1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/StandardOps/Utils/Utils.h" 10 #include "mlir/Dialect/Tensor/IR/Tensor.h" 11 #include "mlir/Dialect/Utils/StaticValueUtils.h" 12 #include "mlir/IR/BlockAndValueMapping.h" 13 #include "mlir/IR/Builders.h" 14 #include "mlir/IR/Matchers.h" 15 #include "mlir/IR/PatternMatch.h" 16 #include "mlir/IR/TypeUtilities.h" 17 #include "llvm/ADT/STLExtras.h" 18 19 using namespace mlir; 20 using namespace mlir::tensor; 21 22 /// Materialize a single constant operation from a given attribute value with 23 /// the desired resultant type. 24 Operation *TensorDialect::materializeConstant(OpBuilder &builder, 25 Attribute value, Type type, 26 Location loc) { 27 return builder.create<mlir::ConstantOp>(loc, type, value); 28 } 29 30 //===----------------------------------------------------------------------===// 31 // CastOp 32 //===----------------------------------------------------------------------===// 33 34 /// Determines whether tensor::CastOp casts to a more dynamic version of the 35 /// source tensor. This is useful to fold a tensor.cast into a consuming op and 36 /// implement canonicalization patterns for ops in different dialects that may 37 /// consume the results of tensor.cast operations. Such foldable tensor.cast 38 /// operations are typically inserted as `slice` ops and are canonicalized, 39 /// to preserve the type compatibility of their uses. 40 /// 41 /// Returns true when all conditions are met: 42 /// 1. source and result are ranked tensors with same element type and rank. 43 /// 2. the tensor type has more static information than the result 44 /// 45 /// Example: 46 /// ```mlir 47 /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> 48 /// %2 = consumer %1 ... : tensor<?x?xf32> ... 49 /// ``` 50 /// 51 /// folds into: 52 /// 53 /// ```mlir 54 /// %2 = consumer %0 ... : tensor<8x16xf32> ... 55 /// ``` 56 bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) { 57 if (!castOp) 58 return false; 59 60 RankedTensorType sourceType = 61 castOp.source().getType().dyn_cast<RankedTensorType>(); 62 RankedTensorType resultType = castOp.getType().dyn_cast<RankedTensorType>(); 63 64 // Requires RankedTensorType. 65 if (!sourceType || !resultType) 66 return false; 67 68 // Requires same elemental type. 69 if (sourceType.getElementType() != resultType.getElementType()) 70 return false; 71 72 // Requires same rank. 73 if (sourceType.getRank() != resultType.getRank()) 74 return false; 75 76 // If cast is towards more static sizes along any dimension, don't fold. 77 for (auto t : llvm::zip(sourceType.getShape(), resultType.getShape())) { 78 if (ShapedType::isDynamic(std::get<0>(t)) && 79 !ShapedType::isDynamic(std::get<1>(t))) 80 return false; 81 } 82 83 return true; 84 } 85 86 /// Performs folding of any operand of `op` if it comes from a tensor::CastOp 87 /// that can be folded. 88 LogicalResult mlir::tensor::foldTensorCast(Operation *op) { 89 bool folded = false; 90 for (OpOperand &operand : op->getOpOperands()) { 91 auto castOp = operand.get().getDefiningOp<tensor::CastOp>(); 92 if (castOp && tensor::canFoldIntoConsumerOp(castOp)) { 93 operand.set(castOp.getOperand()); 94 folded = true; 95 } 96 } 97 return success(folded); 98 } 99 100 bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 101 if (inputs.size() != 1 || outputs.size() != 1) 102 return false; 103 Type a = inputs.front(), b = outputs.front(); 104 auto aT = a.dyn_cast<TensorType>(); 105 auto bT = b.dyn_cast<TensorType>(); 106 if (!aT || !bT) 107 return false; 108 109 if (aT.getElementType() != bT.getElementType()) 110 return false; 111 112 return succeeded(verifyCompatibleShape(aT, bT)); 113 } 114 115 /// Compute a TensorType that has the joined shape knowledge of the two 116 /// given TensorTypes. The element types need to match. 117 static TensorType joinShapes(TensorType one, TensorType two) { 118 assert(one.getElementType() == two.getElementType()); 119 120 if (!one.hasRank()) 121 return two; 122 if (!two.hasRank()) 123 return one; 124 125 int64_t rank = one.getRank(); 126 if (rank != two.getRank()) 127 return {}; 128 129 SmallVector<int64_t, 4> join; 130 join.reserve(rank); 131 for (int64_t i = 0; i < rank; ++i) { 132 if (one.isDynamicDim(i)) { 133 join.push_back(two.getDimSize(i)); 134 continue; 135 } 136 if (two.isDynamicDim(i)) { 137 join.push_back(one.getDimSize(i)); 138 continue; 139 } 140 if (one.getDimSize(i) != two.getDimSize(i)) 141 return {}; 142 join.push_back(one.getDimSize(i)); 143 } 144 return RankedTensorType::get(join, one.getElementType()); 145 } 146 147 namespace { 148 149 /// Replaces chains of two tensor.cast operations by a single tensor.cast 150 /// operation if doing so does not remove runtime constraints. 