1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
10 #include "mlir/Dialect/Tensor/IR/Tensor.h"
11 #include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
12 #include "mlir/Dialect/Utils/StaticValueUtils.h"
13 #include "mlir/IR/BlockAndValueMapping.h"
14 #include "mlir/IR/Builders.h"
15 #include "mlir/IR/BuiltinAttributeInterfaces.h"
16 #include "mlir/IR/Matchers.h"
17 #include "mlir/IR/TypeUtilities.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 
21 using namespace mlir;
22 using namespace mlir::tensor;
23 
24 /// Materialize a single constant operation from a given attribute value with
25 /// the desired resultant type.
26 Operation *TensorDialect::materializeConstant(OpBuilder &builder,
27                                               Attribute value, Type type,
28                                               Location loc) {
29   if (arith::ConstantOp::isBuildableWith(value, type))
30     return builder.create<arith::ConstantOp>(loc, value, type);
31   if (complex::ConstantOp::isBuildableWith(value, type))
32     return builder.create<complex::ConstantOp>(loc, type,
33                                                value.cast<ArrayAttr>());
34   return nullptr;
35 }
36 
37 //===----------------------------------------------------------------------===//
38 // CastOp
39 //===----------------------------------------------------------------------===//
40 
41 /// Returns true if `target` is a ranked tensor type that preserves static
42 /// information available in the `source` ranked tensor type.
43 bool mlir::tensor::preservesStaticInformation(Type source, Type target) {
44   auto sourceType = source.dyn_cast<RankedTensorType>();
45   auto targetType = target.dyn_cast<RankedTensorType>();
46 
47   // Requires RankedTensorType.
48   if (!sourceType || !targetType)
49     return false;
50 
51   // Requires same elemental type.
52   if (sourceType.getElementType() != targetType.getElementType())
53     return false;
54 
55   // Requires same rank.
56   if (sourceType.getRank() != targetType.getRank())
57     return false;
58 
59   // If cast is towards more static sizes along any dimension, don't fold.
60   for (auto t : llvm::zip(sourceType.getShape(), targetType.getShape())) {
61     if (!ShapedType::isDynamic(std::get<0>(t)) &&
62         ShapedType::isDynamic(std::get<1>(t)))
63       return false;
64   }
65 
66   return true;
67 }
68 
69 /// Determines whether tensor::CastOp casts to a more dynamic version of the
70 /// source tensor. This is useful to fold a tensor.cast into a consuming op and
71 /// implement canonicalization patterns for ops in different dialects that may
72 /// consume the results of tensor.cast operations. Such foldable tensor.cast
73 /// operations are typically inserted as `slice` ops and are canonicalized,
74 /// to preserve the type compatibility of their uses.
75 ///
76 /// Returns true when all conditions are met:
77 /// 1. source and result are ranked tensors with same element type and rank.
78 /// 2. the tensor type has more static information than the result
79 ///
80 /// Example:
81 /// ```mlir
82 ///   %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
83 ///   %2 = consumer %1 ... : tensor<?x?xf32> ...
84 /// ```
85 ///
86 /// folds into:
87 ///
88 /// ```mlir
89 ///   %2 = consumer %0 ... : tensor<8x16xf32> ...
90 /// ```
91 bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) {
92   if (!castOp)
93     return false;
94 
95   // Can fold if the source of cast has at least as much static information as
96   // its results.
97   return preservesStaticInformation(castOp.getType(),
98                                     castOp.source().getType());
99 }
100 
101 /// Determines whether the tensor::CastOp casts to a more static version of the
102 /// source tensor. This is useful to fold into a producing op and implement
103 /// canonicaliation patterns with the `tensor.cast` op as the root, but producer
104 /// being from different dialects. Returns true when all conditions are met:
105 /// 1. source and result and ranked tensors with same element type and rank.
106 /// 2. the result type has more static information than the source.
107 ///
108 /// Example:
109 /// ```mlir
110 ///   %1 = producer ... : tensor<?x?xf32>
111 ///   %2 = tensor.cast %1 : tensor<?x?xf32> to tensor<8x16xf32>
112 /// ```
113 ///
114 /// can be canonicalized to :
115 ///
116 /// ```mlir
117 ///   %2 = producer ... : tensor<8x16xf32>
118 /// ```
119 /// Not all ops might be canonicalizable this way, but for those that can be,
120 /// this method provides a check that it is worth doing the canonicalization.
121 bool mlir::tensor::canFoldIntoProducerOp(CastOp castOp) {
122   if (!castOp)
123     return false;
124   return preservesStaticInformation(castOp.source().getType(),
125                                     castOp.getType());
126 }
127 
128 /// Performs folding of any operand of `op` if it comes from a tensor::CastOp
129 /// that can be folded.
130 LogicalResult mlir::tensor::foldTensorCast(Operation *op) {
131   bool folded = false;
132   for (OpOperand &operand : op->getOpOperands()) {
133     auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
134     if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
135       operand.set(castOp.getOperand());
136       folded = true;
137     }
138   }
139   return success(folded);
140 }
141 
142 bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
143   if (inputs.size() != 1 || outputs.size() != 1)
144     return false;
145   Type a = inputs.front(), b = outputs.front();
146   auto aT = a.dyn_cast<TensorType>();
147   auto bT = b.dyn_cast<TensorType>();
148   if (!aT || !bT)
149     return false;
150 
151   if (aT.getElementType() != bT.getElementType())
152     return false;
153 
154   return succeeded(verifyCompatibleShape(aT, bT));
155 }
156 
157 /// Compute a TensorType that has the joined shape knowledge of the two
158 /// given TensorTypes. The element types need to match.
159 static TensorType joinShapes(TensorType one, TensorType two) {
160   assert(one.getElementType() == two.getElementType());
161 
162   if (!one.hasRank())
163     return two;
164   if (!two.hasRank())
165     return one;
166 
167   int64_t rank = one.getRank();
168   if (rank != two.getRank())
169     return {};
170 
171   SmallVector<int64_t, 4> join;
172   join.reserve(rank);
173   for (int64_t i = 0; i < rank; ++i) {
174     if (one.isDynamicDim(i)) {
175       join.push_back(two.getDimSize(i));
176       continue;
177     }
178     if (two.isDynamicDim(i)) {
179       join.push_back(one.getDimSize(i));
180       continue;
181     }
182     if (one.getDimSize(i) != two.getDimSize(i))
183       return {};
184     join.push_back(one.getDimSize(i));
185   }
186   return RankedTensorType::get(join, one.getElementType());
187 }
188 
189 namespace {
190 
191 /// Replaces chains of two tensor.cast operations by a single tensor.cast
192 /// operation if doing so does not remove runtime constraints.
193 struct ChainedTensorCast : public OpRewritePattern<CastOp> {
194   using OpRewritePattern<CastOp>::OpRewritePattern;
195 
196   LogicalResult matchAndRewrite(CastOp tensorCast,
197                                 PatternRewriter &rewriter) const final {
198     auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>();
199 
200     if (!tensorCastOperand)
201       return failure();
202 
203     auto sourceType =
204         tensorCastOperand.getOperand().getType().cast<TensorType>();
205     auto intermediateType = tensorCastOperand.getType().cast<TensorType>();
206     auto resultType = tensorCast.getType().cast<TensorType>();
207 
208     // We can remove the intermediate cast if joining all three produces the
209     // same result as just joining the source and result shapes.
210     auto firstJoin =
211         joinShapes(joinShapes(sourceType, intermediateType), resultType);
212 
213     // The join might not exist if the cast sequence would fail at runtime.
214     if (!firstJoin)
215       return failure();
216 
217     // The newJoin always exists if the above join exists, it might just contain
218     // less information. If so, we cannot drop the intermediate cast, as doing
219     // so would remove runtime checks.
220     auto newJoin = joinShapes(sourceType, resultType);
221     if (firstJoin != newJoin)
222       return failure();
223 
224     rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType,
225                                         tensorCastOperand.getOperand());
226     return success();
227   }
228 };
229 
230 } // namespace
231 
232 void CastOp::getCanonicalizationPatterns(RewritePatternSet &results,
233                                          MLIRContext *context) {
234   results.add<ChainedTensorCast>(context);
235 }
236 
237 //===----------------------------------------------------------------------===//
238 // DimOp
239 //===----------------------------------------------------------------------===//
240 
241 void DimOp::build(OpBuilder &builder, OperationState &result, Value source,
242                   int64_t index) {
243   auto loc = result.location;
244   Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index);
245   build(builder, result, source, indexValue);
246 }
247 
248 Optional<int64_t> DimOp::getConstantIndex() {
249   if (auto constantOp = index().getDefiningOp<arith::ConstantOp>())
250     return constantOp.getValue().cast<IntegerAttr>().getInt();
251   return {};
252 }
253 
254 LogicalResult DimOp::verify() {
255   // Assume unknown index to be in range.
256   Optional<int64_t> index = getConstantIndex();
257   if (!index.hasValue())
258     return success();
259 
260   // Check that constant index is not knowingly out of range.
261   auto type = source().getType();
262   if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
263     if (index.getValue() >= tensorType.getRank())
264       return emitOpError("index is out of range");
265   } else if (type.isa<UnrankedTensorType>()) {
266     // Assume index to be in range.
267   } else {
268     llvm_unreachable("expected operand with tensor type");
269   }
270   return success();
271 }
272 
273 OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
274   // All forms of folding require a known index.
275   auto index = operands[1].dyn_cast_or_null<IntegerAttr>();
276   if (!index)
277     return {};
278 
279   // Folding for unranked types (UnrankedTensorType) is not supported.
280   auto tensorType = source().getType().dyn_cast<RankedTensorType>();
281   if (!tensorType)
282     return {};
283 
284   // Fold if the shape extent along the given index is known.
