1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 10 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 11 #include "mlir/Dialect/Complex/IR/Complex.h" 12 #include "mlir/Dialect/Tensor/IR/Tensor.h" 13 #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" 14 #include "mlir/Dialect/Utils/StaticValueUtils.h" 15 #include "mlir/IR/BlockAndValueMapping.h" 16 #include "mlir/IR/Builders.h" 17 #include "mlir/IR/BuiltinAttributeInterfaces.h" 18 #include "mlir/IR/Matchers.h" 19 #include "mlir/IR/TypeUtilities.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 23 using namespace mlir; 24 using namespace mlir::tensor; 25 26 /// Materialize a single constant operation from a given attribute value with 27 /// the desired resultant type. 28 Operation *TensorDialect::materializeConstant(OpBuilder &builder, 29 Attribute value, Type type, 30 Location loc) { 31 if (arith::ConstantOp::isBuildableWith(value, type)) 32 return builder.create<arith::ConstantOp>(loc, value, type); 33 if (complex::ConstantOp::isBuildableWith(value, type)) 34 return builder.create<complex::ConstantOp>(loc, type, 35 value.cast<ArrayAttr>()); 36 return nullptr; 37 } 38 39 //===----------------------------------------------------------------------===// 40 // CastOp 41 //===----------------------------------------------------------------------===// 42 43 /// Returns true if `target` is a ranked tensor type that preserves static 44 /// information available in the `source` ranked tensor type. 45 bool mlir::tensor::preservesStaticInformation(Type source, Type target) { 46 auto sourceType = source.dyn_cast<RankedTensorType>(); 47 auto targetType = target.dyn_cast<RankedTensorType>(); 48 49 // Requires RankedTensorType. 50 if (!sourceType || !targetType) 51 return false; 52 53 // Requires same elemental type. 54 if (sourceType.getElementType() != targetType.getElementType()) 55 return false; 56 57 // Requires same rank. 58 if (sourceType.getRank() != targetType.getRank()) 59 return false; 60 61 // If cast is towards more static sizes along any dimension, don't fold. 62 for (auto t : llvm::zip(sourceType.getShape(), targetType.getShape())) { 63 if (!ShapedType::isDynamic(std::get<0>(t)) && 64 ShapedType::isDynamic(std::get<1>(t))) 65 return false; 66 } 67 68 return true; 69 } 70 71 /// Determines whether tensor::CastOp casts to a more dynamic version of the 72 /// source tensor. This is useful to fold a tensor.cast into a consuming op and 73 /// implement canonicalization patterns for ops in different dialects that may 74 /// consume the results of tensor.cast operations. Such foldable tensor.cast 75 /// operations are typically inserted as `slice` ops and are canonicalized, 76 /// to preserve the type compatibility of their uses. 77 /// 78 /// Returns true when all conditions are met: 79 /// 1. source and result are ranked tensors with same element type and rank. 80 /// 2. the tensor type has more static information than the result 81 /// 82 /// Example: 83 /// ```mlir 84 /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> 85 /// %2 = consumer %1 ... : tensor<?x?xf32> ... 86 /// ``` 87 /// 88 /// folds into: 89 /// 90 /// ```mlir 91 /// %2 = consumer %0 ... : tensor<8x16xf32> ... 92 /// ``` 93 bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) { 94 if (!castOp) 95 return false; 96 97 // Can fold if the source of cast has at least as much static information as 98 // its results. 99 return preservesStaticInformation(castOp.getType(), 100 castOp.source().getType()); 101 } 102 103 /// Determines whether the tensor::CastOp casts to a more static version of the 104 /// source tensor. This is useful to fold into a producing op and implement 105 /// canonicaliation patterns with the `tensor.cast` op as the root, but producer 106 /// being from different dialects. Returns true when all conditions are met: 107 /// 1. source and result and ranked tensors with same element type and rank. 108 /// 2. the result type has more static information than the source. 109 /// 110 /// Example: 111 /// ```mlir 112 /// %1 = producer ... : tensor<?x?xf32> 113 /// %2 = tensor.cast %1 : tensor<?x?xf32> to tensor<8x16xf32> 114 /// ``` 115 /// 116 /// can be canonicalized to : 117 /// 118 /// ```mlir 119 /// %2 = producer ... : tensor<8x16xf32> 120 /// ``` 121 /// Not all ops might be canonicalizable this way, but for those that can be, 122 /// this method provides a check that it is worth doing the canonicalization. 123 bool mlir::tensor::canFoldIntoProducerOp(CastOp castOp) { 124 if (!castOp) 125 return false; 126 return preservesStaticInformation(castOp.source().getType(), 127 castOp.getType()); 128 } 129 130 /// Performs folding of any operand of `op` if it comes from a tensor::CastOp 131 /// that can be folded. 132 LogicalResult mlir::tensor::foldTensorCast(Operation *op) { 133 bool folded = false; 134 for (OpOperand &operand : op->getOpOperands()) { 135 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 136 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 137 operand.set(castOp.getOperand()); 138 folded = true; 139 } 140 } 141 return success(folded); 142 } 143 144 bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 145 if (inputs.size() != 1 || outputs.size() != 1) 146 return false; 147 Type a = inputs.front(), b = outputs.front(); 148 auto aT = a.dyn_cast<TensorType>(); 149 auto bT = b.dyn_cast<TensorType>(); 150 if (!aT || !bT) 151 return false; 152 153 if (aT.getElementType() != bT.getElementType()) 154 return false; 155 156 return succeeded(verifyCompatibleShape(aT, bT)); 157 } 158 159 /// Compute a TensorType that has the joined shape knowledge of the two 160 /// given TensorTypes. The element types need to match. 161 static TensorType joinShapes(TensorType one, TensorType two) { 162 assert(one.getElementType() == two.getElementType()); 163 164 if (!one.hasRank()) 165 return two; 166 if (!two.hasRank()) 167 return one; 168 169 int64_t rank = one.getRank(); 170 if (rank != two.getRank()) 171 return {}; 172 173 SmallVector<int64_t, 4> join; 174 join.reserve(rank); 175 for (int64_t i = 0; i < rank; ++i) { 176 if (one.isDynamicDim(i)) { 177 join.push_back(two.getDimSize(i)); 178 continue; 179 } 180 if (two.isDynamicDim(i)) { 181 join.push_back(one.getDimSize(i)); 182 continue; 183 } 184 if (one.getDimSize(i) != two.getDimSize(i)) 185 return {}; 186 join.push_back(one.getDimSize(i)); 187 } 188 return RankedTensorType::get(join, one.getElementType()); 189 } 190 191 namespace { 192 193 /// Replaces chains of two tensor.cast operations by a single tensor.cast 194 /// operation if doing so does not remove runtime constraints. 195 struct ChainedTensorCast : public OpRewritePattern<CastOp> { 196 using OpRewritePattern<CastOp>::OpRewritePattern; 197 198 LogicalResult matchAndRewrite(CastOp tensorCast, 199 PatternRewriter &rewriter) const final { 200 auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>(); 201 202 if (!tensorCastOperand) 203 return failure(); 204 205 auto sourceType = 206 tensorCastOperand.getOperand().getType().cast<TensorType>(); 207 auto intermediateType = tensorCastOperand.getType().cast<TensorType>(); 208 auto resultType = tensorCast.getType().cast<TensorType>(); 209 210 // We can remove the intermediate cast if joining all three produces the 211 // same result as just joining the source and result shapes. 212 auto firstJoin = 213 joinShapes(joinShapes(sourceType, intermediateType), resultType); 214 215 // The join might not exist if the cast sequence would fail at runtime. 216 if (!firstJoin) 217 return failure(); 218 219 // The newJoin always exists if the above join exists, it might just contain 220 // less information. If so, we cannot drop the intermediate cast, as doing 221 // so would remove runtime checks. 222 auto newJoin = joinShapes(sourceType, resultType); 223 if (firstJoin != newJoin) 224 return failure(); 225 226 rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType, 227 tensorCastOperand.getOperand()); 228 return success(); 229 } 230 }; 231 232 /// Fold tensor.cast into tesor.extract_slice producer. 233 /// Example: 234 /// ``` 235 /// %0 = tensor.extract_slice %arg0[%o, 0] [%s, 512] [1, 1] : 236 /// tensor<128x512xf32> to tensor<?x512xf32> 237 /// %1 = tensor.cast %0 : tensor<?x512xf32> to tensor<16x512xf32> 238 /// ``` 239 /// -> 240 /// ``` 241 /// %1 = tensor.extract_slice %arg0[%o, 0] [16, 512] [1, 1] : 242 /// tensor<128x512xf32> to tensor<16x512xf32> 243 /// ``` 244 struct TensorCastExtractSlice : public OpRewritePattern<CastOp> { 245 using OpRewritePattern<CastOp>::OpRewritePattern; 246 247 LogicalResult matchAndRewrite(CastOp tensorCast, 248 PatternRewriter &rewriter) const final { 249 auto extractOperand = 250 tensorCast.getOperand().getDefiningOp<ExtractSliceOp>(); 251 252 if (!extractOperand || !canFoldIntoProducerOp(tensorCast) || 253 tensorCast.getType().getShape() == 254 tensorCast.source().getType().cast<RankedTensorType>().getShape()) 255 return failure(); 256 257 SmallVector<OpFoldResult, 4> sizes = extractOperand.getMixedSizes(); 258 auto dimMask = computeRankReductionMask( 259 extractFromI64ArrayAttr(extractOperand.static_sizes()), 260 extractOperand.getType().getShape()); 261 size_t dimIndex = 0; 262 for (size_t i = 0, e = sizes.size(); i < e; i++) { 263 if (dimMask && dimMask->count(i)) 264 continue; 265 int64_t dim = tensorCast.getType().getShape()[dimIndex++]; 266 if (ShapedType::isDynamic(dim)) 267 continue; 268 sizes[i] = rewriter.getIndexAttr(dim); 269 } 270 271 rewriter.replaceOpWithNewOp<ExtractSliceOp>( 272 tensorCast, tensorCast.getType().cast<RankedTensorType>(), 273 extractOperand.source(), extractOperand.getMixedOffsets(), sizes, 274 extractOperand.getMixedStrides()); 275 return success(); 276 } 277 }; 278 279 } // namespace 280 281 void CastOp::getCanonicalizationPatterns(RewritePatternSet &results, 282 MLIRContext *context) { 283 results.add<ChainedTensorCast, TensorCastExtractSlice>(context); 284 } 285 286 //===----------------------------------------------------------------------===// 287 // DimOp 288 //===----------------------------------------------------------------------===// 289 290 void DimOp::build(OpBuilder &builder, OperationState &result, Value source, 291 int64_t index) { 292 auto loc = result.location; 293 Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index); 294 build(builder, result, source, indexValue); 295 } 296 297 Optional<int64_t> DimOp::getConstantIndex() { 298 if (auto constantOp = index().getDefiningOp<arith::ConstantOp>()) 299 return constantOp.getValue().cast<IntegerAttr>().getInt(); 300 return {}; 301 } 302 303 LogicalResult DimOp::verify() { 304 // Assume unknown index to be in range. 305 Optional<int64_t> index = getConstantIndex(); 306 if (!index.hasValue()) 307 return success(); 308 309 // Check that constant index is not knowingly out of range. 