151 struct ChainedTensorCast : public OpRewritePattern<CastOp> { 152 using OpRewritePattern<CastOp>::OpRewritePattern; 153 154 LogicalResult matchAndRewrite(CastOp tensorCast, 155 PatternRewriter &rewriter) const final { 156 auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>(); 157 158 if (!tensorCastOperand) 159 return failure(); 160 161 auto sourceType = 162 tensorCastOperand.getOperand().getType().cast<TensorType>(); 163 auto intermediateType = tensorCastOperand.getType().cast<TensorType>(); 164 auto resultType = tensorCast.getType().cast<TensorType>(); 165 166 // We can remove the intermediate cast if joining all three produces the 167 // same result as just joining the source and result shapes. 168 auto firstJoin = 169 joinShapes(joinShapes(sourceType, intermediateType), resultType); 170 171 // The join might not exist if the cast sequence would fail at runtime. 172 if (!firstJoin) 173 return failure(); 174 175 // The newJoin always exists if the above join exists, it might just contain 176 // less information. If so, we cannot drop the intermediate cast, as doing 177 // so would remove runtime checks. 178 auto newJoin = joinShapes(sourceType, resultType); 179 if (firstJoin != newJoin) 180 return failure(); 181 182 rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType, 183 tensorCastOperand.getOperand()); 184 return success(); 185 } 186 }; 187 188 } // namespace 189 190 void CastOp::getCanonicalizationPatterns(RewritePatternSet &results, 191 MLIRContext *context) { 192 results.add<ChainedTensorCast>(context); 193 } 194 195 //===----------------------------------------------------------------------===// 196 // DimOp 197 //===----------------------------------------------------------------------===// 198 199 void DimOp::build(OpBuilder &builder, OperationState &result, Value source, 200 int64_t index) { 201 auto loc = result.location; 202 Value indexValue = builder.create<ConstantIndexOp>(loc, index); 203 build(builder, result, source, indexValue); 204 } 205 206 void DimOp::build(OpBuilder &builder, OperationState &result, Value source, 207 Value index) { 208 auto indexTy = builder.getIndexType(); 209 build(builder, result, indexTy, source, index); 210 } 211 212 Optional<int64_t> DimOp::getConstantIndex() { 213 if (auto constantOp = index().getDefiningOp<ConstantOp>()) 214 return constantOp.getValue().cast<IntegerAttr>().getInt(); 215 return {}; 216 } 217 218 static LogicalResult verify(DimOp op) { 219 // Assume unknown index to be in range. 220 Optional<int64_t> index = op.getConstantIndex(); 221 if (!index.hasValue()) 222 return success(); 223 224 // Check that constant index is not knowingly out of range. 225 auto type = op.source().getType(); 226 if (auto tensorType = type.dyn_cast<RankedTensorType>()) { 227 if (index.getValue() >= tensorType.getRank()) 228 return op.emitOpError("index is out of range"); 229 } else if (type.isa<UnrankedTensorType>()) { 230 // Assume index to be in range. 231 } else { 232 llvm_unreachable("expected operand with tensor type"); 233 } 234 return success(); 235 } 236 237 OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) { 238 // All forms of folding require a known index. 239 auto index = operands[1].dyn_cast_or_null<IntegerAttr>(); 240 if (!index) 241 return {}; 242 243 // Folding for unranked types (UnrankedTensorType) is not supported. 244 auto tensorType = source().getType().dyn_cast<RankedTensorType>(); 245 if (!tensorType) 246 return {}; 247 248 // Fold if the shape extent along the given index is known. 249 if (!tensorType.isDynamicDim(index.getInt())) { 250 Builder builder(getContext()); 251 return builder.getIndexAttr(tensorType.getShape()[index.getInt()]); 252 } 253 254 Operation *definingOp = source().getDefiningOp(); 255 256 // Fold dim to the operand of tensor.generate. 