493     for (int64_t i = 0; i < srcType.getRank(); ++i) {
1494       if (Optional<int64_t> constInt =
1495               getConstantIntValue(insertSliceOp.getMixedSizes()[i]))
1496         newSrcShape[i] = *constInt;
1497     }
1498 
1499     RankedTensorType newSrcType =
1500         RankedTensorType::get(newSrcShape, srcType.getElementType());
1501     if (srcType == newSrcType ||
1502         !preservesStaticInformation(srcType, newSrcType) ||
1503         !tensor::CastOp::areCastCompatible(srcType, newSrcType))
1504       return failure();
1505 
1506     // newSrcType is:
1507     //   1) Different from srcType.
1508     //   2) "More static" than srcType.
1509     //   3) Cast-compatible with srcType.
1510     // Insert the cast.
1511     Value cast = rewriter.create<tensor::CastOp>(
1512         insertSliceOp.getLoc(), newSrcType, insertSliceOp.source());
1513     rewriter.replaceOpWithNewOp<InsertSliceOp>(
1514         insertSliceOp, cast, insertSliceOp.dest(),
1515         insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
1516         insertSliceOp.getMixedStrides());
1517     return success();
1518   }
1519 };
1520 } // namespace
1521 
1522 void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
1523                                                 MLIRContext *context) {
1524   results.add<InsertSliceOpConstantArgumentFolder, InsertSliceOpCastFolder,
1525               InsertSliceOpSourceCastInserter>(context);
1526 }
1527 
1528 Value mlir::tensor::createCanonicalRankReducingInsertSliceOp(OpBuilder &b,
1529                                                              Location loc,
1530                                                              Value tensor,
1531                                                              Value dest) {
1532   auto rankedTensorType = dest.getType().cast<RankedTensorType>();
1533   unsigned rank = rankedTensorType.getRank();
1534   auto shape = rankedTensorType.getShape();
1535   SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
1536   SmallVector<OpFoldResult> sizes;
1537   for (unsigned i = 0, e = rank; i < e; ++i) {
1538     OpFoldResult dim;
1539     if (rankedTensorType.isDynamicDim(i))
1540       dim = b.createOrFold<tensor::DimOp>(
1541           loc, dest, b.create<arith::ConstantIndexOp>(loc, i));
1542     else
1543       dim = b.getIndexAttr(shape[i]);
1544     sizes.push_back(dim);
1545   }
1546   SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
1547   return b.createOrFold<tensor::InsertSliceOp>(loc, tensor, dest, offsets,
1548                                                sizes, strides);
1549 }
1550 
1551 //===----------------------------------------------------------------------===//
1552 // PadOp
1553 //===----------------------------------------------------------------------===//
1554 
1555 // TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it
1556 // supports optional types.
1557 void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand,
1558                     Type typeToInfer, Type typeToInferFrom) {}
1559 
1560 ParseResult parseInferType(OpAsmParser &parser,
1561                            Optional<OpAsmParser::OperandType> optOperand,
1562                            Type &typeToInfer, Type typeToInferFrom) {
1563   if (optOperand)
1564     typeToInfer = typeToInferFrom;
1565   return success();
1566 }
1567 
1568 LogicalResult PadOp::verify() {
1569   auto sourceType = source().getType().cast<RankedTensorType>();
1570   auto resultType = result().getType().cast<RankedTensorType>();
1571   auto expectedType =
1572       PadOp::inferResultType(sourceType, extractFromI64ArrayAttr(static_low()),
1573                              extractFromI64ArrayAttr(static_high()));
1574   for (int i = 0, e = sourceType.getRank(); i < e; ++i) {
1575     if (resultType.getDimSize(i) == expectedType.getDimSize(i))
1576       continue;
1577     if (expectedType.isDynamicDim(i))
1578       continue;
1579     return emitError("specified type ")
1580            << resultType << " does not match the inferred type "
1581            << expectedType;
1582   }
1583 
1584   auto &region = getRegion();
1585   unsigned rank = resultType.getRank();
1586   Block &block = region.front();
1587   if (block.getNumArguments() != rank)
1588     return emitError("expected the block to have ") << rank << " arguments";
1589 
1590   // Note: the number and type of yield values are checked in the YieldOp.
1591   for (const auto &en : llvm::enumerate(block.getArgumentTypes())) {
1592     if (!en.value().isIndex())
1593       return emitOpError("expected block argument ")
1594              << (en.index() + 1) << " to be an index";
1595   }
1596 
1597   // Ensure that the region yields an element of the right type.
