1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 10 #include "mlir/Dialect/Tensor/IR/Tensor.h" 11 #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" 12 #include "mlir/Dialect/Utils/StaticValueUtils.h" 13 #include "mlir/IR/BlockAndValueMapping.h" 14 #include "mlir/IR/Builders.h" 15 #include "mlir/IR/BuiltinAttributeInterfaces.h" 16 #include "mlir/IR/Matchers.h" 17 #include "mlir/IR/TypeUtilities.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 21 using namespace mlir; 22 using namespace mlir::tensor; 23 24 /// Materialize a single constant operation from a given attribute value with 25 /// the desired resultant type. 26 Operation *TensorDialect::materializeConstant(OpBuilder &builder, 27 Attribute value, Type type, 28 Location loc) { 29 if (arith::ConstantOp::isBuildableWith(value, type)) 30 return builder.create<arith::ConstantOp>(loc, value, type); 31 if (complex::ConstantOp::isBuildableWith(value, type)) 32 return builder.create<complex::ConstantOp>(loc, type, 33 value.cast<ArrayAttr>()); 34 return nullptr; 35 } 36 37 //===----------------------------------------------------------------------===// 38 // CastOp 39 //===----------------------------------------------------------------------===// 40 41 /// Returns true if `target` is a ranked tensor type that preserves static 42 /// information available in the `source` ranked tensor type. 43 bool mlir::tensor::preservesStaticInformation(Type source, Type target) { 44 auto sourceType = source.dyn_cast<RankedTensorType>(); 45 auto targetType = target.dyn_cast<RankedTensorType>(); 46 47 // Requires RankedTensorType. 48 if (!sourceType || !targetType) 49 return false; 50 51 // Requires same elemental type. 52 if (sourceType.getElementType() != targetType.getElementType()) 53 return false; 54 55 // Requires same rank. 56 if (sourceType.getRank() != targetType.getRank()) 57 return false; 58 59 // If cast is towards more static sizes along any dimension, don't fold. 60 for (auto t : llvm::zip(sourceType.getShape(), targetType.getShape())) { 61 if (!ShapedType::isDynamic(std::get<0>(t)) && 62 ShapedType::isDynamic(std::get<1>(t))) 63 return false; 64 } 65 66 return true; 67 } 68 69 /// Determines whether tensor::CastOp casts to a more dynamic version of the 70 /// source tensor. This is useful to fold a tensor.cast into a consuming op and 71 /// implement canonicalization patterns for ops in different dialects that may 72 /// consume the results of tensor.cast operations. Such foldable tensor.cast 73 /// operations are typically inserted as `slice` ops and are canonicalized, 74 /// to preserve the type compatibility of their uses. 75 /// 76 /// Returns true when all conditions are met: 77 /// 1. source and result are ranked tensors with same element type and rank. 78 /// 2. the tensor type has more static information than the result 79 /// 80 /// Example: 81 /// ```mlir 82 /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> 83 /// %2 = consumer %1 ... : tensor<?x?xf32> ... 84 /// ``` 85 /// 86 /// folds into: 87 /// 88 /// ```mlir 89 /// %2 = consumer %0 ... : tensor<8x16xf32> ... 90 /// ``` 91 bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) { 92 if (!castOp) 93 return false; 94 95 // Can fold if the source of cast has at least as much static information as 96 // its results. 97 return preservesStaticInformation(castOp.getType(), 98 castOp.source().getType()); 99 } 100 101 /// Determines whether the tensor::CastOp casts to a more static version of the 102 /// source tensor. This is useful to fold into a producing op and implement 103 /// canonicaliation patterns with the `tensor.cast` op as the root, but producer 104 /// being from different dialects. Returns true when all conditions are met: 105 /// 1. source and result and ranked tensors with same element type and rank. 106 /// 2. the result type has more static information than the source. 107 /// 108 /// Example: 109 /// ```mlir 110 /// %1 = producer ... : tensor<?x?xf32> 111 /// %2 = tensor.cast %1 : tensor<?x?xf32> to tensor<8x16xf32> 112 /// ``` 113 /// 114 /// can be canonicalized to : 115 /// 116 /// ```mlir 117 /// %2 = producer ... : tensor<8x16xf32> 118 /// ``` 119 /// Not all ops might be canonicalizable this way, but for those that can be, 120 /// this method provides a check that it is worth doing the canonicalization. 121 bool mlir::tensor::canFoldIntoProducerOp(CastOp castOp) { 122 if (!castOp) 123 return false; 124 return preservesStaticInformation(castOp.source().getType(), 125 castOp.getType()); 126 } 127 128 /// Performs folding of any operand of `op` if it comes from a tensor::CastOp 129 /// that can be folded. 130 LogicalResult mlir::tensor::foldTensorCast(Operation *op) { 131 bool folded = false; 132 for (OpOperand &operand : op->getOpOperands()) { 133 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 134 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 135 operand.set(castOp.getOperand()); 136 folded = true; 137 } 138 } 139 return success(folded); 140 } 141 142 bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 143 if (inputs.size() != 1 || outputs.size() != 1) 144 return false; 145 Type a = inputs.front(), b = outputs.front(); 146 auto aT = a.dyn_cast<TensorType>(); 147 auto bT = b.dyn_cast<TensorType>(); 148 if (!aT || !bT) 149 return false; 150 151 if (aT.getElementType() != bT.getElementType()) 152 return false; 153 154 return succeeded(verifyCompatibleShape(aT, bT)); 155 } 156 157 /// Compute a TensorType that has the joined shape knowledge of the two 158 /// given TensorTypes. The element types need to match. 159 static TensorType joinShapes(TensorType one, TensorType two) { 160 assert(one.getElementType() == two.getElementType()); 161 162 if (!one.hasRank()) 163 return two; 164 if (!two.hasRank()) 165 return one; 166 167 int64_t rank = one.getRank(); 168 if (rank != two.getRank()) 169 return {}; 170 171 SmallVector<int64_t, 4> join; 172 join.reserve(rank); 173 for (int64_t i = 0; i < rank; ++i) { 174 if (one.isDynamicDim(i)) { 175 join.push_back(two.getDimSize(i)); 176 continue; 177 } 178 if (two.isDynamicDim(i)) { 179 join.push_back(one.getDimSize(i)); 180 continue; 181 } 182 if (one.getDimSize(i) != two.getDimSize(i)) 183 return {}; 184 join.push_back(one.getDimSize(i)); 185 } 186 return RankedTensorType::get(join, one.getElementType()); 187 } 188 189 namespace { 190 191 /// Replaces chains of two tensor.cast operations by a single tensor.cast 192 /// operation if doing so does not remove runtime constraints. 193 struct ChainedTensorCast : public OpRewritePattern<CastOp> { 194 using OpRewritePattern<CastOp>::OpRewritePattern; 195 196 LogicalResult matchAndRewrite(CastOp tensorCast, 197 PatternRewriter &rewriter) const final { 198 auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>(); 199 200 if (!tensorCastOperand) 201 return failure(); 202 203 auto sourceType = 204 tensorCastOperand.getOperand().getType().cast<TensorType>(); 205 auto intermediateType = tensorCastOperand.getType().cast<TensorType>(); 206 auto resultType = tensorCast.getType().cast<TensorType>(); 207 208 // We can remove the intermediate cast if joining all three produces the 209 // same result as just joining the source and result shapes. 210 auto firstJoin = 211 joinShapes(joinShapes(sourceType, intermediateType), resultType); 212 213 // The join might not exist if the cast sequence would fail at runtime. 214 if (!firstJoin) 215 return failure(); 216 217 // The newJoin always exists if the above join exists, it might just contain 218 // less information. If so, we cannot drop the intermediate cast, as doing 219 // so would remove runtime checks. 220 auto newJoin = joinShapes(sourceType, resultType); 221 if (firstJoin != newJoin) 222 return failure(); 223 224 rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType, 225 tensorCastOperand.getOperand()); 226 return success(); 227 } 228 }; 229 230 } // namespace 231 232 void CastOp::getCanonicalizationPatterns(RewritePatternSet &results, 233 MLIRContext *context) { 234 results.add<ChainedTensorCast>(context); 235 } 236 237 //===----------------------------------------------------------------------===// 238 // DimOp 239 //===----------------------------------------------------------------------===// 240 241 void DimOp::build(OpBuilder &builder, OperationState &result, Value source, 242 int64_t index) { 243 auto loc = result.location; 244 Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index); 245 build(builder, result, source, indexValue); 246 } 247 248 Optional<int64_t> DimOp::getConstantIndex() { 249 if (auto constantOp = index().getDefiningOp<arith::ConstantOp>()) 250 return constantOp.getValue().cast<IntegerAttr>().getInt(); 251 return {}; 252 } 253 254 LogicalResult DimOp::verify() { 255 // Assume unknown index to be in range. 256 Optional<int64_t> index = getConstantIndex(); 257 if (!index.hasValue()) 258 return success(); 259 260 // Check that constant index is not knowingly out of range. 261 auto type = source().getType(); 262 if (auto tensorType = type.dyn_cast<RankedTensorType>()) { 263 if (index.getValue() >= tensorType.getRank()) 264 return emitOpError("index is out of range"); 265 } else if (type.isa<UnrankedTensorType>()) { 266 // Assume index to be in range. 267 } else { 268 llvm_unreachable("expected operand with tensor type"); 269 } 270 return success(); 271 } 272 273 OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) { 274 // All forms of folding require a known index. 275 auto index = operands[1].dyn_cast_or_null<IntegerAttr>(); 276 if (!index) 277 return {}; 278 279 // Folding for unranked types (UnrankedTensorType) is not supported. 