310 auto type = source().getType(); 311 if (auto tensorType = type.dyn_cast<RankedTensorType>()) { 312 if (index.getValue() >= tensorType.getRank()) 313 return emitOpError("index is out of range"); 314 } else if (type.isa<UnrankedTensorType>()) { 315 // Assume index to be in range. 316 } else { 317 llvm_unreachable("expected operand with tensor type"); 318 } 319 return success(); 320 } 321 322 OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) { 323 // All forms of folding require a known index. 324 auto index = operands[1].dyn_cast_or_null<IntegerAttr>(); 325 if (!index) 326 return {}; 327 328 // Folding for unranked types (UnrankedTensorType) is not supported. 329 auto tensorType = source().getType().dyn_cast<RankedTensorType>(); 330 if (!tensorType) 331 return {}; 332 333 // Fold if the shape extent along the given index is known. 334 if (!tensorType.isDynamicDim(index.getInt())) { 335 Builder builder(getContext()); 336 return builder.getIndexAttr(tensorType.getShape()[index.getInt()]); 337 } 338 339 Operation *definingOp = source().getDefiningOp(); 340 341 // Fold dim to the operand of tensor.generate. 342 if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) { 343 auto resultType = 344 fromElements.getResult().getType().cast<RankedTensorType>(); 345 // The case where the type encodes the size of the dimension is handled 346 // above. 347 assert(ShapedType::isDynamic(resultType.getShape()[index.getInt()])); 348 349 // Find the operand of the fromElements that corresponds to this index. 350 auto dynExtents = fromElements.dynamicExtents().begin(); 351 for (auto dim : resultType.getShape().take_front(index.getInt())) 352 if (ShapedType::isDynamic(dim)) 353 dynExtents++; 354 355 return Value{*dynExtents}; 356 } 357 358 // The size at the given index is now known to be a dynamic size. 359 unsigned unsignedIndex = index.getValue().getZExtValue(); 360 361 if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) { 362 // Fold only for non-rank reduced ops. For the rank-reduced version, rely on 363 // `resolve-shaped-type-result-dims` pass. 364 if (sliceOp.getType().getRank() == sliceOp.getSourceType().getRank() && 365 sliceOp.isDynamicSize(unsignedIndex)) { 366 return {sliceOp.getDynamicSize(unsignedIndex)}; 367 } 368 } 369 370 // dim(cast) -> dim 371 if (succeeded(foldTensorCast(*this))) 372 return getResult(); 373 374 return {}; 375 } 376 377 namespace { 378 /// Fold dim of a cast into the dim of the source of the tensor cast. 379 struct DimOfCastOp : public OpRewritePattern<DimOp> { 380 using OpRewritePattern<DimOp>::OpRewritePattern; 381 382 LogicalResult matchAndRewrite(DimOp dimOp, 383 PatternRewriter &rewriter) const override { 384 auto castOp = dimOp.source().getDefiningOp<CastOp>(); 385 if (!castOp) 386 return failure(); 387 Value newSource = castOp.getOperand(); 388 rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.index()); 389 return success(); 390 } 391 }; 392 } // namespace 393 394 void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, 395 MLIRContext *context) { 396 results.add<DimOfCastOp>(context); 397 } 398 399 //===----------------------------------------------------------------------===// 400 // ExtractOp 401 //===----------------------------------------------------------------------===// 402 403 LogicalResult ExtractOp::verify() { 404 // Verify the # indices match if we have a ranked type. 405 if (auto tensorType = tensor().getType().dyn_cast<RankedTensorType>()) 406 if (tensorType.getRank() != static_cast<int64_t>(indices().size())) 407 return emitOpError("incorrect number of indices for extract_element"); 408 409 return success(); 410 } 411 412 OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) { 413 // If this is a splat elements attribute, simply return the value. All of the 414 // elements of a splat attribute are the same. 415 if (Attribute tensor = operands.front()) 416 if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>()) 417 return splatTensor.getSplatValue<Attribute>(); 418 419 // Collect the constant indices into the tensor. 420 SmallVector<uint64_t, 8> indices; 421 for (Attribute indice : llvm::drop_begin(operands, 1)) { 422 if (!indice || !indice.isa<IntegerAttr>()) 423 return {}; 424 indices.push_back(indice.cast<IntegerAttr>().getInt()); 425 } 426 427 // Fold extract(from_elements(...)). 428 if (auto fromElementsOp = tensor().getDefiningOp<FromElementsOp>()) { 429 auto tensorType = fromElementsOp.getType().cast<RankedTensorType>(); 430 auto rank = tensorType.getRank(); 431 assert(static_cast<int64_t>(indices.size()) == tensorType.getRank() && 432 "rank mismatch"); 433 int flatIndex = 0; 434 int stride = 1; 435 for (int i = rank - 1; i >= 0; --i) { 436 if (i < rank - 1) 437 stride *= tensorType.getDimSize(i); 438 flatIndex += indices[i] * stride; 439 } 440 // Prevent out of bounds accesses. This can happen in invalid code that will 441 // never execute. 442 if (static_cast<int>(fromElementsOp.elements().size()) <= flatIndex || 443 flatIndex < 0) 444 return {}; 445 return fromElementsOp.elements()[flatIndex]; 446 } 447 448 // If this is an elements attribute, query the value at the given indices. 449 if (Attribute tensor = operands.front()) { 450 auto elementsAttr = tensor.dyn_cast<ElementsAttr>(); 451 if (elementsAttr && elementsAttr.isValidIndex(indices)) 452 return elementsAttr.getValues<Attribute>()[indices]; 453 } 454 455 return {}; 456 } 457 458 //===----------------------------------------------------------------------===// 459 // FromElementsOp 460 //===----------------------------------------------------------------------===// 461 462 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 463 Type resultType, ValueRange elements) { 464 result.addOperands(elements); 465 result.addTypes(resultType); 466 } 467 468 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 469 ValueRange elements) { 470 assert(!elements.empty() && "expected at least one element"); 471 Type resultType = RankedTensorType::get( 472 {static_cast<int64_t>(elements.size())}, elements.front().getType()); 473 build(builder, result, resultType, elements); 474 } 475 476 OpFoldResult FromElementsOp::fold(ArrayRef<Attribute> operands) { 477 if (!llvm::is_contained(operands, nullptr)) 478 return DenseElementsAttr::get(getType(), operands); 479 return {}; 480 } 481 482 namespace { 483 484 // Pushes the index_casts that occur before extractions to after the extract. 485 // This minimizes type conversion in some cases and enables the extract 486 // canonicalizer. This changes: 487 // 488 // %cast = arith.index_cast %tensor : tensor<1xi32> to tensor<1xindex> 489 // %extract = tensor.extract %cast[%index] : tensor<1xindex> 490 // 491 // to the following: 492 // 493 // %extract = tensor.extract %tensor[%index] : tensor<1xindex> 494 // %cast = arith.index_cast %extract : i32 to index 495 // 496 // to just %element. 497 // 498 // Consider expanding this to a template and handle all tensor cast operations. 499 struct ExtractElementFromIndexCast 500 : public OpRewritePattern<tensor::ExtractOp> { 501 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 502 503 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 504 PatternRewriter &rewriter) const final { 505 Location loc = extract.getLoc(); 506 auto indexCast = extract.tensor().getDefiningOp<arith::IndexCastOp>(); 507 if (!indexCast) 508 return failure(); 509 510 Type elementTy = getElementTypeOrSelf(indexCast.getIn()); 511 512 auto newExtract = rewriter.create<tensor::ExtractOp>( 513 loc, elementTy, indexCast.getIn(), extract.indices()); 514 515 rewriter.replaceOpWithNewOp<arith::IndexCastOp>(extract, extract.getType(), 516 newExtract); 517 518 return success(); 519 } 520 }; 521 522 } // namespace 523 524 void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results, 525 MLIRContext *context) { 526 results.add<ExtractElementFromIndexCast>(context); 527 } 528 529 //===----------------------------------------------------------------------===// 530 // InsertOp 531 //===----------------------------------------------------------------------===// 532 533 LogicalResult InsertOp::verify() { 534 // Verify the # indices match if we have a ranked type. 535 if (auto destType = dest().getType().dyn_cast<RankedTensorType>()) 536 if (destType.getRank() != static_cast<int64_t>(indices().size())) 537 return emitOpError("incorrect number of indices"); 538 return success(); 539 } 540 541 OpFoldResult InsertOp::fold(ArrayRef<Attribute> operands) { 542 Attribute scalar = operands[0]; 543 Attribute dest = operands[1]; 544 if (scalar && dest) 545 if (auto splatDest = dest.dyn_cast<SplatElementsAttr>()) 546 if (scalar == splatDest.getSplatValue<Attribute>()) 547 return dest; 548 return {}; 549 } 550 551 //===----------------------------------------------------------------------===// 552 // GenerateOp 553 //===----------------------------------------------------------------------===// 554 555 LogicalResult GenerateOp::reifyResultShapes( 556 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 557 reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank())); 558 int idx = 0; 559 for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) { 560 if (getType().isDynamicDim(dim)) { 561 reifiedReturnShapes[0][dim] = getOperand(idx++); 562 } else { 563 reifiedReturnShapes[0][dim] = builder.create<arith::ConstantIndexOp>( 564 getLoc(), getType().getDimSize(dim)); 565 } 566 } 567 return success(); 568 } 569 570 LogicalResult GenerateOp::verify() { 571 // Ensure that the tensor type has as many dynamic dimensions as are specified 572 // by the operands. 573 RankedTensorType resultTy = getType().cast<RankedTensorType>(); 574 if (getNumOperands() != resultTy.getNumDynamicDims()) 575 return emitError("must have as many index operands as dynamic extents " 576 "in the result type"); 577 578 return success(); 579 } 580 581 LogicalResult GenerateOp::verifyRegions() { 582 RankedTensorType resultTy = getType().cast<RankedTensorType>(); 583 // Ensure that region arguments span the index space. 