1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 10 #include "mlir/Dialect/StandardOps/Utils/Utils.h" 11 #include "mlir/Dialect/Tensor/IR/Tensor.h" 12 #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" 13 #include "mlir/Dialect/Utils/StaticValueUtils.h" 14 #include "mlir/IR/BlockAndValueMapping.h" 15 #include "mlir/IR/Builders.h" 16 #include "mlir/IR/BuiltinAttributeInterfaces.h" 17 #include "mlir/IR/Matchers.h" 18 #include "mlir/IR/PatternMatch.h" 19 #include "mlir/IR/TypeUtilities.h" 20 #include "llvm/ADT/STLExtras.h" 21 22 using namespace mlir; 23 using namespace mlir::tensor; 24 25 /// Materialize a single constant operation from a given attribute value with 26 /// the desired resultant type. 27 Operation *TensorDialect::materializeConstant(OpBuilder &builder, 28 Attribute value, Type type, 29 Location loc) { 30 if (arith::ConstantOp::isBuildableWith(value, type)) 31 return builder.create<arith::ConstantOp>(loc, value, type); 32 if (ConstantOp::isBuildableWith(value, type)) 33 return builder.create<ConstantOp>(loc, value, type); 34 return nullptr; 35 } 36 37 //===----------------------------------------------------------------------===// 38 // CastOp 39 //===----------------------------------------------------------------------===// 40 41 /// Returns true if `target` is a ranked tensor type that preserves static 42 /// information available in the `source` ranked tensor type. 43 bool mlir::tensor::preservesStaticInformation(Type source, Type target) { 44 auto sourceType = source.dyn_cast<RankedTensorType>(); 45 auto targetType = target.dyn_cast<RankedTensorType>(); 46 47 // Requires RankedTensorType. 48 if (!sourceType || !targetType) 49 return false; 50 51 // Requires same elemental type. 52 if (sourceType.getElementType() != targetType.getElementType()) 53 return false; 54 55 // Requires same rank. 56 if (sourceType.getRank() != targetType.getRank()) 57 return false; 58 59 // If cast is towards more static sizes along any dimension, don't fold. 60 for (auto t : llvm::zip(sourceType.getShape(), targetType.getShape())) { 61 if (!ShapedType::isDynamic(std::get<0>(t)) && 62 ShapedType::isDynamic(std::get<1>(t))) 63 return false; 64 } 65 66 return true; 67 } 68 69 /// Determines whether tensor::CastOp casts to a more dynamic version of the 70 /// source tensor. This is useful to fold a tensor.cast into a consuming op and 71 /// implement canonicalization patterns for ops in different dialects that may 72 /// consume the results of tensor.cast operations. Such foldable tensor.cast 73 /// operations are typically inserted as `slice` ops and are canonicalized, 74 /// to preserve the type compatibility of their uses. 75 /// 76 /// Returns true when all conditions are met: 77 /// 1. source and result are ranked tensors with same element type and rank. 78 /// 2. the tensor type has more static information than the result 79 /// 80 /// Example: 81 /// ```mlir 82 /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> 83 /// %2 = consumer %1 ... : tensor<?x?xf32> ... 84 /// ``` 85 /// 86 /// folds into: 87 /// 88 /// ```mlir 89 /// %2 = consumer %0 ... : tensor<8x16xf32> ... 90 /// ``` 91 bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) { 92 if (!castOp) 93 return false; 94 95 // Can fold if the source of cast has at least as much static information as 96 // its results. 97 return preservesStaticInformation(castOp.getType(), 98 castOp.source().getType()); 99 } 100 101 /// Performs folding of any operand of `op` if it comes from a tensor::CastOp 102 /// that can be folded. 103 LogicalResult mlir::tensor::foldTensorCast(Operation *op) { 104 bool folded = false; 105 for (OpOperand &operand : op->getOpOperands()) { 106 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 107 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 108 operand.set(castOp.getOperand()); 109 folded = true; 110 } 111 } 112 return success(folded); 113 } 114 115 bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 116 if (inputs.size() != 1 || outputs.size() != 1) 117 return false; 118 Type a = inputs.front(), b = outputs.front(); 119 auto aT = a.dyn_cast<TensorType>(); 120 auto bT = b.dyn_cast<TensorType>(); 121 if (!aT || !bT) 122 return false; 123 124 if (aT.getElementType() != bT.getElementType()) 125 return false; 126 127 return succeeded(verifyCompatibleShape(aT, bT)); 128 } 129 130 /// Compute a TensorType that has the joined shape knowledge of the two 131 /// given TensorTypes. The element types need to match. 132 static TensorType joinShapes(TensorType one, TensorType two) { 133 assert(one.getElementType() == two.getElementType()); 134 135 if (!one.hasRank()) 136 return two; 137 if (!two.hasRank()) 138 return one; 139 140 int64_t rank = one.getRank(); 141 if (rank != two.getRank()) 142 return {}; 143 144 SmallVector<int64_t, 4> join; 145 join.reserve(rank); 146 for (int64_t i = 0; i < rank; ++i) { 147 if (one.isDynamicDim(i)) { 148 join.push_back(two.getDimSize(i)); 149 continue; 150 } 151 if (two.isDynamicDim(i)) { 152 join.push_back(one.getDimSize(i)); 153 continue; 154 } 155 if (one.getDimSize(i) != two.getDimSize(i)) 156 return {}; 157 join.push_back(one.getDimSize(i)); 158 } 159 return RankedTensorType::get(join, one.getElementType()); 160 } 161 162 namespace { 163 164 /// Replaces chains of two tensor.cast operations by a single tensor.cast 165 /// operation if doing so does not remove runtime constraints. 166 struct ChainedTensorCast : public OpRewritePattern<CastOp> { 167 using OpRewritePattern<CastOp>::OpRewritePattern; 168 169 LogicalResult matchAndRewrite(CastOp tensorCast, 170 PatternRewriter &rewriter) const final { 171 auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>(); 172 173 if (!tensorCastOperand) 174 return failure(); 175 176 auto sourceType = 177 tensorCastOperand.getOperand().getType().cast<TensorType>(); 178 auto intermediateType = tensorCastOperand.getType().cast<TensorType>(); 179 auto resultType = tensorCast.getType().cast<TensorType>(); 180 181 // We can remove the intermediate cast if joining all three produces the 182 // same result as just joining the source and result shapes. 183 auto firstJoin = 184 joinShapes(joinShapes(sourceType, intermediateType), resultType); 185 186 // The join might not exist if the cast sequence would fail at runtime. 187 if (!firstJoin) 188 return failure(); 189 190 // The newJoin always exists if the above join exists, it might just contain 191 // less information. If so, we cannot drop the intermediate cast, as doing 192 // so would remove runtime checks. 193 auto newJoin = joinShapes(sourceType, resultType); 194 if (firstJoin != newJoin) 195 return failure(); 196 197 rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType, 198 tensorCastOperand.getOperand()); 199 return success(); 200 } 201 }; 202 203 } // namespace 204 205 void CastOp::getCanonicalizationPatterns(RewritePatternSet &results, 206 MLIRContext *context) { 207 results.add<ChainedTensorCast>(context); 208 } 209 210 //===----------------------------------------------------------------------===// 211 // DimOp 212 //===----------------------------------------------------------------------===// 213 214 void DimOp::build(OpBuilder &builder, OperationState &result, Value source, 215 int64_t index) { 216 auto loc = result.location; 217 Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index); 218 build(builder, result, source, indexValue); 219 } 220 221 Optional<int64_t> DimOp::getConstantIndex() { 222 if (auto constantOp = index().getDefiningOp<arith::ConstantOp>()) 223 return constantOp.getValue().cast<IntegerAttr>().getInt(); 224 return {}; 225 } 226 227 static LogicalResult verify(DimOp op) { 228 // Assume unknown index to be in range. 229 Optional<int64_t> index = op.getConstantIndex(); 230 if (!index.hasValue()) 231 return success(); 232 233 // Check that constant index is not knowingly out of range. 234 auto type = op.source().getType(); 235 if (auto tensorType = type.dyn_cast<RankedTensorType>()) { 236 if (index.getValue() >= tensorType.getRank()) 237 return op.emitOpError("index is out of range"); 238 } else if (type.isa<UnrankedTensorType>()) { 239 // Assume index to be in range. 240 } else { 241 llvm_unreachable("expected operand with tensor type"); 242 } 243 return success(); 244 } 245 246 OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) { 247 // All forms of folding require a known index. 248 auto index = operands[1].dyn_cast_or_null<IntegerAttr>(); 249 if (!index) 250 return {}; 251 252 // Folding for unranked types (UnrankedTensorType) is not supported. 