280 auto tensorType = source().getType().dyn_cast<RankedTensorType>(); 281 if (!tensorType) 282 return {}; 283 284 // Fold if the shape extent along the given index is known. 285 if (!tensorType.isDynamicDim(index.getInt())) { 286 Builder builder(getContext()); 287 return builder.getIndexAttr(tensorType.getShape()[index.getInt()]); 288 } 289 290 Operation *definingOp = source().getDefiningOp(); 291 292 // Fold dim to the operand of tensor.generate. 293 if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) { 294 auto resultType = 295 fromElements.getResult().getType().cast<RankedTensorType>(); 296 // The case where the type encodes the size of the dimension is handled 297 // above. 298 assert(ShapedType::isDynamic(resultType.getShape()[index.getInt()])); 299 300 // Find the operand of the fromElements that corresponds to this index. 301 auto dynExtents = fromElements.dynamicExtents().begin(); 302 for (auto dim : resultType.getShape().take_front(index.getInt())) 303 if (ShapedType::isDynamic(dim)) 304 dynExtents++; 305 306 return Value{*dynExtents}; 307 } 308 309 // The size at the given index is now known to be a dynamic size. 310 unsigned unsignedIndex = index.getValue().getZExtValue(); 311 312 if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) { 313 // Fold only for non-rank reduced ops. For the rank-reduced version, rely on 314 // `resolve-shaped-type-result-dims` pass. 315 if (sliceOp.getType().getRank() == sliceOp.getSourceType().getRank() && 316 sliceOp.isDynamicSize(unsignedIndex)) { 317 return {sliceOp.getDynamicSize(unsignedIndex)}; 318 } 319 } 320 321 // dim(cast) -> dim 322 if (succeeded(foldTensorCast(*this))) 323 return getResult(); 324 325 return {}; 326 } 327 328 namespace { 329 /// Fold dim of a cast into the dim of the source of the tensor cast. 330 struct DimOfCastOp : public OpRewritePattern<DimOp> { 331 using OpRewritePattern<DimOp>::OpRewritePattern; 332 333 LogicalResult matchAndRewrite(DimOp dimOp, 334 PatternRewriter &rewriter) const override { 335 auto castOp = dimOp.source().getDefiningOp<CastOp>(); 336 if (!castOp) 337 return failure(); 338 Value newSource = castOp.getOperand(); 339 rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.index()); 340 return success(); 341 } 342 }; 343 } // namespace 344 345 void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, 346 MLIRContext *context) { 347 results.add<DimOfCastOp>(context); 348 } 349 350 //===----------------------------------------------------------------------===// 351 // ExtractOp 352 //===----------------------------------------------------------------------===// 353 354 LogicalResult ExtractOp::verify() { 355 // Verify the # indices match if we have a ranked type. 356 if (auto tensorType = tensor().getType().dyn_cast<RankedTensorType>()) 357 if (tensorType.getRank() != static_cast<int64_t>(indices().size())) 358 return emitOpError("incorrect number of indices for extract_element"); 359 360 return success(); 361 } 362 363 OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) { 364 // The tensor operand must be a known constant. 365 Attribute tensor = operands.front(); 366 if (!tensor) 367 return {}; 368 // If this is a splat elements attribute, simply return the value. All of the 369 // elements of a splat attribute are the same. 370 if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>()) 371 return splatTensor.getSplatValue<Attribute>(); 372 373 // Otherwise, collect the constant indices into the tensor. 374 SmallVector<uint64_t, 8> indices; 375 for (Attribute indice : llvm::drop_begin(operands, 1)) { 376 if (!indice || !indice.isa<IntegerAttr>()) 377 return {}; 378 indices.push_back(indice.cast<IntegerAttr>().getInt()); 379 } 380 381 // If this is an elements attribute, query the value at the given indices. 382 auto elementsAttr = tensor.dyn_cast<ElementsAttr>(); 383 if (elementsAttr && elementsAttr.isValidIndex(indices)) 384 return elementsAttr.getValues<Attribute>()[indices]; 385 return {}; 386 } 387 388 //===----------------------------------------------------------------------===// 389 // FromElementsOp 390 //===----------------------------------------------------------------------===// 391 392 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 393 Type resultType, ValueRange elements) { 394 result.addOperands(elements); 395 result.addTypes(resultType); 396 } 397 398 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 399 ValueRange elements) { 400 assert(!elements.empty() && "expected at least one element"); 401 Type resultType = RankedTensorType::get( 402 {static_cast<int64_t>(elements.size())}, elements.front().getType()); 403 build(builder, result, resultType, elements); 404 } 405 406 OpFoldResult FromElementsOp::fold(ArrayRef<Attribute> operands) { 407 if (!llvm::is_contained(operands, nullptr)) 408 return DenseElementsAttr::get(getType(), operands); 409 return {}; 410 } 411 412 namespace { 413 414 // Canonicalizes the pattern of the form 415 // 416 // %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32> 417 // %extracted_element = tensor.extract %tensor[%c0] : tensor<1xi32> 418 // 419 // to just %element. 420 struct ExtractElementFromTensorFromElements 421 : public OpRewritePattern<tensor::ExtractOp> { 422 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 423 424 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 425 PatternRewriter &rewriter) const final { 426 auto tensorFromElements = extract.tensor().getDefiningOp<FromElementsOp>(); 427 if (!tensorFromElements) 428 return failure(); 429 auto tensorType = tensorFromElements.getType().cast<RankedTensorType>(); 430 auto rank = tensorType.getRank(); 431 if (rank == 0) { 432 rewriter.replaceOp(extract, tensorFromElements.getOperand(0)); 433 return success(); 434 } 435 SmallVector<APInt, 3> indices(rank); 436 int64_t flatIndex = 0; 437 int64_t stride = 1; 438 for (int i = rank - 1; i >= 0; --i) { 439 APInt index; 440 if (!matchPattern(extract.indices()[i], m_ConstantInt(&index))) 441 return failure(); 442 if (i < rank - 1) 443 stride *= tensorType.getDimSize(i); 444 flatIndex += index.getSExtValue() * stride; 445 } 446 // Prevent out of bounds accesses. This can happen in invalid code that will 447 // never execute. 448 if (tensorFromElements->getNumOperands() <= flatIndex || flatIndex < 0) 449 return failure(); 450 rewriter.replaceOp(extract, tensorFromElements.getOperand(flatIndex)); 451 return success(); 452 } 453 }; 454 455 // Pushes the index_casts that occur before extractions to after the extract. 456 // This minimizes type conversion in some cases and enables the extract 457 // canonicalizer. This changes: 458 // 459 // %cast = arith.index_cast %tensor : tensor<1xi32> to tensor<1xindex> 460 // %extract = tensor.extract %cast[%index] : tensor<1xindex> 461 // 462 // to the following: 463 // 464 // %extract = tensor.extract %tensor[%index] : tensor<1xindex> 465 // %cast = arith.index_cast %extract : i32 to index 466 // 467 // to just %element. 468 // 469 // Consider expanding this to a template and handle all tensor cast operations. 470 struct ExtractElementFromIndexCast 471 : public OpRewritePattern<tensor::ExtractOp> { 472 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 473 474 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 475 PatternRewriter &rewriter) const final { 476 Location loc = extract.getLoc(); 477 auto indexCast = extract.tensor().getDefiningOp<arith::IndexCastOp>(); 478 if (!indexCast) 479 return failure(); 480 481 Type elementTy = getElementTypeOrSelf(indexCast.getIn()); 482 483 auto newExtract = rewriter.create<tensor::ExtractOp>( 484 loc, elementTy, indexCast.getIn(), extract.indices()); 485 486 rewriter.replaceOpWithNewOp<arith::IndexCastOp>(extract, extract.getType(), 487 newExtract); 488 489 return success(); 490 } 491 }; 492 493 } // namespace 494 495 void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results, 496 MLIRContext *context) { 497 results 498 .add<ExtractElementFromIndexCast, ExtractElementFromTensorFromElements>( 499 context); 500 } 501 502 //===----------------------------------------------------------------------===// 503 // InsertOp 504 //===----------------------------------------------------------------------===// 505 506 LogicalResult InsertOp::verify() { 507 // Verify the # indices match if we have a ranked type. 508 if (auto destType = dest().getType().dyn_cast<RankedTensorType>()) 509 if (destType.getRank() != static_cast<int64_t>(indices().size())) 510 return emitOpError("incorrect number of indices"); 511 return success(); 512 } 513 514 OpFoldResult InsertOp::fold(ArrayRef<Attribute> operands) { 515 Attribute scalar = operands[0]; 516 Attribute dest = operands[1]; 517 if (scalar && dest) 518 if (auto splatDest = dest.dyn_cast<SplatElementsAttr>()) 519 if (scalar == splatDest.getSplatValue<Attribute>()) 520 return dest; 521 return {}; 522 } 523 524 //===----------------------------------------------------------------------===// 525 // GenerateOp 526 //===----------------------------------------------------------------------===// 527 528 LogicalResult GenerateOp::verify() { 529 // Ensure that the tensor type has as many dynamic dimensions as are specified 530 // by the operands. 531 RankedTensorType resultTy = getType().cast<RankedTensorType>(); 532 if (getNumOperands() != resultTy.getNumDynamicDims()) 533 return emitError("must have as many index operands as dynamic extents " 534 "in the result type"); 535 536 return success(); 537 } 538 539 LogicalResult GenerateOp::verifyRegions() { 540 RankedTensorType resultTy = getType().cast<RankedTensorType>(); 541 // Ensure that region arguments span the index space. 