1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 10 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 11 #include "mlir/Dialect/Complex/IR/Complex.h" 12 #include "mlir/Dialect/Tensor/IR/Tensor.h" 13 #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" 14 #include "mlir/Dialect/Utils/StaticValueUtils.h" 15 #include "mlir/IR/BlockAndValueMapping.h" 16 #include "mlir/IR/Builders.h" 17 #include "mlir/IR/BuiltinAttributeInterfaces.h" 18 #include "mlir/IR/Matchers.h" 19 #include "mlir/IR/TypeUtilities.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 23 using namespace mlir; 24 using namespace mlir::tensor; 25 26 /// Materialize a single constant operation from a given attribute value with 27 /// the desired resultant type. 28 Operation *TensorDialect::materializeConstant(OpBuilder &builder, 29 Attribute value, Type type, 30 Location loc) { 31 if (arith::ConstantOp::isBuildableWith(value, type)) 32 return builder.create<arith::ConstantOp>(loc, value, type); 33 if (complex::ConstantOp::isBuildableWith(value, type)) 34 return builder.create<complex::ConstantOp>(loc, type, 35 value.cast<ArrayAttr>()); 36 return nullptr; 37 } 38 39 //===----------------------------------------------------------------------===// 40 // CastOp 41 //===----------------------------------------------------------------------===// 42 43 /// Returns true if `target` is a ranked tensor type that preserves static 44 /// information available in the `source` ranked tensor type. 45 bool mlir::tensor::preservesStaticInformation(Type source, Type target) { 46 auto sourceType = source.dyn_cast<RankedTensorType>(); 47 auto targetType = target.dyn_cast<RankedTensorType>(); 48 49 // Requires RankedTensorType. 50 if (!sourceType || !targetType) 51 return false; 52 53 // Requires same elemental type. 54 if (sourceType.getElementType() != targetType.getElementType()) 55 return false; 56 57 // Requires same rank. 58 if (sourceType.getRank() != targetType.getRank()) 59 return false; 60 61 // If cast is towards more static sizes along any dimension, don't fold. 62 for (auto t : llvm::zip(sourceType.getShape(), targetType.getShape())) { 63 if (!ShapedType::isDynamic(std::get<0>(t)) && 64 ShapedType::isDynamic(std::get<1>(t))) 65 return false; 66 } 67 68 return true; 69 } 70 71 /// Determines whether tensor::CastOp casts to a more dynamic version of the 72 /// source tensor. This is useful to fold a tensor.cast into a consuming op and 73 /// implement canonicalization patterns for ops in different dialects that may 74 /// consume the results of tensor.cast operations. Such foldable tensor.cast 75 /// operations are typically inserted as `slice` ops and are canonicalized, 76 /// to preserve the type compatibility of their uses. 77 /// 78 /// Returns true when all conditions are met: 79 /// 1. source and result are ranked tensors with same element type and rank. 80 /// 2. the tensor type has more static information than the result 81 /// 82 /// Example: 83 /// ```mlir 84 /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> 85 /// %2 = consumer %1 ... : tensor<?x?xf32> ... 86 /// ``` 87 /// 88 /// folds into: 89 /// 90 /// ```mlir 91 /// %2 = consumer %0 ... : tensor<8x16xf32> ... 92 /// ``` 93 bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) { 94 if (!castOp) 95 return false; 96 97 // Can fold if the source of cast has at least as much static information as 98 // its results. 99 return preservesStaticInformation(castOp.getType(), 100 castOp.getSource().getType()); 101 } 102 103 /// Determines whether the tensor::CastOp casts to a more static version of the 104 /// source tensor. This is useful to fold into a producing op and implement 105 /// canonicaliation patterns with the `tensor.cast` op as the root, but producer 106 /// being from different dialects. Returns true when all conditions are met: 107 /// 1. source and result and ranked tensors with same element type and rank. 108 /// 2. the result type has more static information than the source. 109 /// 110 /// Example: 111 /// ```mlir 112 /// %1 = producer ... : tensor<?x?xf32> 113 /// %2 = tensor.cast %1 : tensor<?x?xf32> to tensor<8x16xf32> 114 /// ``` 115 /// 116 /// can be canonicalized to : 117 /// 118 /// ```mlir 119 /// %2 = producer ... : tensor<8x16xf32> 120 /// ``` 121 /// Not all ops might be canonicalizable this way, but for those that can be, 122 /// this method provides a check that it is worth doing the canonicalization. 123 bool mlir::tensor::canFoldIntoProducerOp(CastOp castOp) { 124 if (!castOp) 125 return false; 126 return preservesStaticInformation(castOp.getSource().getType(), 127 castOp.getType()); 128 } 129 130 /// Performs folding of any operand of `op` if it comes from a tensor::CastOp 131 /// that can be folded. 132 LogicalResult mlir::tensor::foldTensorCast(Operation *op) { 133 bool folded = false; 134 for (OpOperand &operand : op->getOpOperands()) { 135 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 136 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 137 operand.set(castOp.getOperand()); 138 folded = true; 139 } 140 } 141 return success(folded); 142 } 143 144 bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 145 if (inputs.size() != 1 || outputs.size() != 1) 146 return false; 147 Type a = inputs.front(), b = outputs.front(); 148 auto aT = a.dyn_cast<TensorType>(); 149 auto bT = b.dyn_cast<TensorType>(); 150 if (!aT || !bT) 151 return false; 152 153 if (aT.getElementType() != bT.getElementType()) 154 return false; 155 156 return succeeded(verifyCompatibleShape(aT, bT)); 157 } 158 159 /// Compute a TensorType that has the joined shape knowledge of the two 160 /// given TensorTypes. The element types need to match. 161 static TensorType joinShapes(TensorType one, TensorType two) { 162 assert(one.getElementType() == two.getElementType()); 163 164 if (!one.hasRank()) 165 return two; 166 if (!two.hasRank()) 167 return one; 168 169 int64_t rank = one.getRank(); 170 if (rank != two.getRank()) 171 return {}; 172 173 SmallVector<int64_t, 4> join; 174 join.reserve(rank); 175 for (int64_t i = 0; i < rank; ++i) { 176 if (one.isDynamicDim(i)) { 177 join.push_back(two.getDimSize(i)); 178 continue; 179 } 180 if (two.isDynamicDim(i)) { 181 join.push_back(one.getDimSize(i)); 182 continue; 183 } 184 if (one.getDimSize(i) != two.getDimSize(i)) 185 return {}; 186 join.push_back(one.getDimSize(i)); 187 } 188 return RankedTensorType::get(join, one.getElementType()); 189 } 190 191 namespace { 192 193 /// Replaces chains of two tensor.cast operations by a single tensor.cast 194 /// operation if doing so does not remove runtime constraints. 195 struct ChainedTensorCast : public OpRewritePattern<CastOp> { 196 using OpRewritePattern<CastOp>::OpRewritePattern; 197 198 LogicalResult matchAndRewrite(CastOp tensorCast, 199 PatternRewriter &rewriter) const final { 200 auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>(); 201 202 if (!tensorCastOperand) 203 return failure(); 204 205 auto sourceType = 206 tensorCastOperand.getOperand().getType().cast<TensorType>(); 207 auto intermediateType = tensorCastOperand.getType().cast<TensorType>(); 208 auto resultType = tensorCast.getType().cast<TensorType>(); 209 210 // We can remove the intermediate cast if joining all three produces the 211 // same result as just joining the source and result shapes. 212 auto firstJoin = 213 joinShapes(joinShapes(sourceType, intermediateType), resultType); 214 215 // The join might not exist if the cast sequence would fail at runtime. 216 if (!firstJoin) 217 return failure(); 218 219 // The newJoin always exists if the above join exists, it might just contain 220 // less information. If so, we cannot drop the intermediate cast, as doing 221 // so would remove runtime checks. 222 auto newJoin = joinShapes(sourceType, resultType); 223 if (firstJoin != newJoin) 224 return failure(); 225 226 rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType, 227 tensorCastOperand.getOperand()); 228 return success(); 229 } 230 }; 231 232 /// Fold tensor.cast into tesor.extract_slice producer. 233 /// Example: 234 /// ``` 235 /// %0 = tensor.extract_slice %arg0[%o, 0] [%s, 512] [1, 1] : 236 /// tensor<128x512xf32> to tensor<?x512xf32> 237 /// %1 = tensor.cast %0 : tensor<?x512xf32> to tensor<16x512xf32> 238 /// ``` 239 /// -> 240 /// ``` 241 /// %1 = tensor.extract_slice %arg0[%o, 0] [16, 512] [1, 1] : 242 /// tensor<128x512xf32> to tensor<16x512xf32> 243 /// ``` 244 struct TensorCastExtractSlice : public OpRewritePattern<CastOp> { 245 using OpRewritePattern<CastOp>::OpRewritePattern; 246 247 LogicalResult matchAndRewrite(CastOp tensorCast, 248 PatternRewriter &rewriter) const final { 249 auto extractOperand = 250 tensorCast.getOperand().getDefiningOp<ExtractSliceOp>(); 251 252 if (!extractOperand || !canFoldIntoProducerOp(tensorCast) || 253 tensorCast.getType().getShape() == tensorCast.getSource() 254 .getType() 255 .cast<RankedTensorType>() 256 .getShape()) 257 return failure(); 258 259 SmallVector<OpFoldResult, 4> sizes = extractOperand.getMixedSizes(); 260 auto dimMask = computeRankReductionMask( 261 extractFromI64ArrayAttr(extractOperand.getStaticSizes()), 262 extractOperand.getType().getShape()); 263 size_t dimIndex = 0; 264 for (size_t i = 0, e = sizes.size(); i < e; i++) { 265 if (dimMask && dimMask->count(i)) 266 continue; 267 int64_t dim = tensorCast.getType().getShape()[dimIndex++]; 268 if (ShapedType::isDynamic(dim)) 269 continue; 270 sizes[i] = rewriter.getIndexAttr(dim); 271 } 272 273 rewriter.replaceOpWithNewOp<ExtractSliceOp>( 274 tensorCast, tensorCast.getType().cast<RankedTensorType>(), 275 extractOperand.getSource(), extractOperand.getMixedOffsets(), sizes, 276 extractOperand.getMixedStrides()); 277 return success(); 278 } 279 }; 280 281 } // namespace 282 283 void CastOp::getCanonicalizationPatterns(RewritePatternSet &results, 284 MLIRContext *context) { 285 results.add<ChainedTensorCast, TensorCastExtractSlice>(context); 286 } 287 288 //===----------------------------------------------------------------------===// 289 // DimOp 290 //===----------------------------------------------------------------------===// 291 292 void DimOp::build(OpBuilder &builder, OperationState &result, Value source, 293 int64_t index) { 294 auto loc = result.location; 295 Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index); 296 build(builder, result, source, indexValue); 297 } 298 299 Optional<int64_t> DimOp::getConstantIndex() { 300 if (auto constantOp = getIndex().getDefiningOp<arith::ConstantOp>()) 301 return constantOp.getValue().cast<IntegerAttr>().getInt(); 302 return {}; 303 } 304 305 LogicalResult DimOp::verify() { 306 // Assume unknown index to be in range. 307 Optional<int64_t> index = getConstantIndex(); 308 if (!index) 309 return success(); 310 311 // Check that constant index is not knowingly out of range. 