584 if (!llvm::all_of(body().getArgumentTypes(), 585 [](Type ty) { return ty.isIndex(); })) 586 return emitError("all body arguments must be index"); 587 if (body().getNumArguments() != resultTy.getRank()) 588 return emitError("must have one body argument per input dimension"); 589 590 // Ensure that the region yields an element of the right type. 591 auto yieldOp = cast<YieldOp>(body().getBlocks().front().getTerminator()); 592 593 if (yieldOp.value().getType() != resultTy.getElementType()) 594 return emitOpError( 595 "body must be terminated with a `yield` operation of the tensor " 596 "element type"); 597 598 return success(); 599 } 600 601 void GenerateOp::build( 602 OpBuilder &b, OperationState &result, Type resultTy, 603 ValueRange dynamicExtents, 604 function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) { 605 build(b, result, resultTy, dynamicExtents); 606 607 // Build and populate body. 608 OpBuilder::InsertionGuard guard(b); 609 Region *bodyRegion = result.regions.front().get(); 610 auto rank = resultTy.cast<RankedTensorType>().getRank(); 611 SmallVector<Type, 2> argumentTypes(rank, b.getIndexType()); 612 SmallVector<Location, 2> argumentLocs(rank, result.location); 613 Block *bodyBlock = 614 b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes, argumentLocs); 615 bodyBuilder(b, result.location, bodyBlock->getArguments()); 616 } 617 618 namespace { 619 620 /// Canonicalizes tensor.generate operations with a constant 621 /// operand into the equivalent operation with the operand expressed in the 622 /// result type, instead. We also insert a type cast to make sure that the 623 /// resulting IR is still well-typed. 624 struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> { 625 using OpRewritePattern<GenerateOp>::OpRewritePattern; 626 627 LogicalResult matchAndRewrite(GenerateOp tensorFromElements, 628 PatternRewriter &rewriter) const final { 629 auto resultType = 630 tensorFromElements.getResult().getType().cast<RankedTensorType>(); 631 632 if (resultType.hasStaticShape()) 633 return failure(); 634 635 SmallVector<Value, 4> newOperands; 636 SmallVector<int64_t, 4> newShape; 637 auto operandsIt = tensorFromElements.dynamicExtents().begin(); 638 639 for (int64_t dim : resultType.getShape()) { 640 if (!ShapedType::isDynamic(dim)) { 641 newShape.push_back(dim); 642 continue; 643 } 644 APInt index; 645 if (!matchPattern(*operandsIt, m_ConstantInt(&index))) { 646 newShape.push_back(ShapedType::kDynamicSize); 647 newOperands.push_back(*operandsIt++); 648 continue; 649 } 650 newShape.push_back(index.getSExtValue()); 651 operandsIt++; 652 } 653 654 if (newOperands.size() == tensorFromElements.dynamicExtents().size()) 655 return failure(); 656 657 auto loc = tensorFromElements.getLoc(); 658 auto newOp = rewriter.create<GenerateOp>( 659 loc, RankedTensorType::get(newShape, resultType.getElementType()), 660 newOperands); 661 rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(), 662 newOp.body().begin()); 663 rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType, 664 newOp); 665 return success(); 666 } 667 }; 668 669 /// Canonicalizes the pattern of the form 670 /// 671 /// %tensor = tensor.generate %x { 672 /// ^bb0(%arg0: index): 673 /// <computation> 674 /// yield %1 : index 675 /// } : tensor<?xindex> 676 /// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32> 677 /// 678 /// to just <computation> with %arg0 replaced by %c0. We only do this if the 679 /// tensor.generate operation has no side-effects. 680 struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> { 681 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 682 683 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 684 PatternRewriter &rewriter) const final { 685 auto tensorFromElements = extract.tensor().getDefiningOp<GenerateOp>(); 686 if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements)) 687 return failure(); 688 689 BlockAndValueMapping mapping; 690 Block *body = tensorFromElements.getBody(); 691 mapping.map(body->getArguments(), extract.indices()); 692 for (auto &op : body->without_terminator()) 693 rewriter.clone(op, mapping); 694 695 auto yield = cast<YieldOp>(body->getTerminator()); 696 697 rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value())); 698 return success(); 699 } 700 }; 701 702 /// Canonicalizes the pattern of the form 703 /// 704 /// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32> 705 /// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32> 706 /// 707 /// to 708 /// 709 /// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32> 710 struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> { 711 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 712 713 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 714 PatternRewriter &rewriter) const final { 715 auto tensorCast = extract.tensor().getDefiningOp<tensor::CastOp>(); 716 if (!tensorCast) 717 return failure(); 718 719 rewriter.replaceOpWithNewOp<tensor::ExtractOp>(extract, tensorCast.source(), 720 extract.indices()); 721 return success(); 722 } 723 }; 724 725 } // namespace 726 727 void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results, 728 MLIRContext *context) { 729 // TODO: Move extract patterns to tensor::ExtractOp. 730 results.add<ExtractFromTensorGenerate, ExtractFromTensorCast, 731 StaticTensorGenerate>(context); 732 } 733 734 //===----------------------------------------------------------------------===// 735 // RankOp 736 //===----------------------------------------------------------------------===// 737 738 OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) { 739 // Constant fold rank when the rank of the operand is known. 740 auto type = getOperand().getType(); 741 auto shapedType = type.dyn_cast<ShapedType>(); 742 if (shapedType && shapedType.hasRank()) 743 return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank()); 744 return IntegerAttr(); 745 } 746 747 //===----------------------------------------------------------------------===// 748 // ReshapeOp 749 //===----------------------------------------------------------------------===// 750 751 static int64_t getNumElements(ShapedType type) { 752 int64_t numElements = 1; 753 for (auto dim : type.getShape()) 754 numElements *= dim; 755 return numElements; 756 } 757 758 LogicalResult ReshapeOp::verify() { 759 TensorType operandType = source().getType().cast<TensorType>(); 760 TensorType resultType = result().getType().cast<TensorType>(); 761 762 if (operandType.getElementType() != resultType.getElementType()) 763 return emitOpError("element types of source and destination tensor " 764 "types should be the same"); 765 766 int64_t shapeSize = shape().getType().cast<RankedTensorType>().getDimSize(0); 767 auto resultRankedType = resultType.dyn_cast<RankedTensorType>(); 768 auto operandRankedType = operandType.dyn_cast<RankedTensorType>(); 769 770 if (resultRankedType) { 771 if (operandRankedType && resultRankedType.hasStaticShape() && 772 operandRankedType.hasStaticShape()) { 773 if (getNumElements(operandRankedType) != getNumElements(resultRankedType)) 774 return emitOpError("source and destination tensor should have the " 775 "same number of elements"); 776 } 777 if (ShapedType::isDynamic(shapeSize)) 778 return emitOpError("cannot use shape operand with dynamic length to " 779 "reshape to statically-ranked tensor type"); 780 if (shapeSize != resultRankedType.getRank()) 781 return emitOpError( 782 "length of shape operand differs from the result's tensor rank"); 783 } 784 return success(); 785 } 786 787 //===----------------------------------------------------------------------===// 788 // Reassociative reshape ops 789 //===----------------------------------------------------------------------===// 790 791 SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() { 792 return getSymbolLessAffineMaps(getReassociationExprs()); 793 } 794 SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() { 795 return convertReassociationIndicesToExprs(getContext(), 796 getReassociationIndices()); 797 } 798 799 SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() { 800 return getSymbolLessAffineMaps(getReassociationExprs()); 801 } 802 SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() { 803 return convertReassociationIndicesToExprs(getContext(), 804 getReassociationIndices()); 805 } 806 807 /// Compute the RankedTensorType obtained by applying `reassociation` to `type`. 808 static RankedTensorType 809 computeTensorReshapeCollapsedType(RankedTensorType type, 810 ArrayRef<AffineMap> reassociation) { 811 auto shape = type.getShape(); 812 SmallVector<int64_t, 4> newShape; 813 newShape.reserve(reassociation.size()); 814 815 // Use the fact that reassociation is valid to simplify the logic: only use 816 // each map's rank. 817 assert(isReassociationValid(reassociation) && "invalid reassociation"); 818 unsigned currentDim = 0; 819 for (AffineMap m : reassociation) { 820 unsigned dim = m.getNumResults(); 821 auto band = shape.slice(currentDim, dim); 822 int64_t size = 1; 823 if (llvm::is_contained(band, ShapedType::kDynamicSize)) 824 size = ShapedType::kDynamicSize; 825 else 826 for (unsigned d = 0; d < dim; ++d) 827 size *= shape[currentDim + d]; 828 newShape.push_back(size); 829 currentDim += dim; 830 } 831 832 return RankedTensorType::get(newShape, type.getElementType()); 833 } 834 835 void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src, 836 ArrayRef<ReassociationIndices> reassociation, 837 ArrayRef<NamedAttribute> attrs) { 838 auto resultType = computeTensorReshapeCollapsedType( 839 src.getType().cast<RankedTensorType>(), 840 getSymbolLessAffineMaps( 841 convertReassociationIndicesToExprs(b.getContext(), reassociation))); 842 build(b, result, resultType, src, attrs); 843 result.addAttribute(getReassociationAttrName(), 844 getReassociationIndicesAttribute(b, reassociation)); 845 } 846 847 template <typename TensorReshapeOp, bool isExpansion = std::is_same< 848 TensorReshapeOp, ExpandShapeOp>::value> 849 static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op, 850 RankedTensorType expandedType, 851 RankedTensorType collapsedType) { 852 if (failed( 853 verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion))) 854 return failure(); 855 856 auto maps = op.getReassociationMaps(); 857 RankedTensorType expectedType = 858 computeTensorReshapeCollapsedType(expandedType, maps); 859 if (collapsedType != expectedType) 860 return op.emitOpError("expected collapsed type to be ") 861 << expectedType << ", but got " << collapsedType; 862 return success(); 863 } 864 865 LogicalResult ExpandShapeOp::verify() { 866 return verifyTensorReshapeOp(*this, getResultType(), getSrcType()); 867 } 868 869 LogicalResult CollapseShapeOp::verify() { 870 return verifyTensorReshapeOp(*this, getSrcType(), getResultType()); 871 } 872 873 namespace { 874 /// Reshape of a splat constant can be replaced with a constant of the result 875 /// type. 876 template <typename TensorReshapeOp> 877 struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> { 878 using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; 879 LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, 880 PatternRewriter &rewriter) const override { 881 DenseElementsAttr attr; 882 if (!matchPattern(reshapeOp.src(), m_Constant(&attr))) 883 return failure(); 884 if (!attr || !attr.isSplat()) 885 return failure(); 886 DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer( 887 reshapeOp.getResultType(), attr.getRawData()); 888 rewriter.replaceOpWithNewOp<arith::ConstantOp>(reshapeOp, newAttr); 