542 if (!llvm::all_of(body().getArgumentTypes(), 543 [](Type ty) { return ty.isIndex(); })) 544 return emitError("all body arguments must be index"); 545 if (body().getNumArguments() != resultTy.getRank()) 546 return emitError("must have one body argument per input dimension"); 547 548 // Ensure that the region yields an element of the right type. 549 auto yieldOp = cast<YieldOp>(body().getBlocks().front().getTerminator()); 550 551 if (yieldOp.value().getType() != resultTy.getElementType()) 552 return emitOpError( 553 "body must be terminated with a `yield` operation of the tensor " 554 "element type"); 555 556 return success(); 557 } 558 559 void GenerateOp::build( 560 OpBuilder &b, OperationState &result, Type resultTy, 561 ValueRange dynamicExtents, 562 function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) { 563 build(b, result, resultTy, dynamicExtents); 564 565 // Build and populate body. 566 OpBuilder::InsertionGuard guard(b); 567 Region *bodyRegion = result.regions.front().get(); 568 auto rank = resultTy.cast<RankedTensorType>().getRank(); 569 SmallVector<Type, 2> argumentTypes(rank, b.getIndexType()); 570 SmallVector<Location, 2> argumentLocs(rank, result.location); 571 Block *bodyBlock = 572 b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes, argumentLocs); 573 bodyBuilder(b, result.location, bodyBlock->getArguments()); 574 } 575 576 namespace { 577 578 /// Canonicalizes tensor.generate operations with a constant 579 /// operand into the equivalent operation with the operand expressed in the 580 /// result type, instead. We also insert a type cast to make sure that the 581 /// resulting IR is still well-typed. 582 struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> { 583 using OpRewritePattern<GenerateOp>::OpRewritePattern; 584 585 LogicalResult matchAndRewrite(GenerateOp tensorFromElements, 586 PatternRewriter &rewriter) const final { 587 auto resultType = 588 tensorFromElements.getResult().getType().cast<RankedTensorType>(); 589 590 if (resultType.hasStaticShape()) 591 return failure(); 592 593 SmallVector<Value, 4> newOperands; 594 SmallVector<int64_t, 4> newShape; 595 auto operandsIt = tensorFromElements.dynamicExtents().begin(); 596 597 for (int64_t dim : resultType.getShape()) { 598 if (!ShapedType::isDynamic(dim)) { 599 newShape.push_back(dim); 600 continue; 601 } 602 APInt index; 603 if (!matchPattern(*operandsIt, m_ConstantInt(&index))) { 604 newShape.push_back(ShapedType::kDynamicSize); 605 newOperands.push_back(*operandsIt++); 606 continue; 607 } 608 newShape.push_back(index.getSExtValue()); 609 operandsIt++; 610 } 611 612 if (newOperands.size() == tensorFromElements.dynamicExtents().size()) 613 return failure(); 614 615 auto loc = tensorFromElements.getLoc(); 616 auto newOp = rewriter.create<GenerateOp>( 617 loc, RankedTensorType::get(newShape, resultType.getElementType()), 618 newOperands); 619 rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(), 620 newOp.body().begin()); 621 rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType, 622 newOp); 623 return success(); 624 } 625 }; 626 627 /// Canonicalizes the pattern of the form 628 /// 629 /// %tensor = tensor.generate %x { 630 /// ^bb0(%arg0: index): 631 /// <computation> 632 /// yield %1 : index 633 /// } : tensor<?xindex> 634 /// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32> 635 /// 636 /// to just <computation> with %arg0 replaced by %c0. We only do this if the 637 /// tensor.generate operation has no side-effects. 638 struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> { 639 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 640 641 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 642 PatternRewriter &rewriter) const final { 643 auto tensorFromElements = extract.tensor().getDefiningOp<GenerateOp>(); 644 if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements)) 645 return failure(); 646 647 BlockAndValueMapping mapping; 648 Block *body = tensorFromElements.getBody(); 649 mapping.map(body->getArguments(), extract.indices()); 650 for (auto &op : body->without_terminator()) 651 rewriter.clone(op, mapping); 652 653 auto yield = cast<YieldOp>(body->getTerminator()); 654 655 rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value())); 656 return success(); 657 } 658 }; 659 660 /// Canonicalizes the pattern of the form 661 /// 662 /// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32> 663 /// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32> 664 /// 665 /// to 666 /// 667 /// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32> 668 struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> { 669 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 670 671 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 672 PatternRewriter &rewriter) const final { 673 auto tensorCast = extract.tensor().getDefiningOp<tensor::CastOp>(); 674 if (!tensorCast) 675 return failure(); 676 677 rewriter.replaceOpWithNewOp<tensor::ExtractOp>(extract, tensorCast.source(), 678 extract.indices()); 679 return success(); 680 } 681 }; 682 683 } // namespace 684 685 void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results, 686 MLIRContext *context) { 687 // TODO: Move extract patterns to tensor::ExtractOp. 688 results.add<ExtractFromTensorGenerate, ExtractFromTensorCast, 689 StaticTensorGenerate>(context); 690 } 691 692 //===----------------------------------------------------------------------===// 693 // RankOp 694 //===----------------------------------------------------------------------===// 695 696 OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) { 697 // Constant fold rank when the rank of the operand is known. 698 auto type = getOperand().getType(); 699 auto shapedType = type.dyn_cast<ShapedType>(); 700 if (shapedType && shapedType.hasRank()) 701 return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank()); 702 return IntegerAttr(); 703 } 704 705 //===----------------------------------------------------------------------===// 706 // ReshapeOp 707 //===----------------------------------------------------------------------===// 708 709 static int64_t getNumElements(ShapedType type) { 710 int64_t numElements = 1; 711 for (auto dim : type.getShape()) 712 numElements *= dim; 713 return numElements; 714 } 715 716 LogicalResult ReshapeOp::verify() { 717 TensorType operandType = source().getType().cast<TensorType>(); 718 TensorType resultType = result().getType().cast<TensorType>(); 719 720 if (operandType.getElementType() != resultType.getElementType()) 721 return emitOpError("element types of source and destination tensor " 722 "types should be the same"); 723 724 int64_t shapeSize = shape().getType().cast<RankedTensorType>().getDimSize(0); 725 auto resultRankedType = resultType.dyn_cast<RankedTensorType>(); 726 auto operandRankedType = operandType.dyn_cast<RankedTensorType>(); 727 728 if (resultRankedType) { 729 if (operandRankedType && resultRankedType.hasStaticShape() && 730 operandRankedType.hasStaticShape()) { 731 if (getNumElements(operandRankedType) != getNumElements(resultRankedType)) 732 return emitOpError("source and destination tensor should have the " 733 "same number of elements"); 734 } 735 if (ShapedType::isDynamic(shapeSize)) 736 return emitOpError("cannot use shape operand with dynamic length to " 737 "reshape to statically-ranked tensor type"); 738 if (shapeSize != resultRankedType.getRank()) 739 return emitOpError( 740 "length of shape operand differs from the result's tensor rank"); 741 } 742 return success(); 743 } 744 745 //===----------------------------------------------------------------------===// 746 // Reassociative reshape ops 747 //===----------------------------------------------------------------------===// 748 749 SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() { 750 return getSymbolLessAffineMaps(getReassociationExprs()); 751 } 752 SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() { 753 return convertReassociationIndicesToExprs(getContext(), 754 getReassociationIndices()); 755 } 756 757 SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() { 758 return getSymbolLessAffineMaps(getReassociationExprs()); 759 } 760 SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() { 761 return convertReassociationIndicesToExprs(getContext(), 762 getReassociationIndices()); 763 } 764 765 /// Compute the RankedTensorType obtained by applying `reassociation` to `type`. 766 static RankedTensorType 767 computeTensorReshapeCollapsedType(RankedTensorType type, 768 ArrayRef<AffineMap> reassociation) { 769 auto shape = type.getShape(); 770 SmallVector<int64_t, 4> newShape; 771 newShape.reserve(reassociation.size()); 772 773 // Use the fact that reassociation is valid to simplify the logic: only use 774 // each map's rank. 775 assert(isReassociationValid(reassociation) && "invalid reassociation"); 776 unsigned currentDim = 0; 777 for (AffineMap m : reassociation) { 778 unsigned dim = m.getNumResults(); 779 auto band = shape.slice(currentDim, dim); 780 int64_t size = 1; 781 if (llvm::is_contained(band, ShapedType::kDynamicSize)) 782 size = ShapedType::kDynamicSize; 783 else 784 for (unsigned d = 0; d < dim; ++d) 785 size *= shape[currentDim + d]; 786 newShape.push_back(size); 787 currentDim += dim; 788 } 789 790 return RankedTensorType::get(newShape, type.getElementType()); 791 } 792 793 void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src, 794 ArrayRef<ReassociationIndices> reassociation, 795 ArrayRef<NamedAttribute> attrs) { 796 auto resultType = computeTensorReshapeCollapsedType( 797 src.getType().cast<RankedTensorType>(), 798 getSymbolLessAffineMaps( 799 convertReassociationIndicesToExprs(b.getContext(), reassociation))); 800 build(b, result, resultType, src, attrs); 801 result.addAttribute(getReassociationAttrName(), 802 getReassociationIndicesAttribute(b, reassociation)); 803 } 804 805 void