312 auto type = getSource().getType(); 313 if (auto tensorType = type.dyn_cast<RankedTensorType>()) { 314 if (*index >= tensorType.getRank()) 315 return emitOpError("index is out of range"); 316 } else if (type.isa<UnrankedTensorType>()) { 317 // Assume index to be in range. 318 } else { 319 llvm_unreachable("expected operand with tensor type"); 320 } 321 return success(); 322 } 323 324 OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) { 325 // All forms of folding require a known index. 326 auto index = operands[1].dyn_cast_or_null<IntegerAttr>(); 327 if (!index) 328 return {}; 329 330 // Folding for unranked types (UnrankedTensorType) is not supported. 331 auto tensorType = getSource().getType().dyn_cast<RankedTensorType>(); 332 if (!tensorType) 333 return {}; 334 335 // Fold if the shape extent along the given index is known. 336 if (!tensorType.isDynamicDim(index.getInt())) { 337 Builder builder(getContext()); 338 return builder.getIndexAttr(tensorType.getShape()[index.getInt()]); 339 } 340 341 Operation *definingOp = getSource().getDefiningOp(); 342 343 // Fold dim to the operand of tensor.generate. 344 if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) { 345 auto resultType = 346 fromElements.getResult().getType().cast<RankedTensorType>(); 347 // The case where the type encodes the size of the dimension is handled 348 // above. 349 assert(ShapedType::isDynamic(resultType.getShape()[index.getInt()])); 350 351 // Find the operand of the fromElements that corresponds to this index. 352 auto dynExtents = fromElements.getDynamicExtents().begin(); 353 for (auto dim : resultType.getShape().take_front(index.getInt())) 354 if (ShapedType::isDynamic(dim)) 355 dynExtents++; 356 357 return Value{*dynExtents}; 358 } 359 360 // The size at the given index is now known to be a dynamic size. 361 unsigned unsignedIndex = index.getValue().getZExtValue(); 362 363 if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) { 364 // Fold only for non-rank reduced ops. For the rank-reduced version, rely on 365 // `resolve-shaped-type-result-dims` pass. 366 if (sliceOp.getType().getRank() == sliceOp.getSourceType().getRank() && 367 sliceOp.isDynamicSize(unsignedIndex)) { 368 return {sliceOp.getDynamicSize(unsignedIndex)}; 369 } 370 } 371 372 // dim(cast) -> dim 373 if (succeeded(foldTensorCast(*this))) 374 return getResult(); 375 376 return {}; 377 } 378 379 namespace { 380 /// Fold dim of a cast into the dim of the source of the tensor cast. 381 struct DimOfCastOp : public OpRewritePattern<DimOp> { 382 using OpRewritePattern<DimOp>::OpRewritePattern; 383 384 LogicalResult matchAndRewrite(DimOp dimOp, 385 PatternRewriter &rewriter) const override { 386 auto castOp = dimOp.getSource().getDefiningOp<CastOp>(); 387 if (!castOp) 388 return failure(); 389 Value newSource = castOp.getOperand(); 390 rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.getIndex()); 391 return success(); 392 } 393 }; 394 } // namespace 395 396 void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, 397 MLIRContext *context) { 398 results.add<DimOfCastOp>(context); 399 } 400 401 //===----------------------------------------------------------------------===// 402 // ExtractOp 403 //===----------------------------------------------------------------------===// 404 405 LogicalResult ExtractOp::verify() { 406 // Verify the # indices match if we have a ranked type. 407 if (auto tensorType = getTensor().getType().dyn_cast<RankedTensorType>()) 408 if (tensorType.getRank() != static_cast<int64_t>(getIndices().size())) 409 return emitOpError("incorrect number of indices for extract_element"); 410 411 return success(); 412 } 413 414 OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) { 415 // If this is a splat elements attribute, simply return the value. All of the 416 // elements of a splat attribute are the same. 417 if (Attribute tensor = operands.front()) 418 if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>()) 419 return splatTensor.getSplatValue<Attribute>(); 420 421 // Collect the constant indices into the tensor. 422 SmallVector<uint64_t, 8> indices; 423 for (Attribute indice : llvm::drop_begin(operands, 1)) { 424 if (!indice || !indice.isa<IntegerAttr>()) 425 return {}; 426 indices.push_back(indice.cast<IntegerAttr>().getInt()); 427 } 428 429 // Fold extract(from_elements(...)). 430 if (auto fromElementsOp = getTensor().getDefiningOp<FromElementsOp>()) { 431 auto tensorType = fromElementsOp.getType().cast<RankedTensorType>(); 432 auto rank = tensorType.getRank(); 433 assert(static_cast<int64_t>(indices.size()) == tensorType.getRank() && 434 "rank mismatch"); 435 int flatIndex = 0; 436 int stride = 1; 437 for (int i = rank - 1; i >= 0; --i) { 438 if (i < rank - 1) 439 stride *= tensorType.getDimSize(i); 440 flatIndex += indices[i] * stride; 441 } 442 // Prevent out of bounds accesses. This can happen in invalid code that will 443 // never execute. 444 if (static_cast<int>(fromElementsOp.getElements().size()) <= flatIndex || 445 flatIndex < 0) 446 return {}; 447 return fromElementsOp.getElements()[flatIndex]; 448 } 449 450 // If this is an elements attribute, query the value at the given indices. 451 if (Attribute tensor = operands.front()) { 452 auto elementsAttr = tensor.dyn_cast<ElementsAttr>(); 453 if (elementsAttr && elementsAttr.isValidIndex(indices)) 454 return elementsAttr.getValues<Attribute>()[indices]; 455 } 456 457 return {}; 458 } 459 460 //===----------------------------------------------------------------------===// 461 // FromElementsOp 462 //===----------------------------------------------------------------------===// 463 464 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 465 Type resultType, ValueRange elements) { 466 result.addOperands(elements); 467 result.addTypes(resultType); 468 } 469 470 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 471 ValueRange elements) { 472 assert(!elements.empty() && "expected at least one element"); 473 Type resultType = RankedTensorType::get( 474 {static_cast<int64_t>(elements.size())}, elements.front().getType()); 475 build(builder, result, resultType, elements); 476 } 477 478 OpFoldResult FromElementsOp::fold(ArrayRef<Attribute> operands) { 479 if (!llvm::is_contained(operands, nullptr)) 480 return DenseElementsAttr::get(getType(), operands); 481 return {}; 482 } 483 484 namespace { 485 486 // Pushes the index_casts that occur before extractions to after the extract. 487 // This minimizes type conversion in some cases and enables the extract 488 // canonicalizer. This changes: 489 // 490 // %cast = arith.index_cast %tensor : tensor<1xi32> to tensor<1xindex> 491 // %extract = tensor.extract %cast[%index] : tensor<1xindex> 492 // 493 // to the following: 494 // 495 // %extract = tensor.extract %tensor[%index] : tensor<1xindex> 496 // %cast = arith.index_cast %extract : i32 to index 497 // 498 // to just %element. 499 // 500 // Consider expanding this to a template and handle all tensor cast operations. 501 struct ExtractElementFromIndexCast 502 : public OpRewritePattern<tensor::ExtractOp> { 503 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 504 505 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 506 PatternRewriter &rewriter) const final { 507 Location loc = extract.getLoc(); 508 auto indexCast = extract.getTensor().getDefiningOp<arith::IndexCastOp>(); 509 if (!indexCast) 510 return failure(); 511 512 Type elementTy = getElementTypeOrSelf(indexCast.getIn()); 513 514 auto newExtract = rewriter.create<tensor::ExtractOp>( 515 loc, elementTy, indexCast.getIn(), extract.getIndices()); 516 517 rewriter.replaceOpWithNewOp<arith::IndexCastOp>(extract, extract.getType(), 518 newExtract); 519 520 return success(); 521 } 522 }; 523 524 } // namespace 525 526 void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results, 527 MLIRContext *context) { 528 results.add<ExtractElementFromIndexCast>(context); 529 } 530 531 //===----------------------------------------------------------------------===// 532 // InsertOp 533 //===----------------------------------------------------------------------===// 534 535 LogicalResult InsertOp::verify() { 536 // Verify the # indices match if we have a ranked type. 537 if (auto destType = getDest().getType().dyn_cast<RankedTensorType>()) 538 if (destType.getRank() != static_cast<int64_t>(getIndices().size())) 539 return emitOpError("incorrect number of indices"); 540 return success(); 541 } 542 543 OpFoldResult InsertOp::fold(ArrayRef<Attribute> operands) { 544 Attribute scalar = operands[0]; 545 Attribute dest = operands[1]; 546 if (scalar && dest) 547 if (auto splatDest = dest.dyn_cast<SplatElementsAttr>()) 548 if (scalar == splatDest.getSplatValue<Attribute>()) 549 return dest; 550 return {}; 551 } 552 553 //===----------------------------------------------------------------------===// 554 // GenerateOp 555 //===----------------------------------------------------------------------===// 556 557 LogicalResult GenerateOp::reifyResultShapes( 558 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 559 reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank())); 560 int idx = 0; 561 for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) { 562 if (getType().isDynamicDim(dim)) { 563 reifiedReturnShapes[0][dim] = getOperand(idx++); 564 } else { 565 reifiedReturnShapes[0][dim] = builder.create<arith::ConstantIndexOp>( 566 getLoc(), getType().getDimSize(dim)); 567 } 568 } 569 return success(); 570 } 571 572 LogicalResult GenerateOp::verify() { 573 // Ensure that the tensor type has as many dynamic dimensions as are specified 574 // by the operands. 575 RankedTensorType resultTy = getType().cast<RankedTensorType>(); 576 if (getNumOperands() != resultTy.getNumDynamicDims()) 577 return emitError("must have as many index operands as dynamic extents " 578 "in the result type"); 579 580 return success(); 581 } 582 583 LogicalResult GenerateOp::verifyRegions() { 584 RankedTensorType resultTy = getType().cast<RankedTensorType>(); 585 // Ensure that region arguments span the index space. 586 if (!llvm::all_of(getBody().getArgumentTypes(), 587 [](Type ty) { return ty.isIndex(); })) 588 return emitError("all body arguments must be index"); 589 if (getBody().getNumArguments() != resultTy.getRank()) 590 return emitError("must have one body argument per input dimension"); 591 592 // Ensure that the region yields an element of the right type. 593 auto yieldOp = cast<YieldOp>(getBody().getBlocks().front().getTerminator()); 594 595 if (yieldOp.getValue().getType() != resultTy.getElementType()) 596 return emitOpError( 597 "body must be terminated with a `yield` operation of the tensor " 598 "element type"); 599 600 return success(); 601 } 602 603 void GenerateOp::build( 604 OpBuilder &b, OperationState &result, Type resultTy, 605 ValueRange dynamicExtents, 606 function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) { 607 build(b, result, resultTy, dynamicExtents); 608 609 // Build and populate body. 610 OpBuilder::InsertionGuard guard(b); 611 Region *bodyRegion = result.regions.front().get(); 612 auto rank = resultTy.cast<RankedTensorType>().getRank(); 613 SmallVector<Type, 2> argumentTypes(rank, b.getIndexType()); 614 SmallVector<Location, 2> argumentLocs(rank, result.location); 615 Block *bodyBlock = 616 b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes, argumentLocs); 617 bodyBuilder(b, result.location, bodyBlock->getArguments()); 618 } 619 620 namespace { 621 622 /// Canonicalizes tensor.generate operations with a constant 623 /// operand into the equivalent operation with the operand expressed in the 624 /// result type, instead. We also insert a type cast to make sure that the 625 /// resulting IR is still well-typed. 