253 auto tensorType = source().getType().dyn_cast<RankedTensorType>(); 254 if (!tensorType) 255 return {}; 256 257 // Fold if the shape extent along the given index is known. 258 if (!tensorType.isDynamicDim(index.getInt())) { 259 Builder builder(getContext()); 260 return builder.getIndexAttr(tensorType.getShape()[index.getInt()]); 261 } 262 263 Operation *definingOp = source().getDefiningOp(); 264 265 // Fold dim to the operand of tensor.generate. 266 if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) { 267 auto resultType = 268 fromElements.getResult().getType().cast<RankedTensorType>(); 269 // The case where the type encodes the size of the dimension is handled 270 // above. 271 assert(ShapedType::isDynamic(resultType.getShape()[index.getInt()])); 272 273 // Find the operand of the fromElements that corresponds to this index. 274 auto dynExtents = fromElements.dynamicExtents().begin(); 275 for (auto dim : resultType.getShape().take_front(index.getInt())) 276 if (ShapedType::isDynamic(dim)) 277 dynExtents++; 278 279 return Value{*dynExtents}; 280 } 281 282 // The size at the given index is now known to be a dynamic size. 283 unsigned unsignedIndex = index.getValue().getZExtValue(); 284 285 if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) { 286 // Fold only for non-rank reduced ops. For the rank-reduced version, rely on 287 // `resolve-shaped-type-result-dims` pass. 288 if (sliceOp.getType().getRank() == sliceOp.getSourceType().getRank() && 289 sliceOp.isDynamicSize(unsignedIndex)) { 290 return {sliceOp.getDynamicSize(unsignedIndex)}; 291 } 292 } 293 294 // dim(cast) -> dim 295 if (succeeded(foldTensorCast(*this))) 296 return getResult(); 297 298 return {}; 299 } 300 301 namespace { 302 /// Fold dim of a cast into the dim of the source of the tensor cast. 303 struct DimOfCastOp : public OpRewritePattern<DimOp> { 304 using OpRewritePattern<DimOp>::OpRewritePattern; 305 306 LogicalResult matchAndRewrite(DimOp dimOp, 307 PatternRewriter &rewriter) const override { 308 auto castOp = dimOp.source().getDefiningOp<CastOp>(); 309 if (!castOp) 310 return failure(); 311 Value newSource = castOp.getOperand(); 312 rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.index()); 313 return success(); 314 } 315 }; 316 } // namespace 317 318 void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, 319 MLIRContext *context) { 320 results.add<DimOfCastOp>(context); 321 } 322 323 //===----------------------------------------------------------------------===// 324 // ExtractOp 325 //===----------------------------------------------------------------------===// 326 327 static LogicalResult verify(ExtractOp op) { 328 // Verify the # indices match if we have a ranked type. 329 if (auto tensorType = op.tensor().getType().dyn_cast<RankedTensorType>()) 330 if (tensorType.getRank() != static_cast<int64_t>(op.indices().size())) 331 return op.emitOpError("incorrect number of indices for extract_element"); 332 333 return success(); 334 } 335 336 OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) { 337 // The tensor operand must be a known constant. 338 Attribute tensor = operands.front(); 339 if (!tensor) 340 return {}; 341 // If this is a splat elements attribute, simply return the value. All of the 342 // elements of a splat attribute are the same. 343 if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>()) 344 return splatTensor.getSplatValue<Attribute>(); 345 346 // Otherwise, collect the constant indices into the tensor. 347 SmallVector<uint64_t, 8> indices; 348 for (Attribute indice : llvm::drop_begin(operands, 1)) { 349 if (!indice || !indice.isa<IntegerAttr>()) 350 return {}; 351 indices.push_back(indice.cast<IntegerAttr>().getInt()); 352 } 353 354 // If this is an elements attribute, query the value at the given indices. 355 auto elementsAttr = tensor.dyn_cast<ElementsAttr>(); 356 if (elementsAttr && elementsAttr.isValidIndex(indices)) 357 return elementsAttr.getValues<Attribute>()[indices]; 358 return {}; 359 } 360 361 //===----------------------------------------------------------------------===// 362 // FromElementsOp 363 //===----------------------------------------------------------------------===// 364 365 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 366 Type resultType, ValueRange elements) { 367 result.addOperands(elements); 368 result.addTypes(resultType); 369 } 370 371 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 372 ValueRange elements) { 373 assert(!elements.empty() && "expected at least one element"); 374 Type resultType = RankedTensorType::get( 375 {static_cast<int64_t>(elements.size())}, elements.front().getType()); 376 build(builder, result, resultType, elements); 377 } 378 379 OpFoldResult FromElementsOp::fold(ArrayRef<Attribute> operands) { 380 if (!llvm::is_contained(operands, nullptr)) 381 return DenseElementsAttr::get(getType(), operands); 382 return {}; 383 } 384 385 namespace { 386 387 // Canonicalizes the pattern of the form 388 // 389 // %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32> 390 // %extracted_element = tensor.extract %tensor[%c0] : tensor<1xi32> 391 // 392 // to just %element. 393 struct ExtractElementFromTensorFromElements 394 : public OpRewritePattern<tensor::ExtractOp> { 395 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 396 397 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 398 PatternRewriter &rewriter) const final { 399 auto tensorFromElements = extract.tensor().getDefiningOp<FromElementsOp>(); 400 if (!tensorFromElements) 401 return failure(); 402 auto tensorType = tensorFromElements.getType().cast<RankedTensorType>(); 403 auto rank = tensorType.getRank(); 404 if (rank == 0) { 405 rewriter.replaceOp(extract, tensorFromElements.getOperand(0)); 406 return success(); 407 } 408 SmallVector<APInt, 3> indices(rank); 409 int64_t flatIndex = 0; 410 int64_t stride = 1; 411 for (int i = rank - 1; i >= 0; --i) { 412 APInt index; 413 if (!matchPattern(extract.indices()[i], m_ConstantInt(&index))) 414 return failure(); 415 if (i < rank - 1) 416 stride *= tensorType.getDimSize(i); 417 flatIndex += index.getSExtValue() * stride; 418 } 419 // Prevent out of bounds accesses. This can happen in invalid code that will 420 // never execute. 421 if (tensorFromElements->getNumOperands() <= flatIndex || flatIndex < 0) 422 return failure(); 423 rewriter.replaceOp(extract, tensorFromElements.getOperand(flatIndex)); 424 return success(); 425 } 426 }; 427 428 } // namespace 429 430 void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results, 431 MLIRContext *context) { 432 results.add<ExtractElementFromTensorFromElements>(context); 433 } 434 435 //===----------------------------------------------------------------------===// 436 // InsertOp 437 //===----------------------------------------------------------------------===// 438 439 static LogicalResult verify(InsertOp op) { 440 // Verify the # indices match if we have a ranked type. 441 if (auto destType = op.dest().getType().dyn_cast<RankedTensorType>()) 442 if (destType.getRank() != static_cast<int64_t>(op.indices().size())) 443 return op.emitOpError("incorrect number of indices"); 444 return success(); 445 } 446 447 OpFoldResult InsertOp::fold(ArrayRef<Attribute> operands) { 448 Attribute scalar = operands[0]; 449 Attribute dest = operands[1]; 450 if (scalar && dest) 451 if (auto splatDest = dest.dyn_cast<SplatElementsAttr>()) 452 if (scalar == splatDest.getSplatValue<Attribute>()) 453 return dest; 454 return {}; 455 } 456 457 //===----------------------------------------------------------------------===// 458 // GenerateOp 459 //===----------------------------------------------------------------------===// 460 461 static LogicalResult verify(GenerateOp op) { 462 // Ensure that the tensor type has as many dynamic dimensions as are specified 463 // by the operands. 464 RankedTensorType resultTy = op.getType().cast<RankedTensorType>(); 465 if (op.getNumOperands() != resultTy.getNumDynamicDims()) 466 return op.emitError("must have as many index operands as dynamic extents " 467 "in the result type"); 468 469 // Ensure that region arguments span the index space. 