ExpandShapeOp::build(OpBuilder &b, OperationState &result, Value src, 806 ArrayRef<ReassociationIndices> reassociation, 807 ArrayRef<NamedAttribute> attrs) { 808 auto resultType = computeTensorReshapeCollapsedType( 809 src.getType().cast<RankedTensorType>(), 810 getSymbolLessAffineMaps( 811 convertReassociationIndicesToExprs(b.getContext(), reassociation))); 812 build(b, result, resultType, src, attrs); 813 result.addAttribute(getReassociationAttrName(), 814 getReassociationIndicesAttribute(b, reassociation)); 815 } 816 817 template <typename TensorReshapeOp, bool isExpansion = std::is_same< 818 TensorReshapeOp, ExpandShapeOp>::value> 819 static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op, 820 RankedTensorType expandedType, 821 RankedTensorType collapsedType) { 822 if (failed( 823 verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion))) 824 return failure(); 825 826 auto maps = op.getReassociationMaps(); 827 RankedTensorType expectedType = 828 computeTensorReshapeCollapsedType(expandedType, maps); 829 if (collapsedType != expectedType) 830 return op.emitOpError("expected collapsed type to be ") 831 << expectedType << ", but got " << collapsedType; 832 return success(); 833 } 834 835 LogicalResult ExpandShapeOp::verify() { 836 return verifyTensorReshapeOp(*this, getResultType(), getSrcType()); 837 } 838 839 LogicalResult CollapseShapeOp::verify() { 840 return verifyTensorReshapeOp(*this, getSrcType(), getResultType()); 841 } 842 843 namespace { 844 /// Reshape of a splat constant can be replaced with a constant of the result 845 /// type. 846 template <typename TensorReshapeOp> 847 struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> { 848 using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; 849 LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, 850 PatternRewriter &rewriter) const override { 851 DenseElementsAttr attr; 852 if (!matchPattern(reshapeOp.src(), m_Constant(&attr))) 853 return failure(); 854 if (!attr || !attr.isSplat()) 855 return failure(); 856 DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer( 857 reshapeOp.getResultType(), attr.getRawData(), true); 858 rewriter.replaceOpWithNewOp<arith::ConstantOp>(reshapeOp, newAttr); 859 return success(); 860 } 861 }; 862 863 /// Reshape of a FromElements can be replaced with a FromElements of the result 864 /// type 865 template <typename TensorReshapeOp> 866 struct FoldReshapeWithFromElements : OpRewritePattern<TensorReshapeOp> { 867 using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; 868 LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, 869 PatternRewriter &rewriter) const override { 870 auto fromElements = 871 reshapeOp.src().template getDefiningOp<FromElementsOp>(); 872 if (!fromElements) 873 return failure(); 874 875 auto shapedTy = reshapeOp.getType().template cast<ShapedType>(); 876 877 if (!shapedTy.hasStaticShape()) 878 return failure(); 879 880 rewriter.replaceOpWithNewOp<FromElementsOp>(reshapeOp, reshapeOp.getType(), 881 fromElements.elements()); 882 return success(); 883 } 884 }; 885 886 } // namespace 887 888 void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 889 MLIRContext *context) { 890 results.add<CollapseReshapeOps<ExpandShapeOp>, 891 CollapseMixedReshapeOps<ExpandShapeOp, CollapseShapeOp>, 892 FoldReshapeWithConstant<ExpandShapeOp>, 893 FoldReshapeWithFromElements<ExpandShapeOp>>(context); 894 } 895 896 void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 897 MLIRContext *context) { 898 results.add<CollapseReshapeOps<CollapseShapeOp>, 899 CollapseMixedReshapeOps<CollapseShapeOp, ExpandShapeOp>, 900 FoldReshapeWithConstant<CollapseShapeOp>, 901 FoldReshapeWithFromElements<CollapseShapeOp>>(context); 902 } 903 904 OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) { 905 return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands); 906 } 907 OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) { 908 return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands); 909 } 910 911 //===----------------------------------------------------------------------===// 912 // ExtractSliceOp 913 //===----------------------------------------------------------------------===// 914 915 /// An extract_slice op result type can be fully inferred from the source type 916 /// and the static representation of offsets, sizes and strides. Special 917 /// sentinels encode the dynamic case. 918 RankedTensorType ExtractSliceOp::inferResultType( 919 RankedTensorType sourceRankedTensorType, ArrayRef<int64_t> staticOffsets, 920 ArrayRef<int64_t> staticSizes, ArrayRef<int64_t> staticStrides) { 921 // An extract_slice op may specify only a leading subset of offset/sizes/ 922 // strides in which case we complete with offset=0, sizes from memref type and 923 // strides=1. 924 unsigned rank = sourceRankedTensorType.getRank(); 925 (void)rank; 926 assert(staticSizes.size() == rank && 927 "unexpected staticSizes not equal to rank of source"); 928 return RankedTensorType::get(staticSizes, 929 sourceRankedTensorType.getElementType()); 930 } 931 932 RankedTensorType ExtractSliceOp::inferResultType( 933 RankedTensorType sourceRankedTensorType, ArrayRef<OpFoldResult> offsets, 934 ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) { 935 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 936 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 937 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 938 ShapedType::kDynamicStrideOrOffset); 939 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 940 ShapedType::kDynamicSize); 941 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 942 ShapedType::kDynamicStrideOrOffset); 943 return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, 944 staticSizes, staticStrides); 945 } 946 947 /// An extract_slice op result type can be fully inferred from the source type 948 /// and the static representation of offsets, sizes and strides. Special 949 /// sentinels encode the dynamic case. 950 RankedTensorType ExtractSliceOp::inferRankReducedResultType( 951 unsigned resultRank, RankedTensorType sourceRankedTensorType, 952 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, 953 ArrayRef<int64_t> strides) { 954 auto inferredType = 955 inferResultType(sourceRankedTensorType, offsets, sizes, strides) 956 .cast<RankedTensorType>(); 957 int rankDiff = inferredType.getRank() - resultRank; 958 if (rankDiff > 0) { 959 auto shape = inferredType.getShape(); 960 llvm::SmallBitVector dimsToProject = 961 getPositionsOfShapeOne(rankDiff, shape); 962 SmallVector<int64_t> projectedShape; 963 for (unsigned pos = 0, e = shape.size(); pos < e; ++pos) 964 if (!dimsToProject.test(pos)) 965 projectedShape.push_back(shape[pos]); 966 inferredType = 967 RankedTensorType::get(projectedShape, inferredType.getElementType()); 968 } 969 return inferredType; 970 } 971 972 RankedTensorType ExtractSliceOp::inferRankReducedResultType( 973 unsigned resultRank, RankedTensorType sourceRankedTensorType, 974 ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes, 975 ArrayRef<OpFoldResult> strides) { 976 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 977 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 978 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 979 ShapedType::kDynamicStrideOrOffset); 980 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 981 ShapedType::kDynamicSize); 982 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 983 ShapedType::kDynamicStrideOrOffset); 984 return ExtractSliceOp::inferRankReducedResultType( 985 resultRank, sourceRankedTensorType, staticOffsets, staticSizes, 986 staticStrides); 987 } 988 989 /// Build an ExtractSliceOp with mixed static and dynamic entries and custom 990 /// result type. If the type passed is nullptr, it is inferred. 991 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, 992 RankedTensorType resultType, Value source, 993 ArrayRef<OpFoldResult> offsets, 994 ArrayRef<OpFoldResult> sizes, 995 ArrayRef<OpFoldResult> strides, 996 ArrayRef<NamedAttribute> attrs) { 997 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 998 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 999 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1000 ShapedType::kDynamicStrideOrOffset); 1001 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1002 ShapedType::kDynamicSize); 1003 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1004 ShapedType::kDynamicStrideOrOffset); 1005 auto sourceRankedTensorType = source.getType().cast<RankedTensorType>(); 1006 // Structuring implementation this way avoids duplication between builders. 1007 if (!resultType) { 1008 resultType = 1009 ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, 1010 staticSizes, staticStrides) 1011 .cast<RankedTensorType>(); 1012 } 1013 build(b, result, resultType, source, dynamicOffsets, dynamicSizes, 1014 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1015 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1016 result.addAttributes(attrs); 1017 } 1018 1019 /// Build an ExtractSliceOp with mixed static and dynamic entries and inferred 1020 /// result type. 1021 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1022 ArrayRef<OpFoldResult> offsets, 1023 ArrayRef<OpFoldResult> sizes, 1024 ArrayRef<OpFoldResult> strides, 1025 ArrayRef<NamedAttribute> attrs) { 1026 build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); 1027 } 1028 1029 /// Build an ExtractSliceOp with dynamic entries and custom result type. If the 1030 /// type passed is nullptr, it is inferred. 