1598   auto yieldOp = llvm::cast<YieldOp>(block.getTerminator());
1599   if (yieldOp.value().getType() !=
1600       getType().cast<ShapedType>().getElementType())
1601     return emitOpError("expected yield type to match shape element type");
1602 
1603   return success();
1604 }
1605 
1606 RankedTensorType PadOp::inferResultType(RankedTensorType sourceType,
1607                                         ArrayRef<int64_t> staticLow,
1608                                         ArrayRef<int64_t> staticHigh,
1609                                         ArrayRef<int64_t> resultShape) {
1610   unsigned rank = sourceType.getRank();
1611   assert(staticLow.size() == rank && "unexpected staticLow size mismatch");
1612   assert(staticHigh.size() == rank && "unexpected staticHigh size mismatch");
1613   assert((resultShape.empty() || resultShape.size() == rank) &&
1614          "unexpected resultShape size mismatch");
1615 
1616   SmallVector<int64_t, 4> inferredShape;
1617   for (auto i : llvm::seq<unsigned>(0, rank)) {
1618     if (sourceType.isDynamicDim(i) ||
1619         staticLow[i] == ShapedType::kDynamicSize ||
1620         staticHigh[i] == ShapedType::kDynamicSize) {
1621       inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamicSize
1622                                                   : resultShape[i]);
1623     } else {
1624       int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i];
1625       assert((resultShape.empty() || size == resultShape[i] ||
1626               resultShape[i] == ShapedType::kDynamicSize) &&
1627              "mismatch between inferred shape and result shape");
1628       inferredShape.push_back(size);
1629     }
1630   }
1631 
1632   return RankedTensorType::get(inferredShape, sourceType.getElementType());
1633 }
1634 
1635 void PadOp::build(OpBuilder &b, OperationState &result, Value source,
1636                   ArrayRef<int64_t> staticLow, ArrayRef<int64_t> staticHigh,
1637                   ValueRange low, ValueRange high, bool nofold,
1638                   ArrayRef<NamedAttribute> attrs) {
1639   auto sourceType = source.getType().cast<RankedTensorType>();
1640   auto resultType = inferResultType(sourceType, staticLow, staticHigh);
1641   build(b, result, resultType, source, low, high, b.getI64ArrayAttr(staticLow),
1642         b.getI64ArrayAttr(staticHigh), nofold ? b.getUnitAttr() : UnitAttr());
1643   result.addAttributes(attrs);
1644 }
1645 
1646 void PadOp::build(OpBuilder &b, OperationState &result, Value source,
1647                   ValueRange low, ValueRange high, bool nofold,
1648                   ArrayRef<NamedAttribute> attrs) {
1649   auto sourceType = source.getType().cast<RankedTensorType>();
1650   unsigned rank = sourceType.getRank();
1651   SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamicSize);
1652   build(b, result, source, staticVector, staticVector, low, high, nofold,
1653         attrs);
1654 }
1655 
1656 void PadOp::build(OpBuilder &b, OperationState &result, Type resultType,
1657                   Value source, ArrayRef<OpFoldResult> low,
1658                   ArrayRef<OpFoldResult> high, bool nofold,
1659                   ArrayRef<NamedAttribute> attrs) {
1660   assert(resultType.isa<RankedTensorType>());
1661   auto sourceType = source.getType().cast<RankedTensorType>();
1662   SmallVector<Value, 4> dynamicLow, dynamicHigh;
1663   SmallVector<int64_t, 4> staticLow, staticHigh;
1664   // staticLow and staticHigh have full information of the padding config.
1665   // This will grow staticLow and staticHigh with 1 value. If the config is
1666   // dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1
1667   // value as well.
1668   dispatchIndexOpFoldResults(low, dynamicLow, staticLow,
1669                              ShapedType::kDynamicSize);
1670   dispatchIndexOpFoldResults(high, dynamicHigh, staticHigh,
1671                              ShapedType::kDynamicSize);
1672   if (!resultType) {
1673     resultType = PadOp::inferResultType(sourceType, staticLow, staticHigh);
1674   }
1675   build(b, result, resultType, source, dynamicLow, dynamicHigh,
1676         b.getI64ArrayAttr(staticLow), b.getI64ArrayAttr(staticHigh),
1677         nofold ? b.getUnitAttr() : UnitAttr());
1678   result.addAttributes(attrs);
1679 }
1680 
1681 namespace {
1682 // Folds tensor.pad when padding is static zeros and the attribute
1683 // doesn't request otherwise.
1684 struct FoldStaticZeroPadding : public OpRewritePattern<PadOp> {
1685   using OpRewritePattern<PadOp>::OpRewritePattern;
1686 
1687   LogicalResult matchAndRewrite(PadOp padTensorOp,
1688                                 PatternRewriter &rewriter) const override {
1689     if (!padTensorOp.hasZeroLowPad() || !padTensorOp.hasZeroHighPad())
1690       return failure();
1691     if (padTensorOp.nofold())
1692       return failure();
1693     rewriter.replaceOpWithNewOp<tensor::CastOp>(
1694         padTensorOp, padTensorOp.result().getType(), padTensorOp.source());
1695     return success();
1696   }
1697 };
1698 
1699 // Fold CastOp into PadOp when adding static information.