626 struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> { 627 using OpRewritePattern<GenerateOp>::OpRewritePattern; 628 629 LogicalResult matchAndRewrite(GenerateOp tensorFromElements, 630 PatternRewriter &rewriter) const final { 631 auto resultType = 632 tensorFromElements.getResult().getType().cast<RankedTensorType>(); 633 634 if (resultType.hasStaticShape()) 635 return failure(); 636 637 SmallVector<Value, 4> newOperands; 638 SmallVector<int64_t, 4> newShape; 639 auto operandsIt = tensorFromElements.getDynamicExtents().begin(); 640 641 for (int64_t dim : resultType.getShape()) { 642 if (!ShapedType::isDynamic(dim)) { 643 newShape.push_back(dim); 644 continue; 645 } 646 APInt index; 647 if (!matchPattern(*operandsIt, m_ConstantInt(&index))) { 648 newShape.push_back(ShapedType::kDynamicSize); 649 newOperands.push_back(*operandsIt++); 650 continue; 651 } 652 newShape.push_back(index.getSExtValue()); 653 operandsIt++; 654 } 655 656 if (newOperands.size() == tensorFromElements.getDynamicExtents().size()) 657 return failure(); 658 659 auto loc = tensorFromElements.getLoc(); 660 auto newOp = rewriter.create<GenerateOp>( 661 loc, RankedTensorType::get(newShape, resultType.getElementType()), 662 newOperands); 663 rewriter.inlineRegionBefore(tensorFromElements.getBody(), newOp.getBody(), 664 newOp.getBody().begin()); 665 rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType, 666 newOp); 667 return success(); 668 } 669 }; 670 671 /// Canonicalizes the pattern of the form 672 /// 673 /// %tensor = tensor.generate %x { 674 /// ^bb0(%arg0: index): 675 /// <computation> 676 /// yield %1 : index 677 /// } : tensor<?xindex> 678 /// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32> 679 /// 680 /// to just <computation> with %arg0 replaced by %c0. We only do this if the 681 /// tensor.generate operation has no side-effects. 682 struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> { 683 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 684 685 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 686 PatternRewriter &rewriter) const final { 687 auto tensorFromElements = extract.getTensor().getDefiningOp<GenerateOp>(); 688 if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements)) 689 return failure(); 690 691 BlockAndValueMapping mapping; 692 Block *body = &tensorFromElements.getBody().front(); 693 mapping.map(body->getArguments(), extract.getIndices()); 694 for (auto &op : body->without_terminator()) 695 rewriter.clone(op, mapping); 696 697 auto yield = cast<YieldOp>(body->getTerminator()); 698 699 rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.getValue())); 700 return success(); 701 } 702 }; 703 704 /// Canonicalizes the pattern of the form 705 /// 706 /// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32> 707 /// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32> 708 /// 709 /// to 710 /// 711 /// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32> 712 struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> { 713 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 714 715 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 716 PatternRewriter &rewriter) const final { 717 auto tensorCast = extract.getTensor().getDefiningOp<tensor::CastOp>(); 718 if (!tensorCast) 719 return failure(); 720 721 rewriter.replaceOpWithNewOp<tensor::ExtractOp>( 722 extract, tensorCast.getSource(), extract.getIndices()); 723 return success(); 724 } 725 }; 726 727 } // namespace 728 729 void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results, 730 MLIRContext *context) { 731 // TODO: Move extract patterns to tensor::ExtractOp. 732 results.add<ExtractFromTensorGenerate, ExtractFromTensorCast, 733 StaticTensorGenerate>(context); 734 } 735 736 //===----------------------------------------------------------------------===// 737 // RankOp 738 //===----------------------------------------------------------------------===// 739 740 OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) { 741 // Constant fold rank when the rank of the operand is known. 742 auto type = getOperand().getType(); 743 auto shapedType = type.dyn_cast<ShapedType>(); 744 if (shapedType && shapedType.hasRank()) 745 return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank()); 746 return IntegerAttr(); 747 } 748 749 //===----------------------------------------------------------------------===// 750 // ReshapeOp 751 //===----------------------------------------------------------------------===// 752 753 static int64_t getNumElements(ShapedType type) { 754 int64_t numElements = 1; 755 for (auto dim : type.getShape()) 756 numElements *= dim; 757 return numElements; 758 } 759 760 LogicalResult ReshapeOp::verify() { 761 TensorType operandType = getSource().getType().cast<TensorType>(); 762 TensorType resultType = getResult().getType().cast<TensorType>(); 763 764 if (operandType.getElementType() != resultType.getElementType()) 765 return emitOpError("element types of source and destination tensor " 766 "types should be the same"); 767 768 int64_t shapeSize = 769 getShape().getType().cast<RankedTensorType>().getDimSize(0); 770 auto resultRankedType = resultType.dyn_cast<RankedTensorType>(); 771 auto operandRankedType = operandType.dyn_cast<RankedTensorType>(); 772 773 if (resultRankedType) { 774 if (operandRankedType && resultRankedType.hasStaticShape() && 775 operandRankedType.hasStaticShape()) { 776 if (getNumElements(operandRankedType) != getNumElements(resultRankedType)) 777 return emitOpError("source and destination tensor should have the " 778 "same number of elements"); 779 } 780 if (ShapedType::isDynamic(shapeSize)) 781 return emitOpError("cannot use shape operand with dynamic length to " 782 "reshape to statically-ranked tensor type"); 783 if (shapeSize != resultRankedType.getRank()) 784 return emitOpError( 785 "length of shape operand differs from the result's tensor rank"); 786 } 787 return success(); 788 } 789 790 //===----------------------------------------------------------------------===// 791 // Reassociative reshape ops 792 //===----------------------------------------------------------------------===// 793 794 SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() { 795 return getSymbolLessAffineMaps(getReassociationExprs()); 796 } 797 SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() { 798 return convertReassociationIndicesToExprs(getContext(), 799 getReassociationIndices()); 800 } 801 802 SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() { 803 return getSymbolLessAffineMaps(getReassociationExprs()); 804 } 805 SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() { 806 return convertReassociationIndicesToExprs(getContext(), 807 getReassociationIndices()); 808 } 809 810 /// Compute the RankedTensorType obtained by applying `reassociation` to `type`. 811 static RankedTensorType 812 computeTensorReshapeCollapsedType(RankedTensorType type, 813 ArrayRef<AffineMap> reassociation) { 814 auto shape = type.getShape(); 815 SmallVector<int64_t, 4> newShape; 816 newShape.reserve(reassociation.size()); 817 818 // Use the fact that reassociation is valid to simplify the logic: only use 819 // each map's rank. 820 assert(isReassociationValid(reassociation) && "invalid reassociation"); 821 unsigned currentDim = 0; 822 for (AffineMap m : reassociation) { 823 unsigned dim = m.getNumResults(); 824 auto band = shape.slice(currentDim, dim); 825 int64_t size = 1; 826 if (llvm::is_contained(band, ShapedType::kDynamicSize)) 827 size = ShapedType::kDynamicSize; 828 else 829 for (unsigned d = 0; d < dim; ++d) 830 size *= shape[currentDim + d]; 831 newShape.push_back(size); 832 currentDim += dim; 833 } 834 835 return RankedTensorType::get(newShape, type.getElementType()); 836 } 837 838 void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src, 839 ArrayRef<ReassociationIndices> reassociation, 840 ArrayRef<NamedAttribute> attrs) { 841 auto resultType = computeTensorReshapeCollapsedType( 842 src.getType().cast<RankedTensorType>(), 843 getSymbolLessAffineMaps( 844 convertReassociationIndicesToExprs(b.getContext(), reassociation))); 845 build(b, result, resultType, src, attrs); 846 result.addAttribute(getReassociationAttrStrName(), 847 getReassociationIndicesAttribute(b, reassociation)); 848 } 849 850 // Checks if types are the same, but ignoring encoding on ranked tensors. 851 static bool isSameTypesWithoutEncoding(Type tp1, Type tp2) { 852 if (auto rtp1 = tp1.dyn_cast<RankedTensorType>()) { 853 if (auto rtp2 = tp2.dyn_cast<RankedTensorType>()) 854 return rtp1.getShape() == rtp2.getShape() && 855 rtp1.getElementType() == rtp2.getElementType(); 856 return false; 857 } 858 // Default implementation. 