257 if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) { 258 auto resultType = 259 fromElements.getResult().getType().cast<RankedTensorType>(); 260 // The case where the type encodes the size of the dimension is handled 261 // above. 262 assert(resultType.getShape()[index.getInt()] == 263 RankedTensorType::kDynamicSize); 264 265 // Find the operand of the fromElements that corresponds to this index. 266 auto dynExtents = fromElements.dynamicExtents().begin(); 267 for (auto dim : resultType.getShape().take_front(index.getInt())) 268 if (dim == RankedTensorType::kDynamicSize) 269 dynExtents++; 270 271 return Value{*dynExtents}; 272 } 273 274 // The size at the given index is now known to be a dynamic size. 275 unsigned unsignedIndex = index.getValue().getZExtValue(); 276 277 if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) { 278 assert(sliceOp.isDynamicSize(unsignedIndex) && 279 "Expected dynamic slice size"); 280 return sliceOp.getDynamicSize(unsignedIndex); 281 } 282 283 // dim(cast) -> dim 284 if (succeeded(foldTensorCast(*this))) 285 return getResult(); 286 287 return {}; 288 } 289 290 namespace { 291 /// Fold dim of a cast into the dim of the source of the tensor cast. 292 struct DimOfCastOp : public OpRewritePattern<DimOp> { 293 using OpRewritePattern<DimOp>::OpRewritePattern; 294 295 LogicalResult matchAndRewrite(DimOp dimOp, 296 PatternRewriter &rewriter) const override { 297 auto castOp = dimOp.source().getDefiningOp<CastOp>(); 298 if (!castOp) 299 return failure(); 300 Value newSource = castOp.getOperand(); 301 rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.index()); 302 return success(); 303 } 304 }; 305 } // end anonymous namespace. 306 307 void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, 308 MLIRContext *context) { 309 results.add<DimOfCastOp>(context); 310 } 311 312 //===----------------------------------------------------------------------===// 313 // ExtractOp 314 //===----------------------------------------------------------------------===// 315 316 static LogicalResult verify(ExtractOp op) { 317 // Verify the # indices match if we have a ranked type. 318 if (auto tensorType = op.tensor().getType().dyn_cast<RankedTensorType>()) 319 if (tensorType.getRank() != static_cast<int64_t>(op.indices().size())) 320 return op.emitOpError("incorrect number of indices for extract_element"); 321 322 return success(); 323 } 324 325 OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) { 326 // The tensor operand must be a known constant. 327 Attribute tensor = operands.front(); 328 if (!tensor) 329 return {}; 330 // If this is a splat elements attribute, simply return the value. All of the 331 // elements of a splat attribute are the same. 332 if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>()) 333 return splatTensor.getSplatValue(); 334 335 // Otherwise, collect the constant indices into the tensor. 336 SmallVector<uint64_t, 8> indices; 337 for (Attribute indice : llvm::drop_begin(operands, 1)) { 338 if (!indice || !indice.isa<IntegerAttr>()) 339 return {}; 340 indices.push_back(indice.cast<IntegerAttr>().getInt()); 341 } 342 343 // If this is an elements attribute, query the value at the given indices. 344 auto elementsAttr = tensor.dyn_cast<ElementsAttr>(); 345 if (elementsAttr && elementsAttr.isValidIndex(indices)) 346 return elementsAttr.getValue(indices); 347 return {}; 348 } 349 350 //===----------------------------------------------------------------------===// 351 // FromElementsOp 352 //===----------------------------------------------------------------------===// 353 354 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 355 Type elementType, ValueRange elements) { 356 Type resultTy = RankedTensorType::get({static_cast<int64_t>(elements.size())}, 357 elementType); 358 result.addOperands(elements); 359 result.addTypes(resultTy); 360 } 361 362 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 363 ValueRange elements) { 364 assert(!elements.empty() && "expected at least one element"); 365 build(builder, result, elements.front().getType(), elements); 366 } 367 368 OpFoldResult FromElementsOp::fold(ArrayRef<Attribute> operands) { 369 if (!llvm::is_contained(operands, nullptr)) 370 return DenseElementsAttr::get(getType(), operands); 371 return {}; 372 } 373 374 namespace { 375 376 // Canonicalizes the pattern of the form 377 // 378 // %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32> 379 // %extracted_element = tensor.extract %tensor[%c0] : tensor<1xi32> 380 // 381 // to just %element. 