889 return success(); 890 } 891 }; 892 893 /// Reshape of a FromElements can be replaced with a FromElements of the result 894 /// type 895 template <typename TensorReshapeOp> 896 struct FoldReshapeWithFromElements : OpRewritePattern<TensorReshapeOp> { 897 using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; 898 LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, 899 PatternRewriter &rewriter) const override { 900 auto fromElements = 901 reshapeOp.src().template getDefiningOp<FromElementsOp>(); 902 if (!fromElements) 903 return failure(); 904 905 auto shapedTy = reshapeOp.getType().template cast<ShapedType>(); 906 907 if (!shapedTy.hasStaticShape()) 908 return failure(); 909 910 rewriter.replaceOpWithNewOp<FromElementsOp>(reshapeOp, reshapeOp.getType(), 911 fromElements.elements()); 912 return success(); 913 } 914 }; 915 916 } // namespace 917 918 void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 919 MLIRContext *context) { 920 results.add<ComposeReassociativeReshapeOps<ExpandShapeOp>, 921 ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>, 922 FoldReshapeWithConstant<ExpandShapeOp>, 923 FoldReshapeWithFromElements<ExpandShapeOp>>(context); 924 } 925 926 void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 927 MLIRContext *context) { 928 results.add<ComposeReassociativeReshapeOps<CollapseShapeOp>, 929 ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp>, 930 FoldReshapeWithConstant<CollapseShapeOp>, 931 FoldReshapeWithFromElements<CollapseShapeOp>>(context); 932 } 933 934 OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) { 935 return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands); 936 } 937 OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) { 938 return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands); 939 } 940 941 //===----------------------------------------------------------------------===// 942 // ExtractSliceOp 943 //===----------------------------------------------------------------------===// 944 945 /// An extract_slice op result type can be fully inferred from the source type 946 /// and the static representation of offsets, sizes and strides. Special 947 /// sentinels encode the dynamic case. 948 RankedTensorType ExtractSliceOp::inferResultType( 949 RankedTensorType sourceRankedTensorType, ArrayRef<int64_t> staticOffsets, 950 ArrayRef<int64_t> staticSizes, ArrayRef<int64_t> staticStrides) { 951 // An extract_slice op may specify only a leading subset of offset/sizes/ 952 // strides in which case we complete with offset=0, sizes from memref type and 953 // strides=1. 954 unsigned rank = sourceRankedTensorType.getRank(); 955 (void)rank; 956 assert(staticSizes.size() == rank && 957 "unexpected staticSizes not equal to rank of source"); 958 return RankedTensorType::get(staticSizes, 959 sourceRankedTensorType.getElementType()); 960 } 961 962 RankedTensorType ExtractSliceOp::inferResultType( 963 RankedTensorType sourceRankedTensorType, ArrayRef<OpFoldResult> offsets, 964 ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) { 965 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 966 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 967 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 968 ShapedType::kDynamicStrideOrOffset); 969 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 970 ShapedType::kDynamicSize); 971 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 972 ShapedType::kDynamicStrideOrOffset); 973 return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, 974 staticSizes, staticStrides); 975 } 976 977 /// An extract_slice op result type can be fully inferred from the source type 978 /// and the static representation of offsets, sizes and strides. Special 979 /// sentinels encode the dynamic case. 980 RankedTensorType ExtractSliceOp::inferRankReducedResultType( 981 unsigned resultRank, RankedTensorType sourceRankedTensorType, 982 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, 983 ArrayRef<int64_t> strides) { 984 auto inferredType = 985 inferResultType(sourceRankedTensorType, offsets, sizes, strides) 986 .cast<RankedTensorType>(); 987 int rankDiff = inferredType.getRank() - resultRank; 988 if (rankDiff > 0) { 989 auto shape = inferredType.getShape(); 990 llvm::SmallBitVector dimsToProject = 991 getPositionsOfShapeOne(rankDiff, shape); 992 SmallVector<int64_t> projectedShape; 993 for (unsigned pos = 0, e = shape.size(); pos < e; ++pos) 994 if (!dimsToProject.test(pos)) 995 projectedShape.push_back(shape[pos]); 996 inferredType = 997 RankedTensorType::get(projectedShape, inferredType.getElementType()); 998 } 999 return inferredType; 1000 } 1001 1002 RankedTensorType ExtractSliceOp::inferRankReducedResultType( 1003 unsigned resultRank, RankedTensorType sourceRankedTensorType, 1004 ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes, 1005 ArrayRef<OpFoldResult> strides) { 1006 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1007 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1008 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1009 ShapedType::kDynamicStrideOrOffset); 1010 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1011 ShapedType::kDynamicSize); 1012 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1013 ShapedType::kDynamicStrideOrOffset); 1014 return ExtractSliceOp::inferRankReducedResultType( 1015 resultRank, sourceRankedTensorType, staticOffsets, staticSizes, 1016 staticStrides); 1017 } 1018 1019 /// Build an ExtractSliceOp with mixed static and dynamic entries and custom 1020 /// result type. If the type passed is nullptr, it is inferred. 1021 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, 1022 RankedTensorType resultType, Value source, 1023 ArrayRef<OpFoldResult> offsets, 1024 ArrayRef<OpFoldResult> sizes, 1025 ArrayRef<OpFoldResult> strides, 1026 ArrayRef<NamedAttribute> attrs) { 1027 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1028 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1029 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1030 ShapedType::kDynamicStrideOrOffset); 1031 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1032 ShapedType::kDynamicSize); 1033 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1034 ShapedType::kDynamicStrideOrOffset); 1035 auto sourceRankedTensorType = source.getType().cast<RankedTensorType>(); 1036 // Structuring implementation this way avoids duplication between builders. 1037 if (!resultType) { 1038 resultType = 1039 ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, 1040 staticSizes, staticStrides) 1041 .cast<RankedTensorType>(); 1042 } 1043 build(b, result, resultType, source, dynamicOffsets, dynamicSizes, 1044 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1045 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1046 result.addAttributes(attrs); 1047 } 1048 1049 /// Build an ExtractSliceOp with mixed static and dynamic entries and inferred 1050 /// result type. 1051 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1052 ArrayRef<OpFoldResult> offsets, 1053 ArrayRef<OpFoldResult> sizes, 1054 ArrayRef<OpFoldResult> strides, 1055 ArrayRef<NamedAttribute> attrs) { 1056 build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); 1057 } 1058 1059 /// Build an ExtractSliceOp with dynamic entries and custom result type. If the 1060 /// type passed is nullptr, it is inferred. 1061 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, 1062 RankedTensorType resultType, Value source, 1063 ValueRange offsets, ValueRange sizes, 1064 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 1065 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1066 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 1067 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1068 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1069 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1070 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1071 build(b, result, resultType, source, offsetValues, sizeValues, strideValues); 1072 } 1073 1074 /// Build an ExtractSliceOp with dynamic entries and inferred result type. 1075 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1076 ValueRange offsets, ValueRange sizes, 1077 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 1078 build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); 1079 } 1080 1081 template <typename OpTy> 1082 static LogicalResult produceSliceErrorMsg(SliceVerificationResult result, 1083 OpTy op, Type expectedType) { 1084 auto memrefType = expectedType.cast<ShapedType>(); 1085 switch (result) { 1086 case SliceVerificationResult::Success: 1087 return success(); 1088 case SliceVerificationResult::RankTooLarge: 1089 return op.emitError("expected rank to be smaller or equal to ") 1090 << "the other rank. "; 1091 case SliceVerificationResult::SizeMismatch: 1092 return op.emitError("expected type to be ") 1093 << expectedType << " or a rank-reduced version. (size mismatch) "; 1094 case SliceVerificationResult::ElemTypeMismatch: 1095 return op.emitError("expected element type to be ") 1096 << memrefType.getElementType(); 1097 default: 1098 llvm_unreachable("unexpected extract_slice op verification result"); 1099 } 1100 } 1101 1102 /// Verifier for ExtractSliceOp. 1103 LogicalResult ExtractSliceOp::verify() { 1104 // Verify result type against inferred type. 1105 auto expectedType = ExtractSliceOp::inferResultType( 1106 getSourceType(), getMixedOffsets(), getMixedSizes(), getMixedStrides()); 1107 auto result = isRankReducedType(expectedType.cast<ShapedType>(), getType()); 1108 return produceSliceErrorMsg(result, *this, expectedType); 1109 } 1110 1111 /// Infer the canonical type of the result of an extract_slice op. Returns a 1112 /// type with rank `resultRank` that is either the rank of the rank-reduced 1113 /// type, or the non-rank-reduced type. 1114 static RankedTensorType 1115 getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType, 1116 ArrayRef<OpFoldResult> mixedOffsets, 1117 ArrayRef<OpFoldResult> mixedSizes, 1118 ArrayRef<OpFoldResult> mixedStrides) { 1119 auto resultType = 1120 ExtractSliceOp::inferRankReducedResultType( 1121 resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides) 1122 .cast<RankedTensorType>(); 1123 if (resultType.getRank() != resultRank) { 1124 resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets, 1125 mixedSizes, mixedStrides) 1126 .cast<RankedTensorType>(); 1127 } 1128 return resultType; 1129 } 1130 1131 llvm::SmallBitVector ExtractSliceOp::getDroppedDims() { 1132 ArrayRef<int64_t> resultShape = getType().getShape(); 1133 SmallVector<OpFoldResult> mixedSizes = getMixedSizes(); 1134 llvm::SmallBitVector droppedDims(mixedSizes.size()); 1135 unsigned shapePos = 0; 1136 for (const auto &size : enumerate(mixedSizes)) { 1137 Optional<int64_t> sizeVal = getConstantIntValue(size.value()); 1138 // If the size is not 1, or if the current matched dimension of the result 1139 // is the same static shape as the size value (which is 1), then the 1140 // dimension is preserved. 