859 return tp1 == tp2; 860 } 861 862 template <typename TensorReshapeOp, bool isExpansion = std::is_same< 863 TensorReshapeOp, ExpandShapeOp>::value> 864 static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op, 865 RankedTensorType expandedType, 866 RankedTensorType collapsedType) { 867 if (failed( 868 verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion))) 869 return failure(); 870 871 auto maps = op.getReassociationMaps(); 872 RankedTensorType expectedType = 873 computeTensorReshapeCollapsedType(expandedType, maps); 874 if (!isSameTypesWithoutEncoding(collapsedType, expectedType)) 875 return op.emitOpError("expected collapsed type to be ") 876 << expectedType << ", but got " << collapsedType; 877 return success(); 878 } 879 880 LogicalResult ExpandShapeOp::verify() { 881 return verifyTensorReshapeOp(*this, getResultType(), getSrcType()); 882 } 883 884 LogicalResult CollapseShapeOp::verify() { 885 return verifyTensorReshapeOp(*this, getSrcType(), getResultType()); 886 } 887 888 namespace { 889 /// Reshape of a splat constant can be replaced with a constant of the result 890 /// type. 891 template <typename TensorReshapeOp> 892 struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> { 893 using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; 894 LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, 895 PatternRewriter &rewriter) const override { 896 DenseElementsAttr attr; 897 if (!matchPattern(reshapeOp.getSrc(), m_Constant(&attr))) 898 return failure(); 899 if (!attr || !attr.isSplat()) 900 return failure(); 901 DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer( 902 reshapeOp.getResultType(), attr.getRawData()); 903 rewriter.replaceOpWithNewOp<arith::ConstantOp>(reshapeOp, newAttr); 904 return success(); 905 } 906 }; 907 908 /// Reshape of a FromElements can be replaced with a FromElements of the result 909 /// type 910 template <typename TensorReshapeOp> 911 struct FoldReshapeWithFromElements : OpRewritePattern<TensorReshapeOp> { 912 using OpRewritePattern<TensorReshapeOp>::OpRewritePattern; 913 LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp, 914 PatternRewriter &rewriter) const override { 915 auto fromElements = 916 reshapeOp.getSrc().template getDefiningOp<FromElementsOp>(); 917 if (!fromElements) 918 return failure(); 919 920 auto shapedTy = reshapeOp.getType().template cast<ShapedType>(); 921 922 if (!shapedTy.hasStaticShape()) 923 return failure(); 924 925 rewriter.replaceOpWithNewOp<FromElementsOp>(reshapeOp, reshapeOp.getType(), 926 fromElements.getElements()); 927 return success(); 928 } 929 }; 930 931 } // namespace 932 933 void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 934 MLIRContext *context) { 935 results.add<ComposeReassociativeReshapeOps<ExpandShapeOp>, 936 ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>, 937 FoldReshapeWithConstant<ExpandShapeOp>, 938 FoldReshapeWithFromElements<ExpandShapeOp>>(context); 939 } 940 941 void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 942 MLIRContext *context) { 943 results.add<ComposeReassociativeReshapeOps<CollapseShapeOp>, 944 ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp>, 945 FoldReshapeWithConstant<CollapseShapeOp>, 946 FoldReshapeWithFromElements<CollapseShapeOp>>(context); 947 } 948 949 OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) { 950 return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands); 951 } 952 OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) { 953 return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands); 954 } 955 956 //===----------------------------------------------------------------------===// 957 // ExtractSliceOp 958 //===----------------------------------------------------------------------===// 959 960 /// An extract_slice op result type can be fully inferred from the source type 961 /// and the static representation of offsets, sizes and strides. Special 962 /// sentinels encode the dynamic case. 963 RankedTensorType ExtractSliceOp::inferResultType( 964 RankedTensorType sourceRankedTensorType, ArrayRef<int64_t> staticOffsets, 965 ArrayRef<int64_t> staticSizes, ArrayRef<int64_t> staticStrides) { 966 // An extract_slice op may specify only a leading subset of offset/sizes/ 967 // strides in which case we complete with offset=0, sizes from memref type and 968 // strides=1. 969 unsigned rank = sourceRankedTensorType.getRank(); 970 (void)rank; 971 assert(staticSizes.size() == rank && 972 "unexpected staticSizes not equal to rank of source"); 973 return RankedTensorType::get(staticSizes, 974 sourceRankedTensorType.getElementType()); 975 } 976 977 RankedTensorType ExtractSliceOp::inferResultType( 978 RankedTensorType sourceRankedTensorType, ArrayRef<OpFoldResult> offsets, 979 ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) { 980 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 981 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 982 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 983 ShapedType::kDynamicStrideOrOffset); 984 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 985 ShapedType::kDynamicSize); 986 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 987 ShapedType::kDynamicStrideOrOffset); 988 return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, 989 staticSizes, staticStrides); 990 } 991 992 /// An extract_slice op result type can be fully inferred from the source type 993 /// and the static representation of offsets, sizes and strides. Special 994 /// sentinels encode the dynamic case. 995 RankedTensorType ExtractSliceOp::inferRankReducedResultType( 996 unsigned resultRank, RankedTensorType sourceRankedTensorType, 997 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, 998 ArrayRef<int64_t> strides) { 999 auto inferredType = 1000 inferResultType(sourceRankedTensorType, offsets, sizes, strides) 1001 .cast<RankedTensorType>(); 1002 int rankDiff = inferredType.getRank() - resultRank; 1003 if (rankDiff > 0) { 1004 auto shape = inferredType.getShape(); 1005 llvm::SmallBitVector dimsToProject = 1006 getPositionsOfShapeOne(rankDiff, shape); 1007 SmallVector<int64_t> projectedShape; 1008 for (unsigned pos = 0, e = shape.size(); pos < e; ++pos) 1009 if (!dimsToProject.test(pos)) 1010 projectedShape.push_back(shape[pos]); 1011 inferredType = 1012 RankedTensorType::get(projectedShape, inferredType.getElementType()); 1013 } 1014 return inferredType; 1015 } 1016 1017 RankedTensorType ExtractSliceOp::inferRankReducedResultType( 1018 unsigned resultRank, RankedTensorType sourceRankedTensorType, 1019 ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes, 1020 ArrayRef<OpFoldResult> strides) { 1021 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1022 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1023 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1024 ShapedType::kDynamicStrideOrOffset); 1025 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1026 ShapedType::kDynamicSize); 1027 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1028 ShapedType::kDynamicStrideOrOffset); 1029 return ExtractSliceOp::inferRankReducedResultType( 1030 resultRank, sourceRankedTensorType, staticOffsets, staticSizes, 1031 staticStrides); 1032 } 1033 1034 /// Build an ExtractSliceOp with mixed static and dynamic entries and custom 1035 /// result type. If the type passed is nullptr, it is inferred. 1036 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, 1037 RankedTensorType resultType, Value source, 1038 ArrayRef<OpFoldResult> offsets, 1039 ArrayRef<OpFoldResult> sizes, 1040 ArrayRef<OpFoldResult> strides, 1041 ArrayRef<NamedAttribute> attrs) { 1042 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1043 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1044 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1045 ShapedType::kDynamicStrideOrOffset); 1046 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1047 ShapedType::kDynamicSize); 1048 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1049 ShapedType::kDynamicStrideOrOffset); 1050 auto sourceRankedTensorType = source.getType().cast<RankedTensorType>(); 1051 // Structuring implementation this way avoids duplication between builders. 1052 if (!resultType) { 1053 resultType = 1054 ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, 1055 staticSizes, staticStrides) 1056 .cast<RankedTensorType>(); 1057 } 1058 build(b, result, resultType, source, dynamicOffsets, dynamicSizes, 1059 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1060 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1061 result.addAttributes(attrs); 1062 } 1063 1064 /// Build an ExtractSliceOp with mixed static and dynamic entries and inferred 1065 /// result type. 1066 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1067 ArrayRef<OpFoldResult> offsets, 1068 ArrayRef<OpFoldResult> sizes, 1069 ArrayRef<OpFoldResult> strides, 1070 ArrayRef<NamedAttribute> attrs) { 1071 build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); 1072 } 1073 1074 /// Build an ExtractSliceOp with dynamic entries and custom result type. If the 1075 /// type passed is nullptr, it is inferred. 1076 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, 1077 RankedTensorType resultType, Value source, 1078 ValueRange offsets, ValueRange sizes, 1079 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 1080 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1081 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 1082 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1083 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1084 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1085 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1086 build(b, result, resultType, source, offsetValues, sizeValues, strideValues); 1087 } 1088 1089 /// Build an ExtractSliceOp with dynamic entries and inferred result type. 1090 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1091 ValueRange offsets, ValueRange sizes, 1092 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 1093 build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); 1094 } 1095 1096 template <typename OpTy> 1097 static LogicalResult produceSliceErrorMsg(SliceVerificationResult result, 1098 OpTy op, Type expectedType) { 1099 auto memrefType = expectedType.cast<ShapedType>(); 1100 switch (result) { 1101 case SliceVerificationResult::Success: 1102 return success(); 1103 case SliceVerificationResult::RankTooLarge: 1104 return op.emitError("expected rank to be smaller or equal to ") 1105 << "the other rank. "; 1106 case SliceVerificationResult::SizeMismatch: 1107 return op.emitError("expected type to be ") 1108 << expectedType << " or a rank-reduced version. (size mismatch) "; 1109 case SliceVerificationResult::ElemTypeMismatch: 1110 return op.emitError("expected element type to be ") 1111 << memrefType.getElementType(); 1112 default: 1113 llvm_unreachable("unexpected extract_slice op verification result"); 1114 } 1115 } 1116 1117 /// Verifier for ExtractSliceOp. 1118 LogicalResult ExtractSliceOp::verify() { 1119 // Verify result type against inferred type. 1120 auto expectedType = ExtractSliceOp::inferResultType( 1121 getSourceType(), getMixedOffsets(), getMixedSizes(), getMixedStrides()); 1122 auto result = isRankReducedType(expectedType.cast<ShapedType>(), getType()); 1123 return produceSliceErrorMsg(result, *this, expectedType); 1124 } 1125 1126 /// Infer the canonical type of the result of an extract_slice op. Returns a 1127 /// type with rank `resultRank` that is either the rank of the rank-reduced 1128 /// type, or the non-rank-reduced type. 1129 static RankedTensorType 1130 getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType, 1131 ArrayRef<OpFoldResult> mixedOffsets, 1132 ArrayRef<OpFoldResult> mixedSizes, 1133 ArrayRef<OpFoldResult> mixedStrides) { 1134 auto resultType = 1135 ExtractSliceOp::inferRankReducedResultType( 1136 resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides) 1137 .cast<RankedTensorType>(); 1138 if (resultType.getRank() != resultRank) { 1139 resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets, 1140 mixedSizes, mixedStrides) 1141 .cast<RankedTensorType>(); 1142 } 1143 return resultType; 1144 } 1145 1146 llvm::SmallBitVector ExtractSliceOp::getDroppedDims() { 1147 ArrayRef<int64_t> resultShape = getType().getShape(); 1148 SmallVector<OpFoldResult> mixedSizes = getMixedSizes(); 1149 llvm::SmallBitVector droppedDims(mixedSizes.size()); 1150 unsigned shapePos = 0; 1151 for (const auto &size : enumerate(mixedSizes)) { 1152 Optional<int64_t> sizeVal = getConstantIntValue(size.value()); 1153 // If the size is not 1, or if the current matched dimension of the result 1154 // is the same static shape as the size value (which is 1), then the 1155 // dimension is preserved. 