382 struct ExtractElementFromTensorFromElements 383 : public OpRewritePattern<tensor::ExtractOp> { 384 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 385 386 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 387 PatternRewriter &rewriter) const final { 388 if (extract.indices().size() != 1) 389 return failure(); 390 391 auto tensorFromElements = extract.tensor().getDefiningOp<FromElementsOp>(); 392 if (tensorFromElements == nullptr) 393 return failure(); 394 395 APInt index; 396 if (!matchPattern(*extract.indices().begin(), m_ConstantInt(&index))) 397 return failure(); 398 // Prevent out of bounds accesses. This can happen in invalid code that will 399 // never execute. 400 if (tensorFromElements->getNumOperands() <= index.getZExtValue() || 401 index.getSExtValue() < 0) 402 return failure(); 403 rewriter.replaceOp(extract, 404 tensorFromElements.getOperand(index.getZExtValue())); 405 return success(); 406 } 407 }; 408 409 } // namespace 410 411 void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results, 412 MLIRContext *context) { 413 results.add<ExtractElementFromTensorFromElements>(context); 414 } 415 416 //===----------------------------------------------------------------------===// 417 // InsertOp 418 //===----------------------------------------------------------------------===// 419 420 static LogicalResult verify(InsertOp op) { 421 // Verify the # indices match if we have a ranked type. 422 if (auto destType = op.dest().getType().dyn_cast<RankedTensorType>()) 423 if (destType.getRank() != static_cast<int64_t>(op.indices().size())) 424 return op.emitOpError("incorrect number of indices"); 425 return success(); 426 } 427 428 OpFoldResult InsertOp::fold(ArrayRef<Attribute> operands) { 429 Attribute scalar = operands[0]; 430 Attribute dest = operands[1]; 431 if (scalar && dest) 432 if (auto splatDest = dest.dyn_cast<SplatElementsAttr>()) 433 if (scalar == splatDest.getSplatValue()) 434 return dest; 435 return {}; 436 } 437 438 //===----------------------------------------------------------------------===// 439 // GenerateOp 440 //===----------------------------------------------------------------------===// 441 442 static LogicalResult verify(GenerateOp op) { 443 // Ensure that the tensor type has as many dynamic dimensions as are specified 444 // by the operands. 445 RankedTensorType resultTy = op.getType().cast<RankedTensorType>(); 446 if (op.getNumOperands() != resultTy.getNumDynamicDims()) 447 return op.emitError("must have as many index operands as dynamic extents " 448 "in the result type"); 449 450 // Ensure that region arguments span the index space. 451 if (!llvm::all_of(op.body().getArgumentTypes(), 452 [](Type ty) { return ty.isIndex(); })) 453 return op.emitError("all body arguments must be index"); 454 if (op.body().getNumArguments() != resultTy.getRank()) 455 return op.emitError("must have one body argument per input dimension"); 456 457 // Ensure that the region yields an element of the right type. 458 auto yieldOp = 459 llvm::cast<YieldOp>(op.body().getBlocks().front().getTerminator()); 460 if (yieldOp.value().getType() != resultTy.getElementType()) 461 return op.emitOpError( 462 "body must be terminated with a `yield` operation of the tensor " 463 "element type"); 464 465 return success(); 466 } 467 468 void GenerateOp::build( 469 OpBuilder &b, OperationState &result, Type resultTy, 470 ValueRange dynamicExtents, 471 function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) { 472 build(b, result, resultTy, dynamicExtents); 473 474 // Build and populate body. 475 OpBuilder::InsertionGuard guard(b); 476 Region *bodyRegion = result.regions.front().get(); 477 auto rank = resultTy.cast<RankedTensorType>().getRank(); 478 SmallVector<Type, 2> argumentTypes(rank, b.getIndexType()); 479 Block *bodyBlock = 480 b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes); 481 bodyBuilder(b, result.location, bodyBlock->getArguments()); 482 } 483 484 namespace { 485 486 /// Canonicalizes tensor.generate operations with a constant 487 /// operand into the equivalent operation with the operand expressed in the 488 /// result type, instead. We also insert a type cast to make sure that the 489 /// resulting IR is still well-typed. 