285   if (!tensorType.isDynamicDim(index.getInt())) {
286     Builder builder(getContext());
287     return builder.getIndexAttr(tensorType.getShape()[index.getInt()]);
288   }
289 
290   Operation *definingOp = source().getDefiningOp();
291 
292   // Fold dim to the operand of tensor.generate.
293   if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) {
294     auto resultType =
295         fromElements.getResult().getType().cast<RankedTensorType>();
296     // The case where the type encodes the size of the dimension is handled
297     // above.
298     assert(ShapedType::isDynamic(resultType.getShape()[index.getInt()]));
299 
300     // Find the operand of the fromElements that corresponds to this index.
301     auto dynExtents = fromElements.dynamicExtents().begin();
302     for (auto dim : resultType.getShape().take_front(index.getInt()))
303       if (ShapedType::isDynamic(dim))
304         dynExtents++;
305 
306     return Value{*dynExtents};
307   }
308 
309   // The size at the given index is now known to be a dynamic size.
310   unsigned unsignedIndex = index.getValue().getZExtValue();
311 
312   if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) {
313     // Fold only for non-rank reduced ops. For the rank-reduced version, rely on
314     // `resolve-shaped-type-result-dims` pass.
315     if (sliceOp.getType().getRank() == sliceOp.getSourceType().getRank() &&
316         sliceOp.isDynamicSize(unsignedIndex)) {
317       return {sliceOp.getDynamicSize(unsignedIndex)};
318     }
319   }
320 
321   // dim(cast) -> dim
322   if (succeeded(foldTensorCast(*this)))
323     return getResult();
324 
325   return {};
326 }
327 
328 namespace {
329 /// Fold dim of a cast into the dim of the source of the tensor cast.
330 struct DimOfCastOp : public OpRewritePattern<DimOp> {
331   using OpRewritePattern<DimOp>::OpRewritePattern;
332 
333   LogicalResult matchAndRewrite(DimOp dimOp,
334                                 PatternRewriter &rewriter) const override {
335     auto castOp = dimOp.source().getDefiningOp<CastOp>();
336     if (!castOp)
337       return failure();
338     Value newSource = castOp.getOperand();
339     rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.index());
340     return success();
341   }
342 };
343 } // namespace
344 
345 void DimOp::getCanonicalizationPatterns(RewritePatternSet &results,
346                                         MLIRContext *context) {
347   results.add<DimOfCastOp>(context);
348 }
349 
350 //===----------------------------------------------------------------------===//
351 // ExtractOp
352 //===----------------------------------------------------------------------===//
353 
354 LogicalResult ExtractOp::verify() {
355   // Verify the # indices match if we have a ranked type.
356   if (auto tensorType = tensor().getType().dyn_cast<RankedTensorType>())
357     if (tensorType.getRank() != static_cast<int64_t>(indices().size()))
358       return emitOpError("incorrect number of indices for extract_element");
359 
360   return success();
361 }
362 
363 OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) {
364   // The tensor operand must be a known constant.
365   Attribute tensor = operands.front();
366   if (!tensor)
367     return {};
368   // If this is a splat elements attribute, simply return the value. All of the
369   // elements of a splat attribute are the same.
370   if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>())
371     return splatTensor.getSplatValue<Attribute>();
372 
373   // Otherwise, collect the constant indices into the tensor.
374   SmallVector<uint64_t, 8> indices;
375   for (Attribute indice : llvm::drop_begin(operands, 1)) {
376     if (!indice || !indice.isa<IntegerAttr>())
377       return {};
378     indices.push_back(indice.cast<IntegerAttr>().getInt());
379   }
380 
381   // If this is an elements attribute, query the value at the given indices.
382   auto elementsAttr = tensor.dyn_cast<ElementsAttr>();
383   if (elementsAttr && elementsAttr.isValidIndex(indices))
384     return elementsAttr.getValues<Attribute>()[indices];
385   return {};
386 }
387 
388 //===----------------------------------------------------------------------===//
389 // FromElementsOp
390 //===----------------------------------------------------------------------===//
391 
392 void FromElementsOp::build(OpBuilder &builder, OperationState &result,
393                            Type resultType, ValueRange elements) {
394   result.addOperands(elements);
395   result.addTypes(resultType);
396 }
397 
398 void FromElementsOp::build(OpBuilder &builder, OperationState &result,
399                            ValueRange elements) {
400   assert(!elements.empty() && "expected at least one element");
401   Type resultType = RankedTensorType::get(
402       {static_cast<int64_t>(elements.size())}, elements.front().getType());
403   build(builder, result, resultType, elements);
404 }
405 
406 OpFoldResult FromElementsOp::fold(ArrayRef<Attribute> operands) {
407   if (!llvm::is_contained(operands, nullptr))
408     return DenseElementsAttr::get(getType(), operands);
409   return {};
410 }
411 
412 namespace {
413 
414 // Canonicalizes the pattern of the form
415 //
416 // %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32>
417 // %extracted_element = tensor.extract %tensor[%c0] : tensor<1xi32>
418 //
419 // to just %element.
420 struct ExtractElementFromTensorFromElements
421     : public OpRewritePattern<tensor::ExtractOp> {
422   using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
423 
424   LogicalResult matchAndRewrite(tensor::ExtractOp extract,
425                                 PatternRewriter &rewriter) const final {
426     auto tensorFromElements = extract.tensor().getDefiningOp<FromElementsOp>();
427     if (!tensorFromElements)
428       return failure();
429     auto tensorType = tensorFromElements.getType().cast<RankedTensorType>();
430     auto rank = tensorType.getRank();
431     if (rank == 0) {
432       rewriter.replaceOp(extract, tensorFromElements.getOperand(0));
433       return success();
434     }
435     SmallVector<APInt, 3> indices(rank);
436     int64_t flatIndex = 0;
437     int64_t stride = 1;
438     for (int i = rank - 1; i >= 0; --i) {
439       APInt index;
440       if (!matchPattern(extract.indices()[i], m_ConstantInt(&index)))
441         return failure();
442       if (i < rank - 1)
443         stride *= tensorType.getDimSize(i);
444       flatIndex += index.getSExtValue() * stride;
445     }
446     // Prevent out of bounds accesses. This can happen in invalid code that will
447     // never execute.
448     if (tensorFromElements->getNumOperands() <= flatIndex || flatIndex < 0)
449       return failure();
450     rewriter.replaceOp(extract, tensorFromElements.getOperand(flatIndex));
451     return success();
452   }
453 };
454 
455 // Pushes the index_casts that occur before extractions to after the extract.
456 // This minimizes type conversion in some cases and enables the extract
457 // canonicalizer. This changes:
458 //
459 // %cast = arith.index_cast %tensor : tensor<1xi32> to tensor<1xindex>
460 // %extract = tensor.extract %cast[%index] : tensor<1xindex>
461 //
462 // to the following:
463 //
464 // %extract = tensor.extract %tensor[%index] : tensor<1xindex>
465 // %cast = arith.index_cast %extract : i32 to index
466 //
467 // to just %element.
468 //
469 // Consider expanding this to a template and handle all tensor cast operations.
470 struct ExtractElementFromIndexCast
471     : public OpRewritePattern<tensor::ExtractOp> {
472   using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
473 
474   LogicalResult matchAndRewrite(tensor::ExtractOp extract,
475                                 PatternRewriter &rewriter) const final {
476     Location loc = extract.getLoc();
477     auto indexCast = extract.tensor().getDefiningOp<arith::IndexCastOp>();
478     if (!indexCast)
479       return failure();
480 
481     Type elementTy = getElementTypeOrSelf(indexCast.getIn());
482 
483     auto newExtract = rewriter.create<tensor::ExtractOp>(
484         loc, elementTy, indexCast.getIn(), extract.indices());
485 
486     rewriter.replaceOpWithNewOp<arith::IndexCastOp>(extract, extract.getType(),
487                                                     newExtract);
488 
489     return success();
490   }
491 };
492 
493 } // namespace
494 
495 void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results,
496                                                  MLIRContext *context) {
497   results
498       .add<ExtractElementFromIndexCast, ExtractElementFromTensorFromElements>(
499           context);
500 }
501 
502 //===----------------------------------------------------------------------===//
503 // InsertOp
504 //===----------------------------------------------------------------------===//
505 
506 LogicalResult InsertOp::verify() {
507   // Verify the # indices match if we have a ranked type.
508   if (auto destType = dest().getType().dyn_cast<RankedTensorType>())
509     if (destType.getRank() != static_cast<int64_t>(indices().size()))
510       return emitOpError("incorrect number of indices");
511   return success();
512 }
513 
514 OpFoldResult InsertOp::fold(ArrayRef<Attribute> operands) {
515   Attribute scalar = operands[0];
516   Attribute dest = operands[1];
517   if (scalar && dest)
518     if (auto splatDest = dest.dyn_cast<SplatElementsAttr>())
519       if (scalar == splatDest.getSplatValue<Attribute>())
520         return dest;
521   return {};
522 }
523 
524 //===----------------------------------------------------------------------===//
525 // GenerateOp
526 //===----------------------------------------------------------------------===//
527 
528 LogicalResult GenerateOp::verify() {
529   // Ensure that the tensor type has as many dynamic dimensions as are specified
530   // by the operands.
531   RankedTensorType resultTy = getType().cast<RankedTensorType>();
532   if (getNumOperands() != resultTy.getNumDynamicDims())
533     return emitError("must have as many index operands as dynamic extents "
534                      "in the result type");
535 
536   // Ensure that region arguments span the index space.
537   if (!llvm::all_of(body().getArgumentTypes(),
538                     [](Type ty) { return ty.isIndex(); }))
539     return emitError("all body arguments must be index");
540   if (body().getNumArguments() != resultTy.getRank())
541     return emitError("must have one body argument per input dimension");
542 
543   // Ensure that the region yields an element of the right type.