1156 if (!sizeVal || *sizeVal != 1 || 1157 (shapePos < resultShape.size() && resultShape[shapePos] == 1)) { 1158 shapePos++; 1159 continue; 1160 } 1161 droppedDims.set(size.index()); 1162 } 1163 return droppedDims; 1164 } 1165 1166 LogicalResult ExtractSliceOp::reifyResultShapes( 1167 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 1168 reifiedReturnShapes.resize(1); 1169 reifiedReturnShapes[0].reserve(getType().getRank()); 1170 SmallVector<OpFoldResult> mixedSizes = getMixedSizes(); 1171 llvm::SmallBitVector droppedDims = getDroppedDims(); 1172 Location loc = getLoc(); 1173 for (const auto &size : enumerate(mixedSizes)) { 1174 if (droppedDims.test(size.index())) 1175 continue; 1176 if (auto attr = size.value().dyn_cast<Attribute>()) { 1177 reifiedReturnShapes[0].push_back(builder.create<arith::ConstantIndexOp>( 1178 loc, attr.cast<IntegerAttr>().getInt())); 1179 continue; 1180 } 1181 reifiedReturnShapes[0].push_back(size.value().get<Value>()); 1182 } 1183 return success(); 1184 } 1185 1186 namespace { 1187 /// Pattern to rewrite an extract_slice op with tensor::Cast arguments. 1188 /// This essentially pushes memref_cast past its consuming slice when 1189 /// `canFoldIntoConsumerOp` is true. 1190 /// 1191 /// Example: 1192 /// ``` 1193 /// %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32> 1194 /// %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to 1195 /// tensor<3x4xf32> 1196 /// ``` 1197 /// is rewritten into: 1198 /// ``` 1199 /// %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to 1200 /// tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32> 1201 /// ``` 1202 class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> { 1203 public: 1204 using OpRewritePattern<ExtractSliceOp>::OpRewritePattern; 1205 1206 LogicalResult matchAndRewrite(ExtractSliceOp sliceOp, 1207 PatternRewriter &rewriter) const override { 1208 // Any constant operand, just return to let SubViewOpConstantFolder kick in. 1209 if (llvm::any_of(sliceOp.getOperands(), [](Value operand) { 1210 return matchPattern(operand, matchConstantIndex()); 1211 })) 1212 return failure(); 1213 1214 auto castOp = sliceOp.getSource().getDefiningOp<tensor::CastOp>(); 1215 if (!castOp) 1216 return failure(); 1217 1218 if (!canFoldIntoConsumerOp(castOp)) 1219 return failure(); 1220 1221 /// Deduce the type of the result to use for the canonicalized operation. 1222 RankedTensorType resultType = getCanonicalSliceResultType( 1223 sliceOp.getType().getRank(), sliceOp.getSourceType(), 1224 sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(), 1225 sliceOp.getMixedStrides()); 1226 Value newSlice = rewriter.create<ExtractSliceOp>( 1227 sliceOp.getLoc(), resultType, castOp.getSource(), sliceOp.getOffsets(), 1228 sliceOp.getSizes(), sliceOp.getStrides(), sliceOp.getStaticOffsets(), 1229 sliceOp.getStaticSizes(), sliceOp.getStaticStrides()); 1230 rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(), 1231 newSlice); 1232 return success(); 1233 } 1234 }; 1235 1236 /// Slice elements from `values` into `outValues`. `counts` represents the 1237 /// numbers of elements to stride in the original values for each dimension. 1238 /// The output values can be used to construct a DenseElementsAttr. 1239 template <typename IterTy, typename ElemTy> 1240 static void sliceElements(IterTy values, ArrayRef<int64_t> counts, 1241 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, 1242 ArrayRef<int64_t> strides, 1243 llvm::SmallVectorImpl<ElemTy> *outValues) { 1244 assert(offsets.size() == sizes.size()); 1245 assert(offsets.size() == strides.size()); 1246 if (offsets.empty()) 1247 return; 1248 1249 int64_t offset = offsets.front(); 1250 int64_t size = sizes.front(); 1251 int64_t stride = strides.front(); 1252 if (offsets.size() == 1) { 1253 for (int64_t i = 0; i < size; ++i, offset += stride) 1254 outValues->push_back(*(values + offset)); 1255 1256 return; 1257 } 1258 1259 for (int64_t i = 0; i < size; ++i, offset += stride) { 1260 auto begin = values + offset * counts.front(); 1261 sliceElements<IterTy, ElemTy>(begin, counts.drop_front(), 1262 offsets.drop_front(), sizes.drop_front(), 1263 strides.drop_front(), outValues); 1264 } 1265 } 1266 1267 /// Fold arith.constant and tensor.extract_slice into arith.constant. The folded 1268 /// operation might introduce more constant data; Users can control their 1269 /// heuristics by the control function. 1270 class ConstantOpExtractSliceFolder final 1271 : public OpRewritePattern<ExtractSliceOp> { 1272 public: 1273 using OpRewritePattern<ExtractSliceOp>::OpRewritePattern; 1274 1275 ConstantOpExtractSliceFolder(MLIRContext *context, 1276 ControlConstantExtractSliceFusionFn controlFn) 1277 : OpRewritePattern<ExtractSliceOp>(context), 1278 controlFn(std::move(controlFn)) {} 1279 1280 LogicalResult matchAndRewrite(ExtractSliceOp op, 1281 PatternRewriter &rewriter) const override { 1282 DenseElementsAttr attr; 1283 if (!matchPattern(op.getSource(), m_Constant(&attr))) 1284 return failure(); 1285 1286 // A constant splat is handled by fold(). 1287 if (attr.isSplat()) 1288 return failure(); 1289 1290 // Dynamic result shape is not supported. 1291 auto sourceType = op.getSource().getType().cast<ShapedType>(); 1292 auto resultType = op.getResult().getType().cast<ShapedType>(); 1293 if (!sourceType.hasStaticShape() || !resultType.hasStaticShape()) 1294 return failure(); 1295 1296 // Customized control over the folding. 1297 if (!controlFn(op)) 1298 return failure(); 1299 1300 int64_t count = sourceType.getNumElements(); 1301 if (count == 0) 1302 return failure(); 1303 1304 // Check if there are any dynamic parts, which are not supported. 1305 auto offsets = extractFromI64ArrayAttr(op.getStaticOffsets()); 1306 if (llvm::is_contained(offsets, ShapedType::kDynamicStrideOrOffset)) 1307 return failure(); 1308 auto sizes = extractFromI64ArrayAttr(op.getStaticSizes()); 1309 if (llvm::is_contained(sizes, ShapedType::kDynamicSize)) 1310 return failure(); 1311 auto strides = extractFromI64ArrayAttr(op.getStaticStrides()); 1312 if (llvm::is_contained(strides, ShapedType::kDynamicStrideOrOffset)) 1313 return failure(); 1314 1315 // Compute the stride for each dimension. 1316 SmallVector<int64_t> counts; 1317 ArrayRef<int64_t> shape = sourceType.getShape(); 1318 counts.reserve(shape.size()); 1319 for (int64_t v : shape) { 1320 count = count / v; 1321 counts.push_back(count); 1322 } 1323 1324 // New attribute constructed by the sliced values. 1325 DenseElementsAttr newAttr; 1326 1327 if (auto elems = attr.dyn_cast<DenseIntElementsAttr>()) { 1328 SmallVector<APInt> outValues; 1329 outValues.reserve(sourceType.getNumElements()); 1330 sliceElements<DenseElementsAttr::IntElementIterator, APInt>( 1331 elems.begin(), counts, offsets, sizes, strides, &outValues); 1332 newAttr = DenseElementsAttr::get(resultType, outValues); 1333 } else if (auto elems = attr.dyn_cast<DenseFPElementsAttr>()) { 1334 SmallVector<APFloat> outValues; 1335 outValues.reserve(sourceType.getNumElements()); 1336 sliceElements<DenseElementsAttr::FloatElementIterator, APFloat>( 1337 elems.begin(), counts, offsets, sizes, strides, &outValues); 1338 newAttr = DenseElementsAttr::get(resultType, outValues); 1339 } 1340 1341 if (newAttr) { 1342 rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, resultType, newAttr); 1343 return success(); 1344 } 1345 1346 return failure(); 1347 } 1348 1349 private: 1350 /// This additionally controls whether the fold happens or not. Users can 1351 /// impose their heuristics in the function. 1352 ControlConstantExtractSliceFusionFn controlFn; 1353 }; 1354 1355 } // namespace 1356 1357 void mlir::tensor::populateFoldConstantExtractSlicePatterns( 1358 RewritePatternSet &patterns, 1359 const ControlConstantExtractSliceFusionFn &controlFn) { 1360 patterns.add<ConstantOpExtractSliceFolder>(patterns.getContext(), controlFn); 1361 } 1362 1363 /// Return the canonical type of the result of an extract_slice op. 1364 struct SliceReturnTypeCanonicalizer { 1365 RankedTensorType operator()(ExtractSliceOp op, 1366 ArrayRef<OpFoldResult> mixedOffsets, 1367 ArrayRef<OpFoldResult> mixedSizes, 1368 ArrayRef<OpFoldResult> mixedStrides) { 1369 return getCanonicalSliceResultType(op.getType().getRank(), 1370 op.getSourceType(), mixedOffsets, 1371 mixedSizes, mixedStrides); 1372 } 1373 }; 1374 1375 /// A canonicalizer wrapper to replace ExtractSliceOps. 1376 struct SliceCanonicalizer { 1377 void operator()(PatternRewriter &rewriter, ExtractSliceOp op, 1378 ExtractSliceOp newOp) { 1379 Value replacement = newOp.getResult(); 1380 if (replacement.getType() != op.getType()) 1381 replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(), 1382 replacement); 1383 rewriter.replaceOp(op, replacement); 1384 } 1385 }; 1386 1387 void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, 1388 MLIRContext *context) { 1389 results.add< 1390 OpWithOffsetSizesAndStridesConstantArgumentFolder< 1391 ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>, 1392 ExtractSliceOpCastFolder>(context); 1393 } 1394 1395 // 1396 static LogicalResult 1397 foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op, 1398 ShapedType shapedType) { 1399 OpBuilder b(op.getContext()); 1400 for (OpFoldResult ofr : op.getMixedOffsets()) 1401 if (getConstantIntValue(ofr) != static_cast<int64_t>(0)) 1402 return failure(); 1403 // Rank-reducing noops only need to inspect the leading dimensions: llvm::zip 1404 // is appropriate. 1405 auto shape = shapedType.getShape(); 1406 for (auto it : llvm::zip(op.getMixedSizes(), shape)) 1407 if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it)) 1408 return failure(); 1409 for (OpFoldResult ofr : op.getMixedStrides()) 1410 if (getConstantIntValue(ofr) != static_cast<int64_t>(1)) 1411 return failure(); 1412 return success(); 1413 } 1414 1415 /// If we have an ExtractSliceOp consuming an InsertSliceOp with the same slice, 1416 /// we can return the InsertSliceOp's source directly. 1417 // TODO: This only checks the immediate producer; extend to go up the 1418 // insert/extract chain if the slices are disjoint. 