1031 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, 1032 RankedTensorType resultType, Value source, 1033 ValueRange offsets, ValueRange sizes, 1034 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 1035 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1036 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 1037 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1038 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1039 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1040 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1041 build(b, result, resultType, source, offsetValues, sizeValues, strideValues); 1042 } 1043 1044 /// Build an ExtractSliceOp with dynamic entries and inferred result type. 1045 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1046 ValueRange offsets, ValueRange sizes, 1047 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 1048 build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); 1049 } 1050 1051 template <typename OpTy> 1052 static LogicalResult produceSliceErrorMsg(SliceVerificationResult result, 1053 OpTy op, Type expectedType) { 1054 auto memrefType = expectedType.cast<ShapedType>(); 1055 switch (result) { 1056 case SliceVerificationResult::Success: 1057 return success(); 1058 case SliceVerificationResult::RankTooLarge: 1059 return op.emitError("expected rank to be smaller or equal to ") 1060 << "the other rank. "; 1061 case SliceVerificationResult::SizeMismatch: 1062 return op.emitError("expected type to be ") 1063 << expectedType << " or a rank-reduced version. (size mismatch) "; 1064 case SliceVerificationResult::ElemTypeMismatch: 1065 return op.emitError("expected element type to be ") 1066 << memrefType.getElementType(); 1067 default: 1068 llvm_unreachable("unexpected extract_slice op verification result"); 1069 } 1070 } 1071 1072 /// Verifier for ExtractSliceOp. 1073 LogicalResult ExtractSliceOp::verify() { 1074 // Verify result type against inferred type. 1075 auto expectedType = ExtractSliceOp::inferResultType( 1076 getSourceType(), getMixedOffsets(), getMixedSizes(), getMixedStrides()); 1077 auto result = isRankReducedType(expectedType.cast<ShapedType>(), getType()); 1078 return produceSliceErrorMsg(result, *this, expectedType); 1079 } 1080 1081 /// Infer the canonical type of the result of an extract_slice op. Returns a 1082 /// type with rank `resultRank` that is either the rank of the rank-reduced 1083 /// type, or the non-rank-reduced type. 1084 static RankedTensorType 1085 getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType, 1086 ArrayRef<OpFoldResult> mixedOffsets, 1087 ArrayRef<OpFoldResult> mixedSizes, 1088 ArrayRef<OpFoldResult> mixedStrides) { 1089 auto resultType = 1090 ExtractSliceOp::inferRankReducedResultType( 1091 resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides) 1092 .cast<RankedTensorType>(); 1093 if (resultType.getRank() != resultRank) { 1094 resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets, 1095 mixedSizes, mixedStrides) 1096 .cast<RankedTensorType>(); 1097 } 1098 return resultType; 1099 } 1100 1101 llvm::SmallBitVector ExtractSliceOp::getDroppedDims() { 1102 ArrayRef<int64_t> resultShape = getType().getShape(); 1103 SmallVector<OpFoldResult> mixedSizes = getMixedSizes(); 1104 llvm::SmallBitVector droppedDims(mixedSizes.size()); 1105 unsigned shapePos = 0; 1106 for (const auto &size : enumerate(mixedSizes)) { 1107 Optional<int64_t> sizeVal = getConstantIntValue(size.value()); 1108 // If the size is not 1, or if the current matched dimension of the result 1109 // is the same static shape as the size value (which is 1), then the 1110 // dimension is preserved. 1111 if (!sizeVal || sizeVal.getValue() != 1 || 1112 (shapePos < resultShape.size() && resultShape[shapePos] == 1)) { 1113 shapePos++; 1114 continue; 1115 } 1116 droppedDims.set(size.index()); 1117 } 1118 return droppedDims; 1119 } 1120 1121 LogicalResult ExtractSliceOp::reifyResultShapes( 1122 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 1123 reifiedReturnShapes.resize(1); 1124 reifiedReturnShapes[0].reserve(getType().getRank()); 1125 SmallVector<OpFoldResult> mixedSizes = getMixedSizes(); 1126 llvm::SmallBitVector droppedDims = getDroppedDims(); 1127 Location loc = getLoc(); 1128 for (const auto &size : enumerate(mixedSizes)) { 1129 if (droppedDims.test(size.index())) 1130 continue; 1131 if (auto attr = size.value().dyn_cast<Attribute>()) { 1132 reifiedReturnShapes[0].push_back(builder.create<arith::ConstantIndexOp>( 1133 loc, attr.cast<IntegerAttr>().getInt())); 1134 continue; 1135 } 1136 reifiedReturnShapes[0].push_back(size.value().get<Value>()); 1137 } 1138 return success(); 1139 } 1140 1141 namespace { 1142 /// Pattern to rewrite an extract_slice op with tensor::Cast arguments. 1143 /// This essentially pushes memref_cast past its consuming slice when 1144 /// `canFoldIntoConsumerOp` is true. 1145 /// 1146 /// Example: 1147 /// ``` 1148 /// %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32> 1149 /// %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to 1150 /// tensor<3x4xf32> 1151 /// ``` 1152 /// is rewritten into: 1153 /// ``` 1154 /// %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to 1155 /// tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32> 1156 /// ``` 1157 class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> { 1158 public: 1159 using OpRewritePattern<ExtractSliceOp>::OpRewritePattern; 1160 1161 LogicalResult matchAndRewrite(ExtractSliceOp sliceOp, 1162 PatternRewriter &rewriter) const override { 1163 // Any constant operand, just return to let SubViewOpConstantFolder kick in. 1164 if (llvm::any_of(sliceOp.getOperands(), [](Value operand) { 1165 return matchPattern(operand, matchConstantIndex()); 1166 })) 1167 return failure(); 1168 1169 auto castOp = sliceOp.source().getDefiningOp<tensor::CastOp>(); 1170 if (!castOp) 1171 return failure(); 1172 1173 if (!canFoldIntoConsumerOp(castOp)) 1174 return failure(); 1175 1176 /// Deduce the type of the result to use for the canonicalized operation. 1177 RankedTensorType resultType = getCanonicalSliceResultType( 1178 sliceOp.getType().getRank(), sliceOp.getSourceType(), 1179 sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(), 1180 sliceOp.getMixedStrides()); 1181 Value newSlice = rewriter.create<ExtractSliceOp>( 1182 sliceOp.getLoc(), resultType, castOp.source(), sliceOp.offsets(), 1183 sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(), 1184 sliceOp.static_sizes(), sliceOp.static_strides()); 1185 rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(), 1186 newSlice); 1187 return success(); 1188 } 1189 }; 1190 1191 /// Slice elements from `values` into `outValues`. `counts` represents the 1192 /// numbers of elements to stride in the original values for each dimension. 1193 /// The output values can be used to construct a DenseElementsAttr. 1194 template <typename IterTy, typename ElemTy> 1195 static void sliceElements(IterTy values, ArrayRef<int64_t> counts, 1196 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, 1197 ArrayRef<int64_t> strides, 1198 llvm::SmallVectorImpl<ElemTy> *outValues) { 1199 assert(offsets.size() == sizes.size()); 1200 assert(offsets.size() == strides.size()); 1201 if (offsets.empty()) 1202 return; 1203 1204 int64_t offset = offsets.front(); 1205 int64_t size = sizes.front(); 1206 int64_t stride = strides.front(); 1207 if (offsets.size() == 1) { 1208 for (int64_t i = 0; i < size; ++i, offset += stride) 1209 outValues->push_back(*(values + offset)); 1210 1211 return; 1212 } 1213 1214 for (int64_t i = 0; i < size; ++i, offset += stride) { 1215 auto begin = values + offset * counts.front(); 1216 sliceElements<IterTy, ElemTy>(begin, counts.drop_front(), 1217 offsets.drop_front(), sizes.drop_front(), 1218 strides.drop_front(), outValues); 1219 } 1220 } 1221 1222 /// Fold arith.constant and tensor.extract_slice into arith.constant. The folded 1223 /// operation might introduce more constant data; Users can control their 1224 /// heuristics by the control function. 1225 class ConstantOpExtractSliceFolder final 1226 : public OpRewritePattern<ExtractSliceOp> { 1227 public: 1228 using OpRewritePattern<ExtractSliceOp>::OpRewritePattern; 1229 1230 ConstantOpExtractSliceFolder(MLIRContext *context, 1231 ControlConstantExtractSliceFusionFn controlFn) 1232 : OpRewritePattern<ExtractSliceOp>(context), 1233 controlFn(std::move(controlFn)) {} 1234 1235 LogicalResult matchAndRewrite(ExtractSliceOp op, 1236 PatternRewriter &rewriter) const override { 1237 DenseElementsAttr attr; 1238 if (!matchPattern(op.source(), m_Constant(&attr))) 1239 return failure(); 1240 1241 // A constant splat is handled by fold(). 1242 if (attr.isSplat()) 1243 return failure(); 1244 1245 // Dynamic result shape is not supported. 1246 auto sourceType = op.source().getType().cast<ShapedType>(); 1247 auto resultType = op.result().getType().cast<ShapedType>(); 1248 if (!sourceType.hasStaticShape() || !resultType.hasStaticShape()) 1249 return failure(); 1250 1251 // Customized control over the folding. 1252 if (!controlFn(op)) 1253 return failure(); 1254 1255 int64_t count = sourceType.getNumElements(); 1256 if (count == 0) 1257 return failure(); 1258 1259 // Check if there are any dynamic parts, which are not supported. 1260 auto offsets = extractFromI64ArrayAttr(op.static_offsets()); 1261 if (llvm::is_contained(offsets, ShapedType::kDynamicStrideOrOffset)) 1262 return failure(); 1263 auto sizes = extractFromI64ArrayAttr(op.static_sizes()); 1264 if (llvm::is_contained(sizes, ShapedType::kDynamicSize)) 1265 return failure(); 1266 auto strides = extractFromI64ArrayAttr(op.static_strides()); 1267 if (llvm::is_contained(strides, ShapedType::kDynamicStrideOrOffset)) 1268 return failure(); 1269 1270 // Compute the stride for each dimension. 