544   auto yieldOp = cast<YieldOp>(body().getBlocks().front().getTerminator());
545 
546   if (yieldOp.value().getType() != resultTy.getElementType())
547     return emitOpError(
548         "body must be terminated with a `yield` operation of the tensor "
549         "element type");
550 
551   return success();
552 }
553 
554 void GenerateOp::build(
555     OpBuilder &b, OperationState &result, Type resultTy,
556     ValueRange dynamicExtents,
557     function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
558   build(b, result, resultTy, dynamicExtents);
559 
560   // Build and populate body.
561   OpBuilder::InsertionGuard guard(b);
562   Region *bodyRegion = result.regions.front().get();
563   auto rank = resultTy.cast<RankedTensorType>().getRank();
564   SmallVector<Type, 2> argumentTypes(rank, b.getIndexType());
565   SmallVector<Location, 2> argumentLocs(rank, result.location);
566   Block *bodyBlock =
567       b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes, argumentLocs);
568   bodyBuilder(b, result.location, bodyBlock->getArguments());
569 }
570 
571 namespace {
572 
573 /// Canonicalizes tensor.generate operations with a constant
574 /// operand into the equivalent operation with the operand expressed in the
575 /// result type, instead. We also insert a type cast to make sure that the
576 /// resulting IR is still well-typed.
577 struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> {
578   using OpRewritePattern<GenerateOp>::OpRewritePattern;
579 
580   LogicalResult matchAndRewrite(GenerateOp tensorFromElements,
581                                 PatternRewriter &rewriter) const final {
582     auto resultType =
583         tensorFromElements.getResult().getType().cast<RankedTensorType>();
584 
585     if (resultType.hasStaticShape())
586       return failure();
587 
588     SmallVector<Value, 4> newOperands;
589     SmallVector<int64_t, 4> newShape;
590     auto operandsIt = tensorFromElements.dynamicExtents().begin();
591 
592     for (int64_t dim : resultType.getShape()) {
593       if (!ShapedType::isDynamic(dim)) {
594         newShape.push_back(dim);
595         continue;
596       }
597       APInt index;
598       if (!matchPattern(*operandsIt, m_ConstantInt(&index))) {
599         newShape.push_back(ShapedType::kDynamicSize);
600         newOperands.push_back(*operandsIt++);
601         continue;
602       }
603       newShape.push_back(index.getSExtValue());
604       operandsIt++;
605     }
606 
607     if (newOperands.size() == tensorFromElements.dynamicExtents().size())
608       return failure();
609 
610     auto loc = tensorFromElements.getLoc();
611     auto newOp = rewriter.create<GenerateOp>(
612         loc, RankedTensorType::get(newShape, resultType.getElementType()),
613         newOperands);
614     rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(),
615                                 newOp.body().begin());
616     rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType,
617                                                 newOp);
618     return success();
619   }
620 };
621 
622 /// Canonicalizes the pattern of the form
623 ///
624 /// %tensor = tensor.generate %x {
625 ///   ^bb0(%arg0: index):
626 ///   <computation>
627 ///   yield %1 : index
628 /// } : tensor<?xindex>
629 /// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32>
630 ///
631 /// to just <computation> with %arg0 replaced by %c0. We only do this if the
632 /// tensor.generate operation has no side-effects.
633 struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> {
634   using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
635 
636   LogicalResult matchAndRewrite(tensor::ExtractOp extract,
637                                 PatternRewriter &rewriter) const final {
638     auto tensorFromElements = extract.tensor().getDefiningOp<GenerateOp>();
639     if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements))
640       return failure();
641 
642     BlockAndValueMapping mapping;
643     Block *body = tensorFromElements.getBody();
644     mapping.map(body->getArguments(), extract.indices());
645     for (auto &op : body->without_terminator())
646       rewriter.clone(op, mapping);
647 
648     auto yield = cast<YieldOp>(body->getTerminator());
649 
650     rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value()));
651     return success();
652   }
653 };
654 
655 /// Canonicalizes the pattern of the form
656 ///
657 /// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32>
658 /// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32>
659 ///
660 /// to
661 ///
662 /// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32>
663 struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> {
664   using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
665 
666   LogicalResult matchAndRewrite(tensor::ExtractOp extract,
667                                 PatternRewriter &rewriter) const final {
668     auto tensorCast = extract.tensor().getDefiningOp<tensor::CastOp>();
669     if (!tensorCast)
670       return failure();
671 
672     rewriter.replaceOpWithNewOp<tensor::ExtractOp>(extract, tensorCast.source(),
673                                                    extract.indices());
674     return success();
675   }
676 };
677 
678 } // namespace
679 
680 void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results,
681                                              MLIRContext *context) {
682   // TODO: Move extract patterns to tensor::ExtractOp.
683   results.add<ExtractFromTensorGenerate, ExtractFromTensorCast,
684               StaticTensorGenerate>(context);
685 }
686 
687 //===----------------------------------------------------------------------===//
688 // RankOp
689 //===----------------------------------------------------------------------===//
690 
691 OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) {
692   // Constant fold rank when the rank of the operand is known.
693   auto type = getOperand().getType();
694   auto shapedType = type.dyn_cast<ShapedType>();
695   if (shapedType && shapedType.hasRank())
696     return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank());
697   return IntegerAttr();
698 }
699 
700 //===----------------------------------------------------------------------===//
701 // ReshapeOp
702 //===----------------------------------------------------------------------===//
703 
704 static int64_t getNumElements(ShapedType type) {
705   int64_t numElements = 1;
706   for (auto dim : type.getShape())
707     numElements *= dim;
708   return numElements;
709 }
710 
711 LogicalResult ReshapeOp::verify() {
712   TensorType operandType = source().getType().cast<TensorType>();
713   TensorType resultType = result().getType().cast<TensorType>();
714 
715   if (operandType.getElementType() != resultType.getElementType())
716     return emitOpError("element types of source and destination tensor "
717                        "types should be the same");
718 
719   int64_t shapeSize = shape().getType().cast<RankedTensorType>().getDimSize(0);
720   auto resultRankedType = resultType.dyn_cast<RankedTensorType>();
721   auto operandRankedType = operandType.dyn_cast<RankedTensorType>();
722 
723   if (resultRankedType) {
724     if (operandRankedType && resultRankedType.hasStaticShape() &&
725         operandRankedType.hasStaticShape()) {
726       if (getNumElements(operandRankedType) != getNumElements(resultRankedType))
727         return emitOpError("source and destination tensor should have the "
728                            "same number of elements");
729     }
730     if (ShapedType::isDynamic(shapeSize))
731       return emitOpError("cannot use shape operand with dynamic length to "
732                          "reshape to statically-ranked tensor type");
733     if (shapeSize != resultRankedType.getRank())
734       return emitOpError(
735           "length of shape operand differs from the result's tensor rank");
736   }
737   return success();
738 }
739 
740 //===----------------------------------------------------------------------===//
741 // Reassociative reshape ops
742 //===----------------------------------------------------------------------===//
743 
744 SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() {
745   return getSymbolLessAffineMaps(getReassociationExprs());
746 }
747 SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() {
748   return convertReassociationIndicesToExprs(getContext(),
749                                             getReassociationIndices());
750 }
751 
752 SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() {
753   return getSymbolLessAffineMaps(getReassociationExprs());
754 }
755 SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() {
756   return convertReassociationIndicesToExprs(getContext(),
757                                             getReassociationIndices());
758 }
759 
760 /// Compute the RankedTensorType obtained by applying `reassociation` to `type`.
761 static RankedTensorType
762 computeTensorReshapeCollapsedType(RankedTensorType type,
763                                   ArrayRef<AffineMap> reassociation) {
764   auto shape = type.getShape();
765   SmallVector<int64_t, 4> newShape;
766   newShape.reserve(reassociation.size());
767 
768   // Use the fact that reassociation is valid to simplify the logic: only use
769   // each map's rank.
770   assert(isReassociationValid(reassociation) && "invalid reassociation");
771   unsigned currentDim = 0;
772   for (AffineMap m : reassociation) {
773     unsigned dim = m.getNumResults();
774     auto band = shape.slice(currentDim, dim);
775     int64_t size = 1;
776     if (llvm::is_contained(band, ShapedType::kDynamicSize))
777       size = ShapedType::kDynamicSize;
778     else
779       for (unsigned d = 0; d < dim; ++d)
780         size *= shape[currentDim + d];
781     newShape.push_back(size);
782     currentDim += dim;
783   }
784 
785   return RankedTensorType::get(newShape, type.getElementType());
786 }
787 
788 void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src,
789                             ArrayRef<ReassociationIndices> reassociation,
790                             ArrayRef<NamedAttribute> attrs) {
791   auto resultType = computeTensorReshapeCollapsedType(
792       src.getType().cast<RankedTensorType>(),
793       getSymbolLessAffineMaps(
794           convertReassociationIndicesToExprs(b.getContext(), reassociation)));
795   build(b, result, resultType, src, attrs);
796   result.addAttribute(getReassociationAttrName(),
797                       getReassociationIndicesAttribute(b, reassociation));
798 }
799 
800 void ExpandShapeOp::build(OpBuilder &b, OperationState &result, Value src,
801                           ArrayRef<ReassociationIndices> reassociation,
802                           ArrayRef<NamedAttribute> attrs) {
803   auto resultType = computeTensorReshapeCollapsedType(
804       src.getType().cast<RankedTensorType>(),
805       getSymbolLessAffineMaps(
806           convertReassociationIndicesToExprs(b.getContext(), reassociation)));
807   build(b, result, resultType, src, attrs);
808   result.addAttribute(getReassociationAttrName(),
809                       getReassociationIndicesAttribute(b, reassociation));
810 }
811 
812 template <typename TensorReshapeOp, bool isExpansion = std::is_same<
813                                         TensorReshapeOp, ExpandShapeOp>::value>
814 static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op,
815                                            RankedTensorType expandedType,
816                                            RankedTensorType collapsedType) {
817   if (failed(
818           verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion)))
819     return failure();
820 
821   auto maps = op.getReassociationMaps();
822   RankedTensorType expectedType =
823       computeTensorReshapeCollapsedType(expandedType, maps);
824   if (collapsedType != expectedType)
825     return op.emitOpError("expected collapsed type to be ")
826            << expectedType << ", but got " << collapsedType;
827   return success();
828 }
829 
830 LogicalResult ExpandShapeOp::verify() {
831   return verifyTensorReshapeOp(*this, getResultType(), getSrcType());
832 }
833 
834 LogicalResult CollapseShapeOp::verify() {
835   return verifyTensorReshapeOp(*this, getSrcType(), getResultType());
836 }
837 
838 namespace {
839 /// Reshape of a splat constant can be replaced with a constant of the result
840 /// type.