1419 static Value foldExtractAfterInsertSlice(ExtractSliceOp extractOp) { 1420 auto insertOp = extractOp.getSource().getDefiningOp<InsertSliceOp>(); 1421 1422 auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; 1423 if (insertOp && insertOp.getSource().getType() == extractOp.getType() && 1424 insertOp.isSameAs(extractOp, isSame)) 1425 return insertOp.getSource(); 1426 1427 return {}; 1428 } 1429 1430 OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute> operands) { 1431 if (auto splat = operands[0].dyn_cast_or_null<SplatElementsAttr>()) { 1432 auto resultType = getResult().getType().cast<ShapedType>(); 1433 if (resultType.hasStaticShape()) 1434 return splat.resizeSplat(resultType); 1435 } 1436 if (getSourceType() == getType() && 1437 succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) 1438 return this->getSource(); 1439 if (Value slice = foldExtractAfterInsertSlice(*this)) 1440 return slice; 1441 1442 return OpFoldResult(); 1443 } 1444 1445 Value mlir::tensor::createCanonicalRankReducingExtractSliceOp( 1446 OpBuilder &b, Location loc, Value tensor, RankedTensorType targetType) { 1447 auto rankedTensorType = tensor.getType().cast<RankedTensorType>(); 1448 unsigned rank = rankedTensorType.getRank(); 1449 auto shape = rankedTensorType.getShape(); 1450 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 1451 SmallVector<OpFoldResult> sizes; 1452 for (unsigned i = 0, e = rank; i < e; ++i) { 1453 OpFoldResult dim; 1454 if (rankedTensorType.isDynamicDim(i)) 1455 dim = b.createOrFold<tensor::DimOp>( 1456 loc, tensor, b.create<arith::ConstantIndexOp>(loc, i)); 1457 else 1458 dim = b.getIndexAttr(shape[i]); 1459 sizes.push_back(dim); 1460 } 1461 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 1462 return b.createOrFold<tensor::ExtractSliceOp>(loc, targetType, tensor, 1463 offsets, sizes, strides); 1464 } 1465 1466 //===----------------------------------------------------------------------===// 1467 // InsertSliceOp 1468 //===----------------------------------------------------------------------===// 1469 1470 // Build a InsertSliceOp with mixed static and dynamic entries. 1471 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1472 Value dest, ArrayRef<OpFoldResult> offsets, 1473 ArrayRef<OpFoldResult> sizes, 1474 ArrayRef<OpFoldResult> strides, 1475 ArrayRef<NamedAttribute> attrs) { 1476 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1477 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1478 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1479 ShapedType::kDynamicStrideOrOffset); 1480 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1481 ShapedType::kDynamicSize); 1482 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1483 ShapedType::kDynamicStrideOrOffset); 1484 build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes, 1485 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1486 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1487 result.addAttributes(attrs); 1488 } 1489 1490 // Build a InsertSliceOp with dynamic entries. 1491 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1492 Value dest, ValueRange offsets, ValueRange sizes, 1493 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 1494 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1495 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 1496 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1497 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1498 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1499 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1500 build(b, result, source, dest, offsetValues, sizeValues, strideValues); 1501 } 1502 1503 static SliceVerificationResult 1504 verifyInsertSliceOp(ShapedType srcType, ShapedType dstType, 1505 ArrayAttr staticOffsets, ArrayAttr staticSizes, 1506 ArrayAttr staticStrides, 1507 ShapedType *expectedType = nullptr) { 1508 // insert_slice is the inverse of extract_slice, use the same type inference. 1509 auto expected = ExtractSliceOp::inferRankReducedResultType( 1510 srcType.getRank(), dstType.cast<RankedTensorType>(), 1511 extractFromI64ArrayAttr(staticOffsets), 1512 extractFromI64ArrayAttr(staticSizes), 1513 extractFromI64ArrayAttr(staticStrides)) 1514 .cast<ShapedType>(); 1515 if (expectedType) 1516 *expectedType = expected; 1517 return isRankReducedType(expected, srcType); 1518 } 1519 1520 /// Verifier for InsertSliceOp. 1521 LogicalResult InsertSliceOp::verify() { 1522 ShapedType expectedType; 1523 auto result = 1524 verifyInsertSliceOp(getSourceType(), getType(), getStaticOffsets(), 1525 getStaticSizes(), getStaticStrides(), &expectedType); 1526 return produceSliceErrorMsg(result, *this, expectedType); 1527 } 1528 1529 /// If we have two consecutive InsertSliceOp writing to the same slice, we 1530 /// can mutate the second InsertSliceOp's destination to the first one's. 1531 /// 1532 /// Example: 1533 /// 1534 /// ```mlir 1535 /// %0 = tensor.insert_slice %slice0 into %input[0, 0] [64, 64] [1, 1] 1536 /// %1 = tensor.insert_slice %slice1 into %0[0, 0] [64, 64] [1, 1] 1537 /// ``` 1538 /// 1539 /// folds into: 1540 /// 1541 /// ```mlir 1542 /// %1 = tensor.insert_slice %slice1 into %input[0, 0] [64, 64] [1, 1] 1543 /// ``` 1544 static LogicalResult foldInsertAfterInsertSlice(InsertSliceOp insertOp) { 1545 auto prevInsertOp = insertOp.getDest().getDefiningOp<InsertSliceOp>(); 1546 1547 auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; }; 1548 if (!prevInsertOp || 1549 prevInsertOp.getSource().getType() != insertOp.getSource().getType() || 1550 !prevInsertOp.isSameAs(insertOp, isSame)) 1551 return failure(); 1552 1553 insertOp.getDestMutable().assign(prevInsertOp.getDest()); 1554 return success(); 1555 } 1556 1557 OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) { 1558 if (getSourceType().hasStaticShape() && getType().hasStaticShape() && 1559 getSourceType() == getType() && 1560 succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) 1561 return this->getSource(); 1562 if (succeeded(foldInsertAfterInsertSlice(*this))) 1563 return getResult(); 1564 return OpFoldResult(); 1565 } 1566 1567 LogicalResult InsertSliceOp::reifyResultShapes( 1568 OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { 1569 reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank())); 1570 for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) { 1571 reifiedReturnShapes[0][dim] = 1572 builder.createOrFold<tensor::DimOp>(getLoc(), getDest(), dim); 1573 } 1574 return success(); 1575 } 1576 1577 namespace { 1578 /// Pattern to rewrite a insert_slice op with constant arguments. 1579 class InsertSliceOpConstantArgumentFolder final 1580 : public OpRewritePattern<InsertSliceOp> { 1581 public: 1582 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1583 1584 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1585 PatternRewriter &rewriter) const override { 1586 // No constant operand, just return. 1587 if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) { 1588 return matchPattern(operand, matchConstantIndex()); 1589 })) 1590 return failure(); 1591 1592 // At least one of offsets/sizes/strides is a new constant. 1593 // Form the new list of operands and constant attributes from the 1594 // existing. 1595 SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets()); 1596 SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes()); 1597 SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides()); 1598 canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset); 1599 canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic); 1600 canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset); 1601 1602 // Create the new op in canonical form. 1603 auto sourceType = ExtractSliceOp::inferRankReducedResultType( 1604 insertSliceOp.getSourceType().getRank(), insertSliceOp.getType(), 1605 mixedOffsets, mixedSizes, mixedStrides); 1606 Value toInsert = insertSliceOp.getSource(); 1607 if (sourceType != insertSliceOp.getSourceType()) 1608 toInsert = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(), 1609 sourceType, toInsert); 1610 rewriter.replaceOpWithNewOp<InsertSliceOp>( 1611 insertSliceOp, toInsert, insertSliceOp.getDest(), mixedOffsets, 1612 mixedSizes, mixedStrides); 1613 return success(); 1614 } 1615 }; 1616 1617 /// Fold tensor_casts with insert_slice operations. If the source or destination 1618 /// tensor is a tensor_cast that removes static type information, the cast is 1619 /// folded into the insert_slice operation. E.g.: 1620 /// 1621 /// ```mlir 1622 /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> 1623 /// %2 = tensor.insert_slice %1 into ... : tensor<?x?xf32> into ... 1624 /// ``` 1625 /// 1626 /// folds into: 1627 /// 1628 /// ```mlir 1629 /// %2 = tensor.insert_slice %0 into ... : tensor<8x16xf32> into ... 1630 /// ``` 1631 /// 1632 /// Note: When folding a cast on the destination tensor, the result of the 1633 /// insert_slice operation is casted to ensure that the type of the result did 1634 /// not change. 1635 struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertSliceOp> { 1636 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1637 1638 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1639 PatternRewriter &rewriter) const override { 1640 if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) { 1641 return matchPattern(operand, matchConstantIndex()); 1642 })) 1643 return failure(); 1644 1645 auto getSourceOfCastOp = [](Value v) -> Optional<Value> { 1646 auto castOp = v.getDefiningOp<tensor::CastOp>(); 1647 if (!castOp || !canFoldIntoConsumerOp(castOp)) 1648 return llvm::None; 1649 return castOp.getSource(); 1650 }; 1651 Optional<Value> sourceCastSource = 1652 getSourceOfCastOp(insertSliceOp.getSource()); 1653 Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.getDest()); 1654 if (!sourceCastSource && !destCastSource) 1655 return failure(); 1656 1657 auto src = 1658 (sourceCastSource ? *sourceCastSource : insertSliceOp.getSource()); 1659 auto dst = (destCastSource ? *destCastSource : insertSliceOp.getDest()); 1660 1661 auto srcType = src.getType().cast<ShapedType>(); 1662 auto dstType = dst.getType().cast<ShapedType>(); 1663 if (verifyInsertSliceOp(srcType, dstType, insertSliceOp.getStaticOffsets(), 1664 insertSliceOp.getStaticSizes(), 1665 insertSliceOp.getStaticStrides()) != 1666 SliceVerificationResult::Success) 1667 return failure(); 1668 1669 Value replacement = rewriter.create<InsertSliceOp>( 1670 insertSliceOp.getLoc(), src, dst, insertSliceOp.getMixedOffsets(), 1671 insertSliceOp.getMixedSizes(), insertSliceOp.getMixedStrides()); 1672 1673 if (replacement.getType() != insertSliceOp.getType()) { 1674 replacement = rewriter.create<tensor::CastOp>( 1675 insertSliceOp.getLoc(), insertSliceOp.getType(), replacement); 1676 } 1677 rewriter.replaceOp(insertSliceOp, replacement); 1678 return success(); 1679 } 1680 }; 1681 1682 /// If additional static type information can be deduced from a insert_slice's 1683 /// size operands, insert an explicit cast of the op's source operand. This 1684 /// enables other canonicalization patterns that are matching for tensor_cast 1685 /// ops such as `ForOpTensorCastFolder` in SCF. 1686 /// 1687 /// Example: 1688 /// 1689 /// ```mlir 1690 /// %r = tensor.insert_slice %0 into %1[...] [64, 64] [1, 1] 1691 /// : tensor<?x?xf32> into ... 