1141 if (!sizeVal || sizeVal.getValue() != 1 || 1142 (shapePos < resultShape.size() && resultShape[shapePos] == 1)) { 1143 shapePos++; 1144 continue; 1145 } 1146 droppedDims.set(size.index()); 1147 } 1148 return droppedDims; 1149 } 1150 1151 LogicalResult ExtractSliceOp::reifyResultShapes( 1152 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 1153 reifiedReturnShapes.resize(1); 1154 reifiedReturnShapes[0].reserve(getType().getRank()); 1155 SmallVector<OpFoldResult> mixedSizes = getMixedSizes(); 1156 llvm::SmallBitVector droppedDims = getDroppedDims(); 1157 Location loc = getLoc(); 1158 for (const auto &size : enumerate(mixedSizes)) { 1159 if (droppedDims.test(size.index())) 1160 continue; 1161 if (auto attr = size.value().dyn_cast<Attribute>()) { 1162 reifiedReturnShapes[0].push_back(builder.create<arith::ConstantIndexOp>( 1163 loc, attr.cast<IntegerAttr>().getInt())); 1164 continue; 1165 } 1166 reifiedReturnShapes[0].push_back(size.value().get<Value>()); 1167 } 1168 return success(); 1169 } 1170 1171 namespace { 1172 /// Pattern to rewrite an extract_slice op with tensor::Cast arguments. 1173 /// This essentially pushes memref_cast past its consuming slice when 1174 /// `canFoldIntoConsumerOp` is true. 1175 /// 1176 /// Example: 1177 /// ``` 1178 /// %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32> 1179 /// %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to 1180 /// tensor<3x4xf32> 1181 /// ``` 1182 /// is rewritten into: 1183 /// ``` 1184 /// %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to 1185 /// tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32> 1186 /// ``` 1187 class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> { 1188 public: 1189 using OpRewritePattern<ExtractSliceOp>::OpRewritePattern; 1190 1191 LogicalResult matchAndRewrite(ExtractSliceOp sliceOp, 1192 PatternRewriter &rewriter) const override { 1193 // Any constant operand, just return to let SubViewOpConstantFolder kick in. 1194 if (llvm::any_of(sliceOp.getOperands(), [](Value operand) { 1195 return matchPattern(operand, matchConstantIndex()); 1196 })) 1197 return failure(); 1198 1199 auto castOp = sliceOp.source().getDefiningOp<tensor::CastOp>(); 1200 if (!castOp) 1201 return failure(); 1202 1203 if (!canFoldIntoConsumerOp(castOp)) 1204 return failure(); 1205 1206 /// Deduce the type of the result to use for the canonicalized operation. 1207 RankedTensorType resultType = getCanonicalSliceResultType( 1208 sliceOp.getType().getRank(), sliceOp.getSourceType(), 1209 sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(), 1210 sliceOp.getMixedStrides()); 1211 Value newSlice = rewriter.create<ExtractSliceOp>( 1212 sliceOp.getLoc(), resultType, castOp.source(), sliceOp.offsets(), 1213 sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(), 1214 sliceOp.static_sizes(), sliceOp.static_strides()); 1215 rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(), 1216 newSlice); 1217 return success(); 1218 } 1219 }; 1220 1221 /// Slice elements from `values` into `outValues`. `counts` represents the 1222 /// numbers of elements to stride in the original values for each dimension. 1223 /// The output values can be used to construct a DenseElementsAttr. 1224 template <typename IterTy, typename ElemTy> 1225 static void sliceElements(IterTy values, ArrayRef<int64_t> counts, 1226 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, 1227 ArrayRef<int64_t> strides, 1228 llvm::SmallVectorImpl<ElemTy> *outValues) { 1229 assert(offsets.size() == sizes.size()); 1230 assert(offsets.size() == strides.size()); 1231 if (offsets.empty()) 1232 return; 1233 1234 int64_t offset = offsets.front(); 1235 int64_t size = sizes.front(); 1236 int64_t stride = strides.front(); 1237 if (offsets.size() == 1) { 1238 for (int64_t i = 0; i < size; ++i, offset += stride) 1239 outValues->push_back(*(values + offset)); 1240 1241 return; 1242 } 1243 1244 for (int64_t i = 0; i < size; ++i, offset += stride) { 1245 auto begin = values + offset * counts.front(); 1246 sliceElements<IterTy, ElemTy>(begin, counts.drop_front(), 1247 offsets.drop_front(), sizes.drop_front(), 1248 strides.drop_front(), outValues); 1249 } 1250 } 1251 1252 /// Fold arith.constant and tensor.extract_slice into arith.constant. The folded 1253 /// operation might introduce more constant data; Users can control their 1254 /// heuristics by the control function. 1255 class ConstantOpExtractSliceFolder final 1256 : public OpRewritePattern<ExtractSliceOp> { 1257 public: 1258 using OpRewritePattern<ExtractSliceOp>::OpRewritePattern; 1259 1260 ConstantOpExtractSliceFolder(MLIRContext *context, 1261 ControlConstantExtractSliceFusionFn controlFn) 1262 : OpRewritePattern<ExtractSliceOp>(context), 1263 controlFn(std::move(controlFn)) {} 1264 1265 LogicalResult matchAndRewrite(ExtractSliceOp op, 1266 PatternRewriter &rewriter) const override { 1267 DenseElementsAttr attr; 1268 if (!matchPattern(op.source(), m_Constant(&attr))) 1269 return failure(); 1270 1271 // A constant splat is handled by fold(). 1272 if (attr.isSplat()) 1273 return failure(); 1274 1275 // Dynamic result shape is not supported. 1276 auto sourceType = op.source().getType().cast<ShapedType>(); 1277 auto resultType = op.result().getType().cast<ShapedType>(); 1278 if (!sourceType.hasStaticShape() || !resultType.hasStaticShape()) 1279 return failure(); 1280 1281 // Customized control over the folding. 1282 if (!controlFn(op)) 1283 return failure(); 1284 1285 int64_t count = sourceType.getNumElements(); 1286 if (count == 0) 1287 return failure(); 1288 1289 // Check if there are any dynamic parts, which are not supported. 1290 auto offsets = extractFromI64ArrayAttr(op.static_offsets()); 1291 if (llvm::is_contained(offsets, ShapedType::kDynamicStrideOrOffset)) 1292 return failure(); 1293 auto sizes = extractFromI64ArrayAttr(op.static_sizes()); 1294 if (llvm::is_contained(sizes, ShapedType::kDynamicSize)) 1295 return failure(); 1296 auto strides = extractFromI64ArrayAttr(op.static_strides()); 1297 if (llvm::is_contained(strides, ShapedType::kDynamicStrideOrOffset)) 1298 return failure(); 1299 1300 // Compute the stride for each dimension. 1301 SmallVector<int64_t> counts; 1302 ArrayRef<int64_t> shape = sourceType.getShape(); 1303 counts.reserve(shape.size()); 1304 for (int64_t v : shape) { 1305 count = count / v; 1306 counts.push_back(count); 1307 } 1308 1309 // New attribute constructed by the sliced values. 1310 DenseElementsAttr newAttr; 1311 1312 if (auto elems = attr.dyn_cast<DenseIntElementsAttr>()) { 1313 SmallVector<APInt> outValues; 1314 outValues.reserve(sourceType.getNumElements()); 1315 sliceElements<DenseElementsAttr::IntElementIterator, APInt>( 1316 elems.begin(), counts, offsets, sizes, strides, &outValues); 1317 newAttr = DenseElementsAttr::get(resultType, outValues); 1318 } else if (auto elems = attr.dyn_cast<DenseFPElementsAttr>()) { 1319 SmallVector<APFloat> outValues; 1320 outValues.reserve(sourceType.getNumElements()); 1321 sliceElements<DenseElementsAttr::FloatElementIterator, APFloat>( 1322 elems.begin(), counts, offsets, sizes, strides, &outValues); 1323 newAttr = DenseElementsAttr::get(resultType, outValues); 1324 } 1325 1326 if (newAttr) { 1327 rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, resultType, newAttr); 1328 return success(); 1329 } 1330 1331 return failure(); 1332 } 1333 1334 private: 1335 /// This additionally controls whether the fold happens or not. Users can 1336 /// impose their heuristics in the function. 1337 ControlConstantExtractSliceFusionFn controlFn; 1338 }; 1339 1340 } // namespace 1341 1342 void mlir::tensor::populateFoldConstantExtractSlicePatterns( 1343 RewritePatternSet &patterns, 1344 const ControlConstantExtractSliceFusionFn &controlFn) { 1345 patterns.add<ConstantOpExtractSliceFolder>(patterns.getContext(), controlFn); 1346 } 1347 1348 /// Return the canonical type of the result of an extract_slice op. 1349 struct SliceReturnTypeCanonicalizer { 1350 RankedTensorType operator()(ExtractSliceOp op, 1351 ArrayRef<OpFoldResult> mixedOffsets, 1352 ArrayRef<OpFoldResult> mixedSizes, 1353 ArrayRef<OpFoldResult> mixedStrides) { 1354 return getCanonicalSliceResultType(op.getType().getRank(), 1355 op.getSourceType(), mixedOffsets, 1356 mixedSizes, mixedStrides); 1357 } 1358 }; 1359 1360 /// A canonicalizer wrapper to replace ExtractSliceOps. 1361 struct SliceCanonicalizer { 1362 void operator()(PatternRewriter &rewriter, ExtractSliceOp op, 1363 ExtractSliceOp newOp) { 1364 Value replacement = newOp.getResult(); 1365 if (replacement.getType() != op.getType()) 1366 replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(), 1367 replacement); 1368 rewriter.replaceOp(op, replacement); 1369 } 1370 }; 1371 1372 void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, 1373 MLIRContext *context) { 1374 results.add< 1375 OpWithOffsetSizesAndStridesConstantArgumentFolder< 1376 ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>, 1377 ExtractSliceOpCastFolder>(context); 1378 } 1379 1380 // 1381 static LogicalResult 1382 foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op, 1383 ShapedType shapedType) { 1384 OpBuilder b(op.getContext()); 1385 for (OpFoldResult ofr : op.getMixedOffsets()) 1386 if (getConstantIntValue(ofr) != static_cast<int64_t>(0)) 1387 return failure(); 1388 // Rank-reducing noops only need to inspect the leading dimensions: llvm::zip 1389 // is appropriate. 1390 auto shape = shapedType.getShape(); 1391 for (auto it : llvm::zip(op.getMixedSizes(), shape)) 1392 if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it)) 1393 return failure(); 1394 for (OpFoldResult ofr : op.getMixedStrides()) 1395 if (getConstantIntValue(ofr) != static_cast<int64_t>(1)) 1396 return failure(); 1397 return success(); 1398 } 1399 1400 /// If we have an ExtractSliceOp consuming an InsertSliceOp with the same slice, 1401 /// we can return the InsertSliceOp's source directly. 1402 // TODO: This only checks the immediate producer; extend to go up the 1403 // insert/extract chain if the slices are disjoint. 