841 template <typename TensorReshapeOp>
842 struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> {
843   using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
844   LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
845                                 PatternRewriter &rewriter) const override {
846     DenseElementsAttr attr;
847     if (!matchPattern(reshapeOp.src(), m_Constant(&attr)))
848       return failure();
849     if (!attr || !attr.isSplat())
850       return failure();
851     DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer(
852         reshapeOp.getResultType(), attr.getRawData(), true);
853     rewriter.replaceOpWithNewOp<arith::ConstantOp>(reshapeOp, newAttr);
854     return success();
855   }
856 };
857 
858 /// Reshape of a FromElements can be replaced with a FromElements of the result
859 /// type
860 template <typename TensorReshapeOp>
861 struct FoldReshapeWithFromElements : OpRewritePattern<TensorReshapeOp> {
862   using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
863   LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
864                                 PatternRewriter &rewriter) const override {
865     auto fromElements =
866         reshapeOp.src().template getDefiningOp<FromElementsOp>();
867     if (!fromElements)
868       return failure();
869 
870     auto shapedTy = reshapeOp.getType().template cast<ShapedType>();
871 
872     if (!shapedTy.hasStaticShape())
873       return failure();
874 
875     rewriter.replaceOpWithNewOp<FromElementsOp>(reshapeOp, reshapeOp.getType(),
876                                                 fromElements.elements());
877     return success();
878   }
879 };
880 
881 } // namespace
882 
883 void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
884                                                 MLIRContext *context) {
885   results.add<CollapseReshapeOps<ExpandShapeOp>,
886               CollapseMixedReshapeOps<ExpandShapeOp, CollapseShapeOp>,
887               FoldReshapeWithConstant<ExpandShapeOp>,
888               FoldReshapeWithFromElements<ExpandShapeOp>>(context);
889 }
890 
891 void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
892                                                   MLIRContext *context) {
893   results.add<CollapseReshapeOps<CollapseShapeOp>,
894               CollapseMixedReshapeOps<CollapseShapeOp, ExpandShapeOp>,
895               FoldReshapeWithConstant<CollapseShapeOp>,
896               FoldReshapeWithFromElements<CollapseShapeOp>>(context);
897 }
898 
899 OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) {
900   return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands);
901 }
902 OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) {
903   return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands);
904 }
905 
906 //===----------------------------------------------------------------------===//
907 // ExtractSliceOp
908 //===----------------------------------------------------------------------===//
909 
910 /// An extract_slice op result type can be fully inferred from the source type
911 /// and the static representation of offsets, sizes and strides. Special
912 /// sentinels encode the dynamic case.
913 RankedTensorType ExtractSliceOp::inferResultType(
914     RankedTensorType sourceRankedTensorType, ArrayRef<int64_t> staticOffsets,
915     ArrayRef<int64_t> staticSizes, ArrayRef<int64_t> staticStrides) {
916   // An extract_slice op may specify only a leading subset of offset/sizes/
917   // strides in which case we complete with offset=0, sizes from memref type and
918   // strides=1.
919   unsigned rank = sourceRankedTensorType.getRank();
920   (void)rank;
921   assert(staticSizes.size() == rank &&
922          "unexpected staticSizes not equal to rank of source");
923   return RankedTensorType::get(staticSizes,
924                                sourceRankedTensorType.getElementType());
925 }
926 
927 RankedTensorType ExtractSliceOp::inferResultType(
928     RankedTensorType sourceRankedTensorType, ArrayRef<OpFoldResult> offsets,
929     ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) {
930   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
931   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
932   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
933                              ShapedType::kDynamicStrideOrOffset);
934   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
935                              ShapedType::kDynamicSize);
936   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
937                              ShapedType::kDynamicStrideOrOffset);
938   return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
939                                          staticSizes, staticStrides);
940 }
941 
942 /// An extract_slice op result type can be fully inferred from the source type
943 /// and the static representation of offsets, sizes and strides. Special
944 /// sentinels encode the dynamic case.
945 RankedTensorType ExtractSliceOp::inferRankReducedResultType(
946     unsigned resultRank, RankedTensorType sourceRankedTensorType,
947     ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
948     ArrayRef<int64_t> strides) {
949   auto inferredType =
950       inferResultType(sourceRankedTensorType, offsets, sizes, strides)
951           .cast<RankedTensorType>();
952   int rankDiff = inferredType.getRank() - resultRank;
953   if (rankDiff > 0) {
954     auto shape = inferredType.getShape();
955     llvm::SmallBitVector dimsToProject =
956         getPositionsOfShapeOne(rankDiff, shape);
957     SmallVector<int64_t> projectedShape;
958     for (unsigned pos = 0, e = shape.size(); pos < e; ++pos)
959       if (!dimsToProject.test(pos))
960         projectedShape.push_back(shape[pos]);
961     inferredType =
962         RankedTensorType::get(projectedShape, inferredType.getElementType());
963   }
964   return inferredType;
965 }
966 
967 RankedTensorType ExtractSliceOp::inferRankReducedResultType(
968     unsigned resultRank, RankedTensorType sourceRankedTensorType,
969     ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes,
970     ArrayRef<OpFoldResult> strides) {
971   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
972   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
973   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
974                              ShapedType::kDynamicStrideOrOffset);
975   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
976                              ShapedType::kDynamicSize);
977   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
978                              ShapedType::kDynamicStrideOrOffset);
979   return ExtractSliceOp::inferRankReducedResultType(
980       resultRank, sourceRankedTensorType, staticOffsets, staticSizes,
981       staticStrides);
982 }
983 
984 /// Build an ExtractSliceOp with mixed static and dynamic entries and custom
985 /// result type. If the type passed is nullptr, it is inferred.
986 void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
987                            RankedTensorType resultType, Value source,
988                            ArrayRef<OpFoldResult> offsets,
989                            ArrayRef<OpFoldResult> sizes,
990                            ArrayRef<OpFoldResult> strides,
991                            ArrayRef<NamedAttribute> attrs) {
992   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
993   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
994   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
995                              ShapedType::kDynamicStrideOrOffset);
996   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
997                              ShapedType::kDynamicSize);
998   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
999                              ShapedType::kDynamicStrideOrOffset);
1000   auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
1001   // Structuring implementation this way avoids duplication between builders.
1002   if (!resultType) {
1003     resultType =
1004         ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
1005                                         staticSizes, staticStrides)
1006             .cast<RankedTensorType>();
1007   }
1008   build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
1009         dynamicStrides, b.getI64ArrayAttr(staticOffsets),
1010         b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
1011   result.addAttributes(attrs);
1012 }
1013 
1014 /// Build an ExtractSliceOp with mixed static and dynamic entries and inferred
1015 /// result type.
1016 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
1017                            ArrayRef<OpFoldResult> offsets,
1018                            ArrayRef<OpFoldResult> sizes,
1019                            ArrayRef<OpFoldResult> strides,
1020                            ArrayRef<NamedAttribute> attrs) {
1021   build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
1022 }
1023 
1024 /// Build an ExtractSliceOp with dynamic entries and custom result type. If the
1025 /// type passed is nullptr, it is inferred.
1026 void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
1027                            RankedTensorType resultType, Value source,
1028                            ValueRange offsets, ValueRange sizes,
1029                            ValueRange strides, ArrayRef<NamedAttribute> attrs) {
1030   SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
1031       llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
1032   SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
1033       llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
1034   SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
1035       llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
1036   build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
1037 }
1038 
1039 /// Build an ExtractSliceOp with dynamic entries and inferred result type.
1040 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
1041                            ValueRange offsets, ValueRange sizes,
1042                            ValueRange strides, ArrayRef<NamedAttribute> attrs) {
1043   build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
1044 }
1045 
1046 template <typename OpTy>
1047 static LogicalResult produceSliceErrorMsg(SliceVerificationResult result,
1048                                           OpTy op, Type expectedType) {
1049   auto memrefType = expectedType.cast<ShapedType>();
1050   switch (result) {
1051   case SliceVerificationResult::Success:
1052     return success();
1053   case SliceVerificationResult::RankTooLarge:
1054     return op.emitError("expected rank to be smaller or equal to ")
1055            << "the other rank. ";
1056   case SliceVerificationResult::SizeMismatch:
1057     return op.emitError("expected type to be ")
1058            << expectedType << " or a rank-reduced version. (size mismatch) ";
1059   case SliceVerificationResult::ElemTypeMismatch:
1060     return op.emitError("expected element type to be ")
1061            << memrefType.getElementType();
1062   default:
1063     llvm_unreachable("unexpected extract_slice op verification result");
1064   }
1065 }
1066 
1067 /// Verifier for ExtractSliceOp.
1068 LogicalResult ExtractSliceOp::verify() {
1069   // Verify result type against inferred type.