470 if (!llvm::all_of(op.body().getArgumentTypes(), 471 [](Type ty) { return ty.isIndex(); })) 472 return op.emitError("all body arguments must be index"); 473 if (op.body().getNumArguments() != resultTy.getRank()) 474 return op.emitError("must have one body argument per input dimension"); 475 476 // Ensure that the region yields an element of the right type. 477 auto yieldOp = 478 llvm::cast<YieldOp>(op.body().getBlocks().front().getTerminator()); 479 480 if (yieldOp.value().getType() != resultTy.getElementType()) 481 return op.emitOpError( 482 "body must be terminated with a `yield` operation of the tensor " 483 "element type"); 484 485 return success(); 486 } 487 488 void GenerateOp::build( 489 OpBuilder &b, OperationState &result, Type resultTy, 490 ValueRange dynamicExtents, 491 function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) { 492 build(b, result, resultTy, dynamicExtents); 493 494 // Build and populate body. 495 OpBuilder::InsertionGuard guard(b); 496 Region *bodyRegion = result.regions.front().get(); 497 auto rank = resultTy.cast<RankedTensorType>().getRank(); 498 SmallVector<Type, 2> argumentTypes(rank, b.getIndexType()); 499 SmallVector<Location, 2> argumentLocs(rank, result.location); 500 Block *bodyBlock = 501 b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes, argumentLocs); 502 bodyBuilder(b, result.location, bodyBlock->getArguments()); 503 } 504 505 namespace { 506 507 /// Canonicalizes tensor.generate operations with a constant 508 /// operand into the equivalent operation with the operand expressed in the 509 /// result type, instead. We also insert a type cast to make sure that the 510 /// resulting IR is still well-typed. 511 struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> { 512 using OpRewritePattern<GenerateOp>::OpRewritePattern; 513 514 LogicalResult matchAndRewrite(GenerateOp tensorFromElements, 515 PatternRewriter &rewriter) const final { 516 auto resultType = 517 tensorFromElements.getResult().getType().cast<RankedTensorType>(); 518 519 if (resultType.hasStaticShape()) 520 return failure(); 521 522 SmallVector<Value, 4> newOperands; 523 SmallVector<int64_t, 4> newShape; 524 auto operandsIt = tensorFromElements.dynamicExtents().begin(); 525 526 for (int64_t dim : resultType.getShape()) { 527 if (!ShapedType::isDynamic(dim)) { 528 newShape.push_back(dim); 529 continue; 530 } 531 APInt index; 532 if (!matchPattern(*operandsIt, m_ConstantInt(&index))) { 533 newShape.push_back(ShapedType::kDynamicSize); 534 newOperands.push_back(*operandsIt++); 535 continue; 536 } 537 newShape.push_back(index.getSExtValue()); 538 operandsIt++; 539 } 540 541 if (newOperands.size() == tensorFromElements.dynamicExtents().size()) 542 return failure(); 543 544 auto loc = tensorFromElements.getLoc(); 545 auto newOp = rewriter.create<GenerateOp>( 546 loc, RankedTensorType::get(newShape, resultType.getElementType()), 547 newOperands); 548 rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(), 549 newOp.body().begin()); 550 rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType, 551 newOp); 552 return success(); 553 } 554 }; 555 556 /// Canonicalizes the pattern of the form 557 /// 558 /// %tensor = tensor.generate %x { 559 /// ^bb0(%arg0: index): 560 /// <computation> 561 /// yield %1 : index 562 /// } : tensor<?xindex> 563 /// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32> 564 /// 565 /// to just <computation> with %arg0 replaced by %c0. We only do this if the 566 /// tensor.generate operation has no side-effects. 567 struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> { 568 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 569 570 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 571 PatternRewriter &rewriter) const final { 572 auto tensorFromElements = extract.tensor().getDefiningOp<GenerateOp>(); 573 if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements)) 574 return failure(); 575 576 BlockAndValueMapping mapping; 577 Block *body = tensorFromElements.getBody(); 578 mapping.map(body->getArguments(), extract.indices()); 579 for (auto &op : body->without_terminator()) 580 rewriter.clone(op, mapping); 581 582 auto yield = cast<YieldOp>(body->getTerminator()); 583 584 rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value())); 585 return success(); 586 } 587 }; 588 589 /// Canonicalizes the pattern of the form 590 /// 591 /// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32> 592 /// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32> 593 /// 594 /// to 595 /// 596 /// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32> 597 struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> { 598 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 599 600 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 601 PatternRewriter &rewriter) const final { 602 auto tensorCast = extract.tensor().getDefiningOp<tensor::CastOp>(); 603 if (!tensorCast) 604 return failure(); 605 606 rewriter.replaceOpWithNewOp<tensor::ExtractOp>(extract, tensorCast.source(), 607 extract.indices()); 608 return success(); 609 } 610 }; 611 612 } // namespace 613 614 void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results, 615 MLIRContext *context) { 616 // TODO: Move extract patterns to tensor::ExtractOp. 617 results.add<ExtractFromTensorGenerate, ExtractFromTensorCast, 618 StaticTensorGenerate>(context); 619 } 620 621 //===----------------------------------------------------------------------===// 622 // RankOp 623 //===----------------------------------------------------------------------===// 624 625 OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) { 626 // Constant fold rank when the rank of the operand is known. 627 auto type = getOperand().getType(); 628 auto shapedType = type.dyn_cast<ShapedType>(); 629 if (shapedType && shapedType.hasRank()) 630 return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank()); 631 return IntegerAttr(); 632 } 633 634 //===----------------------------------------------------------------------===// 635 // ReshapeOp 636 //===----------------------------------------------------------------------===// 637 638 static int64_t getNumElements(ShapedType type) { 639 int64_t numElements = 1; 640 for (auto dim : type.getShape()) 641 numElements *= dim; 642 return numElements; 643 } 644 645 static LogicalResult verify(ReshapeOp op) { 646 TensorType operandType = op.source().getType().cast<TensorType>(); 647 TensorType resultType = op.result().getType().cast<TensorType>(); 648 649 if (operandType.getElementType() != resultType.getElementType()) 650 return op.emitOpError("element types of source and destination tensor " 651 "types should be the same"); 652 653 int64_t shapeSize = 654 op.shape().getType().cast<RankedTensorType>().getDimSize(0); 655 auto resultRankedType = resultType.dyn_cast<RankedTensorType>(); 656 auto operandRankedType = operandType.dyn_cast<RankedTensorType>(); 657 658 if (resultRankedType) { 659 if (operandRankedType && resultRankedType.hasStaticShape() && 660 operandRankedType.hasStaticShape()) { 661 if (getNumElements(operandRankedType) != getNumElements(resultRankedType)) 662 return op.emitOpError("source and destination tensor should have the " 663 "same number of elements"); 664 } 665 if (ShapedType::isDynamic(shapeSize)) 666 return op.emitOpError("cannot use shape operand with dynamic length to " 667 "reshape to statically-ranked tensor type"); 668 if (shapeSize != resultRankedType.getRank()) 669 return op.emitOpError( 670 "length of shape operand differs from the result's tensor rank"); 671 } 672 return success(); 673 } 674 675 //===----------------------------------------------------------------------===// 676 // Reassociative reshape ops 677 //===----------------------------------------------------------------------===// 678 679 SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() { 680 return getSymbolLessAffineMaps(getReassociationExprs()); 681 } 682 SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() { 683 return convertReassociationIndicesToExprs(getContext(), 684 getReassociationIndices()); 685 } 686 687 SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() { 688 return getSymbolLessAffineMaps(getReassociationExprs()); 689 } 690 SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() { 691 return convertReassociationIndicesToExprs(getContext(), 692 getReassociationIndices()); 693 } 694 695 static void print(OpAsmPrinter &p, ExpandShapeOp op) { 696 ::mlir::printReshapeOp<ExpandShapeOp>(p, op); 697 } 698 699 static void print(OpAsmPrinter &p, CollapseShapeOp op) { 700 ::mlir::printReshapeOp<CollapseShapeOp>(p, op); 701 } 702 703 /// Compute the RankedTensorType obtained by applying `reassociation` to `type`. 