1404 static Value foldExtractAfterInsertSlice(ExtractSliceOp extractOp) { 1405 auto insertOp = extractOp.source().getDefiningOp<InsertSliceOp>(); 1406 1407 auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; 1408 if (insertOp && insertOp.source().getType() == extractOp.getType() && 1409 insertOp.isSameAs(extractOp, isSame)) 1410 return insertOp.source(); 1411 1412 return {}; 1413 } 1414 1415 OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute> operands) { 1416 if (auto splat = operands[0].dyn_cast_or_null<SplatElementsAttr>()) { 1417 auto resultType = result().getType().cast<ShapedType>(); 1418 if (resultType.hasStaticShape()) 1419 return splat.resizeSplat(resultType); 1420 } 1421 if (getSourceType() == getType() && 1422 succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) 1423 return this->source(); 1424 if (Value slice = foldExtractAfterInsertSlice(*this)) 1425 return slice; 1426 1427 return OpFoldResult(); 1428 } 1429 1430 Value mlir::tensor::createCanonicalRankReducingExtractSliceOp( 1431 OpBuilder &b, Location loc, Value tensor, RankedTensorType targetType) { 1432 auto rankedTensorType = tensor.getType().cast<RankedTensorType>(); 1433 unsigned rank = rankedTensorType.getRank(); 1434 auto shape = rankedTensorType.getShape(); 1435 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 1436 SmallVector<OpFoldResult> sizes; 1437 for (unsigned i = 0, e = rank; i < e; ++i) { 1438 OpFoldResult dim; 1439 if (rankedTensorType.isDynamicDim(i)) 1440 dim = b.createOrFold<tensor::DimOp>( 1441 loc, tensor, b.create<arith::ConstantIndexOp>(loc, i)); 1442 else 1443 dim = b.getIndexAttr(shape[i]); 1444 sizes.push_back(dim); 1445 } 1446 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 1447 return b.createOrFold<tensor::ExtractSliceOp>(loc, targetType, tensor, 1448 offsets, sizes, strides); 1449 } 1450 1451 //===----------------------------------------------------------------------===// 1452 // InsertSliceOp 1453 //===----------------------------------------------------------------------===// 1454 1455 // Build a InsertSliceOp with mixed static and dynamic entries. 1456 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1457 Value dest, ArrayRef<OpFoldResult> offsets, 1458 ArrayRef<OpFoldResult> sizes, 1459 ArrayRef<OpFoldResult> strides, 1460 ArrayRef<NamedAttribute> attrs) { 1461 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1462 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1463 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1464 ShapedType::kDynamicStrideOrOffset); 1465 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1466 ShapedType::kDynamicSize); 1467 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1468 ShapedType::kDynamicStrideOrOffset); 1469 build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes, 1470 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1471 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1472 result.addAttributes(attrs); 1473 } 1474 1475 // Build a InsertSliceOp with dynamic entries. 1476 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1477 Value dest, ValueRange offsets, ValueRange sizes, 1478 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 1479 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1480 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 1481 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1482 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1483 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1484 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1485 build(b, result, source, dest, offsetValues, sizeValues, strideValues); 1486 } 1487 1488 static SliceVerificationResult 1489 verifyInsertSliceOp(ShapedType srcType, ShapedType dstType, 1490 ArrayAttr staticOffsets, ArrayAttr staticSizes, 1491 ArrayAttr staticStrides, 1492 ShapedType *expectedType = nullptr) { 1493 // insert_slice is the inverse of extract_slice, use the same type inference. 1494 auto expected = ExtractSliceOp::inferRankReducedResultType( 1495 srcType.getRank(), dstType.cast<RankedTensorType>(), 1496 extractFromI64ArrayAttr(staticOffsets), 1497 extractFromI64ArrayAttr(staticSizes), 1498 extractFromI64ArrayAttr(staticStrides)) 1499 .cast<ShapedType>(); 1500 if (expectedType) 1501 *expectedType = expected; 1502 return isRankReducedType(expected, srcType); 1503 } 1504 1505 /// Verifier for InsertSliceOp. 1506 LogicalResult InsertSliceOp::verify() { 1507 ShapedType expectedType; 1508 auto result = 1509 verifyInsertSliceOp(getSourceType(), getType(), static_offsets(), 1510 static_sizes(), static_strides(), &expectedType); 1511 return produceSliceErrorMsg(result, *this, expectedType); 1512 } 1513 1514 /// If we have two consecutive InsertSliceOp writing to the same slice, we 1515 /// can mutate the second InsertSliceOp's destination to the first one's. 1516 /// 1517 /// Example: 1518 /// 1519 /// ```mlir 1520 /// %0 = tensor.insert_slice %slice0 into %input[0, 0] [64, 64] [1, 1] 1521 /// %1 = tensor.insert_slice %slice1 into %0[0, 0] [64, 64] [1, 1] 1522 /// ``` 1523 /// 1524 /// folds into: 1525 /// 1526 /// ```mlir 1527 /// %1 = tensor.insert_slice %slice1 into %input[0, 0] [64, 64] [1, 1] 1528 /// ``` 1529 static LogicalResult foldInsertAfterInsertSlice(InsertSliceOp insertOp) { 1530 auto prevInsertOp = insertOp.dest().getDefiningOp<InsertSliceOp>(); 1531 1532 auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; 1533 if (!prevInsertOp || 1534 prevInsertOp.source().getType() != insertOp.source().getType() || 1535 !prevInsertOp.isSameAs(insertOp, isSame)) 1536 return failure(); 1537 1538 insertOp.destMutable().assign(prevInsertOp.dest()); 1539 return success(); 1540 } 1541 1542 OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) { 1543 if (getSourceType().hasStaticShape() && getType().hasStaticShape() && 1544 getSourceType() == getType() && 1545 succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) 1546 return this->source(); 1547 if (succeeded(foldInsertAfterInsertSlice(*this))) 1548 return getResult(); 1549 return OpFoldResult(); 1550 } 1551 1552 LogicalResult InsertSliceOp::reifyResultShapes( 1553 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 1554 reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank())); 1555 for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) { 1556 reifiedReturnShapes[0][dim] = 1557 builder.createOrFold<tensor::DimOp>(getLoc(), dest(), dim); 1558 } 1559 return success(); 1560 } 1561 1562 namespace { 1563 /// Pattern to rewrite a insert_slice op with constant arguments. 1564 class InsertSliceOpConstantArgumentFolder final 1565 : public OpRewritePattern<InsertSliceOp> { 1566 public: 1567 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1568 1569 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1570 PatternRewriter &rewriter) const override { 1571 // No constant operand, just return. 1572 if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) { 1573 return matchPattern(operand, matchConstantIndex()); 1574 })) 1575 return failure(); 1576 1577 // At least one of offsets/sizes/strides is a new constant. 1578 // Form the new list of operands and constant attributes from the 1579 // existing. 1580 SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets()); 1581 SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes()); 1582 SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides()); 1583 canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset); 1584 canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic); 1585 canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset); 1586 1587 // Create the new op in canonical form. 1588 auto sourceType = ExtractSliceOp::inferRankReducedResultType( 1589 insertSliceOp.getSourceType().getRank(), insertSliceOp.getType(), 1590 mixedOffsets, mixedSizes, mixedStrides); 1591 Value toInsert = insertSliceOp.source(); 1592 if (sourceType != insertSliceOp.getSourceType()) 1593 toInsert = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(), 1594 sourceType, toInsert); 1595 rewriter.replaceOpWithNewOp<InsertSliceOp>( 1596 insertSliceOp, toInsert, insertSliceOp.dest(), mixedOffsets, mixedSizes, 1597 mixedStrides); 1598 return success(); 1599 } 1600 }; 1601 1602 /// Fold tensor_casts with insert_slice operations. If the source or destination 1603 /// tensor is a tensor_cast that removes static type information, the cast is 1604 /// folded into the insert_slice operation. E.g.: 1605 /// 1606 /// ```mlir 1607 /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> 1608 /// %2 = tensor.insert_slice %1 into ... : tensor<?x?xf32> into ... 1609 /// ``` 1610 /// 1611 /// folds into: 1612 /// 1613 /// ```mlir 1614 /// %2 = tensor.insert_slice %0 into ... : tensor<8x16xf32> into ... 1615 /// ``` 1616 /// 1617 /// Note: When folding a cast on the destination tensor, the result of the 1618 /// insert_slice operation is casted to ensure that the type of the result did 1619 /// not change. 1620 struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertSliceOp> { 1621 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1622 1623 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1624 PatternRewriter &rewriter) const override { 1625 if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) { 1626 return matchPattern(operand, matchConstantIndex()); 1627 })) 1628 return failure(); 1629 1630 auto getSourceOfCastOp = [](Value v) -> Optional<Value> { 1631 auto castOp = v.getDefiningOp<tensor::CastOp>(); 1632 if (!castOp || !canFoldIntoConsumerOp(castOp)) 1633 return llvm::None; 1634 return castOp.source(); 1635 }; 1636 Optional<Value> sourceCastSource = 1637 getSourceOfCastOp(insertSliceOp.source()); 1638 Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.dest()); 1639 if (!sourceCastSource && !destCastSource) 1640 return failure(); 1641 1642 auto src = (sourceCastSource ? *sourceCastSource : insertSliceOp.source()); 1643 auto dst = (destCastSource ? *destCastSource : insertSliceOp.dest()); 1644 1645 auto srcType = src.getType().cast<ShapedType>(); 1646 auto dstType = dst.getType().cast<ShapedType>(); 1647 if (verifyInsertSliceOp(srcType, dstType, insertSliceOp.static_offsets(), 1648 insertSliceOp.static_sizes(), 1649 insertSliceOp.static_strides()) != 1650 SliceVerificationResult::Success) 1651 return failure(); 1652 1653 Value replacement = rewriter.create<InsertSliceOp>( 1654 insertSliceOp.getLoc(), src, dst, insertSliceOp.getMixedOffsets(), 1655 insertSliceOp.getMixedSizes(), insertSliceOp.getMixedStrides()); 1656 1657 if (replacement.getType() != insertSliceOp.getType()) { 1658 replacement = rewriter.create<tensor::CastOp>( 1659 insertSliceOp.getLoc(), insertSliceOp.getType(), replacement); 1660 } 1661 rewriter.replaceOp(insertSliceOp, replacement); 1662 return success(); 1663 } 1664 }; 1665 1666 /// If additional static type information can be deduced from a insert_slice's 1667 /// size operands, insert an explicit cast of the op's source operand. This 1668 /// enables other canonicalization patterns that are matching for tensor_cast 1669 /// ops such as `ForOpTensorCastFolder` in SCF. 1670 /// 1671 /// Example: 1672 /// 1673 /// ```mlir 1674 /// %r = tensor.insert_slice %0 into %1[...] [64, 64] [1, 1] 1675 /// : tensor<?x?xf32> into ... 