1070   auto expectedType = ExtractSliceOp::inferResultType(
1071       getSourceType(), getMixedOffsets(), getMixedSizes(), getMixedStrides());
1072   auto result = isRankReducedType(expectedType.cast<ShapedType>(), getType());
1073   return produceSliceErrorMsg(result, *this, expectedType);
1074 }
1075 
1076 /// Infer the canonical type of the result of an extract_slice op. Returns a
1077 /// type with rank `resultRank` that is either the rank of the rank-reduced
1078 /// type, or the non-rank-reduced type.
1079 static RankedTensorType
1080 getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType,
1081                             ArrayRef<OpFoldResult> mixedOffsets,
1082                             ArrayRef<OpFoldResult> mixedSizes,
1083                             ArrayRef<OpFoldResult> mixedStrides) {
1084   auto resultType =
1085       ExtractSliceOp::inferRankReducedResultType(
1086           resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides)
1087           .cast<RankedTensorType>();
1088   if (resultType.getRank() != resultRank) {
1089     resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets,
1090                                                  mixedSizes, mixedStrides)
1091                      .cast<RankedTensorType>();
1092   }
1093   return resultType;
1094 }
1095 
1096 llvm::SmallBitVector ExtractSliceOp::getDroppedDims() {
1097   ArrayRef<int64_t> resultShape = getType().getShape();
1098   SmallVector<OpFoldResult> mixedSizes = getMixedSizes();
1099   llvm::SmallBitVector droppedDims(mixedSizes.size());
1100   unsigned shapePos = 0;
1101   for (const auto &size : enumerate(mixedSizes)) {
1102     Optional<int64_t> sizeVal = getConstantIntValue(size.value());
1103     // If the size is not 1, or if the current matched dimension of the result
1104     // is the same static shape as the size value (which is 1), then the
1105     // dimension is preserved.
1106     if (!sizeVal || sizeVal.getValue() != 1 ||
1107         (shapePos < resultShape.size() && resultShape[shapePos] == 1)) {
1108       shapePos++;
1109       continue;
1110     }
1111     droppedDims.set(size.index());
1112   }
1113   return droppedDims;
1114 }
1115 
1116 LogicalResult ExtractSliceOp::reifyResultShapes(
1117     OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
1118   reifiedReturnShapes.resize(1);
1119   reifiedReturnShapes[0].reserve(getType().getRank());
1120   SmallVector<OpFoldResult> mixedSizes = getMixedSizes();
1121   llvm::SmallBitVector droppedDims = getDroppedDims();
1122   Location loc = getLoc();
1123   for (const auto &size : enumerate(mixedSizes)) {
1124     if (droppedDims.test(size.index()))
1125       continue;
1126     if (auto attr = size.value().dyn_cast<Attribute>()) {
1127       reifiedReturnShapes[0].push_back(builder.create<arith::ConstantIndexOp>(
1128           loc, attr.cast<IntegerAttr>().getInt()));
1129       continue;
1130     }
1131     reifiedReturnShapes[0].push_back(size.value().get<Value>());
1132   }
1133   return success();
1134 }
1135 
1136 namespace {
1137 /// Pattern to rewrite an extract_slice op with tensor::Cast arguments.
1138 /// This essentially pushes memref_cast past its consuming slice when
1139 /// `canFoldIntoConsumerOp` is true.
1140 ///
1141 /// Example:
1142 /// ```
1143 ///   %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32>
1144 ///   %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to
1145 ///   tensor<3x4xf32>
1146 /// ```
1147 /// is rewritten into:
1148 /// ```
1149 ///   %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to
1150 ///   tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32>
1151 /// ```
1152 class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> {
1153 public:
1154   using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;
1155 
1156   LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
1157                                 PatternRewriter &rewriter) const override {
1158     // Any constant operand, just return to let SubViewOpConstantFolder kick in.
1159     if (llvm::any_of(sliceOp.getOperands(), [](Value operand) {
1160           return matchPattern(operand, matchConstantIndex());
1161         }))
1162       return failure();
1163 
1164     auto castOp = sliceOp.source().getDefiningOp<tensor::CastOp>();
1165     if (!castOp)
1166       return failure();
1167 
1168     if (!canFoldIntoConsumerOp(castOp))
1169       return failure();
1170 
1171     /// Deduce the type of the result to use for the canonicalized operation.
1172     RankedTensorType resultType = getCanonicalSliceResultType(
1173         sliceOp.getType().getRank(), sliceOp.getSourceType(),
1174         sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(),
1175         sliceOp.getMixedStrides());
1176     Value newSlice = rewriter.create<ExtractSliceOp>(
1177         sliceOp.getLoc(), resultType, castOp.source(), sliceOp.offsets(),
1178         sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(),
1179         sliceOp.static_sizes(), sliceOp.static_strides());
1180     rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(),
1181                                                 newSlice);
1182     return success();
1183   }
1184 };
1185 
1186 /// Slice elements from `values` into `outValues`. `counts` represents the
1187 /// numbers of elements to stride in the original values for each dimension.
1188 /// The output values can be used to construct a DenseElementsAttr.
1189 template <typename IterTy, typename ElemTy>
1190 static void sliceElements(IterTy values, ArrayRef<int64_t> counts,
1191                           ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
1192                           ArrayRef<int64_t> strides,
1193                           llvm::SmallVectorImpl<ElemTy> *outValues) {
1194   assert(offsets.size() == sizes.size());
1195   assert(offsets.size() == strides.size());
1196   if (offsets.empty())
1197     return;
1198 
1199   int64_t offset = offsets.front();
1200   int64_t size = sizes.front();
1201   int64_t stride = strides.front();
1202   if (offsets.size() == 1) {
1203     for (int64_t i = 0; i < size; ++i, offset += stride)
1204       outValues->push_back(*(values + offset));
1205 
1206     return;
1207   }
1208 
1209   for (int64_t i = 0; i < size; ++i, offset += stride) {
1210     auto begin = values + offset * counts.front();
1211     sliceElements<IterTy, ElemTy>(begin, counts.drop_front(),
1212                                   offsets.drop_front(), sizes.drop_front(),
1213                                   strides.drop_front(), outValues);
1214   }
1215 }
1216 
1217 /// Fold arith.constant and tensor.extract_slice into arith.constant. The folded
1218 /// operation might introduce more constant data; Users can control their
1219 /// heuristics by the control function.
1220 class ConstantOpExtractSliceFolder final
1221     : public OpRewritePattern<ExtractSliceOp> {
1222 public:
1223   using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;
1224 
1225   ConstantOpExtractSliceFolder(MLIRContext *context,
1226                                ControlConstantExtractSliceFusionFn controlFn)
1227       : OpRewritePattern<ExtractSliceOp>(context),
1228         controlFn(std::move(controlFn)) {}
1229 
1230   LogicalResult matchAndRewrite(ExtractSliceOp op,
1231                                 PatternRewriter &rewriter) const override {
1232     DenseElementsAttr attr;
1233     if (!matchPattern(op.source(), m_Constant(&attr)))
1234       return failure();
1235 
1236     // A constant splat is handled by fold().
1237     if (attr.isSplat())
1238       return failure();
1239 
1240     // Dynamic result shape is not supported.
1241     auto sourceType = op.source().getType().cast<ShapedType>();
1242     auto resultType = op.result().getType().cast<ShapedType>();
1243     if (!sourceType.hasStaticShape() || !resultType.hasStaticShape())
1244       return failure();
1245 
1246     // Customized control over the folding.
1247     if (!controlFn(op))
1248       return failure();
1249 
1250     int64_t count = sourceType.getNumElements();
1251     if (count == 0)
1252       return failure();
1253 
1254     // Check if there are any dynamic parts, which are not supported.
1255     auto offsets = extractFromI64ArrayAttr(op.static_offsets());
1256     if (llvm::is_contained(offsets, ShapedType::kDynamicStrideOrOffset))
1257       return failure();
1258     auto sizes = extractFromI64ArrayAttr(op.static_sizes());
1259     if (llvm::is_contained(sizes, ShapedType::kDynamicSize))
1260       return failure();
1261     auto strides = extractFromI64ArrayAttr(op.static_strides());
1262     if (llvm::is_contained(strides, ShapedType::kDynamicStrideOrOffset))
1263       return failure();
1264 
1265     // Compute the stride for each dimension.
1266     SmallVector<int64_t> counts;
1267     ArrayRef<int64_t> shape = sourceType.getShape();
1268     counts.reserve(shape.size());
1269     for (int64_t v : shape) {
1270       count = count / v;
1271       counts.push_back(count);
1272     }
1273 
1274     // New attribute constructed by the sliced values.
1275     DenseElementsAttr newAttr;
1276 
1277     if (auto elems = attr.dyn_cast<DenseIntElementsAttr>()) {
1278       SmallVector<APInt> outValues;
1279       outValues.reserve(sourceType.getNumElements());
1280       sliceElements<DenseElementsAttr::IntElementIterator, APInt>(
1281           elems.begin(), counts, offsets, sizes, strides, &outValues);
1282       newAttr = DenseElementsAttr::get(resultType, outValues);
1283     } else if (auto elems = attr.dyn_cast<DenseFPElementsAttr>()) {
1284       SmallVector<APFloat> outValues;
1285       outValues.reserve(sourceType.getNumElements());
1286       sliceElements<DenseElementsAttr::FloatElementIterator, APFloat>(
1287           elems.begin(), counts, offsets, sizes, strides, &outValues);
1288       newAttr = DenseElementsAttr::get(resultType, outValues);
1289     }
1290 
1291     if (newAttr) {
1292       rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, resultType, newAttr);
1293       return success();
1294     }
1295 
1296     return failure();
1297   }
1298 
1299 private:
1300   /// This additionally controls whether the fold happens or not. Users can
1301   /// impose their heuristics in the function.