1700 struct FoldSourceTensorCast : public OpRewritePattern<PadOp> {
1701   using OpRewritePattern<PadOp>::OpRewritePattern;
1702 
1703   LogicalResult matchAndRewrite(PadOp padTensorOp,
1704                                 PatternRewriter &rewriter) const override {
1705     auto castOp = padTensorOp.source().getDefiningOp<tensor::CastOp>();
1706     if (!tensor::canFoldIntoConsumerOp(castOp))
1707       return failure();
1708 
1709     auto newResultType = PadOp::inferResultType(
1710         castOp.source().getType().cast<RankedTensorType>(),
1711         extractFromI64ArrayAttr(padTensorOp.static_low()),
1712         extractFromI64ArrayAttr(padTensorOp.static_high()),
1713         padTensorOp.getResultType().getShape());
1714 
1715     if (newResultType == padTensorOp.getResultType()) {
1716       rewriter.updateRootInPlace(padTensorOp, [&]() {
1717         padTensorOp.sourceMutable().assign(castOp.source());
1718       });
1719     } else {
1720       auto newOp = rewriter.create<PadOp>(
1721           padTensorOp->getLoc(), newResultType, padTensorOp.source(),
1722           padTensorOp.low(), padTensorOp.high(), padTensorOp.static_low(),
1723           padTensorOp.static_high(), padTensorOp.nofold());
1724       BlockAndValueMapping mapper;
1725       padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper);
1726 
1727       rewriter.replaceOpWithNewOp<tensor::CastOp>(
1728           padTensorOp, padTensorOp.getResultType(), newOp);
1729     }
1730     return success();
1731   }
1732 };
1733 
1734 // Fold CastOp using the result of PadOp back into the latter if it adds
1735 // static information.
1736 struct FoldTargetTensorCast : public OpRewritePattern<PadOp> {
1737   using OpRewritePattern<PadOp>::OpRewritePattern;
1738 
1739   LogicalResult matchAndRewrite(PadOp padTensorOp,
1740                                 PatternRewriter &rewriter) const override {
1741     if (!padTensorOp.result().hasOneUse())
1742       return failure();
1743     auto tensorCastOp =
1744         dyn_cast<tensor::CastOp>(*padTensorOp->getUsers().begin());
1745     if (!tensorCastOp)
1746       return failure();
1747     if (!tensor::preservesStaticInformation(padTensorOp.result().getType(),
1748                                             tensorCastOp.dest().getType()))
1749       return failure();
1750 
1751     auto replacementOp = rewriter.create<PadOp>(
1752         padTensorOp.getLoc(), tensorCastOp.dest().getType(),
1753         padTensorOp.source(), padTensorOp.low(), padTensorOp.high(),
1754         padTensorOp.static_low(), padTensorOp.static_high(),
1755         padTensorOp.nofold());
1756     replacementOp.region().takeBody(padTensorOp.region());
1757 
1758     rewriter.replaceOp(padTensorOp, replacementOp.result());
1759     rewriter.replaceOp(tensorCastOp, replacementOp.result());
1760     return success();
1761   }
1762 };
1763 } // namespace
1764 
1765 void PadOp::getCanonicalizationPatterns(RewritePatternSet &results,
1766                                         MLIRContext *context) {
1767   results
1768       .add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast>(
1769           context);
1770 }
1771 
1772 /// Return the padding value of the PadOp if it constant. In this context,
1773 /// "constant" means an actual constant or "defined outside of the block".
1774 ///
1775 /// Values are considered constant in three cases:
1776 ///  - A ConstantLike value.
1777 ///  - A basic block argument from a different block.
1778 ///  - A value defined outside of the block.
1779 ///
1780 /// If the padding value is not constant, an empty Value is returned.
1781 Value PadOp::getConstantPaddingValue() {
1782   auto yieldOp = dyn_cast<YieldOp>(getRegion().front().getTerminator());
1783   if (!yieldOp)
1784     return {};
1785   Value padValue = yieldOp.value();
1786   // Check if yield value is a constant.
1787   if (matchPattern(padValue, m_Constant()))
1788     return padValue;
1789   // Check if yield value is defined inside the PadOp block.
1790   if (padValue.getParentBlock() == &getRegion().front())
1791     return {};
1792   // Else: Yield value defined outside of the PadOp block.
1793   return padValue;
1794 }
1795 
1796 OpFoldResult PadOp::fold(ArrayRef<Attribute>) {
1797   if (getResultType().hasStaticShape() && getResultType() == getSourceType() &&
1798       !nofold())
1799     return source();
1800   return {};
1801 }
1802 
1803 //===----------------------------------------------------------------------===//
1804 // SplatOp
1805 //===----------------------------------------------------------------------===//
1806 
1807 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
1808   auto constOperand = operands.front();
1809   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
1810     return {};
1811 
1812   // SplatElementsAttr::get treats single value for second arg as being a splat.
1813   return SplatElementsAttr::get(getType(), {constOperand});
1814 }
1815 
1816 //===----------------------------------------------------------------------===//
1817 // TableGen'd op method definitions
1818 //===----------------------------------------------------------------------===//
1819 
1820 #define GET_OP_CLASSES
1821 #include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc"
1822