1692 /// ``` 1693 /// 1694 /// folds into: 1695 /// 1696 /// ```mlir 1697 /// %tmp = tensor.cast %0 : tensor<?x?xf32> to tensor<64x64xf32> 1698 /// %r = tensor.insert_slice %tmp into %1[...] [64, 64] [1, 1] 1699 /// : tensor<64x64xf32> into ... 1700 /// ``` 1701 struct InsertSliceOpSourceCastInserter final 1702 : public OpRewritePattern<InsertSliceOp> { 1703 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1704 1705 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1706 PatternRewriter &rewriter) const override { 1707 RankedTensorType srcType = insertSliceOp.getSourceType(); 1708 if (srcType.getRank() != insertSliceOp.getType().getRank()) 1709 return failure(); 1710 SmallVector<int64_t> newSrcShape(srcType.getShape().begin(), 1711 srcType.getShape().end()); 1712 for (int64_t i = 0; i < srcType.getRank(); ++i) { 1713 if (Optional<int64_t> constInt = 1714 getConstantIntValue(insertSliceOp.getMixedSizes()[i])) 1715 newSrcShape[i] = *constInt; 1716 } 1717 1718 RankedTensorType newSrcType = 1719 RankedTensorType::get(newSrcShape, srcType.getElementType()); 1720 if (srcType == newSrcType || 1721 !preservesStaticInformation(srcType, newSrcType) || 1722 !tensor::CastOp::areCastCompatible(srcType, newSrcType)) 1723 return failure(); 1724 1725 // newSrcType is: 1726 // 1) Different from srcType. 1727 // 2) "More static" than srcType. 1728 // 3) Cast-compatible with srcType. 1729 // Insert the cast. 1730 Value cast = rewriter.create<tensor::CastOp>( 1731 insertSliceOp.getLoc(), newSrcType, insertSliceOp.getSource()); 1732 rewriter.replaceOpWithNewOp<InsertSliceOp>( 1733 insertSliceOp, cast, insertSliceOp.getDest(), 1734 insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(), 1735 insertSliceOp.getMixedStrides()); 1736 return success(); 1737 } 1738 }; 1739 } // namespace 1740 1741 void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, 1742 MLIRContext *context) { 1743 results.add<InsertSliceOpConstantArgumentFolder, InsertSliceOpCastFolder, 1744 InsertSliceOpSourceCastInserter>(context); 1745 } 1746 1747 Value mlir::tensor::createCanonicalRankReducingInsertSliceOp(OpBuilder &b, 1748 Location loc, 1749 Value tensor, 1750 Value dest) { 1751 auto rankedTensorType = dest.getType().cast<RankedTensorType>(); 1752 unsigned rank = rankedTensorType.getRank(); 1753 auto shape = rankedTensorType.getShape(); 1754 SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0)); 1755 SmallVector<OpFoldResult> sizes; 1756 for (unsigned i = 0, e = rank; i < e; ++i) { 1757 OpFoldResult dim; 1758 if (rankedTensorType.isDynamicDim(i)) 1759 dim = b.createOrFold<tensor::DimOp>( 1760 loc, dest, b.create<arith::ConstantIndexOp>(loc, i)); 1761 else 1762 dim = b.getIndexAttr(shape[i]); 1763 sizes.push_back(dim); 1764 } 1765 SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1)); 1766 return b.createOrFold<tensor::InsertSliceOp>(loc, tensor, dest, offsets, 1767 sizes, strides); 1768 } 1769 1770 //===----------------------------------------------------------------------===// 1771 // PadOp 1772 //===----------------------------------------------------------------------===// 1773 1774 // TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it 1775 // supports optional types. 1776 void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand, 1777 Type typeToInfer, Type typeToInferFrom) {} 1778 1779 ParseResult parseInferType(OpAsmParser &parser, 1780 Optional<OpAsmParser::UnresolvedOperand> optOperand, 1781 Type &typeToInfer, Type typeToInferFrom) { 1782 if (optOperand) 1783 typeToInfer = typeToInferFrom; 1784 return success(); 1785 } 1786 1787 LogicalResult PadOp::verify() { 1788 auto sourceType = getSource().getType().cast<RankedTensorType>(); 1789 auto resultType = getResult().getType().cast<RankedTensorType>(); 1790 auto expectedType = PadOp::inferResultType( 1791 sourceType, extractFromI64ArrayAttr(getStaticLow()), 1792 extractFromI64ArrayAttr(getStaticHigh())); 1793 for (int i = 0, e = sourceType.getRank(); i < e; ++i) { 1794 if (resultType.getDimSize(i) == expectedType.getDimSize(i)) 1795 continue; 1796 if (expectedType.isDynamicDim(i)) 1797 continue; 1798 return emitError("specified type ") 1799 << resultType << " does not match the inferred type " 1800 << expectedType; 1801 } 1802 1803 return success(); 1804 } 1805 1806 LogicalResult PadOp::verifyRegions() { 1807 auto ®ion = getRegion(); 1808 unsigned rank = getResult().getType().cast<RankedTensorType>().getRank(); 1809 Block &block = region.front(); 1810 if (block.getNumArguments() != rank) 1811 return emitError("expected the block to have ") << rank << " arguments"; 1812 1813 // Note: the number and type of yield values are checked in the YieldOp. 1814 for (const auto &en : llvm::enumerate(block.getArgumentTypes())) { 1815 if (!en.value().isIndex()) 1816 return emitOpError("expected block argument ") 1817 << (en.index() + 1) << " to be an index"; 1818 } 1819 1820 // Ensure that the region yields an element of the right type. 1821 auto yieldOp = llvm::cast<YieldOp>(block.getTerminator()); 1822 if (yieldOp.getValue().getType() != 1823 getType().cast<ShapedType>().getElementType()) 1824 return emitOpError("expected yield type to match shape element type"); 1825 1826 return success(); 1827 } 1828 1829 RankedTensorType PadOp::inferResultType(RankedTensorType sourceType, 1830 ArrayRef<int64_t> staticLow, 1831 ArrayRef<int64_t> staticHigh, 1832 ArrayRef<int64_t> resultShape) { 1833 unsigned rank = sourceType.getRank(); 1834 assert(staticLow.size() == rank && "unexpected staticLow size mismatch"); 1835 assert(staticHigh.size() == rank && "unexpected staticHigh size mismatch"); 1836 assert((resultShape.empty() || resultShape.size() == rank) && 1837 "unexpected resultShape size mismatch"); 1838 1839 SmallVector<int64_t, 4> inferredShape; 1840 for (auto i : llvm::seq<unsigned>(0, rank)) { 1841 if (sourceType.isDynamicDim(i) || 1842 staticLow[i] == ShapedType::kDynamicSize || 1843 staticHigh[i] == ShapedType::kDynamicSize) { 1844 inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamicSize 1845 : resultShape[i]); 1846 } else { 1847 int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i]; 1848 assert((resultShape.empty() || size == resultShape[i] || 1849 resultShape[i] == ShapedType::kDynamicSize) && 1850 "mismatch between inferred shape and result shape"); 1851 inferredShape.push_back(size); 1852 } 1853 } 1854 1855 return RankedTensorType::get(inferredShape, sourceType.getElementType()); 1856 } 1857 1858 void PadOp::build(OpBuilder &b, OperationState &result, Value source, 1859 ArrayRef<int64_t> staticLow, ArrayRef<int64_t> staticHigh, 1860 ValueRange low, ValueRange high, bool nofold, 1861 ArrayRef<NamedAttribute> attrs) { 1862 auto sourceType = source.getType().cast<RankedTensorType>(); 1863 auto resultType = inferResultType(sourceType, staticLow, staticHigh); 1864 build(b, result, resultType, source, low, high, b.getI64ArrayAttr(staticLow), 1865 b.getI64ArrayAttr(staticHigh), nofold ? b.getUnitAttr() : UnitAttr()); 1866 result.addAttributes(attrs); 1867 } 1868 1869 void PadOp::build(OpBuilder &b, OperationState &result, Value source, 1870 ValueRange low, ValueRange high, bool nofold, 1871 ArrayRef<NamedAttribute> attrs) { 1872 auto sourceType = source.getType().cast<RankedTensorType>(); 1873 unsigned rank = sourceType.getRank(); 1874 SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamicSize); 1875 build(b, result, source, staticVector, staticVector, low, high, nofold, 1876 attrs); 1877 } 1878 1879 void PadOp::build(OpBuilder &b, OperationState &result, Type resultType, 1880 Value source, ArrayRef<OpFoldResult> low, 1881 ArrayRef<OpFoldResult> high, bool nofold, 1882 ArrayRef<NamedAttribute> attrs) { 1883 assert(resultType.isa<RankedTensorType>()); 1884 auto sourceType = source.getType().cast<RankedTensorType>(); 1885 SmallVector<Value, 4> dynamicLow, dynamicHigh; 1886 SmallVector<int64_t, 4> staticLow, staticHigh; 1887 // staticLow and staticHigh have full information of the padding config. 1888 // This will grow staticLow and staticHigh with 1 value. If the config is 1889 // dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1 1890 // value as well. 1891 dispatchIndexOpFoldResults(low, dynamicLow, staticLow, 1892 ShapedType::kDynamicSize); 1893 dispatchIndexOpFoldResults(high, dynamicHigh, staticHigh, 1894 ShapedType::kDynamicSize); 1895 if (!resultType) { 1896 resultType = PadOp::inferResultType(sourceType, staticLow, staticHigh); 1897 } 1898 build(b, result, resultType, source, dynamicLow, dynamicHigh, 1899 b.getI64ArrayAttr(staticLow), b.getI64ArrayAttr(staticHigh), 1900 nofold ? b.getUnitAttr() : UnitAttr()); 1901 result.addAttributes(attrs); 1902 } 1903 1904 llvm::SmallBitVector PadOp::getPaddedDims() { 1905 llvm::SmallBitVector paddedDims(getSourceType().getRank()); 1906 auto extractPaddedDims = [&](ArrayRef<OpFoldResult> paddingWidths) { 1907 for (const auto &en : enumerate(paddingWidths)) 1908 if (getConstantIntValue(en.value()) != static_cast<int64_t>(0)) 1909 paddedDims.set(en.index()); 1910 }; 1911 extractPaddedDims(getMixedLowPad()); 1912 extractPaddedDims(getMixedHighPad()); 1913 return paddedDims; 1914 } 1915 1916 namespace { 1917 // Folds tensor.pad when padding is static zeros and the attribute 1918 // doesn't request otherwise. 1919 struct FoldStaticZeroPadding : public OpRewritePattern<PadOp> { 1920 using OpRewritePattern<PadOp>::OpRewritePattern; 1921 1922 LogicalResult matchAndRewrite(PadOp padTensorOp, 1923 PatternRewriter &rewriter) const override { 1924 if (!padTensorOp.hasZeroLowPad() || !padTensorOp.hasZeroHighPad()) 1925 return failure(); 1926 if (padTensorOp.getNofold()) 1927 return failure(); 1928 rewriter.replaceOpWithNewOp<tensor::CastOp>( 1929 padTensorOp, padTensorOp.getResult().getType(), 1930 padTensorOp.getSource()); 1931 return success(); 1932 } 1933 }; 1934 1935 // Fold CastOp into PadOp when adding static information. 1936 struct FoldSourceTensorCast : public OpRewritePattern<PadOp> { 1937 using OpRewritePattern<PadOp>::OpRewritePattern; 1938 1939 LogicalResult matchAndRewrite(PadOp padTensorOp, 1940 PatternRewriter &rewriter) const override { 1941 auto castOp = padTensorOp.getSource().getDefiningOp<tensor::CastOp>(); 1942 if (!tensor::canFoldIntoConsumerOp(castOp)) 1943 return failure(); 1944 1945 auto newResultType = PadOp::inferResultType( 1946 castOp.getSource().getType().cast<RankedTensorType>(), 1947 extractFromI64ArrayAttr(padTensorOp.getStaticLow()), 1948 extractFromI64ArrayAttr(padTensorOp.getStaticHigh()), 1949 padTensorOp.getResultType().getShape()); 1950 1951 if (newResultType == padTensorOp.getResultType()) { 1952 rewriter.updateRootInPlace(padTensorOp, [&]() { 1953 padTensorOp.getSourceMutable().assign(castOp.getSource()); 1954 }); 1955 } else { 1956 auto newOp = rewriter.create<PadOp>( 1957 padTensorOp->getLoc(), newResultType, padTensorOp.getSource(), 1958 padTensorOp.getLow(), padTensorOp.getHigh(), 1959 padTensorOp.getStaticLow(), padTensorOp.getStaticHigh(), 1960 padTensorOp.getNofold()); 1961 BlockAndValueMapping mapper; 1962 padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper); 1963 1964 rewriter.replaceOpWithNewOp<tensor::CastOp>( 1965 padTensorOp, padTensorOp.getResultType(), newOp); 1966 } 1967 return success(); 1968 } 1969 }; 1970 1971 // Fold CastOp using the result of PadOp back into the latter if it adds 1972 // static information. 