1302   ControlConstantExtractSliceFusionFn controlFn;
1303 };
1304 
1305 } // namespace
1306 
1307 void mlir::tensor::populateFoldConstantExtractSlicePatterns(
1308     RewritePatternSet &patterns,
1309     const ControlConstantExtractSliceFusionFn &controlFn) {
1310   patterns.add<ConstantOpExtractSliceFolder>(patterns.getContext(), controlFn);
1311 }
1312 
1313 /// Return the canonical type of the result of an extract_slice op.
1314 struct SliceReturnTypeCanonicalizer {
1315   RankedTensorType operator()(ExtractSliceOp op,
1316                               ArrayRef<OpFoldResult> mixedOffsets,
1317                               ArrayRef<OpFoldResult> mixedSizes,
1318                               ArrayRef<OpFoldResult> mixedStrides) {
1319     return getCanonicalSliceResultType(op.getType().getRank(),
1320                                        op.getSourceType(), mixedOffsets,
1321                                        mixedSizes, mixedStrides);
1322   }
1323 };
1324 
1325 /// A canonicalizer wrapper to replace ExtractSliceOps.
1326 struct SliceCanonicalizer {
1327   void operator()(PatternRewriter &rewriter, ExtractSliceOp op,
1328                   ExtractSliceOp newOp) {
1329     Value replacement = newOp.getResult();
1330     if (replacement.getType() != op.getType())
1331       replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(),
1332                                                     replacement);
1333     rewriter.replaceOp(op, replacement);
1334   }
1335 };
1336 
1337 void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
1338                                                  MLIRContext *context) {
1339   results.add<
1340       OpWithOffsetSizesAndStridesConstantArgumentFolder<
1341           ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>,
1342       ExtractSliceOpCastFolder>(context);
1343 }
1344 
1345 //
1346 static LogicalResult
1347 foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op,
1348                                            ShapedType shapedType) {
1349   OpBuilder b(op.getContext());
1350   for (OpFoldResult ofr : op.getMixedOffsets())
1351     if (getConstantIntValue(ofr) != static_cast<int64_t>(0))
1352       return failure();
1353   // Rank-reducing noops only need to inspect the leading dimensions: llvm::zip
1354   // is appropriate.
1355   auto shape = shapedType.getShape();
1356   for (auto it : llvm::zip(op.getMixedSizes(), shape))
1357     if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it))
1358       return failure();
1359   for (OpFoldResult ofr : op.getMixedStrides())
1360     if (getConstantIntValue(ofr) != static_cast<int64_t>(1))
1361       return failure();
1362   return success();
1363 }
1364 
1365 /// If we have an ExtractSliceOp consuming an InsertSliceOp with the same slice,
1366 /// we can return the InsertSliceOp's source directly.
1367 // TODO: This only checks the immediate producer; extend to go up the
1368 // insert/extract chain if the slices are disjoint.
1369 static Value foldExtractAfterInsertSlice(ExtractSliceOp extractOp) {
1370   auto insertOp = extractOp.source().getDefiningOp<InsertSliceOp>();
1371 
1372   auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
1373   if (insertOp && insertOp.source().getType() == extractOp.getType() &&
1374       insertOp.isSameAs(extractOp, isSame))
1375     return insertOp.source();
1376 
1377   return {};
1378 }
1379 
1380 OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute> operands) {
1381   if (auto splat = operands[0].dyn_cast_or_null<SplatElementsAttr>()) {
1382     auto resultType = result().getType().cast<ShapedType>();
1383     if (resultType.hasStaticShape())
1384       return splat.resizeSplat(resultType);
1385   }
1386   if (getSourceType() == getType() &&
1387       succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
1388     return this->source();
1389   if (Value slice = foldExtractAfterInsertSlice(*this))
1390     return slice;
1391 
1392   return OpFoldResult();
1393 }
1394 
1395 Value mlir::tensor::createCanonicalRankReducingExtractSliceOp(
1396     OpBuilder &b, Location loc, Value tensor, RankedTensorType targetType) {
1397   auto rankedTensorType = tensor.getType().cast<RankedTensorType>();
1398   unsigned rank = rankedTensorType.getRank();
1399   auto shape = rankedTensorType.getShape();
1400   SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
1401   SmallVector<OpFoldResult> sizes;
1402   for (unsigned i = 0, e = rank; i < e; ++i) {
1403     OpFoldResult dim;
1404     if (rankedTensorType.isDynamicDim(i))
1405       dim = b.createOrFold<tensor::DimOp>(
1406           loc, tensor, b.create<arith::ConstantIndexOp>(loc, i));
1407     else
1408       dim = b.getIndexAttr(shape[i]);
1409     sizes.push_back(dim);
1410   }
1411   SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
1412   return b.createOrFold<tensor::ExtractSliceOp>(loc, targetType, tensor,
1413                                                 offsets, sizes, strides);
1414 }
1415 
1416 //===----------------------------------------------------------------------===//
1417 // InsertSliceOp
1418 //===----------------------------------------------------------------------===//
1419 
1420 // Build a InsertSliceOp with mixed static and dynamic entries.
1421 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
1422                           Value dest, ArrayRef<OpFoldResult> offsets,
1423                           ArrayRef<OpFoldResult> sizes,
1424                           ArrayRef<OpFoldResult> strides,
1425                           ArrayRef<NamedAttribute> attrs) {
1426   SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
1427   SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
1428   dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
1429                              ShapedType::kDynamicStrideOrOffset);
1430   dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
1431                              ShapedType::kDynamicSize);
1432   dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
1433                              ShapedType::kDynamicStrideOrOffset);
1434   build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes,
1435         dynamicStrides, b.getI64ArrayAttr(staticOffsets),
1436         b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
1437   result.addAttributes(attrs);
1438 }
1439 
1440 // Build a InsertSliceOp with dynamic entries.
1441 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
1442                           Value dest, ValueRange offsets, ValueRange sizes,
1443                           ValueRange strides, ArrayRef<NamedAttribute> attrs) {
1444   SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
1445       llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
1446   SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
1447       llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
1448   SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
1449       llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
1450   build(b, result, source, dest, offsetValues, sizeValues, strideValues);
1451 }
1452 
1453 static SliceVerificationResult
1454 verifyInsertSliceOp(ShapedType srcType, ShapedType dstType,
1455                     ArrayAttr staticOffsets, ArrayAttr staticSizes,
1456                     ArrayAttr staticStrides,
1457                     ShapedType *expectedType = nullptr) {
1458   // insert_slice is the inverse of extract_slice, use the same type inference.
1459   auto expected = ExtractSliceOp::inferRankReducedResultType(
1460                       srcType.getRank(), dstType.cast<RankedTensorType>(),
1461                       extractFromI64ArrayAttr(staticOffsets),
1462                       extractFromI64ArrayAttr(staticSizes),
1463                       extractFromI64ArrayAttr(staticStrides))
1464                       .cast<ShapedType>();
1465   if (expectedType)
1466     *expectedType = expected;
1467   return isRankReducedType(expected, srcType);
1468 }
1469 
1470 /// Verifier for InsertSliceOp.
1471 LogicalResult InsertSliceOp::verify() {
1472   ShapedType expectedType;
1473   auto result =
1474       verifyInsertSliceOp(getSourceType(), getType(), static_offsets(),
1475                           static_sizes(), static_strides(), &expectedType);
1476   return produceSliceErrorMsg(result, *this, expectedType);
1477 }
1478 
1479 /// If we have two consecutive InsertSliceOp writing to the same slice, we
1480 /// can mutate the second InsertSliceOp's destination to the first one's.
1481 ///
1482 /// Example:
1483 ///
1484 /// ```mlir
1485 ///   %0 = tensor.insert_slice %slice0 into %input[0, 0] [64, 64] [1, 1]
1486 ///   %1 = tensor.insert_slice %slice1 into %0[0, 0] [64, 64] [1, 1]
1487 /// ```
1488 ///
1489 /// folds into:
1490 ///
1491 /// ```mlir
1492 ///   %1 = tensor.insert_slice %slice1 into %input[0, 0] [64, 64] [1, 1]
1493 /// ```
1494 static LogicalResult foldInsertAfterInsertSlice(InsertSliceOp insertOp) {
1495   auto prevInsertOp = insertOp.dest().getDefiningOp<InsertSliceOp>();
1496 
1497   auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
1498   if (!prevInsertOp ||
1499       prevInsertOp.source().getType() != insertOp.source().getType() ||
1500       !prevInsertOp.isSameAs(insertOp, isSame))
1501     return failure();
1502 
1503   insertOp.destMutable().assign(prevInsertOp.dest());
1504   return success();
1505 }
1506 
1507 OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) {
1508   if (getSourceType().hasStaticShape() && getType().hasStaticShape() &&
1509       getSourceType() == getType() &&
1510       succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
1511     return this->source();
1512   if (succeeded(foldInsertAfterInsertSlice(*this)))
1513     return getResult();
1514   return OpFoldResult();
1515 }
1516 
1517 LogicalResult InsertSliceOp::reifyResultShapes(
1518     OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
1519   reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank()));
1520   for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) {
1521     reifiedReturnShapes[0][dim] =
1522         builder.createOrFold<tensor::DimOp>(getLoc(), dest(), dim);
1523   }
1524   return success();
1525 }
1526 
1527 namespace {
1528 /// Pattern to rewrite a insert_slice op with constant arguments.
1529 class InsertSliceOpConstantArgumentFolder final
1530     : public OpRewritePattern<InsertSliceOp> {
1531 public:
1532   using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
1533 
1534   LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
1535                                 PatternRewriter &rewriter) const override {
1536     // No constant operand, just return.
1537     if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) {
1538           return matchPattern(operand, matchConstantIndex());
1539         }))
1540       return failure();
1541 
1542     // At least one of offsets/sizes/strides is a new constant.
1543     // Form the new list of operands and constant attributes from the
1544     // existing.
1545     SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets());
1546     SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes());
1547     SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides());
1548     canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset);
1549     canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic);
1550     canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset);
1551 
1552     // Create the new op in canonical form.