704 static RankedTensorType 705 computeTensorReshapeCollapsedType(RankedTensorType type, 706 ArrayRef<AffineMap> reassociation) { 707 auto shape = type.getShape(); 708 SmallVector<int64_t, 4> newShape; 709 newShape.reserve(reassociation.size()); 710 711 // Use the fact that reassociation is valid to simplify the logic: only use 712 // each map's rank. 713 assert(isReassociationValid(reassociation) && "invalid reassociation"); 714 unsigned currentDim = 0; 715 for (AffineMap m : reassociation) { 716 unsigned dim = m.getNumResults(); 717 auto band = shape.slice(currentDim, dim); 718 int64_t size = 1; 719 if (llvm::is_contained(band, ShapedType::kDynamicSize)) 720 size = ShapedType::kDynamicSize; 721 else 722 for (unsigned d = 0; d < dim; ++d) 723 size *= shape[currentDim + d]; 724 newShape.push_back(size); 725 currentDim += dim; 726 } 727 728 return RankedTensorType::get(newShape, type.getElementType()); 729 } 730 731 void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src, 732 ArrayRef<ReassociationIndices> reassociation, 733 ArrayRef<NamedAttribute> attrs) { 734 auto resultType = computeTensorReshapeCollapsedType( 735 src.getType().cast<RankedTensorType>(), 736 getSymbolLessAffineMaps( 737 convertReassociationIndicesToExprs(b.getContext(), reassociation))); 738 build(b, result, resultType, src, attrs); 739 result.addAttribute(getReassociationAttrName(), 740 getReassociationIndicesAttribute(b, reassociation)); 741 } 742 743 void ExpandShapeOp::build(OpBuilder &b, OperationState &result, Value src, 744 ArrayRef<ReassociationIndices> reassociation, 745 ArrayRef<NamedAttribute> attrs) { 746 auto resultType = computeTensorReshapeCollapsedType( 747 src.getType().cast<RankedTensorType>(), 748 getSymbolLessAffineMaps( 749 convertReassociationIndicesToExprs(b.getContext(), reassociation))); 750 build(b, result, resultType, src, attrs); 751 result.addAttribute(getReassociationAttrName(), 752 getReassociationIndicesAttribute(b, reassociation)); 753 } 754 755 template <typename TensorReshapeOp, bool isExpansion = std::is_same< 756 TensorReshapeOp, ExpandShapeOp>::value> 757 static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op, 758 RankedTensorType expandedType, 759 RankedTensorType collapsedType) { 760 if (failed( 761 verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion))) 762 return failure(); 763 764 auto maps = op.getReassociationMaps(); 765 RankedTensorType expectedType = 766 computeTensorReshapeCollapsedType(expandedType, maps); 767 if (collapsedType != expectedType) 768 return op.emitOpError("expected collapsed type to be ") 769 << expectedType << ", but got " << collapsedType; 770 return success(); 771 } 772 773 static LogicalResult verify(ExpandShapeOp op) { 774 return verifyTensorReshapeOp(op, op.getResultType(), op.getSrcType()); 775 } 776 777 static LogicalResult verify(CollapseShapeOp op) { 778 return verifyTensorReshapeOp(op, op.getSrcType(), op.getResultType()); 779 } 780 781 namespace { 782 /// Reshape of a splat constant can be replaced with a constant of the result 783 /// type. 784 template <typename TensorReshapeOp> 785 struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> { 786 using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; 787 LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, 788 PatternRewriter &rewriter) const override { 789 DenseElementsAttr attr; 790 if (!matchPattern(reshapeOp.src(), m_Constant(&attr))) 791 return failure(); 792 if (!attr || !attr.isSplat()) 793 return failure(); 794 DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer( 795 reshapeOp.getResultType(), attr.getRawData(), true); 796 rewriter.replaceOpWithNewOp<arith::ConstantOp>(reshapeOp, newAttr); 797 return success(); 798 } 799 }; 800 801 } // namespace 802 803 void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 804 MLIRContext *context) { 805 results.add<CollapseReshapeOps<ExpandShapeOp>, 806 CollapseMixedReshapeOps<ExpandShapeOp, CollapseShapeOp>, 807 FoldReshapeWithConstant<ExpandShapeOp>>(context); 808 } 809 810 void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 811 MLIRContext *context) { 812 results.add<CollapseReshapeOps<CollapseShapeOp>, 813 CollapseMixedReshapeOps<CollapseShapeOp, ExpandShapeOp>, 814 FoldReshapeWithConstant<CollapseShapeOp>>(context); 815 } 816 817 OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) { 818 return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands); 819 } 820 OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) { 821 return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands); 822 } 823 824 //===----------------------------------------------------------------------===// 825 // ExtractSliceOp 826 //===----------------------------------------------------------------------===// 827 828 /// An extract_slice op result type can be fully inferred from the source type 829 /// and the static representation of offsets, sizes and strides. Special 830 /// sentinels encode the dynamic case. 831 RankedTensorType ExtractSliceOp::inferResultType( 832 RankedTensorType sourceRankedTensorType, ArrayRef<int64_t> staticOffsets, 833 ArrayRef<int64_t> staticSizes, ArrayRef<int64_t> staticStrides) { 834 // An extract_slice op may specify only a leading subset of offset/sizes/ 835 // strides in which case we complete with offset=0, sizes from memref type and 836 // strides=1. 837 unsigned rank = sourceRankedTensorType.getRank(); 838 (void)rank; 839 assert(staticSizes.size() == rank && 840 "unexpected staticSizes not equal to rank of source"); 841 return RankedTensorType::get(staticSizes, 842 sourceRankedTensorType.getElementType()); 843 } 844 845 RankedTensorType ExtractSliceOp::inferResultType( 846 RankedTensorType sourceRankedTensorType, ArrayRef<OpFoldResult> offsets, 847 ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) { 848 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 849 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 850 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 851 ShapedType::kDynamicStrideOrOffset); 852 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 853 ShapedType::kDynamicSize); 854 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 855 ShapedType::kDynamicStrideOrOffset); 856 return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, 857 staticSizes, staticStrides); 858 } 859 860 /// An extract_slice op result type can be fully inferred from the source type 861 /// and the static representation of offsets, sizes and strides. Special 862 /// sentinels encode the dynamic case. 863 RankedTensorType ExtractSliceOp::inferRankReducedResultType( 864 unsigned resultRank, RankedTensorType sourceRankedTensorType, 865 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, 866 ArrayRef<int64_t> strides) { 867 auto inferredType = 868 inferResultType(sourceRankedTensorType, offsets, sizes, strides) 869 .cast<RankedTensorType>(); 870 int rankDiff = inferredType.getRank() - resultRank; 871 if (rankDiff > 0) { 872 auto shape = inferredType.getShape(); 873 llvm::SmallDenseSet<unsigned> dimsToProject; 874 mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject); 875 SmallVector<int64_t> projectedShape; 876 for (unsigned pos = 0, e = shape.size(); pos < e; ++pos) 877 if (!dimsToProject.contains(pos)) 878 projectedShape.push_back(shape[pos]); 879 inferredType = 880 RankedTensorType::get(projectedShape, inferredType.getElementType()); 881 } 882 return inferredType; 883 } 884 885 RankedTensorType ExtractSliceOp::inferRankReducedResultType( 886 unsigned resultRank, RankedTensorType sourceRankedTensorType, 887 ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes, 888 ArrayRef<OpFoldResult> strides) { 889 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 890 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 891 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 892 ShapedType::kDynamicStrideOrOffset); 893 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 894 ShapedType::kDynamicSize); 895 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 896 ShapedType::kDynamicStrideOrOffset); 897 return ExtractSliceOp::inferRankReducedResultType( 898 resultRank, sourceRankedTensorType, staticOffsets, staticSizes, 899 staticStrides); 900 } 901 902 /// Build an ExtractSliceOp with mixed static and dynamic entries and custom 903 /// result type. If the type passed is nullptr, it is inferred. 