490 struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> { 491 using OpRewritePattern<GenerateOp>::OpRewritePattern; 492 493 LogicalResult matchAndRewrite(GenerateOp tensorFromElements, 494 PatternRewriter &rewriter) const final { 495 auto resultType = 496 tensorFromElements.getResult().getType().cast<RankedTensorType>(); 497 498 if (resultType.hasStaticShape()) 499 return failure(); 500 501 SmallVector<Value, 4> newOperands; 502 SmallVector<int64_t, 4> newShape; 503 auto operandsIt = tensorFromElements.dynamicExtents().begin(); 504 505 for (int64_t dim : resultType.getShape()) { 506 if (dim != RankedTensorType::kDynamicSize) { 507 newShape.push_back(dim); 508 continue; 509 } 510 APInt index; 511 if (!matchPattern(*operandsIt, m_ConstantInt(&index))) { 512 newShape.push_back(RankedTensorType::kDynamicSize); 513 newOperands.push_back(*operandsIt++); 514 continue; 515 } 516 newShape.push_back(index.getSExtValue()); 517 operandsIt++; 518 } 519 520 if (newOperands.size() == tensorFromElements.dynamicExtents().size()) 521 return failure(); 522 523 auto loc = tensorFromElements.getLoc(); 524 auto newOp = rewriter.create<GenerateOp>( 525 loc, RankedTensorType::get(newShape, resultType.getElementType()), 526 newOperands); 527 rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(), 528 newOp.body().begin()); 529 rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType, 530 newOp); 531 return success(); 532 } 533 }; 534 535 /// Canonicalizes the pattern of the form 536 /// 537 /// %tensor = tensor.generate %x { 538 /// ^bb0(%arg0: index): // no predecessors 539 /// <computation> 540 /// yield %1 : index 541 /// } : tensor<?xindex> 542 /// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32> 543 /// 544 /// to just <computation> with %arg0 replaced by %c0. We only do this if the 545 /// tensor.generate operation has no side-effects. 546 struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> { 547 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 548 549 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 550 PatternRewriter &rewriter) const final { 551 auto tensorFromElements = extract.tensor().getDefiningOp<GenerateOp>(); 552 if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements)) 553 return failure(); 554 555 BlockAndValueMapping mapping; 556 Block *body = tensorFromElements.getBody(); 557 mapping.map(body->getArguments(), extract.indices()); 558 for (auto &op : body->without_terminator()) 559 rewriter.clone(op, mapping); 560 561 auto yield = cast<YieldOp>(body->getTerminator()); 562 563 rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value())); 564 return success(); 565 } 566 }; 567 568 /// Canonicalizes the pattern of the form 569 /// 570 /// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32> 571 /// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32> 572 /// 573 /// to 574 /// 575 /// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32> 576 struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> { 577 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 578 579 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 580 PatternRewriter &rewriter) const final { 581 auto tensorCast = extract.tensor().getDefiningOp<tensor::CastOp>(); 582 if (!tensorCast) 583 return failure(); 584 585 rewriter.replaceOpWithNewOp<tensor::ExtractOp>(extract, tensorCast.source(), 586 extract.indices()); 587 return success(); 588 } 589 }; 590 591 } // namespace 592 593 void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results, 594 MLIRContext *context) { 595 // TODO: Move extract patterns to tensor::ExtractOp. 