1271 SmallVector<int64_t> counts; 1272 ArrayRef<int64_t> shape = sourceType.getShape(); 1273 counts.reserve(shape.size()); 1274 for (int64_t v : shape) { 1275 count = count / v; 1276 counts.push_back(count); 1277 } 1278 1279 // New attribute constructed by the sliced values. 1280 DenseElementsAttr newAttr; 1281 1282 if (auto elems = attr.dyn_cast<DenseIntElementsAttr>()) { 1283 SmallVector<APInt> outValues; 1284 outValues.reserve(sourceType.getNumElements()); 1285 sliceElements<DenseElementsAttr::IntElementIterator, APInt>( 1286 elems.begin(), counts, offsets, sizes, strides, &outValues); 1287 newAttr = DenseElementsAttr::get(resultType, outValues); 1288 } else if (auto elems = attr.dyn_cast<DenseFPElementsAttr>()) { 1289 SmallVector<APFloat> outValues; 1290 outValues.reserve(sourceType.getNumElements()); 1291 sliceElements<DenseElementsAttr::FloatElementIterator, APFloat>( 1292 elems.begin(), counts, offsets, sizes, strides, &outValues); 1293 newAttr = DenseElementsAttr::get(resultType, outValues); 1294 } 1295 1296 if (newAttr) { 1297 rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, resultType, newAttr); 1298 return success(); 1299 } 1300 1301 return failure(); 1302 } 1303 1304 private: 1305 /// This additionally controls whether the fold happens or not. Users can 1306 /// impose their heuristics in the function. 1307 ControlConstantExtractSliceFusionFn controlFn; 1308 }; 1309 1310 } // namespace 1311 1312 void mlir::tensor::populateFoldConstantExtractSlicePatterns( 1313 RewritePatternSet &patterns, 1314 const ControlConstantExtractSliceFusionFn &controlFn) { 1315 patterns.add<ConstantOpExtractSliceFolder>(patterns.getContext(), controlFn); 1316 } 1317 1318 /// Return the canonical type of the result of an extract_slice op. 1319 struct SliceReturnTypeCanonicalizer { 1320 RankedTensorType operator()(ExtractSliceOp op, 1321 ArrayRef<OpFoldResult> mixedOffsets, 1322 ArrayRef<OpFoldResult> mixedSizes, 1323 ArrayRef<OpFoldResult> mixedStrides) { 1324 return getCanonicalSliceResultType(op.getType().getRank(), 1325 op.getSourceType(), mixedOffsets, 1326 mixedSizes, mixedStrides); 1327 } 1328 }; 1329 1330 /// A canonicalizer wrapper to replace ExtractSliceOps. 1331 struct SliceCanonicalizer { 1332 void operator()(PatternRewriter &rewriter, ExtractSliceOp op, 1333 ExtractSliceOp newOp) { 1334 Value replacement = newOp.getResult(); 1335 if (replacement.getType() != op.getType()) 1336 replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(), 1337 replacement); 1338 rewriter.replaceOp(op, replacement); 1339 } 1340 }; 1341 1342 void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, 1343 MLIRContext *context) { 1344 results.add< 1345 OpWithOffsetSizesAndStridesConstantArgumentFolder< 1346 ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>, 1347 ExtractSliceOpCastFolder>(context); 1348 } 1349 1350 // 1351 static LogicalResult 1352 foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op, 1353 ShapedType shapedType) { 1354 OpBuilder b(op.getContext()); 1355 for (OpFoldResult ofr : op.getMixedOffsets()) 1356 if (getConstantIntValue(ofr) != static_cast<int64_t>(0)) 1357 return failure(); 1358 // Rank-reducing noops only need to inspect the leading dimensions: llvm::zip 1359 // is appropriate. 1360 auto shape = shapedType.getShape(); 1361 for (auto it : llvm::zip(op.getMixedSizes(), shape)) 1362 if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it)) 1363 return failure(); 1364 for (OpFoldResult ofr : op.getMixedStrides()) 1365 if (getConstantIntValue(ofr) != static_cast<int64_t>(1)) 1366 return failure(); 1367 return success(); 1368 } 1369 1370 /// If we have an ExtractSliceOp consuming an InsertSliceOp with the same slice, 1371 /// we can return the InsertSliceOp's source directly. 1372 // TODO: This only checks the immediate producer; extend to go up the 1373 // insert/extract chain if the slices are disjoint. 1374 static Value foldExtractAfterInsertSlice(ExtractSliceOp extractOp) { 1375 auto insertOp = extractOp.source().getDefiningOp<InsertSliceOp>(); 1376 1377 auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; 1378 if (insertOp && insertOp.source().getType() == extractOp.getType() && 1379 insertOp.isSameAs(extractOp, isSame)) 1380 return insertOp.source(); 1381 1382 return {}; 1383 } 1384 1385 OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute> operands) { 1386 if (auto splat = operands[0].dyn_cast_or_null<SplatElementsAttr>()) { 1387 auto resultType = result().getType().cast<ShapedType>(); 1388 if (resultType.hasStaticShape()) 1389 return splat.resizeSplat(resultType); 1390 } 1391 if (getSourceType() == getType() && 1392 succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) 1393 return this->source(); 1394 if (Value slice = foldExtractAfterInsertSlice(*this)) 1395 return slice; 1396 1397 return OpFoldResult(); 1398 } 1399 1400 Value mlir::tensor::createCanonicalRankReducingExtractSliceOp( 1401 OpBuilder &b, Location loc, Value tensor, RankedTensorType targetType) { 1402 auto rankedTensorType = tensor.getType().cast<RankedTensorType>(); 1403 unsigned rank = rankedTensorType.getRank(); 1404 auto shape = rankedTensorType.getShape(); 1405 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 1406 SmallVector<OpFoldResult> sizes; 1407 for (unsigned i = 0, e = rank; i < e; ++i) { 1408 OpFoldResult dim; 1409 if (rankedTensorType.isDynamicDim(i)) 1410 dim = b.createOrFold<tensor::DimOp>( 1411 loc, tensor, b.create<arith::ConstantIndexOp>(loc, i)); 1412 else 1413 dim = b.getIndexAttr(shape[i]); 1414 sizes.push_back(dim); 1415 } 1416 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 1417 return b.createOrFold<tensor::ExtractSliceOp>(loc, targetType, tensor, 1418 offsets, sizes, strides); 1419 } 1420 1421 //===----------------------------------------------------------------------===// 1422 // InsertSliceOp 1423 //===----------------------------------------------------------------------===// 1424 1425 // Build a InsertSliceOp with mixed static and dynamic entries. 1426 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1427 Value dest, ArrayRef<OpFoldResult> offsets, 1428 ArrayRef<OpFoldResult> sizes, 1429 ArrayRef<OpFoldResult> strides, 1430 ArrayRef<NamedAttribute> attrs) { 1431 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1432 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1433 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1434 ShapedType::kDynamicStrideOrOffset); 1435 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1436 ShapedType::kDynamicSize); 1437 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1438 ShapedType::kDynamicStrideOrOffset); 1439 build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes, 1440 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1441 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1442 result.addAttributes(attrs); 1443 } 1444 1445 // Build a InsertSliceOp with dynamic entries. 1446 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1447 Value dest, ValueRange offsets, ValueRange sizes, 1448 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 1449 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1450 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 1451 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1452 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1453 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1454 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1455 build(b, result, source, dest, offsetValues, sizeValues, strideValues); 1456 } 1457 1458 static SliceVerificationResult 1459 verifyInsertSliceOp(ShapedType srcType, ShapedType dstType, 1460 ArrayAttr staticOffsets, ArrayAttr staticSizes, 1461 ArrayAttr staticStrides, 1462 ShapedType *expectedType = nullptr) { 1463 // insert_slice is the inverse of extract_slice, use the same type inference. 1464 auto expected = ExtractSliceOp::inferRankReducedResultType( 1465 srcType.getRank(), dstType.cast<RankedTensorType>(), 1466 extractFromI64ArrayAttr(staticOffsets), 1467 extractFromI64ArrayAttr(staticSizes), 1468 extractFromI64ArrayAttr(staticStrides)) 1469 .cast<ShapedType>(); 1470 if (expectedType) 1471 *expectedType = expected; 1472 return isRankReducedType(expected, srcType); 1473 } 1474 1475 /// Verifier for InsertSliceOp. 1476 LogicalResult InsertSliceOp::verify() { 1477 ShapedType expectedType; 1478 auto result = 1479 verifyInsertSliceOp(getSourceType(), getType(), static_offsets(), 1480 static_sizes(), static_strides(), &expectedType); 1481 return produceSliceErrorMsg(result, *this, expectedType); 1482 } 1483 1484 /// If we have two consecutive InsertSliceOp writing to the same slice, we 1485 /// can mutate the second InsertSliceOp's destination to the first one's. 1486 /// 1487 /// Example: 1488 /// 1489 /// ```mlir 1490 /// %0 = tensor.insert_slice %slice0 into %input[0, 0] [64, 64] [1, 1] 1491 /// %1 = tensor.insert_slice %slice1 into %0[0, 0] [64, 64] [1, 1] 1492 /// ``` 1493 /// 1494 /// folds into: 1495 /// 1496 /// ```mlir 1497 /// %1 = tensor.insert_slice %slice1 into %input[0, 0] [64, 64] [1, 1] 1498 /// ``` 1499 static LogicalResult foldInsertAfterInsertSlice(InsertSliceOp insertOp) { 1500 auto prevInsertOp = insertOp.dest().getDefiningOp<InsertSliceOp>(); 1501 1502 auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; 1503 if (!prevInsertOp || 1504 prevInsertOp.source().getType() != insertOp.source().getType() || 1505 !prevInsertOp.isSameAs(insertOp, isSame)) 1506 return failure(); 1507 1508 insertOp.destMutable().assign(prevInsertOp.dest()); 1509 return success(); 1510 } 1511 1512 OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) { 1513 if (getSourceType().hasStaticShape() && getType().hasStaticShape() && 1514 getSourceType() == getType() && 1515 succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) 1516 return this->source(); 1517 if (succeeded(foldInsertAfterInsertSlice(*this))) 1518 return getResult(); 1519 return OpFoldResult(); 1520 } 1521 1522 LogicalResult InsertSliceOp::reifyResultShapes( 1523 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 1524 reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank())); 1525 for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) { 1526 reifiedReturnShapes[0][dim] = 1527 builder.createOrFold<tensor::DimOp>(getLoc(), dest(), dim); 1528 } 1529 return success(); 1530 } 1531 1532 namespace { 1533 /// Pattern to rewrite a insert_slice op with constant arguments. 