904 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, 905 RankedTensorType resultType, Value source, 906 ArrayRef<OpFoldResult> offsets, 907 ArrayRef<OpFoldResult> sizes, 908 ArrayRef<OpFoldResult> strides, 909 ArrayRef<NamedAttribute> attrs) { 910 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 911 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 912 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 913 ShapedType::kDynamicStrideOrOffset); 914 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 915 ShapedType::kDynamicSize); 916 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 917 ShapedType::kDynamicStrideOrOffset); 918 auto sourceRankedTensorType = source.getType().cast<RankedTensorType>(); 919 // Structuring implementation this way avoids duplication between builders. 920 if (!resultType) { 921 resultType = 922 ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, 923 staticSizes, staticStrides) 924 .cast<RankedTensorType>(); 925 } 926 build(b, result, resultType, source, dynamicOffsets, dynamicSizes, 927 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 928 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 929 result.addAttributes(attrs); 930 } 931 932 /// Build an ExtractSliceOp with mixed static and dynamic entries and inferred 933 /// result type. 934 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, 935 ArrayRef<OpFoldResult> offsets, 936 ArrayRef<OpFoldResult> sizes, 937 ArrayRef<OpFoldResult> strides, 938 ArrayRef<NamedAttribute> attrs) { 939 build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); 940 } 941 942 /// Build an ExtractSliceOp with dynamic entries and custom result type. If the 943 /// type passed is nullptr, it is inferred. 944 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, 945 RankedTensorType resultType, Value source, 946 ValueRange offsets, ValueRange sizes, 947 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 948 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 949 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 950 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 951 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 952 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 953 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 954 build(b, result, resultType, source, offsetValues, sizeValues, strideValues); 955 } 956 957 /// Build an ExtractSliceOp with dynamic entries and inferred result type. 958 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, 959 ValueRange offsets, ValueRange sizes, 960 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 961 build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); 962 } 963 964 template <typename OpTy> 965 static LogicalResult produceSliceErrorMsg(SliceVerificationResult result, 966 OpTy op, Type expectedType) { 967 auto memrefType = expectedType.cast<ShapedType>(); 968 switch (result) { 969 case SliceVerificationResult::Success: 970 return success(); 971 case SliceVerificationResult::RankTooLarge: 972 return op.emitError("expected rank to be smaller or equal to ") 973 << "the other rank. "; 974 case SliceVerificationResult::SizeMismatch: 975 return op.emitError("expected type to be ") 976 << expectedType << " or a rank-reduced version. (size mismatch) "; 977 case SliceVerificationResult::ElemTypeMismatch: 978 return op.emitError("expected element type to be ") 979 << memrefType.getElementType(); 980 default: 981 llvm_unreachable("unexpected extract_slice op verification result"); 982 } 983 } 984 985 /// Verifier for ExtractSliceOp. 986 static LogicalResult verify(ExtractSliceOp op) { 987 // Verify result type against inferred type. 988 auto expectedType = 989 ExtractSliceOp::inferResultType(op.getSourceType(), op.getMixedOffsets(), 990 op.getMixedSizes(), op.getMixedStrides()); 991 auto result = 992 isRankReducedType(expectedType.cast<ShapedType>(), op.getType()); 993 return produceSliceErrorMsg(result, op, expectedType); 994 } 995 996 /// Infer the canonical type of the result of an extract_slice op. Returns a 997 /// type with rank `resultRank` that is either the rank of the rank-reduced 998 /// type, or the non-rank-reduced type. 999 static RankedTensorType 1000 getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType, 1001 ArrayRef<OpFoldResult> mixedOffsets, 1002 ArrayRef<OpFoldResult> mixedSizes, 1003 ArrayRef<OpFoldResult> mixedStrides) { 1004 auto resultType = 1005 ExtractSliceOp::inferRankReducedResultType( 1006 resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides) 1007 .cast<RankedTensorType>(); 1008 if (resultType.getRank() != resultRank) { 1009 resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets, 1010 mixedSizes, mixedStrides) 1011 .cast<RankedTensorType>(); 1012 } 1013 return resultType; 1014 } 1015 1016 llvm::SmallDenseSet<unsigned> ExtractSliceOp::getDroppedDims() { 1017 llvm::SmallDenseSet<unsigned> droppedDims; 1018 ArrayRef<int64_t> resultShape = getType().getShape(); 1019 SmallVector<OpFoldResult> mixedSizes = getMixedSizes(); 1020 unsigned shapePos = 0; 1021 for (const auto &size : enumerate(mixedSizes)) { 1022 Optional<int64_t> sizeVal = getConstantIntValue(size.value()); 1023 // If the size is not 1, or if the current matched dimension of the result 1024 // is the same static shape as the size value (which is 1), then the 1025 // dimension is preserved. 1026 if (!sizeVal || sizeVal.getValue() != 1 || 1027 (shapePos < resultShape.size() && resultShape[shapePos] == 1)) { 1028 shapePos++; 1029 continue; 1030 } 1031 droppedDims.insert(size.index()); 1032 } 1033 return droppedDims; 1034 } 1035 1036 LogicalResult ExtractSliceOp::reifyResultShapes( 1037 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 1038 reifiedReturnShapes.resize(1); 1039 reifiedReturnShapes[0].reserve(getType().getRank()); 1040 SmallVector<OpFoldResult> mixedSizes = getMixedSizes(); 1041 llvm::SmallDenseSet<unsigned> droppedDims = getDroppedDims(); 1042 Location loc = getLoc(); 1043 for (const auto &size : enumerate(mixedSizes)) { 1044 if (droppedDims.count(size.index())) 1045 continue; 1046 if (auto attr = size.value().dyn_cast<Attribute>()) { 1047 reifiedReturnShapes[0].push_back(builder.create<arith::ConstantIndexOp>( 1048 loc, attr.cast<IntegerAttr>().getInt())); 1049 continue; 1050 } 1051 reifiedReturnShapes[0].push_back(size.value().get<Value>()); 1052 } 1053 return success(); 1054 } 1055 1056 namespace { 1057 /// Pattern to rewrite an extract_slice op with tensor::Cast arguments. 1058 /// This essentially pushes memref_cast past its consuming slice when 1059 /// `canFoldIntoConsumerOp` is true. 1060 /// 1061 /// Example: 1062 /// ``` 1063 /// %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32> 1064 /// %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to 1065 /// tensor<3x4xf32> 1066 /// ``` 1067 /// is rewritten into: 1068 /// ``` 1069 /// %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to 1070 /// tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32> 1071 /// ``` 1072 class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> { 1073 public: 1074 using OpRewritePattern<ExtractSliceOp>::OpRewritePattern; 1075 1076 LogicalResult matchAndRewrite(ExtractSliceOp sliceOp, 1077 PatternRewriter &rewriter) const override { 1078 // Any constant operand, just return to let SubViewOpConstantFolder kick in. 1079 if (llvm::any_of(sliceOp.getOperands(), [](Value operand) { 1080 return matchPattern(operand, matchConstantIndex()); 1081 })) 1082 return failure(); 1083 1084 auto castOp = sliceOp.source().getDefiningOp<tensor::CastOp>(); 1085 if (!castOp) 1086 return failure(); 1087 1088 if (!canFoldIntoConsumerOp(castOp)) 1089 return failure(); 1090 1091 /// Deduce the type of the result to use for the canonicalized operation. 1092 RankedTensorType resultType = getCanonicalSliceResultType( 1093 sliceOp.getType().getRank(), sliceOp.getSourceType(), 1094 sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(), 1095 sliceOp.getMixedStrides()); 1096 Value newSlice = rewriter.create<ExtractSliceOp>( 1097 sliceOp.getLoc(), resultType, castOp.source(), sliceOp.offsets(), 1098 sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(), 1099 sliceOp.static_sizes(), sliceOp.static_strides()); 1100 rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(), 1101 newSlice); 1102 return success(); 1103 } 1104 }; 1105 } // namespace 1106 1107 /// Return the canonical type of the result of an extract_slice op. 1108 struct SliceReturnTypeCanonicalizer { 1109 RankedTensorType operator()(ExtractSliceOp op, 1110 ArrayRef<OpFoldResult> mixedOffsets, 1111 ArrayRef<OpFoldResult> mixedSizes, 1112 ArrayRef<OpFoldResult> mixedStrides) { 1113 return getCanonicalSliceResultType(op.getType().getRank(), 1114 op.getSourceType(), mixedOffsets, 1115 mixedSizes, mixedStrides); 1116 } 1117 }; 1118 1119 /// A canonicalizer wrapper to replace ExtractSliceOps. 