1553     auto sourceType = ExtractSliceOp::inferRankReducedResultType(
1554         insertSliceOp.getSourceType().getRank(), insertSliceOp.getType(),
1555         mixedOffsets, mixedSizes, mixedStrides);
1556     Value toInsert = insertSliceOp.source();
1557     if (sourceType != insertSliceOp.getSourceType())
1558       toInsert = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(),
1559                                                  sourceType, toInsert);
1560     rewriter.replaceOpWithNewOp<InsertSliceOp>(
1561         insertSliceOp, toInsert, insertSliceOp.dest(), mixedOffsets, mixedSizes,
1562         mixedStrides);
1563     return success();
1564   }
1565 };
1566 
1567 /// Fold tensor_casts with insert_slice operations. If the source or destination
1568 /// tensor is a tensor_cast that removes static type information, the cast is
1569 /// folded into the insert_slice operation. E.g.:
1570 ///
1571 /// ```mlir
1572 ///   %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
1573 ///   %2 = tensor.insert_slice %1 into ... : tensor<?x?xf32> into ...
1574 /// ```
1575 ///
1576 /// folds into:
1577 ///
1578 /// ```mlir
1579 ///   %2 = tensor.insert_slice %0 into ... : tensor<8x16xf32> into ...
1580 /// ```
1581 ///
1582 /// Note: When folding a cast on the destination tensor, the result of the
1583 /// insert_slice operation is casted to ensure that the type of the result did
1584 /// not change.
1585 struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertSliceOp> {
1586   using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
1587 
1588   LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
1589                                 PatternRewriter &rewriter) const override {
1590     if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) {
1591           return matchPattern(operand, matchConstantIndex());
1592         }))
1593       return failure();
1594 
1595     auto getSourceOfCastOp = [](Value v) -> Optional<Value> {
1596       auto castOp = v.getDefiningOp<tensor::CastOp>();
1597       if (!castOp || !canFoldIntoConsumerOp(castOp))
1598         return llvm::None;
1599       return castOp.source();
1600     };
1601     Optional<Value> sourceCastSource =
1602         getSourceOfCastOp(insertSliceOp.source());
1603     Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.dest());
1604     if (!sourceCastSource && !destCastSource)
1605       return failure();
1606 
1607     auto src = (sourceCastSource ? *sourceCastSource : insertSliceOp.source());
1608     auto dst = (destCastSource ? *destCastSource : insertSliceOp.dest());
1609 
1610     auto srcType = src.getType().cast<ShapedType>();
1611     auto dstType = dst.getType().cast<ShapedType>();
1612     if (verifyInsertSliceOp(srcType, dstType, insertSliceOp.static_offsets(),
1613                             insertSliceOp.static_sizes(),
1614                             insertSliceOp.static_strides()) !=
1615         SliceVerificationResult::Success)
1616       return failure();
1617 
1618     Value replacement = rewriter.create<InsertSliceOp>(
1619         insertSliceOp.getLoc(), src, dst, insertSliceOp.getMixedOffsets(),
1620         insertSliceOp.getMixedSizes(), insertSliceOp.getMixedStrides());
1621 
1622     if (replacement.getType() != insertSliceOp.getType()) {
1623       replacement = rewriter.create<tensor::CastOp>(
1624           insertSliceOp.getLoc(), insertSliceOp.getType(), replacement);
1625     }
1626     rewriter.replaceOp(insertSliceOp, replacement);
1627     return success();
1628   }
1629 };
1630 
1631 /// If additional static type information can be deduced from a insert_slice's
1632 /// size operands, insert an explicit cast of the op's source operand. This
1633 /// enables other canonicalization patterns that are matching for tensor_cast
1634 /// ops such as `ForOpTensorCastFolder` in SCF.
1635 ///
1636 /// Example:
1637 ///
1638 /// ```mlir
1639 ///   %r = tensor.insert_slice %0 into %1[...] [64, 64] [1, 1]
1640 ///       : tensor<?x?xf32> into ...
1641 /// ```
1642 ///
1643 /// folds into:
1644 ///
1645 /// ```mlir
1646 ///   %tmp = tensor.cast %0 : tensor<?x?xf32> to tensor<64x64xf32>
1647 ///   %r = tensor.insert_slice %tmp into %1[...] [64, 64] [1, 1]
1648 ///       : tensor<64x64xf32> into ...
1649 /// ```
1650 struct InsertSliceOpSourceCastInserter final
1651     : public OpRewritePattern<InsertSliceOp> {
1652   using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
1653 
1654   LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
1655                                 PatternRewriter &rewriter) const override {
1656     RankedTensorType srcType = insertSliceOp.getSourceType();
1657     if (srcType.getRank() != insertSliceOp.getType().getRank())
1658       return failure();
1659     SmallVector<int64_t> newSrcShape(srcType.getShape().begin(),
1660                                      srcType.getShape().end());
1661     for (int64_t i = 0; i < srcType.getRank(); ++i) {
1662       if (Optional<int64_t> constInt =
1663               getConstantIntValue(insertSliceOp.getMixedSizes()[i]))
1664         newSrcShape[i] = *constInt;
1665     }
1666 
1667     RankedTensorType newSrcType =
1668         RankedTensorType::get(newSrcShape, srcType.getElementType());
1669     if (srcType == newSrcType ||
1670         !preservesStaticInformation(srcType, newSrcType) ||
1671         !tensor::CastOp::areCastCompatible(srcType, newSrcType))
1672       return failure();
1673 
1674     // newSrcType is:
1675     //   1) Different from srcType.
1676     //   2) "More static" than srcType.
1677     //   3) Cast-compatible with srcType.
1678     // Insert the cast.
1679     Value cast = rewriter.create<tensor::CastOp>(
1680         insertSliceOp.getLoc(), newSrcType, insertSliceOp.source());
1681     rewriter.replaceOpWithNewOp<InsertSliceOp>(
1682         insertSliceOp, cast, insertSliceOp.dest(),
1683         insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
1684         insertSliceOp.getMixedStrides());
1685     return success();
1686   }
1687 };
1688 } // namespace
1689 
1690 void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
1691                                                 MLIRContext *context) {
1692   results.add<InsertSliceOpConstantArgumentFolder, InsertSliceOpCastFolder,
1693               InsertSliceOpSourceCastInserter>(context);
1694 }
1695 
1696 Value mlir::tensor::createCanonicalRankReducingInsertSliceOp(OpBuilder &b,
1697                                                              Location loc,
1698                                                              Value tensor,
1699                                                              Value dest) {
1700   auto rankedTensorType = dest.getType().cast<RankedTensorType>();
1701   unsigned rank = rankedTensorType.getRank();
1702   auto shape = rankedTensorType.getShape();
1703   SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
1704   SmallVector<OpFoldResult> sizes;
1705   for (unsigned i = 0, e = rank; i < e; ++i) {
1706     OpFoldResult dim;
1707     if (rankedTensorType.isDynamicDim(i))
1708       dim = b.createOrFold<tensor::DimOp>(
1709           loc, dest, b.create<arith::ConstantIndexOp>(loc, i));
1710     else
1711       dim = b.getIndexAttr(shape[i]);
1712     sizes.push_back(dim);
1713   }
1714   SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
1715   return b.createOrFold<tensor::InsertSliceOp>(loc, tensor, dest, offsets,
1716                                                sizes, strides);
1717 }
1718 
1719 //===----------------------------------------------------------------------===//
1720 // PadOp
1721 //===----------------------------------------------------------------------===//
1722 
1723 // TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it
1724 // supports optional types.
1725 void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand,
1726                     Type typeToInfer, Type typeToInferFrom) {}
1727 
1728 ParseResult parseInferType(OpAsmParser &parser,
1729                            Optional<OpAsmParser::OperandType> optOperand,
1730                            Type &typeToInfer, Type typeToInferFrom) {
1731   if (optOperand)
1732     typeToInfer = typeToInferFrom;
1733   return success();
1734 }
1735 
1736 LogicalResult PadOp::verify() {
1737   auto sourceType = source().getType().cast<RankedTensorType>();
1738   auto resultType = result().getType().cast<RankedTensorType>();
1739   auto expectedType =
1740       PadOp::inferResultType(sourceType, extractFromI64ArrayAttr(static_low()),
1741                              extractFromI64ArrayAttr(static_high()));
1742   for (int i = 0, e = sourceType.getRank(); i < e; ++i) {
1743     if (resultType.getDimSize(i) == expectedType.getDimSize(i))
1744       continue;
1745     if (expectedType.isDynamicDim(i))
1746       continue;
1747     return emitError("specified type ")
1748            << resultType << " does not match the inferred type "
1749            << expectedType;
1750   }
1751 
1752   auto &region = getRegion();
1753   unsigned rank = resultType.getRank();
1754   Block &block = region.front();
1755   if (block.getNumArguments() != rank)
1756     return emitError("expected the block to have ") << rank << " arguments";
1757 
1758   // Note: the number and type of yield values are checked in the YieldOp.
1759   for (const auto &en : llvm::enumerate(block.getArgumentTypes())) {
1760     if (!en.value().isIndex())
1761       return emitOpError("expected block argument ")
1762              << (en.index() + 1) << " to be an index";
1763   }
1764 
1765   // Ensure that the region yields an element of the right type.