1534 class InsertSliceOpConstantArgumentFolder final 1535 : public OpRewritePattern<InsertSliceOp> { 1536 public: 1537 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1538 1539 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1540 PatternRewriter &rewriter) const override { 1541 // No constant operand, just return. 1542 if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) { 1543 return matchPattern(operand, matchConstantIndex()); 1544 })) 1545 return failure(); 1546 1547 // At least one of offsets/sizes/strides is a new constant. 1548 // Form the new list of operands and constant attributes from the 1549 // existing. 1550 SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets()); 1551 SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes()); 1552 SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides()); 1553 canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset); 1554 canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic); 1555 canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset); 1556 1557 // Create the new op in canonical form. 1558 auto sourceType = ExtractSliceOp::inferRankReducedResultType( 1559 insertSliceOp.getSourceType().getRank(), insertSliceOp.getType(), 1560 mixedOffsets, mixedSizes, mixedStrides); 1561 Value toInsert = insertSliceOp.source(); 1562 if (sourceType != insertSliceOp.getSourceType()) 1563 toInsert = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(), 1564 sourceType, toInsert); 1565 rewriter.replaceOpWithNewOp<InsertSliceOp>( 1566 insertSliceOp, toInsert, insertSliceOp.dest(), mixedOffsets, mixedSizes, 1567 mixedStrides); 1568 return success(); 1569 } 1570 }; 1571 1572 /// Fold tensor_casts with insert_slice operations. If the source or destination 1573 /// tensor is a tensor_cast that removes static type information, the cast is 1574 /// folded into the insert_slice operation. E.g.: 1575 /// 1576 /// ```mlir 1577 /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> 1578 /// %2 = tensor.insert_slice %1 into ... : tensor<?x?xf32> into ... 1579 /// ``` 1580 /// 1581 /// folds into: 1582 /// 1583 /// ```mlir 1584 /// %2 = tensor.insert_slice %0 into ... : tensor<8x16xf32> into ... 1585 /// ``` 1586 /// 1587 /// Note: When folding a cast on the destination tensor, the result of the 1588 /// insert_slice operation is casted to ensure that the type of the result did 1589 /// not change. 1590 struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertSliceOp> { 1591 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1592 1593 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1594 PatternRewriter &rewriter) const override { 1595 if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) { 1596 return matchPattern(operand, matchConstantIndex()); 1597 })) 1598 return failure(); 1599 1600 auto getSourceOfCastOp = [](Value v) -> Optional<Value> { 1601 auto castOp = v.getDefiningOp<tensor::CastOp>(); 1602 if (!castOp || !canFoldIntoConsumerOp(castOp)) 1603 return llvm::None; 1604 return castOp.source(); 1605 }; 1606 Optional<Value> sourceCastSource = 1607 getSourceOfCastOp(insertSliceOp.source()); 1608 Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.dest()); 1609 if (!sourceCastSource && !destCastSource) 1610 return failure(); 1611 1612 auto src = (sourceCastSource ? *sourceCastSource : insertSliceOp.source()); 1613 auto dst = (destCastSource ? *destCastSource : insertSliceOp.dest()); 1614 1615 auto srcType = src.getType().cast<ShapedType>(); 1616 auto dstType = dst.getType().cast<ShapedType>(); 1617 if (verifyInsertSliceOp(srcType, dstType, insertSliceOp.static_offsets(), 1618 insertSliceOp.static_sizes(), 1619 insertSliceOp.static_strides()) != 1620 SliceVerificationResult::Success) 1621 return failure(); 1622 1623 Value replacement = rewriter.create<InsertSliceOp>( 1624 insertSliceOp.getLoc(), src, dst, insertSliceOp.getMixedOffsets(), 1625 insertSliceOp.getMixedSizes(), insertSliceOp.getMixedStrides()); 1626 1627 if (replacement.getType() != insertSliceOp.getType()) { 1628 replacement = rewriter.create<tensor::CastOp>( 1629 insertSliceOp.getLoc(), insertSliceOp.getType(), replacement); 1630 } 1631 rewriter.replaceOp(insertSliceOp, replacement); 1632 return success(); 1633 } 1634 }; 1635 1636 /// If additional static type information can be deduced from a insert_slice's 1637 /// size operands, insert an explicit cast of the op's source operand. This 1638 /// enables other canonicalization patterns that are matching for tensor_cast 1639 /// ops such as `ForOpTensorCastFolder` in SCF. 1640 /// 1641 /// Example: 1642 /// 1643 /// ```mlir 1644 /// %r = tensor.insert_slice %0 into %1[...] [64, 64] [1, 1] 1645 /// : tensor<?x?xf32> into ... 1646 /// ``` 1647 /// 1648 /// folds into: 1649 /// 1650 /// ```mlir 1651 /// %tmp = tensor.cast %0 : tensor<?x?xf32> to tensor<64x64xf32> 1652 /// %r = tensor.insert_slice %tmp into %1[...] [64, 64] [1, 1] 1653 /// : tensor<64x64xf32> into ... 1654 /// ``` 1655 struct InsertSliceOpSourceCastInserter final 1656 : public OpRewritePattern<InsertSliceOp> { 1657 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1658 1659 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1660 PatternRewriter &rewriter) const override { 1661 RankedTensorType srcType = insertSliceOp.getSourceType(); 1662 if (srcType.getRank() != insertSliceOp.getType().getRank()) 1663 return failure(); 1664 SmallVector<int64_t> newSrcShape(srcType.getShape().begin(), 1665 srcType.getShape().end()); 1666 for (int64_t i = 0; i < srcType.getRank(); ++i) { 1667 if (Optional<int64_t> constInt = 1668 getConstantIntValue(insertSliceOp.getMixedSizes()[i])) 1669 newSrcShape[i] = *constInt; 1670 } 1671 1672 RankedTensorType newSrcType = 1673 RankedTensorType::get(newSrcShape, srcType.getElementType()); 1674 if (srcType == newSrcType || 1675 !preservesStaticInformation(srcType, newSrcType) || 1676 !tensor::CastOp::areCastCompatible(srcType, newSrcType)) 1677 return failure(); 1678 1679 // newSrcType is: 1680 // 1) Different from srcType. 1681 // 2) "More static" than srcType. 1682 // 3) Cast-compatible with srcType. 1683 // Insert the cast. 1684 Value cast = rewriter.create<tensor::CastOp>( 1685 insertSliceOp.getLoc(), newSrcType, insertSliceOp.source()); 1686 rewriter.replaceOpWithNewOp<InsertSliceOp>( 1687 insertSliceOp, cast, insertSliceOp.dest(), 1688 insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(), 1689 insertSliceOp.getMixedStrides()); 1690 return success(); 1691 } 1692 }; 1693 } // namespace 1694 1695 void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, 1696 MLIRContext *context) { 1697 results.add<InsertSliceOpConstantArgumentFolder, InsertSliceOpCastFolder, 1698 InsertSliceOpSourceCastInserter>(context); 1699 } 1700 1701 Value mlir::tensor::createCanonicalRankReducingInsertSliceOp(OpBuilder &b, 1702 Location loc, 1703 Value tensor, 1704 Value dest) { 1705 auto rankedTensorType = dest.getType().cast<RankedTensorType>(); 1706 unsigned rank = rankedTensorType.getRank(); 1707 auto shape = rankedTensorType.getShape(); 1708 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 1709 SmallVector<OpFoldResult> sizes; 1710 for (unsigned i = 0, e = rank; i < e; ++i) { 1711 OpFoldResult dim; 1712 if (rankedTensorType.isDynamicDim(i)) 1713 dim = b.createOrFold<tensor::DimOp>( 1714 loc, dest, b.create<arith::ConstantIndexOp>(loc, i)); 1715 else 1716 dim = b.getIndexAttr(shape[i]); 1717 sizes.push_back(dim); 1718 } 1719 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 1720 return b.createOrFold<tensor::InsertSliceOp>(loc, tensor, dest, offsets, 1721 sizes, strides); 1722 } 1723 1724 //===----------------------------------------------------------------------===// 1725 // PadOp 1726 //===----------------------------------------------------------------------===// 1727 1728 // TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it 1729 // supports optional types. 1730 void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand, 1731 Type typeToInfer, Type typeToInferFrom) {} 1732 1733 ParseResult parseInferType(OpAsmParser &parser, 1734 Optional<OpAsmParser::OperandType> optOperand, 1735 Type &typeToInfer, Type typeToInferFrom) { 1736 if (optOperand) 1737 typeToInfer = typeToInferFrom; 1738 return success(); 1739 } 1740 1741 LogicalResult PadOp::verify() { 1742 auto sourceType = source().getType().cast<RankedTensorType>(); 1743 auto resultType = result().getType().cast<RankedTensorType>(); 1744 auto expectedType = 1745 PadOp::inferResultType(sourceType, extractFromI64ArrayAttr(static_low()), 1746 extractFromI64ArrayAttr(static_high())); 1747 for (int i = 0, e = sourceType.getRank(); i < e; ++i) { 1748 if (resultType.getDimSize(i) == expectedType.getDimSize(i)) 1749 continue; 1750 if (expectedType.isDynamicDim(i)) 1751 continue; 1752 return emitError("specified type ") 1753 << resultType << " does not match the inferred type " 1754 << expectedType; 1755 } 1756 1757 return success(); 1758 } 1759 1760 LogicalResult PadOp::verifyRegions() { 1761 auto ®ion = getRegion(); 1762 unsigned rank = result().getType().cast<RankedTensorType>().getRank(); 1763 Block &block = region.front(); 1764 if (block.getNumArguments() != rank) 1765 return emitError("expected the block to have ") << rank << " arguments"; 1766 1767 // Note: the number and type of yield values are checked in the YieldOp. 