1120 struct SliceCanonicalizer { 1121 void operator()(PatternRewriter &rewriter, ExtractSliceOp op, 1122 ExtractSliceOp newOp) { 1123 Value replacement = newOp.getResult(); 1124 if (replacement.getType() != op.getType()) 1125 replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(), 1126 replacement); 1127 rewriter.replaceOp(op, replacement); 1128 } 1129 }; 1130 1131 void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, 1132 MLIRContext *context) { 1133 results.add< 1134 OpWithOffsetSizesAndStridesConstantArgumentFolder< 1135 ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>, 1136 ExtractSliceOpCastFolder>(context); 1137 } 1138 1139 // 1140 static LogicalResult 1141 foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op, 1142 ShapedType shapedType) { 1143 OpBuilder b(op.getContext()); 1144 for (OpFoldResult ofr : op.getMixedOffsets()) 1145 if (getConstantIntValue(ofr) != static_cast<int64_t>(0)) 1146 return failure(); 1147 // Rank-reducing noops only need to inspect the leading dimensions: llvm::zip 1148 // is appropriate. 1149 auto shape = shapedType.getShape(); 1150 for (auto it : llvm::zip(op.getMixedSizes(), shape)) 1151 if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it)) 1152 return failure(); 1153 for (OpFoldResult ofr : op.getMixedStrides()) 1154 if (getConstantIntValue(ofr) != static_cast<int64_t>(1)) 1155 return failure(); 1156 return success(); 1157 } 1158 1159 /// If we have an ExtractSliceOp consuming an InsertSliceOp with the same slice, 1160 /// we can return the InsertSliceOp's source directly. 1161 // TODO: This only checks the immediate producer; extend to go up the 1162 // insert/extract chain if the slices are disjoint. 1163 static Value foldExtractAfterInsertSlice(ExtractSliceOp extractOp) { 1164 auto insertOp = extractOp.source().getDefiningOp<InsertSliceOp>(); 1165 1166 auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; 1167 if (insertOp && insertOp.source().getType() == extractOp.getType() && 1168 insertOp.isSameAs(extractOp, isSame)) 1169 return insertOp.source(); 1170 1171 return {}; 1172 } 1173 1174 OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute>) { 1175 if (getSourceType() == getType() && 1176 succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) 1177 return this->source(); 1178 if (Value slice = foldExtractAfterInsertSlice(*this)) 1179 return slice; 1180 return OpFoldResult(); 1181 } 1182 1183 Value mlir::tensor::createCanonicalRankReducingExtractSliceOp( 1184 OpBuilder &b, Location loc, Value tensor, RankedTensorType targetType) { 1185 auto rankedTensorType = tensor.getType().cast<RankedTensorType>(); 1186 unsigned rank = rankedTensorType.getRank(); 1187 auto shape = rankedTensorType.getShape(); 1188 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 1189 SmallVector<OpFoldResult> sizes; 1190 for (unsigned i = 0, e = rank; i < e; ++i) { 1191 OpFoldResult dim; 1192 if (rankedTensorType.isDynamicDim(i)) 1193 dim = b.createOrFold<tensor::DimOp>( 1194 loc, tensor, b.create<arith::ConstantIndexOp>(loc, i)); 1195 else 1196 dim = b.getIndexAttr(shape[i]); 1197 sizes.push_back(dim); 1198 } 1199 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 1200 return b.createOrFold<tensor::ExtractSliceOp>(loc, targetType, tensor, 1201 offsets, sizes, strides); 1202 } 1203 1204 //===----------------------------------------------------------------------===// 1205 // InsertSliceOp 1206 //===----------------------------------------------------------------------===// 1207 1208 // Build a InsertSliceOp with mixed static and dynamic entries. 1209 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1210 Value dest, ArrayRef<OpFoldResult> offsets, 1211 ArrayRef<OpFoldResult> sizes, 1212 ArrayRef<OpFoldResult> strides, 1213 ArrayRef<NamedAttribute> attrs) { 1214 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1215 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1216 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1217 ShapedType::kDynamicStrideOrOffset); 1218 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1219 ShapedType::kDynamicSize); 1220 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1221 ShapedType::kDynamicStrideOrOffset); 1222 build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes, 1223 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1224 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1225 result.addAttributes(attrs); 1226 } 1227 1228 // Build a InsertSliceOp with dynamic entries. 1229 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1230 Value dest, ValueRange offsets, ValueRange sizes, 1231 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 1232 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1233 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 1234 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1235 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1236 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1237 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1238 build(b, result, source, dest, offsetValues, sizeValues, strideValues); 1239 } 1240 1241 /// Verifier for InsertSliceOp. 1242 static LogicalResult verify(InsertSliceOp op) { 1243 // insert_slice is the inverse of extract_slice, use the same type inference. 1244 auto expectedType = ExtractSliceOp::inferRankReducedResultType( 1245 op.getSourceType().getRank(), op.getType(), 1246 extractFromI64ArrayAttr(op.static_offsets()), 1247 extractFromI64ArrayAttr(op.static_sizes()), 1248 extractFromI64ArrayAttr(op.static_strides())); 1249 auto result = 1250 isRankReducedType(expectedType.cast<ShapedType>(), op.getSourceType()); 1251 return produceSliceErrorMsg(result, op, expectedType); 1252 } 1253 1254 /// If we have two consecutive InsertSliceOp writing to the same slice, we 1255 /// can mutate the second InsertSliceOp's destination to the first one's. 1256 /// 1257 /// Example: 1258 /// 1259 /// ```mlir 1260 /// %0 = tensor.insert_slice %slice0 into %input[0, 0] [64, 64] [1, 1] 1261 /// %1 = tensor.insert_slice %slice1 into %0[0, 0] [64, 64] [1, 1] 1262 /// ``` 1263 /// 1264 /// folds into: 1265 /// 1266 /// ```mlir 1267 /// %1 = tensor.insert_slice %slice1 into %input[0, 0] [64, 64] [1, 1] 1268 /// ``` 1269 static LogicalResult foldInsertAfterInsertSlice(InsertSliceOp insertOp) { 1270 auto prevInsertOp = insertOp.dest().getDefiningOp<InsertSliceOp>(); 1271 1272 auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; 1273 if (!prevInsertOp || 1274 prevInsertOp.source().getType() != insertOp.source().getType() || 1275 !prevInsertOp.isSameAs(insertOp, isSame)) 1276 return failure(); 1277 1278 insertOp.destMutable().assign(prevInsertOp.dest()); 1279 return success(); 1280 } 1281 1282 OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) { 1283 if (getSourceType().hasStaticShape() && getType().hasStaticShape() && 1284 getSourceType() == getType() && 1285 succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) 1286 return this->source(); 1287 if (succeeded(foldInsertAfterInsertSlice(*this))) 1288 return getResult(); 1289 return OpFoldResult(); 1290 } 1291 1292 LogicalResult InsertSliceOp::reifyResultShapes( 1293 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 1294 reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank())); 1295 for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) { 1296 reifiedReturnShapes[0][dim] = 1297 builder.createOrFold<tensor::DimOp>(getLoc(), dest(), dim); 1298 } 1299 return success(); 1300 } 1301 1302 namespace { 1303 /// Pattern to rewrite a insert_slice op with constant arguments. 1304 class InsertSliceOpConstantArgumentFolder final 1305 : public OpRewritePattern<InsertSliceOp> { 1306 public: 1307 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1308 1309 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1310 PatternRewriter &rewriter) const override { 1311 // No constant operand, just return. 1312 if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) { 1313 return matchPattern(operand, matchConstantIndex()); 1314 })) 1315 return failure(); 1316 1317 // At least one of offsets/sizes/strides is a new constant. 1318 // Form the new list of operands and constant attributes from the 1319 // existing. 