1676 /// ``` 1677 /// 1678 /// folds into: 1679 /// 1680 /// ```mlir 1681 /// %tmp = tensor.cast %0 : tensor<?x?xf32> to tensor<64x64xf32> 1682 /// %r = tensor.insert_slice %tmp into %1[...] [64, 64] [1, 1] 1683 /// : tensor<64x64xf32> into ... 1684 /// ``` 1685 struct InsertSliceOpSourceCastInserter final 1686 : public OpRewritePattern<InsertSliceOp> { 1687 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1688 1689 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1690 PatternRewriter &rewriter) const override { 1691 RankedTensorType srcType = insertSliceOp.getSourceType(); 1692 if (srcType.getRank() != insertSliceOp.getType().getRank()) 1693 return failure(); 1694 SmallVector<int64_t> newSrcShape(srcType.getShape().begin(), 1695 srcType.getShape().end()); 1696 for (int64_t i = 0; i < srcType.getRank(); ++i) { 1697 if (Optional<int64_t> constInt = 1698 getConstantIntValue(insertSliceOp.getMixedSizes()[i])) 1699 newSrcShape[i] = *constInt; 1700 } 1701 1702 RankedTensorType newSrcType = 1703 RankedTensorType::get(newSrcShape, srcType.getElementType()); 1704 if (srcType == newSrcType || 1705 !preservesStaticInformation(srcType, newSrcType) || 1706 !tensor::CastOp::areCastCompatible(srcType, newSrcType)) 1707 return failure(); 1708 1709 // newSrcType is: 1710 // 1) Different from srcType. 1711 // 2) "More static" than srcType. 1712 // 3) Cast-compatible with srcType. 1713 // Insert the cast. 1714 Value cast = rewriter.create<tensor::CastOp>( 1715 insertSliceOp.getLoc(), newSrcType, insertSliceOp.source()); 1716 rewriter.replaceOpWithNewOp<InsertSliceOp>( 1717 insertSliceOp, cast, insertSliceOp.dest(), 1718 insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(), 1719 insertSliceOp.getMixedStrides()); 1720 return success(); 1721 } 1722 }; 1723 } // namespace 1724 1725 void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, 1726 MLIRContext *context) { 1727 results.add<InsertSliceOpConstantArgumentFolder, InsertSliceOpCastFolder, 1728 InsertSliceOpSourceCastInserter>(context); 1729 } 1730 1731 Value mlir::tensor::createCanonicalRankReducingInsertSliceOp(OpBuilder &b, 1732 Location loc, 1733 Value tensor, 1734 Value dest) { 1735 auto rankedTensorType = dest.getType().cast<RankedTensorType>(); 1736 unsigned rank = rankedTensorType.getRank(); 1737 auto shape = rankedTensorType.getShape(); 1738 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 1739 SmallVector<OpFoldResult> sizes; 1740 for (unsigned i = 0, e = rank; i < e; ++i) { 1741 OpFoldResult dim; 1742 if (rankedTensorType.isDynamicDim(i)) 1743 dim = b.createOrFold<tensor::DimOp>( 1744 loc, dest, b.create<arith::ConstantIndexOp>(loc, i)); 1745 else 1746 dim = b.getIndexAttr(shape[i]); 1747 sizes.push_back(dim); 1748 } 1749 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 1750 return b.createOrFold<tensor::InsertSliceOp>(loc, tensor, dest, offsets, 1751 sizes, strides); 1752 } 1753 1754 //===----------------------------------------------------------------------===// 1755 // PadOp 1756 //===----------------------------------------------------------------------===// 1757 1758 // TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it 1759 // supports optional types. 1760 void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand, 1761 Type typeToInfer, Type typeToInferFrom) {} 1762 1763 ParseResult parseInferType(OpAsmParser &parser, 1764 Optional<OpAsmParser::UnresolvedOperand> optOperand, 1765 Type &typeToInfer, Type typeToInferFrom) { 1766 if (optOperand) 1767 typeToInfer = typeToInferFrom; 1768 return success(); 1769 } 1770 1771 LogicalResult PadOp::verify() { 1772 auto sourceType = source().getType().cast<RankedTensorType>(); 1773 auto resultType = result().getType().cast<RankedTensorType>(); 1774 auto expectedType = 1775 PadOp::inferResultType(sourceType, extractFromI64ArrayAttr(static_low()), 1776 extractFromI64ArrayAttr(static_high())); 1777 for (int i = 0, e = sourceType.getRank(); i < e; ++i) { 1778 if (resultType.getDimSize(i) == expectedType.getDimSize(i)) 1779 continue; 1780 if (expectedType.isDynamicDim(i)) 1781 continue; 1782 return emitError("specified type ") 1783 << resultType << " does not match the inferred type " 1784 << expectedType; 1785 } 1786 1787 return success(); 1788 } 1789 1790 LogicalResult PadOp::verifyRegions() { 1791 auto ®ion = getRegion(); 1792 unsigned rank = result().getType().cast<RankedTensorType>().getRank(); 1793 Block &block = region.front(); 1794 if (block.getNumArguments() != rank) 1795 return emitError("expected the block to have ") << rank << " arguments"; 1796 1797 // Note: the number and type of yield values are checked in the YieldOp. 1798 for (const auto &en : llvm::enumerate(block.getArgumentTypes())) { 1799 if (!en.value().isIndex()) 1800 return emitOpError("expected block argument ") 1801 << (en.index() + 1) << " to be an index"; 1802 } 1803 1804 // Ensure that the region yields an element of the right type. 1805 auto yieldOp = llvm::cast<YieldOp>(block.getTerminator()); 1806 if (yieldOp.value().getType() != 1807 getType().cast<ShapedType>().getElementType()) 1808 return emitOpError("expected yield type to match shape element type"); 1809 1810 return success(); 1811 } 1812 1813 RankedTensorType PadOp::inferResultType(RankedTensorType sourceType, 1814 ArrayRef<int64_t> staticLow, 1815 ArrayRef<int64_t> staticHigh, 1816 ArrayRef<int64_t> resultShape) { 1817 unsigned rank = sourceType.getRank(); 1818 assert(staticLow.size() == rank && "unexpected staticLow size mismatch"); 1819 assert(staticHigh.size() == rank && "unexpected staticHigh size mismatch"); 1820 assert((resultShape.empty() || resultShape.size() == rank) && 1821 "unexpected resultShape size mismatch"); 1822 1823 SmallVector<int64_t, 4> inferredShape; 1824 for (auto i : llvm::seq<unsigned>(0, rank)) { 1825 if (sourceType.isDynamicDim(i) || 1826 staticLow[i] == ShapedType::kDynamicSize || 1827 staticHigh[i] == ShapedType::kDynamicSize) { 1828 inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamicSize 1829 : resultShape[i]); 1830 } else { 1831 int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i]; 1832 assert((resultShape.empty() || size == resultShape[i] || 1833 resultShape[i] == ShapedType::kDynamicSize) && 1834 "mismatch between inferred shape and result shape"); 1835 inferredShape.push_back(size); 1836 } 1837 } 1838 1839 return RankedTensorType::get(inferredShape, sourceType.getElementType()); 1840 } 1841 1842 void PadOp::build(OpBuilder &b, OperationState &result, Value source, 1843 ArrayRef<int64_t> staticLow, ArrayRef<int64_t> staticHigh, 1844 ValueRange low, ValueRange high, bool nofold, 1845 ArrayRef<NamedAttribute> attrs) { 1846 auto sourceType = source.getType().cast<RankedTensorType>(); 1847 auto resultType = inferResultType(sourceType, staticLow, staticHigh); 1848 build(b, result, resultType, source, low, high, b.getI64ArrayAttr(staticLow), 1849 b.getI64ArrayAttr(staticHigh), nofold ? b.getUnitAttr() : UnitAttr()); 1850 result.addAttributes(attrs); 1851 } 1852 1853 void PadOp::build(OpBuilder &b, OperationState &result, Value source, 1854 ValueRange low, ValueRange high, bool nofold, 1855 ArrayRef<NamedAttribute> attrs) { 1856 auto sourceType = source.getType().cast<RankedTensorType>(); 1857 unsigned rank = sourceType.getRank(); 1858 SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamicSize); 1859 build(b, result, source, staticVector, staticVector, low, high, nofold, 1860 attrs); 1861 } 1862 1863 void PadOp::build(OpBuilder &b, OperationState &result, Type resultType, 1864 Value source, ArrayRef<OpFoldResult> low, 1865 ArrayRef<OpFoldResult> high, bool nofold, 1866 ArrayRef<NamedAttribute> attrs) { 1867 assert(resultType.isa<RankedTensorType>()); 1868 auto sourceType = source.getType().cast<RankedTensorType>(); 1869 SmallVector<Value, 4> dynamicLow, dynamicHigh; 1870 SmallVector<int64_t, 4> staticLow, staticHigh; 1871 // staticLow and staticHigh have full information of the padding config. 1872 // This will grow staticLow and staticHigh with 1 value. If the config is 1873 // dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1 1874 // value as well. 1875 dispatchIndexOpFoldResults(low, dynamicLow, staticLow, 1876 ShapedType::kDynamicSize); 1877 dispatchIndexOpFoldResults(high, dynamicHigh, staticHigh, 1878 ShapedType::kDynamicSize); 1879 if (!resultType) { 1880 resultType = PadOp::inferResultType(sourceType, staticLow, staticHigh); 1881 } 1882 build(b, result, resultType, source, dynamicLow, dynamicHigh, 1883 b.getI64ArrayAttr(staticLow), b.getI64ArrayAttr(staticHigh), 1884 nofold ? b.getUnitAttr() : UnitAttr()); 1885 result.addAttributes(attrs); 1886 } 1887 1888 llvm::SmallBitVector PadOp::getPaddedDims() { 1889 llvm::SmallBitVector paddedDims(getSourceType().getRank()); 1890 auto extractPaddedDims = [&](ArrayRef<OpFoldResult> paddingWidths) { 1891 for (const auto &en : enumerate(paddingWidths)) 1892 if (getConstantIntValue(en.value()) != static_cast<int64_t>(0)) 1893 paddedDims.set(en.index()); 1894 }; 1895 extractPaddedDims(getMixedLowPad()); 1896 extractPaddedDims(getMixedHighPad()); 1897 return paddedDims; 1898 } 1899 1900 namespace { 1901 // Folds tensor.pad when padding is static zeros and the attribute 1902 // doesn't request otherwise. 1903 struct FoldStaticZeroPadding : public OpRewritePattern<PadOp> { 1904 using OpRewritePattern<PadOp>::OpRewritePattern; 1905 1906 LogicalResult matchAndRewrite(PadOp padTensorOp, 1907 PatternRewriter &rewriter) const override { 1908 if (!padTensorOp.hasZeroLowPad() || !padTensorOp.hasZeroHighPad()) 1909 return failure(); 1910 if (padTensorOp.nofold()) 1911 return failure(); 1912 rewriter.replaceOpWithNewOp<tensor::CastOp>( 1913 padTensorOp, padTensorOp.result().getType(), padTensorOp.source()); 1914 return success(); 1915 } 1916 }; 1917 1918 // Fold CastOp into PadOp when adding static information. 1919 struct FoldSourceTensorCast : public OpRewritePattern<PadOp> { 1920 using OpRewritePattern<PadOp>::OpRewritePattern; 1921 1922 LogicalResult matchAndRewrite(PadOp padTensorOp, 1923 PatternRewriter &rewriter) const override { 1924 auto castOp = padTensorOp.source().getDefiningOp<tensor::CastOp>(); 1925 if (!tensor::canFoldIntoConsumerOp(castOp)) 1926 return failure(); 1927 1928 auto newResultType = PadOp::inferResultType( 1929 castOp.source().getType().cast<RankedTensorType>(), 1930 extractFromI64ArrayAttr(padTensorOp.static_low()), 1931 extractFromI64ArrayAttr(padTensorOp.static_high()), 1932 padTensorOp.getResultType().getShape()); 1933 1934 if (newResultType == padTensorOp.getResultType()) { 1935 rewriter.updateRootInPlace(padTensorOp, [&]() { 1936 padTensorOp.sourceMutable().assign(castOp.source()); 1937 }); 1938 } else { 1939 auto newOp = rewriter.create<PadOp>( 1940 padTensorOp->getLoc(), newResultType, padTensorOp.source(), 1941 padTensorOp.low(), padTensorOp.high(), padTensorOp.static_low(), 1942 padTensorOp.static_high(), padTensorOp.nofold()); 1943 BlockAndValueMapping mapper; 1944 padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper); 1945 1946 rewriter.replaceOpWithNewOp<tensor::CastOp>( 1947 padTensorOp, padTensorOp.getResultType(), newOp); 1948 } 1949 return success(); 1950 } 1951 }; 1952 1953 // Fold CastOp using the result of PadOp back into the latter if it adds 1954 // static information. 