1973 struct FoldTargetTensorCast : public OpRewritePattern<PadOp> { 1974 using OpRewritePattern<PadOp>::OpRewritePattern; 1975 1976 LogicalResult matchAndRewrite(PadOp padTensorOp, 1977 PatternRewriter &rewriter) const override { 1978 if (!padTensorOp.getResult().hasOneUse()) 1979 return failure(); 1980 auto tensorCastOp = 1981 dyn_cast<tensor::CastOp>(*padTensorOp->getUsers().begin()); 1982 if (!tensorCastOp) 1983 return failure(); 1984 if (!tensor::preservesStaticInformation(padTensorOp.getResult().getType(), 1985 tensorCastOp.getDest().getType())) 1986 return failure(); 1987 1988 auto replacementOp = rewriter.create<PadOp>( 1989 padTensorOp.getLoc(), tensorCastOp.getDest().getType(), 1990 padTensorOp.getSource(), padTensorOp.getLow(), padTensorOp.getHigh(), 1991 padTensorOp.getStaticLow(), padTensorOp.getStaticHigh(), 1992 padTensorOp.getNofold()); 1993 replacementOp.getRegion().takeBody(padTensorOp.getRegion()); 1994 1995 rewriter.replaceOp(padTensorOp, replacementOp.getResult()); 1996 rewriter.replaceOp(tensorCastOp, replacementOp.getResult()); 1997 return success(); 1998 } 1999 }; 2000 2001 /// Fold chains of tensor::ExtractSliceOp, tensor::PadOp pairs that pad 2002 /// different dimensions. The pattern applies if the following preconditions 2003 /// hold: 2004 /// 1) the tensor::ExtractSliceOps are not rank-reducing, 2005 /// 2) the tensor::ExtractSliceOps have only unit-strides, 2006 /// 3) the tensor::PadOps perform only high-padding, 2007 /// 4) the tensor::PadOps have the same constant padding value, 2008 /// 5) the tensor::PadOps do not have common padding dimensions, 2009 /// 6) one tensor::ExtractSliceOp, tensor::PadOp pair has zero-padding and 2010 /// zero-offset for every dimension. 2011 /// 7) the tensor::ExtractSliceOp sizes match the source tensor sizes for the 2012 /// padded source dimensions. 2013 /// 2014 /// Example: 2015 /// 2016 /// ```mlir 2017 /// %0 = tensor.extract_slice %input[16, 0] [%sz0, 64] [1, 1] 2018 /// : tensor<64x64xf32> to tensor<?x64xf32> 2019 /// %1 = tensor.pad %0 low[0, 0] high[%pw0, 0] { ... 2020 /// } : tensor<?x64xf32> to tensor<8x64xf32> 2021 /// %2 = tensor.extract_slice %1[0, 4] [8, %sz1] [1, 1] 2022 /// : tensor<8x64xf32> to tensor<8x?xf32> 2023 /// %res = tensor.pad %2 nofold low[0, 0] high[0, %pw1] { ... 2024 /// } : tensor<8x?xf32> to tensor<8x4xf32> 2025 /// ``` 2026 /// 2027 /// folds into: 2028 /// 2029 /// ```mlir 2030 /// %0 = tensor.extract_slice %input[16, 4] [%sz0, %sz1] [1, 1] 2031 /// : tensor<64x64xf32> to tensor<?x?xf32> 2032 /// %res = tensor.pad %0 nofold low[0, 0] high[%pw0, %pw1] { ... 2033 /// } : tensor<?x?xf32> to tensor<8x4xf32> 2034 /// ``` 2035 struct FoldOrthogonalPaddings : public OpRewritePattern<PadOp> { 2036 using OpRewritePattern<PadOp>::OpRewritePattern; 2037 2038 LogicalResult matchAndRewrite(PadOp padOp, 2039 PatternRewriter &rewriter) const override { 2040 auto innerSliceOp = padOp.getSource().getDefiningOp<ExtractSliceOp>(); 2041 if (!innerSliceOp) 2042 return failure(); 2043 auto outerPadOp = innerSliceOp.getSource().getDefiningOp<PadOp>(); 2044 if (!outerPadOp || outerPadOp.getNofold()) 2045 return failure(); 2046 auto outerSliceOp = outerPadOp.getSource().getDefiningOp<ExtractSliceOp>(); 2047 if (!outerSliceOp) 2048 return failure(); 2049 2050 // 1) Fail if the chain is rank-reducing. 2051 int64_t rank = padOp.getSourceType().getRank(); 2052 if (outerSliceOp.getSourceType().getRank() != rank) { 2053 return rewriter.notifyMatchFailure(padOp, 2054 "cannot fold rank-reducing chain"); 2055 } 2056 2057 // 2) Fail if the tensor::ExtractSliceOps have non-unit strides. 2058 if (!innerSliceOp.hasUnitStride() || !outerSliceOp.hasUnitStride()) { 2059 return rewriter.notifyMatchFailure( 2060 padOp, "cannot fold non-unit stride ExtractSliceOps"); 2061 } 2062 2063 // 3) Fail if the tensor::PadOps have non-zero low padding. 2064 if (!padOp.hasZeroLowPad() || !outerPadOp.hasZeroLowPad()) { 2065 return rewriter.notifyMatchFailure(padOp, 2066 "cannot fold PadOps with low padding"); 2067 } 2068 2069 // 4) Fail if the tensor::PadOps padding values do not match. 2070 Attribute innerAttr, outerAttr; 2071 Value innerValue = padOp.getConstantPaddingValue(); 2072 Value outerValue = outerPadOp.getConstantPaddingValue(); 2073 if (!innerValue || !outerValue || 2074 !matchPattern(innerValue, m_Constant(&innerAttr)) || 2075 !matchPattern(outerValue, m_Constant(&outerAttr)) || 2076 innerAttr != outerAttr) { 2077 return rewriter.notifyMatchFailure( 2078 padOp, "cannot fold PadOps with different padding values"); 2079 } 2080 2081 // 5) Fail if a dimension is padded by both tensor::PadOps. 2082 llvm::SmallBitVector innerDims = padOp.getPaddedDims(); 2083 llvm::SmallBitVector outerDims = outerPadOp.getPaddedDims(); 2084 if (innerDims.anyCommon(outerDims)) { 2085 return rewriter.notifyMatchFailure( 2086 padOp, "cannot fold PadOps with common padding dimensions"); 2087 } 2088 2089 // 6) Combine the offsets of the two tensor::ExtractSliceOps. Find the 2090 // zero-offset and zero-padding tensor::ExtractSliceOp, tensor::PadOp pair 2091 // for every dimension, and use the offset the other pair. Fail if no 2092 // zero-offset and zero-padding tensor::ExtractSliceOp, tensor::PadOp pair 2093 // exists. 2094 SmallVector<OpFoldResult> newOffsets(rank, rewriter.getIndexAttr(0)); 2095 for (auto &en : enumerate(newOffsets)) { 2096 OpFoldResult innerOffset = innerSliceOp.getMixedOffsets()[en.index()]; 2097 OpFoldResult outerOffset = outerSliceOp.getMixedOffsets()[en.index()]; 2098 if (!innerDims.test(en.index()) && 2099 (getConstantIntValue(innerOffset) == static_cast<int64_t>(0))) { 2100 en.value() = outerOffset; 2101 continue; 2102 } 2103 if (!outerDims.test(en.index()) && 2104 (getConstantIntValue(outerOffset) == static_cast<int64_t>(0))) { 2105 en.value() = innerOffset; 2106 continue; 2107 } 2108 return rewriter.notifyMatchFailure( 2109 padOp, "cannot find zero-offset and zero-padding pair"); 2110 } 2111 2112 // 7) Combine the sizes of the two tensor::ExtractSliceOps. Take the size of 2113 // the outer tensor::ExtractSliceOp for the dimensions padded by the outer 2114 // tensor::PadOp and fail if the size of the inner tensor::ExtractSliceOp 2115 // does not match the size of the padded dimension. Otherwise, take the size 2116 // of the inner tensor::ExtractSliceOp. 2117 SmallVector<OpFoldResult> newSizes = innerSliceOp.getMixedSizes(); 2118 for (auto &en : enumerate(newSizes)) { 2119 if (!outerDims.test(en.index())) 2120 continue; 2121 OpFoldResult sliceSize = innerSliceOp.getMixedSizes()[en.index()]; 2122 int64_t sourceSize = innerSliceOp.getSourceType().getShape()[en.index()]; 2123 assert(!ShapedType::isDynamic(sourceSize) && 2124 "expected padded dimension to have a static size"); 2125 if (getConstantIntValue(sliceSize) != sourceSize) { 2126 return rewriter.notifyMatchFailure( 2127 padOp, "cannot fold since the inner ExtractSliceOp size does not " 2128 "match the size of the outer padding"); 2129 } 2130 en.value() = outerSliceOp.getMixedSizes()[en.index()]; 2131 } 2132 2133 // Combine the high paddings of the two tensor::PadOps. 2134 SmallVector<OpFoldResult> newHighPad(rank, rewriter.getIndexAttr(0)); 2135 for (auto &en : enumerate(newHighPad)) { 2136 if (innerDims.test(en.index())) 2137 newHighPad[en.index()] = padOp.getMixedHighPad()[en.index()]; 2138 if (outerDims.test(en.index())) 2139 newHighPad[en.index()] = outerPadOp.getMixedHighPad()[en.index()]; 2140 } 2141 2142 // Create a new tensor::ExtractSliceOp, tensor::PadOp pair that performs the 2143 // two paddings in one step. 2144 auto newSliceOp = rewriter.create<ExtractSliceOp>( 2145 padOp.getLoc(), outerSliceOp.getSource(), newOffsets, newSizes, 2146 innerSliceOp.getMixedStrides()); 2147 auto newPadOp = rewriter.create<PadOp>( 2148 padOp.getLoc(), padOp.getResultType(), newSliceOp.getResult(), 2149 padOp.getMixedLowPad(), newHighPad, padOp.getNofold()); 2150 rewriter.inlineRegionBefore(padOp.getRegion(), newPadOp.getRegion(), 2151 newPadOp.getRegion().begin()); 2152 rewriter.replaceOp(padOp, newPadOp.getResult()); 2153 return success(); 2154 } 2155 }; 2156 2157 } // namespace 2158 2159 void PadOp::getCanonicalizationPatterns(RewritePatternSet &results, 2160 MLIRContext *context) { 2161 results.add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast, 2162 FoldOrthogonalPaddings>(context); 2163 } 2164 2165 /// Return the padding value of the PadOp if it constant. In this context, 2166 /// "constant" means an actual constant or "defined outside of the block". 2167 /// 2168 /// Values are considered constant in three cases: 2169 /// - A ConstantLike value. 2170 /// - A basic block argument from a different block. 2171 /// - A value defined outside of the block. 2172 /// 2173 /// If the padding value is not constant, an empty Value is returned. 2174 Value PadOp::getConstantPaddingValue() { 2175 auto yieldOp = dyn_cast<YieldOp>(getRegion().front().getTerminator()); 2176 if (!yieldOp) 2177 return {}; 2178 Value padValue = yieldOp.getValue(); 2179 // Check if yield value is a constant. 2180 if (matchPattern(padValue, m_Constant())) 2181 return padValue; 2182 // Check if yield value is defined inside the PadOp block. 2183 if (padValue.getParentBlock() == &getRegion().front()) 2184 return {}; 2185 // Else: Yield value defined outside of the PadOp block. 2186 return padValue; 2187 } 2188 2189 OpFoldResult PadOp::fold(ArrayRef<Attribute>) { 2190 if (getResultType().hasStaticShape() && getResultType() == getSourceType() && 2191 !getNofold()) 2192 return getSource(); 2193 return {}; 2194 } 2195 2196 //===----------------------------------------------------------------------===// 2197 // SplatOp 2198 //===----------------------------------------------------------------------===// 2199 2200 OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) { 2201 auto constOperand = operands.front(); 2202 if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>()) 2203 return {}; 2204 2205 // SplatElementsAttr::get treats single value for second arg as being a splat. 2206 return SplatElementsAttr::get(getType(), {constOperand}); 2207 } 2208 2209 //===----------------------------------------------------------------------===// 2210 // TableGen'd op method definitions 2211 //===----------------------------------------------------------------------===// 2212 2213 #define GET_OP_CLASSES 2214 #include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc" 2215