1320 SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets()); 1321 SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes()); 1322 SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides()); 1323 canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset); 1324 canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic); 1325 canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset); 1326 1327 // Create the new op in canonical form. 1328 auto sourceType = ExtractSliceOp::inferRankReducedResultType( 1329 insertSliceOp.getSourceType().getRank(), insertSliceOp.getType(), 1330 mixedOffsets, mixedSizes, mixedStrides); 1331 Value toInsert = insertSliceOp.source(); 1332 if (sourceType != insertSliceOp.getSourceType()) 1333 toInsert = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(), 1334 sourceType, toInsert); 1335 rewriter.replaceOpWithNewOp<InsertSliceOp>( 1336 insertSliceOp, toInsert, insertSliceOp.dest(), mixedOffsets, mixedSizes, 1337 mixedStrides); 1338 return success(); 1339 } 1340 }; 1341 1342 /// Fold tensor_casts with insert_slice operations. If the source or destination 1343 /// tensor is a tensor_cast that removes static type information, the cast is 1344 /// folded into the insert_slice operation. E.g.: 1345 /// 1346 /// ```mlir 1347 /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> 1348 /// %2 = tensor.insert_slice %1 into ... : tensor<?x?xf32> into ... 1349 /// ``` 1350 /// 1351 /// folds into: 1352 /// 1353 /// ```mlir 1354 /// %2 = tensor.insert_slice %0 into ... : tensor<8x16xf32> into ... 1355 /// ``` 1356 /// 1357 /// Note: When folding a cast on the destination tensor, the result of the 1358 /// insert_slice operation is casted to ensure that the type of the result did 1359 /// not change. 1360 struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertSliceOp> { 1361 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1362 1363 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1364 PatternRewriter &rewriter) const override { 1365 if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) { 1366 return matchPattern(operand, matchConstantIndex()); 1367 })) 1368 return failure(); 1369 1370 auto getSourceOfCastOp = [](Value v) -> Optional<Value> { 1371 auto castOp = v.getDefiningOp<tensor::CastOp>(); 1372 if (!castOp || !canFoldIntoConsumerOp(castOp)) 1373 return llvm::None; 1374 return castOp.source(); 1375 }; 1376 Optional<Value> sourceCastSource = 1377 getSourceOfCastOp(insertSliceOp.source()); 1378 Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.dest()); 1379 if (!sourceCastSource && !destCastSource) 1380 return failure(); 1381 1382 Value replacement = rewriter.create<InsertSliceOp>( 1383 insertSliceOp.getLoc(), 1384 (sourceCastSource ? *sourceCastSource : insertSliceOp.source()), 1385 (destCastSource ? *destCastSource : insertSliceOp.dest()), 1386 insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(), 1387 insertSliceOp.getMixedStrides()); 1388 1389 if (replacement.getType() != insertSliceOp.getType()) { 1390 replacement = rewriter.create<tensor::CastOp>( 1391 insertSliceOp.getLoc(), insertSliceOp.getType(), replacement); 1392 } 1393 rewriter.replaceOp(insertSliceOp, replacement); 1394 return success(); 1395 } 1396 }; 1397 1398 /// If additional static type information can be deduced from a insert_slice's 1399 /// size operands, insert an explicit cast of the op's source operand. This 1400 /// enables other canonicalization patterns that are matching for tensor_cast 1401 /// ops such as `ForOpTensorCastFolder` in SCF. 1402 /// 1403 /// Example: 1404 /// 1405 /// ```mlir 1406 /// %r = tensor.insert_slice %0 into %1[...] [64, 64] [1, 1] 1407 /// : tensor<?x?xf32> into ... 1408 /// ``` 1409 /// 1410 /// folds into: 1411 /// 1412 /// ```mlir 1413 /// %tmp = tensor.cast %0 : tensor<?x?xf32> to tensor<64x64xf32> 1414 /// %r = tensor.insert_slice %tmp into %1[...] [64, 64] [1, 1] 1415 /// : tensor<64x64xf32> into ... 1416 /// ``` 1417 struct InsertSliceOpSourceCastInserter final 1418 : public OpRewritePattern<InsertSliceOp> { 1419 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1420 1421 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1422 PatternRewriter &rewriter) const override { 1423 RankedTensorType srcType = insertSliceOp.getSourceType(); 1424 if (srcType.getRank() != insertSliceOp.getType().getRank()) 1425 return failure(); 1426 SmallVector<int64_t> newSrcShape(srcType.getShape().begin(), 1427 srcType.getShape().end()); 1428 for (int64_t i = 0; i < srcType.getRank(); ++i) { 1429 if (Optional<int64_t> constInt = 1430 getConstantIntValue(insertSliceOp.getMixedSizes()[i])) 1431 newSrcShape[i] = *constInt; 1432 } 1433 1434 RankedTensorType newSrcType = 1435 RankedTensorType::get(newSrcShape, srcType.getElementType()); 1436 if (srcType == newSrcType || 1437 !preservesStaticInformation(srcType, newSrcType) || 1438 !tensor::CastOp::areCastCompatible(srcType, newSrcType)) 1439 return failure(); 1440 1441 // newSrcType is: 1442 // 1) Different from srcType. 1443 // 2) "More static" than srcType. 1444 // 3) Cast-compatible with srcType. 1445 // Insert the cast. 1446 Value cast = rewriter.create<tensor::CastOp>( 1447 insertSliceOp.getLoc(), newSrcType, insertSliceOp.source()); 1448 rewriter.replaceOpWithNewOp<InsertSliceOp>( 1449 insertSliceOp, cast, insertSliceOp.dest(), 1450 insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(), 1451 insertSliceOp.getMixedStrides()); 1452 return success(); 1453 } 1454 }; 1455 } // namespace 1456 1457 void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, 1458 MLIRContext *context) { 1459 results.add<InsertSliceOpConstantArgumentFolder, InsertSliceOpCastFolder, 1460 InsertSliceOpSourceCastInserter>(context); 1461 } 1462 1463 Value mlir::tensor::createCanonicalRankReducingInsertSliceOp(OpBuilder &b, 1464 Location loc, 1465 Value tensor, 1466 Value dest) { 1467 auto rankedTensorType = dest.getType().cast<RankedTensorType>(); 1468 unsigned rank = rankedTensorType.getRank(); 1469 auto shape = rankedTensorType.getShape(); 1470 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 1471 SmallVector<OpFoldResult> sizes; 1472 for (unsigned i = 0, e = rank; i < e; ++i) { 1473 OpFoldResult dim; 1474 if (rankedTensorType.isDynamicDim(i)) 1475 dim = b.createOrFold<tensor::DimOp>( 1476 loc, dest, b.create<arith::ConstantIndexOp>(loc, i)); 1477 else 1478 dim = b.getIndexAttr(shape[i]); 1479 sizes.push_back(dim); 1480 } 1481 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 1482 return b.createOrFold<tensor::InsertSliceOp>(loc, tensor, dest, offsets, 1483 sizes, strides); 1484 } 1485 1486 //===----------------------------------------------------------------------===// 1487 // PadOp 1488 //===----------------------------------------------------------------------===// 1489 1490 // TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it 1491 // supports optional types. 1492 void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand, 1493 Type typeToInfer, Type typeToInferFrom) {} 1494 1495 ParseResult parseInferType(OpAsmParser &parser, 1496 Optional<OpAsmParser::OperandType> optOperand, 1497 Type &typeToInfer, Type typeToInferFrom) { 1498 if (optOperand) 1499 typeToInfer = typeToInferFrom; 1500 return success(); 1501 } 1502 1503 static LogicalResult verify(PadOp op) { 1504 auto sourceType = op.source().getType().cast<RankedTensorType>(); 1505 auto resultType = op.result().getType().cast<RankedTensorType>(); 1506 auto expectedType = PadOp::inferResultType( 1507 sourceType, extractFromI64ArrayAttr(op.static_low()), 1508 extractFromI64ArrayAttr(op.static_high())); 1509 for (int i = 0, e = sourceType.getRank(); i < e; ++i) { 1510 if (resultType.getDimSize(i) == expectedType.getDimSize(i)) 1511 continue; 1512 if (expectedType.isDynamicDim(i)) 1513 continue; 1514 return op.emitError("specified type ") 1515 << resultType << " does not match the inferred type " 1516 << expectedType; 1517 } 1518 1519 auto ®ion = op.region(); 1520 unsigned rank = resultType.getRank(); 1521 Block &block = region.front(); 1522 if (block.getNumArguments() != rank) 1523 return op.emitError("expected the block to have ") << rank << " arguments"; 1524 1525 // Note: the number and type of yield values are checked in the YieldOp. 