1766   auto yieldOp = llvm::cast<YieldOp>(block.getTerminator());
1767   if (yieldOp.value().getType() !=
1768       getType().cast<ShapedType>().getElementType())
1769     return emitOpError("expected yield type to match shape element type");
1770 
1771   return success();
1772 }
1773 
1774 RankedTensorType PadOp::inferResultType(RankedTensorType sourceType,
1775                                         ArrayRef<int64_t> staticLow,
1776                                         ArrayRef<int64_t> staticHigh,
1777                                         ArrayRef<int64_t> resultShape) {
1778   unsigned rank = sourceType.getRank();
1779   assert(staticLow.size() == rank && "unexpected staticLow size mismatch");
1780   assert(staticHigh.size() == rank && "unexpected staticHigh size mismatch");
1781   assert((resultShape.empty() || resultShape.size() == rank) &&
1782          "unexpected resultShape size mismatch");
1783 
1784   SmallVector<int64_t, 4> inferredShape;
1785   for (auto i : llvm::seq<unsigned>(0, rank)) {
1786     if (sourceType.isDynamicDim(i) ||
1787         staticLow[i] == ShapedType::kDynamicSize ||
1788         staticHigh[i] == ShapedType::kDynamicSize) {
1789       inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamicSize
1790                                                   : resultShape[i]);
1791     } else {
1792       int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i];
1793       assert((resultShape.empty() || size == resultShape[i] ||
1794               resultShape[i] == ShapedType::kDynamicSize) &&
1795              "mismatch between inferred shape and result shape");
1796       inferredShape.push_back(size);
1797     }
1798   }
1799 
1800   return RankedTensorType::get(inferredShape, sourceType.getElementType());
1801 }
1802 
1803 void PadOp::build(OpBuilder &b, OperationState &result, Value source,
1804                   ArrayRef<int64_t> staticLow, ArrayRef<int64_t> staticHigh,
1805                   ValueRange low, ValueRange high, bool nofold,
1806                   ArrayRef<NamedAttribute> attrs) {
1807   auto sourceType = source.getType().cast<RankedTensorType>();
1808   auto resultType = inferResultType(sourceType, staticLow, staticHigh);
1809   build(b, result, resultType, source, low, high, b.getI64ArrayAttr(staticLow),
1810         b.getI64ArrayAttr(staticHigh), nofold ? b.getUnitAttr() : UnitAttr());
1811   result.addAttributes(attrs);
1812 }
1813 
1814 void PadOp::build(OpBuilder &b, OperationState &result, Value source,
1815                   ValueRange low, ValueRange high, bool nofold,
1816                   ArrayRef<NamedAttribute> attrs) {
1817   auto sourceType = source.getType().cast<RankedTensorType>();
1818   unsigned rank = sourceType.getRank();
1819   SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamicSize);
1820   build(b, result, source, staticVector, staticVector, low, high, nofold,
1821         attrs);
1822 }
1823 
1824 void PadOp::build(OpBuilder &b, OperationState &result, Type resultType,
1825                   Value source, ArrayRef<OpFoldResult> low,
1826                   ArrayRef<OpFoldResult> high, bool nofold,
1827                   ArrayRef<NamedAttribute> attrs) {
1828   assert(resultType.isa<RankedTensorType>());
1829   auto sourceType = source.getType().cast<RankedTensorType>();
1830   SmallVector<Value, 4> dynamicLow, dynamicHigh;
1831   SmallVector<int64_t, 4> staticLow, staticHigh;
1832   // staticLow and staticHigh have full information of the padding config.
1833   // This will grow staticLow and staticHigh with 1 value. If the config is
1834   // dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1
1835   // value as well.
1836   dispatchIndexOpFoldResults(low, dynamicLow, staticLow,
1837                              ShapedType::kDynamicSize);
1838   dispatchIndexOpFoldResults(high, dynamicHigh, staticHigh,
1839                              ShapedType::kDynamicSize);
1840   if (!resultType) {
1841     resultType = PadOp::inferResultType(sourceType, staticLow, staticHigh);
1842   }
1843   build(b, result, resultType, source, dynamicLow, dynamicHigh,
1844         b.getI64ArrayAttr(staticLow), b.getI64ArrayAttr(staticHigh),
1845         nofold ? b.getUnitAttr() : UnitAttr());
1846   result.addAttributes(attrs);
1847 }
1848 
1849 namespace {
1850 // Folds tensor.pad when padding is static zeros and the attribute
1851 // doesn't request otherwise.
1852 struct FoldStaticZeroPadding : public OpRewritePattern<PadOp> {
1853   using OpRewritePattern<PadOp>::OpRewritePattern;
1854 
1855   LogicalResult matchAndRewrite(PadOp padTensorOp,
1856                                 PatternRewriter &rewriter) const override {
1857     if (!padTensorOp.hasZeroLowPad() || !padTensorOp.hasZeroHighPad())
1858       return failure();
1859     if (padTensorOp.nofold())
1860       return failure();
1861     rewriter.replaceOpWithNewOp<tensor::CastOp>(
1862         padTensorOp, padTensorOp.result().getType(), padTensorOp.source());
1863     return success();
1864   }
1865 };
1866 
1867 // Fold CastOp into PadOp when adding static information.
1868 struct FoldSourceTensorCast : public OpRewritePattern<PadOp> {
1869   using OpRewritePattern<PadOp>::OpRewritePattern;
1870 
1871   LogicalResult matchAndRewrite(PadOp padTensorOp,
1872                                 PatternRewriter &rewriter) const override {
1873     auto castOp = padTensorOp.source().getDefiningOp<tensor::CastOp>();
1874     if (!tensor::canFoldIntoConsumerOp(castOp))
1875       return failure();
1876 
1877     auto newResultType = PadOp::inferResultType(
1878         castOp.source().getType().cast<RankedTensorType>(),
1879         extractFromI64ArrayAttr(padTensorOp.static_low()),
1880         extractFromI64ArrayAttr(padTensorOp.static_high()),
1881         padTensorOp.getResultType().getShape());
1882 
1883     if (newResultType == padTensorOp.getResultType()) {
1884       rewriter.updateRootInPlace(padTensorOp, [&]() {
1885         padTensorOp.sourceMutable().assign(castOp.source());
1886       });
1887     } else {
1888       auto newOp = rewriter.create<PadOp>(
1889           padTensorOp->getLoc(), newResultType, padTensorOp.source(),
1890           padTensorOp.low(), padTensorOp.high(), padTensorOp.static_low(),
1891           padTensorOp.static_high(), padTensorOp.nofold());
1892       BlockAndValueMapping mapper;
1893       padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper);
1894 
1895       rewriter.replaceOpWithNewOp<tensor::CastOp>(
1896           padTensorOp, padTensorOp.getResultType(), newOp);
1897     }
1898     return success();
1899   }
1900 };
1901 
1902 // Fold CastOp using the result of PadOp back into the latter if it adds
1903 // static information.
1904 struct FoldTargetTensorCast : public OpRewritePattern<PadOp> {
1905   using OpRewritePattern<PadOp>::OpRewritePattern;
1906 
1907   LogicalResult matchAndRewrite(PadOp padTensorOp,
1908                                 PatternRewriter &rewriter) const override {
1909     if (!padTensorOp.result().hasOneUse())
1910       return failure();
1911     auto tensorCastOp =
1912         dyn_cast<tensor::CastOp>(*padTensorOp->getUsers().begin());
1913     if (!tensorCastOp)
1914       return failure();
1915     if (!tensor::preservesStaticInformation(padTensorOp.result().getType(),
1916                                             tensorCastOp.dest().getType()))
1917       return failure();
1918 
1919     auto replacementOp = rewriter.create<PadOp>(
1920         padTensorOp.getLoc(), tensorCastOp.dest().getType(),
1921         padTensorOp.source(), padTensorOp.low(), padTensorOp.high(),
1922         padTensorOp.static_low(), padTensorOp.static_high(),
1923         padTensorOp.nofold());
1924     replacementOp.region().takeBody(padTensorOp.region());
1925 
1926     rewriter.replaceOp(padTensorOp, replacementOp.result());
1927     rewriter.replaceOp(tensorCastOp, replacementOp.result());
1928     return success();
1929   }
1930 };
1931 } // namespace
1932 
1933 void PadOp::getCanonicalizationPatterns(RewritePatternSet &results,
1934                                         MLIRContext *context) {
1935   results
1936       .add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast>(
1937           context);
1938 }
1939 
1940 /// Return the padding value of the PadOp if it constant. In this context,
1941 /// "constant" means an actual constant or "defined outside of the block".
1942 ///
1943 /// Values are considered constant in three cases:
1944 ///  - A ConstantLike value.
1945 ///  - A basic block argument from a different block.
1946 ///  - A value defined outside of the block.
1947 ///
1948 /// If the padding value is not constant, an empty Value is returned.
1949 Value PadOp::getConstantPaddingValue() {
1950   auto yieldOp = dyn_cast<YieldOp>(getRegion().front().getTerminator());
1951   if (!yieldOp)
1952     return {};
1953   Value padValue = yieldOp.value();
1954   // Check if yield value is a constant.
1955   if (matchPattern(padValue, m_Constant()))
1956     return padValue;
1957   // Check if yield value is defined inside the PadOp block.
1958   if (padValue.getParentBlock() == &getRegion().front())
1959     return {};
1960   // Else: Yield value defined outside of the PadOp block.
1961   return padValue;
1962 }
1963 
1964 OpFoldResult PadOp::fold(ArrayRef<Attribute>) {
1965   if (getResultType().hasStaticShape() && getResultType() == getSourceType() &&
1966       !nofold())
1967     return source();
1968   return {};
1969 }
1970 
1971 //===----------------------------------------------------------------------===//
1972 // SplatOp
1973 //===----------------------------------------------------------------------===//
1974 
1975 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
1976   auto constOperand = operands.front();
1977   if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
1978     return {};
1979 
1980   // SplatElementsAttr::get treats single value for second arg as being a splat.
1981   return SplatElementsAttr::get(getType(), {constOperand});
1982 }
1983 
1984 //===----------------------------------------------------------------------===//
1985 // TableGen'd op method definitions
1986 //===----------------------------------------------------------------------===//
1987 
1988 #define GET_OP_CLASSES
1989 #include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc"
1990