1955 struct FoldTargetTensorCast : public OpRewritePattern<PadOp> { 1956 using OpRewritePattern<PadOp>::OpRewritePattern; 1957 1958 LogicalResult matchAndRewrite(PadOp padTensorOp, 1959 PatternRewriter &rewriter) const override { 1960 if (!padTensorOp.result().hasOneUse()) 1961 return failure(); 1962 auto tensorCastOp = 1963 dyn_cast<tensor::CastOp>(*padTensorOp->getUsers().begin()); 1964 if (!tensorCastOp) 1965 return failure(); 1966 if (!tensor::preservesStaticInformation(padTensorOp.result().getType(), 1967 tensorCastOp.dest().getType())) 1968 return failure(); 1969 1970 auto replacementOp = rewriter.create<PadOp>( 1971 padTensorOp.getLoc(), tensorCastOp.dest().getType(), 1972 padTensorOp.source(), padTensorOp.low(), padTensorOp.high(), 1973 padTensorOp.static_low(), padTensorOp.static_high(), 1974 padTensorOp.nofold()); 1975 replacementOp.region().takeBody(padTensorOp.region()); 1976 1977 rewriter.replaceOp(padTensorOp, replacementOp.result()); 1978 rewriter.replaceOp(tensorCastOp, replacementOp.result()); 1979 return success(); 1980 } 1981 }; 1982 1983 /// Fold chains of tensor::ExtractSliceOp, tensor::PadOp pairs that pad 1984 /// different dimensions. The pattern applies if the following preconditions 1985 /// hold: 1986 /// 1) the tensor::ExtractSliceOps are not rank-reducing, 1987 /// 2) the tensor::ExtractSliceOps have only unit-strides, 1988 /// 3) the tensor::PadOps perform only high-padding, 1989 /// 4) the tensor::PadOps have the same constant padding value, 1990 /// 5) the tensor::PadOps do not have common padding dimensions, 1991 /// 6) one tensor::ExtractSliceOp, tensor::PadOp pair has zero-padding and 1992 /// zero-offset for every dimension. 1993 /// 7) the tensor::ExtractSliceOp sizes match the source tensor sizes for the 1994 /// padded source dimensions. 1995 /// 1996 /// Example: 1997 /// 1998 /// ```mlir 1999 /// %0 = tensor.extract_slice %input[16, 0] [%sz0, 64] [1, 1] 2000 /// : tensor<64x64xf32> to tensor<?x64xf32> 2001 /// %1 = tensor.pad %0 low[0, 0] high[%pw0, 0] { ... 2002 /// } : tensor<?x64xf32> to tensor<8x64xf32> 2003 /// %2 = tensor.extract_slice %1[0, 4] [8, %sz1] [1, 1] 2004 /// : tensor<8x64xf32> to tensor<8x?xf32> 2005 /// %res = tensor.pad %2 nofold low[0, 0] high[0, %pw1] { ... 2006 /// } : tensor<8x?xf32> to tensor<8x4xf32> 2007 /// ``` 2008 /// 2009 /// folds into: 2010 /// 2011 /// ```mlir 2012 /// %0 = tensor.extract_slice %input[16, 4] [%sz0, %sz1] [1, 1] 2013 /// : tensor<64x64xf32> to tensor<?x?xf32> 2014 /// %res = tensor.pad %0 nofold low[0, 0] high[%pw0, %pw1] { ... 2015 /// } : tensor<?x?xf32> to tensor<8x4xf32> 2016 /// ``` 2017 struct FoldOrthogonalPaddings : public OpRewritePattern<PadOp> { 2018 using OpRewritePattern<PadOp>::OpRewritePattern; 2019 2020 LogicalResult matchAndRewrite(PadOp padOp, 2021 PatternRewriter &rewriter) const override { 2022 auto innerSliceOp = padOp.source().getDefiningOp<ExtractSliceOp>(); 2023 if (!innerSliceOp) 2024 return failure(); 2025 auto outerPadOp = innerSliceOp.source().getDefiningOp<PadOp>(); 2026 if (!outerPadOp || outerPadOp.nofold()) 2027 return failure(); 2028 auto outerSliceOp = outerPadOp.source().getDefiningOp<ExtractSliceOp>(); 2029 if (!outerSliceOp) 2030 return failure(); 2031 2032 // 1) Fail if the chain is rank-reducing. 2033 int64_t rank = padOp.getSourceType().getRank(); 2034 if (outerSliceOp.getSourceType().getRank() != rank) { 2035 return rewriter.notifyMatchFailure(padOp, 2036 "cannot fold rank-reducing chain"); 2037 } 2038 2039 // 2) Fail if the tensor::ExtractSliceOps have non-unit strides. 2040 if (!innerSliceOp.hasUnitStride() || !outerSliceOp.hasUnitStride()) { 2041 return rewriter.notifyMatchFailure( 2042 padOp, "cannot fold non-unit stride ExtractSliceOps"); 2043 } 2044 2045 // 3) Fail if the tensor::PadOps have non-zero low padding. 2046 if (!padOp.hasZeroLowPad() || !outerPadOp.hasZeroLowPad()) { 2047 return rewriter.notifyMatchFailure(padOp, 2048 "cannot fold PadOps with low padding"); 2049 } 2050 2051 // 4) Fail if the tensor::PadOps padding values do not match. 2052 Attribute innerAttr, outerAttr; 2053 Value innerValue = padOp.getConstantPaddingValue(); 2054 Value outerValue = outerPadOp.getConstantPaddingValue(); 2055 if (!innerValue || !outerValue || 2056 !matchPattern(innerValue, m_Constant(&innerAttr)) || 2057 !matchPattern(outerValue, m_Constant(&outerAttr)) || 2058 innerAttr != outerAttr) { 2059 return rewriter.notifyMatchFailure( 2060 padOp, "cannot fold PadOps with different padding values"); 2061 } 2062 2063 // 5) Fail if a dimension is padded by both tensor::PadOps. 2064 llvm::SmallBitVector innerDims = padOp.getPaddedDims(); 2065 llvm::SmallBitVector outerDims = outerPadOp.getPaddedDims(); 2066 if (innerDims.anyCommon(outerDims)) { 2067 return rewriter.notifyMatchFailure( 2068 padOp, "cannot fold PadOps with common padding dimensions"); 2069 } 2070 2071 // 6) Combine the offsets of the two tensor::ExtractSliceOps. Find the 2072 // zero-offset and zero-padding tensor::ExtractSliceOp, tensor::PadOp pair 2073 // for every dimension, and use the offset the other pair. Fail if no 2074 // zero-offset and zero-padding tensor::ExtractSliceOp, tensor::PadOp pair 2075 // exists. 2076 SmallVector<OpFoldResult> newOffsets(rank, rewriter.getIndexAttr(0)); 2077 for (auto &en : enumerate(newOffsets)) { 2078 OpFoldResult innerOffset = innerSliceOp.getMixedOffsets()[en.index()]; 2079 OpFoldResult outerOffset = outerSliceOp.getMixedOffsets()[en.index()]; 2080 if (!innerDims.test(en.index()) && 2081 (getConstantIntValue(innerOffset) == static_cast<int64_t>(0))) { 2082 en.value() = outerOffset; 2083 continue; 2084 } 2085 if (!outerDims.test(en.index()) && 2086 (getConstantIntValue(outerOffset) == static_cast<int64_t>(0))) { 2087 en.value() = innerOffset; 2088 continue; 2089 } 2090 return rewriter.notifyMatchFailure( 2091 padOp, "cannot find zero-offset and zero-padding pair"); 2092 } 2093 2094 // 7) Combine the sizes of the two tensor::ExtractSliceOps. Take the size of 2095 // the outer tensor::ExtractSliceOp for the dimensions padded by the outer 2096 // tensor::PadOp and fail if the size of the inner tensor::ExtractSliceOp 2097 // does not match the size of the padded dimension. Otherwise, take the size 2098 // of the inner tensor::ExtractSliceOp. 2099 SmallVector<OpFoldResult> newSizes = innerSliceOp.getMixedSizes(); 2100 for (auto &en : enumerate(newSizes)) { 2101 if (!outerDims.test(en.index())) 2102 continue; 2103 OpFoldResult sliceSize = innerSliceOp.getMixedSizes()[en.index()]; 2104 int64_t sourceSize = innerSliceOp.getSourceType().getShape()[en.index()]; 2105 assert(!ShapedType::isDynamic(sourceSize) && 2106 "expected padded dimension to have a static size"); 2107 if (getConstantIntValue(sliceSize) != sourceSize) { 2108 return rewriter.notifyMatchFailure( 2109 padOp, "cannot fold since the inner ExtractSliceOp size does not " 2110 "match the size of the outer padding"); 2111 } 2112 en.value() = outerSliceOp.getMixedSizes()[en.index()]; 2113 } 2114 2115 // Combine the high paddings of the two tensor::PadOps. 2116 SmallVector<OpFoldResult> newHighPad(rank, rewriter.getIndexAttr(0)); 2117 for (auto &en : enumerate(newHighPad)) { 2118 if (innerDims.test(en.index())) 2119 newHighPad[en.index()] = padOp.getMixedHighPad()[en.index()]; 2120 if (outerDims.test(en.index())) 2121 newHighPad[en.index()] = outerPadOp.getMixedHighPad()[en.index()]; 2122 } 2123 2124 // Create a new tensor::ExtractSliceOp, tensor::PadOp pair that performs the 2125 // two paddings in one step. 2126 auto newSliceOp = rewriter.create<ExtractSliceOp>( 2127 padOp.getLoc(), outerSliceOp.source(), newOffsets, newSizes, 2128 innerSliceOp.getMixedStrides()); 2129 auto newPadOp = rewriter.create<PadOp>( 2130 padOp.getLoc(), padOp.getResultType(), newSliceOp.getResult(), 2131 padOp.getMixedLowPad(), newHighPad, padOp.nofold()); 2132 rewriter.inlineRegionBefore(padOp.getRegion(), newPadOp.getRegion(), 2133 newPadOp.getRegion().begin()); 2134 rewriter.replaceOp(padOp, newPadOp.getResult()); 2135 return success(); 2136 } 2137 }; 2138 2139 } // namespace 2140 2141 void PadOp::getCanonicalizationPatterns(RewritePatternSet &results, 2142 MLIRContext *context) { 2143 results.add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast, 2144 FoldOrthogonalPaddings>(context); 2145 } 2146 2147 /// Return the padding value of the PadOp if it constant. In this context, 2148 /// "constant" means an actual constant or "defined outside of the block". 2149 /// 2150 /// Values are considered constant in three cases: 2151 /// - A ConstantLike value. 2152 /// - A basic block argument from a different block. 2153 /// - A value defined outside of the block. 2154 /// 2155 /// If the padding value is not constant, an empty Value is returned. 2156 Value PadOp::getConstantPaddingValue() { 2157 auto yieldOp = dyn_cast<YieldOp>(getRegion().front().getTerminator()); 2158 if (!yieldOp) 2159 return {}; 2160 Value padValue = yieldOp.value(); 2161 // Check if yield value is a constant. 2162 if (matchPattern(padValue, m_Constant())) 2163 return padValue; 2164 // Check if yield value is defined inside the PadOp block. 2165 if (padValue.getParentBlock() == &getRegion().front()) 2166 return {}; 2167 // Else: Yield value defined outside of the PadOp block. 2168 return padValue; 2169 } 2170 2171 OpFoldResult PadOp::fold(ArrayRef<Attribute>) { 2172 if (getResultType().hasStaticShape() && getResultType() == getSourceType() && 2173 !nofold()) 2174 return source(); 2175 return {}; 2176 } 2177 2178 //===----------------------------------------------------------------------===// 2179 // SplatOp 2180 //===----------------------------------------------------------------------===// 2181 2182 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 2183 auto constOperand = operands.front(); 2184 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 2185 return {}; 2186 2187 // SplatElementsAttr::get treats single value for second arg as being a splat. 2188 return SplatElementsAttr::get(getType(), {constOperand}); 2189 } 2190 2191 //===----------------------------------------------------------------------===// 2192 // TableGen'd op method definitions 2193 //===----------------------------------------------------------------------===// 2194 2195 #define GET_OP_CLASSES 2196 #include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc" 2197