1526 for (const auto &en : llvm::enumerate(block.getArgumentTypes())) { 1527 if (!en.value().isIndex()) 1528 return op.emitOpError("expected block argument ") 1529 << (en.index() + 1) << " to be an index"; 1530 } 1531 1532 // Ensure that the region yields an element of the right type. 1533 auto yieldOp = llvm::cast<YieldOp>(block.getTerminator()); 1534 if (yieldOp.value().getType() != 1535 op.getType().cast<ShapedType>().getElementType()) 1536 return op.emitOpError("expected yield type to match shape element type"); 1537 1538 return success(); 1539 } 1540 1541 RankedTensorType PadOp::inferResultType(RankedTensorType sourceType, 1542 ArrayRef<int64_t> staticLow, 1543 ArrayRef<int64_t> staticHigh, 1544 ArrayRef<int64_t> resultShape) { 1545 unsigned rank = sourceType.getRank(); 1546 assert(staticLow.size() == rank && "unexpected staticLow size mismatch"); 1547 assert(staticHigh.size() == rank && "unexpected staticHigh size mismatch"); 1548 assert((resultShape.empty() || resultShape.size() == rank) && 1549 "unexpected resultShape size mismatch"); 1550 1551 SmallVector<int64_t, 4> inferredShape; 1552 for (auto i : llvm::seq<unsigned>(0, rank)) { 1553 if (sourceType.isDynamicDim(i) || 1554 staticLow[i] == ShapedType::kDynamicSize || 1555 staticHigh[i] == ShapedType::kDynamicSize) { 1556 inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamicSize 1557 : resultShape[i]); 1558 } else { 1559 int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i]; 1560 assert((resultShape.empty() || size == resultShape[i] || 1561 resultShape[i] == ShapedType::kDynamicSize) && 1562 "mismatch between inferred shape and result shape"); 1563 inferredShape.push_back(size); 1564 } 1565 } 1566 1567 return RankedTensorType::get(inferredShape, sourceType.getElementType()); 1568 } 1569 1570 void PadOp::build(OpBuilder &b, OperationState &result, Value source, 1571 ArrayRef<int64_t> staticLow, ArrayRef<int64_t> staticHigh, 1572 ValueRange low, ValueRange high, bool nofold, 1573 ArrayRef<NamedAttribute> attrs) { 1574 auto sourceType = source.getType().cast<RankedTensorType>(); 1575 auto resultType = inferResultType(sourceType, staticLow, staticHigh); 1576 build(b, result, resultType, source, low, high, b.getI64ArrayAttr(staticLow), 1577 b.getI64ArrayAttr(staticHigh), nofold ? b.getUnitAttr() : UnitAttr()); 1578 result.addAttributes(attrs); 1579 } 1580 1581 void PadOp::build(OpBuilder &b, OperationState &result, Value source, 1582 ValueRange low, ValueRange high, bool nofold, 1583 ArrayRef<NamedAttribute> attrs) { 1584 auto sourceType = source.getType().cast<RankedTensorType>(); 1585 unsigned rank = sourceType.getRank(); 1586 SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamicSize); 1587 build(b, result, source, staticVector, staticVector, low, high, nofold, 1588 attrs); 1589 } 1590 1591 void PadOp::build(OpBuilder &b, OperationState &result, Type resultType, 1592 Value source, ArrayRef<OpFoldResult> low, 1593 ArrayRef<OpFoldResult> high, bool nofold, 1594 ArrayRef<NamedAttribute> attrs) { 1595 assert(resultType.isa<RankedTensorType>()); 1596 auto sourceType = source.getType().cast<RankedTensorType>(); 1597 SmallVector<Value, 4> dynamicLow, dynamicHigh; 1598 SmallVector<int64_t, 4> staticLow, staticHigh; 1599 // staticLow and staticHigh have full information of the padding config. 1600 // This will grow staticLow and staticHigh with 1 value. If the config is 1601 // dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1 1602 // value as well. 1603 dispatchIndexOpFoldResults(low, dynamicLow, staticLow, 1604 ShapedType::kDynamicSize); 1605 dispatchIndexOpFoldResults(high, dynamicHigh, staticHigh, 1606 ShapedType::kDynamicSize); 1607 if (!resultType) { 1608 resultType = PadOp::inferResultType(sourceType, staticLow, staticHigh); 1609 } 1610 build(b, result, resultType, source, dynamicLow, dynamicHigh, 1611 b.getI64ArrayAttr(staticLow), b.getI64ArrayAttr(staticHigh), 1612 nofold ? b.getUnitAttr() : UnitAttr()); 1613 result.addAttributes(attrs); 1614 } 1615 1616 namespace { 1617 // Folds tensor.pad when padding is static zeros and the attribute 1618 // doesn't request otherwise. 1619 struct FoldStaticZeroPadding : public OpRewritePattern<PadOp> { 1620 using OpRewritePattern<PadOp>::OpRewritePattern; 1621 1622 LogicalResult matchAndRewrite(PadOp padTensorOp, 1623 PatternRewriter &rewriter) const override { 1624 if (!padTensorOp.hasZeroLowPad() || !padTensorOp.hasZeroHighPad()) 1625 return failure(); 1626 if (padTensorOp.nofold()) 1627 return failure(); 1628 rewriter.replaceOpWithNewOp<tensor::CastOp>( 1629 padTensorOp, padTensorOp.result().getType(), padTensorOp.source()); 1630 return success(); 1631 } 1632 }; 1633 1634 // Fold CastOp into PadOp when adding static information. 1635 struct FoldSourceTensorCast : public OpRewritePattern<PadOp> { 1636 using OpRewritePattern<PadOp>::OpRewritePattern; 1637 1638 LogicalResult matchAndRewrite(PadOp padTensorOp, 1639 PatternRewriter &rewriter) const override { 1640 auto castOp = padTensorOp.source().getDefiningOp<tensor::CastOp>(); 1641 if (!tensor::canFoldIntoConsumerOp(castOp)) 1642 return failure(); 1643 1644 auto newResultType = PadOp::inferResultType( 1645 castOp.source().getType().cast<RankedTensorType>(), 1646 extractFromI64ArrayAttr(padTensorOp.static_low()), 1647 extractFromI64ArrayAttr(padTensorOp.static_high()), 1648 padTensorOp.getResultType().getShape()); 1649 1650 if (newResultType == padTensorOp.getResultType()) { 1651 rewriter.updateRootInPlace(padTensorOp, [&]() { 1652 padTensorOp.sourceMutable().assign(castOp.source()); 1653 }); 1654 } else { 1655 auto newOp = rewriter.create<PadOp>( 1656 padTensorOp->getLoc(), newResultType, padTensorOp.source(), 1657 padTensorOp.low(), padTensorOp.high(), padTensorOp.static_low(), 1658 padTensorOp.static_high(), padTensorOp.nofold()); 1659 BlockAndValueMapping mapper; 1660 padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper); 1661 1662 rewriter.replaceOpWithNewOp<tensor::CastOp>( 1663 padTensorOp, padTensorOp.getResultType(), newOp); 1664 } 1665 return success(); 1666 } 1667 }; 1668 1669 // Fold CastOp using the result of PadOp back into the latter if it adds 1670 // static information. 1671 struct FoldTargetTensorCast : public OpRewritePattern<PadOp> { 1672 using OpRewritePattern<PadOp>::OpRewritePattern; 1673 1674 LogicalResult matchAndRewrite(PadOp padTensorOp, 1675 PatternRewriter &rewriter) const override { 1676 if (!padTensorOp.result().hasOneUse()) 1677 return failure(); 1678 auto tensorCastOp = 1679 dyn_cast<tensor::CastOp>(*padTensorOp->getUsers().begin()); 1680 if (!tensorCastOp) 1681 return failure(); 1682 if (!tensor::preservesStaticInformation(padTensorOp.result().getType(), 1683 tensorCastOp.dest().getType())) 1684 return failure(); 1685 1686 auto replacementOp = rewriter.create<PadOp>( 1687 padTensorOp.getLoc(), tensorCastOp.dest().getType(), 1688 padTensorOp.source(), padTensorOp.low(), padTensorOp.high(), 1689 padTensorOp.static_low(), padTensorOp.static_high(), 1690 padTensorOp.nofold()); 1691 replacementOp.region().takeBody(padTensorOp.region()); 1692 1693 rewriter.replaceOp(padTensorOp, replacementOp.result()); 1694 rewriter.replaceOp(tensorCastOp, replacementOp.result()); 1695 return success(); 1696 } 1697 }; 1698 } // namespace 1699 1700 void PadOp::getCanonicalizationPatterns(RewritePatternSet &results, 1701 MLIRContext *context) { 1702 results 1703 .add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast>( 1704 context); 1705 } 1706 1707 /// Return the padding value of the PadOp if it constant. In this context, 1708 /// "constant" means an actual constant or "defined outside of the block". 1709 /// 1710 /// Values are considered constant in three cases: 1711 /// - A ConstantLike value. 1712 /// - A basic block argument from a different block. 1713 /// - A value defined outside of the block. 1714 /// 1715 /// If the padding value is not constant, an empty Value is returned. 1716 Value PadOp::getConstantPaddingValue() { 1717 auto yieldOp = dyn_cast<YieldOp>(getRegion().front().getTerminator()); 1718 if (!yieldOp) 1719 return {}; 1720 Value padValue = yieldOp.value(); 1721 // Check if yield value is a constant. 1722 if (matchPattern(padValue, m_Constant())) 1723 return padValue; 1724 // Check if yield value is defined inside the PadOp block. 1725 if (padValue.getParentBlock() == &getRegion().front()) 1726 return {}; 1727 // Else: Yield value defined outside of the PadOp block. 1728 return padValue; 1729 } 1730 1731 OpFoldResult PadOp::fold(ArrayRef<Attribute>) { 1732 if (getResultType().hasStaticShape() && getResultType() == getSourceType() && 1733 !nofold()) 1734 return source(); 1735 return {}; 1736 } 1737 1738 //===----------------------------------------------------------------------===// 1739 // TableGen'd op method definitions 1740 //===----------------------------------------------------------------------===// 1741 1742 #define GET_OP_CLASSES 1743 #include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc" 1744