1768 for (const auto &en : llvm::enumerate(block.getArgumentTypes())) { 1769 if (!en.value().isIndex()) 1770 return emitOpError("expected block argument ") 1771 << (en.index() + 1) << " to be an index"; 1772 } 1773 1774 // Ensure that the region yields an element of the right type. 1775 auto yieldOp = llvm::cast<YieldOp>(block.getTerminator()); 1776 if (yieldOp.value().getType() != 1777 getType().cast<ShapedType>().getElementType()) 1778 return emitOpError("expected yield type to match shape element type"); 1779 1780 return success(); 1781 } 1782 1783 RankedTensorType PadOp::inferResultType(RankedTensorType sourceType, 1784 ArrayRef<int64_t> staticLow, 1785 ArrayRef<int64_t> staticHigh, 1786 ArrayRef<int64_t> resultShape) { 1787 unsigned rank = sourceType.getRank(); 1788 assert(staticLow.size() == rank && "unexpected staticLow size mismatch"); 1789 assert(staticHigh.size() == rank && "unexpected staticHigh size mismatch"); 1790 assert((resultShape.empty() || resultShape.size() == rank) && 1791 "unexpected resultShape size mismatch"); 1792 1793 SmallVector<int64_t, 4> inferredShape; 1794 for (auto i : llvm::seq<unsigned>(0, rank)) { 1795 if (sourceType.isDynamicDim(i) || 1796 staticLow[i] == ShapedType::kDynamicSize || 1797 staticHigh[i] == ShapedType::kDynamicSize) { 1798 inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamicSize 1799 : resultShape[i]); 1800 } else { 1801 int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i]; 1802 assert((resultShape.empty() || size == resultShape[i] || 1803 resultShape[i] == ShapedType::kDynamicSize) && 1804 "mismatch between inferred shape and result shape"); 1805 inferredShape.push_back(size); 1806 } 1807 } 1808 1809 return RankedTensorType::get(inferredShape, sourceType.getElementType()); 1810 } 1811 1812 void PadOp::build(OpBuilder &b, OperationState &result, Value source, 1813 ArrayRef<int64_t> staticLow, ArrayRef<int64_t> staticHigh, 1814 ValueRange low, ValueRange high, bool nofold, 1815 ArrayRef<NamedAttribute> attrs) { 1816 auto sourceType = source.getType().cast<RankedTensorType>(); 1817 auto resultType = inferResultType(sourceType, staticLow, staticHigh); 1818 build(b, result, resultType, source, low, high, b.getI64ArrayAttr(staticLow), 1819 b.getI64ArrayAttr(staticHigh), nofold ? b.getUnitAttr() : UnitAttr()); 1820 result.addAttributes(attrs); 1821 } 1822 1823 void PadOp::build(OpBuilder &b, OperationState &result, Value source, 1824 ValueRange low, ValueRange high, bool nofold, 1825 ArrayRef<NamedAttribute> attrs) { 1826 auto sourceType = source.getType().cast<RankedTensorType>(); 1827 unsigned rank = sourceType.getRank(); 1828 SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamicSize); 1829 build(b, result, source, staticVector, staticVector, low, high, nofold, 1830 attrs); 1831 } 1832 1833 void PadOp::build(OpBuilder &b, OperationState &result, Type resultType, 1834 Value source, ArrayRef<OpFoldResult> low, 1835 ArrayRef<OpFoldResult> high, bool nofold, 1836 ArrayRef<NamedAttribute> attrs) { 1837 assert(resultType.isa<RankedTensorType>()); 1838 auto sourceType = source.getType().cast<RankedTensorType>(); 1839 SmallVector<Value, 4> dynamicLow, dynamicHigh; 1840 SmallVector<int64_t, 4> staticLow, staticHigh; 1841 // staticLow and staticHigh have full information of the padding config. 1842 // This will grow staticLow and staticHigh with 1 value. If the config is 1843 // dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1 1844 // value as well. 1845 dispatchIndexOpFoldResults(low, dynamicLow, staticLow, 1846 ShapedType::kDynamicSize); 1847 dispatchIndexOpFoldResults(high, dynamicHigh, staticHigh, 1848 ShapedType::kDynamicSize); 1849 if (!resultType) { 1850 resultType = PadOp::inferResultType(sourceType, staticLow, staticHigh); 1851 } 1852 build(b, result, resultType, source, dynamicLow, dynamicHigh, 1853 b.getI64ArrayAttr(staticLow), b.getI64ArrayAttr(staticHigh), 1854 nofold ? b.getUnitAttr() : UnitAttr()); 1855 result.addAttributes(attrs); 1856 } 1857 1858 namespace { 1859 // Folds tensor.pad when padding is static zeros and the attribute 1860 // doesn't request otherwise. 1861 struct FoldStaticZeroPadding : public OpRewritePattern<PadOp> { 1862 using OpRewritePattern<PadOp>::OpRewritePattern; 1863 1864 LogicalResult matchAndRewrite(PadOp padTensorOp, 1865 PatternRewriter &rewriter) const override { 1866 if (!padTensorOp.hasZeroLowPad() || !padTensorOp.hasZeroHighPad()) 1867 return failure(); 1868 if (padTensorOp.nofold()) 1869 return failure(); 1870 rewriter.replaceOpWithNewOp<tensor::CastOp>( 1871 padTensorOp, padTensorOp.result().getType(), padTensorOp.source()); 1872 return success(); 1873 } 1874 }; 1875 1876 // Fold CastOp into PadOp when adding static information. 1877 struct FoldSourceTensorCast : public OpRewritePattern<PadOp> { 1878 using OpRewritePattern<PadOp>::OpRewritePattern; 1879 1880 LogicalResult matchAndRewrite(PadOp padTensorOp, 1881 PatternRewriter &rewriter) const override { 1882 auto castOp = padTensorOp.source().getDefiningOp<tensor::CastOp>(); 1883 if (!tensor::canFoldIntoConsumerOp(castOp)) 1884 return failure(); 1885 1886 auto newResultType = PadOp::inferResultType( 1887 castOp.source().getType().cast<RankedTensorType>(), 1888 extractFromI64ArrayAttr(padTensorOp.static_low()), 1889 extractFromI64ArrayAttr(padTensorOp.static_high()), 1890 padTensorOp.getResultType().getShape()); 1891 1892 if (newResultType == padTensorOp.getResultType()) { 1893 rewriter.updateRootInPlace(padTensorOp, [&]() { 1894 padTensorOp.sourceMutable().assign(castOp.source()); 1895 }); 1896 } else { 1897 auto newOp = rewriter.create<PadOp>( 1898 padTensorOp->getLoc(), newResultType, padTensorOp.source(), 1899 padTensorOp.low(), padTensorOp.high(), padTensorOp.static_low(), 1900 padTensorOp.static_high(), padTensorOp.nofold()); 1901 BlockAndValueMapping mapper; 1902 padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper); 1903 1904 rewriter.replaceOpWithNewOp<tensor::CastOp>( 1905 padTensorOp, padTensorOp.getResultType(), newOp); 1906 } 1907 return success(); 1908 } 1909 }; 1910 1911 // Fold CastOp using the result of PadOp back into the latter if it adds 1912 // static information. 1913 struct FoldTargetTensorCast : public OpRewritePattern<PadOp> { 1914 using OpRewritePattern<PadOp>::OpRewritePattern; 1915 1916 LogicalResult matchAndRewrite(PadOp padTensorOp, 1917 PatternRewriter &rewriter) const override { 1918 if (!padTensorOp.result().hasOneUse()) 1919 return failure(); 1920 auto tensorCastOp = 1921 dyn_cast<tensor::CastOp>(*padTensorOp->getUsers().begin()); 1922 if (!tensorCastOp) 1923 return failure(); 1924 if (!tensor::preservesStaticInformation(padTensorOp.result().getType(), 1925 tensorCastOp.dest().getType())) 1926 return failure(); 1927 1928 auto replacementOp = rewriter.create<PadOp>( 1929 padTensorOp.getLoc(), tensorCastOp.dest().getType(), 1930 padTensorOp.source(), padTensorOp.low(), padTensorOp.high(), 1931 padTensorOp.static_low(), padTensorOp.static_high(), 1932 padTensorOp.nofold()); 1933 replacementOp.region().takeBody(padTensorOp.region()); 1934 1935 rewriter.replaceOp(padTensorOp, replacementOp.result()); 1936 rewriter.replaceOp(tensorCastOp, replacementOp.result()); 1937 return success(); 1938 } 1939 }; 1940 } // namespace 1941 1942 void PadOp::getCanonicalizationPatterns(RewritePatternSet &results, 1943 MLIRContext *context) { 1944 results 1945 .add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast>( 1946 context); 1947 } 1948 1949 /// Return the padding value of the PadOp if it constant. In this context, 1950 /// "constant" means an actual constant or "defined outside of the block". 1951 /// 1952 /// Values are considered constant in three cases: 1953 /// - A ConstantLike value. 1954 /// - A basic block argument from a different block. 1955 /// - A value defined outside of the block. 1956 /// 1957 /// If the padding value is not constant, an empty Value is returned. 1958 Value PadOp::getConstantPaddingValue() { 1959 auto yieldOp = dyn_cast<YieldOp>(getRegion().front().getTerminator()); 1960 if (!yieldOp) 1961 return {}; 1962 Value padValue = yieldOp.value(); 1963 // Check if yield value is a constant. 1964 if (matchPattern(padValue, m_Constant())) 1965 return padValue; 1966 // Check if yield value is defined inside the PadOp block. 1967 if (padValue.getParentBlock() == &getRegion().front()) 1968 return {}; 1969 // Else: Yield value defined outside of the PadOp block. 1970 return padValue; 1971 } 1972 1973 OpFoldResult PadOp::fold(ArrayRef<Attribute>) { 1974 if (getResultType().hasStaticShape() && getResultType() == getSourceType() && 1975 !nofold()) 1976 return source(); 1977 return {}; 1978 } 1979 1980 //===----------------------------------------------------------------------===// 1981 // SplatOp 1982 //===----------------------------------------------------------------------===// 1983 1984 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 1985 auto constOperand = operands.front(); 1986 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 1987 return {}; 1988 1989 // SplatElementsAttr::get treats single value for second arg as being a splat. 1990 return SplatElementsAttr::get(getType(), {constOperand}); 1991 } 1992 1993 //===----------------------------------------------------------------------===// 1994 // TableGen'd op method definitions 1995 //===----------------------------------------------------------------------===// 1996 1997 #define GET_OP_CLASSES 1998 #include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc" 1999