596 results.add<ExtractFromTensorGenerate, ExtractFromTensorCast, 597 StaticTensorGenerate>(context); 598 } 599 600 //===----------------------------------------------------------------------===// 601 // ReshapeOp 602 //===----------------------------------------------------------------------===// 603 604 static int64_t GetNumElements(ShapedType type) { 605 int64_t numElements = 1; 606 for (auto dim : type.getShape()) 607 numElements *= dim; 608 return numElements; 609 } 610 611 static LogicalResult verify(ReshapeOp op) { 612 TensorType operandType = op.source().getType().cast<TensorType>(); 613 TensorType resultType = op.result().getType().cast<TensorType>(); 614 615 if (operandType.getElementType() != resultType.getElementType()) 616 return op.emitOpError("element types of source and destination tensor " 617 "types should be the same"); 618 619 int64_t shapeSize = 620 op.shape().getType().cast<RankedTensorType>().getDimSize(0); 621 auto resultRankedType = resultType.dyn_cast<RankedTensorType>(); 622 auto operandRankedType = operandType.dyn_cast<RankedTensorType>(); 623 624 if (resultRankedType) { 625 if (operandRankedType && resultRankedType.hasStaticShape() && 626 operandRankedType.hasStaticShape()) { 627 if (GetNumElements(operandRankedType) != GetNumElements(resultRankedType)) 628 return op.emitOpError("source and destination tensor should have the " 629 "same number of elements"); 630 } 631 if (shapeSize == TensorType::kDynamicSize) 632 return op.emitOpError("cannot use shape operand with dynamic length to " 633 "reshape to statically-ranked tensor type"); 634 if (shapeSize != resultRankedType.getRank()) 635 return op.emitOpError( 636 "length of shape operand differs from the result's tensor rank"); 637 } 638 return success(); 639 } 640 641 //===----------------------------------------------------------------------===// 642 // ExtractSliceOp 643 //===----------------------------------------------------------------------===// 644 645 /// An extract_slice op result type can be fully inferred from the source type 646 /// and the static representation of offsets, sizes and strides. Special 647 /// sentinels encode the dynamic case. 648 Type ExtractSliceOp::inferResultType(RankedTensorType sourceRankedTensorType, 649 ArrayRef<int64_t> leadingStaticOffsets, 650 ArrayRef<int64_t> leadingStaticSizes, 651 ArrayRef<int64_t> leadingStaticStrides) { 652 // An extract_slice op may specify only a leading subset of offset/sizes/ 653 // strides in which case we complete with offset=0, sizes from memref type and 654 // strides=1. 655 unsigned rank = sourceRankedTensorType.getRank(); 656 assert(leadingStaticSizes.size() <= rank && 657 "unexpected leadingStaticSizes overflow"); 658 auto staticSizes = llvm::to_vector<4>(leadingStaticSizes); 659 unsigned numTrailingSizes = rank - staticSizes.size(); 660 llvm::append_range(staticSizes, sourceRankedTensorType.getShape().take_back( 661 numTrailingSizes)); 662 return RankedTensorType::get(staticSizes, 663 sourceRankedTensorType.getElementType()); 664 } 665 666 Type ExtractSliceOp::inferResultType( 667 RankedTensorType sourceRankedTensorType, 668 ArrayRef<OpFoldResult> leadingStaticOffsets, 669 ArrayRef<OpFoldResult> leadingStaticSizes, 670 ArrayRef<OpFoldResult> leadingStaticStrides) { 671 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 672 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 673 dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets, 674 staticOffsets, ShapedType::kDynamicStrideOrOffset); 675 dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes, 676 ShapedType::kDynamicSize); 677 dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides, 678 staticStrides, ShapedType::kDynamicStrideOrOffset); 679 return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, 680 staticSizes, staticStrides); 681 } 682 683 /// An extract_slice op result type can be fully inferred from the source type 684 /// and the static representation of offsets, sizes and strides. Special 685 /// sentinels encode the dynamic case. 686 Type ExtractSliceOp::inferRankReducedResultType( 687 unsigned resultRank, RankedTensorType sourceRankedTensorType, 688 ArrayRef<int64_t> leadingStaticOffsets, 689 ArrayRef<int64_t> leadingStaticSizes, 690 ArrayRef<int64_t> leadingStaticStrides) { 691 auto inferredType = 692 inferResultType(sourceRankedTensorType, leadingStaticOffsets, 693 leadingStaticSizes, leadingStaticStrides) 694 .cast<RankedTensorType>(); 695 int rankDiff = inferredType.getRank() - resultRank; 696 if (rankDiff > 0) { 697 auto shape = inferredType.getShape(); 698 llvm::SmallDenseSet<unsigned> dimsToProject; 699 mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject); 700 SmallVector<int64_t> projectedShape; 701 for (unsigned pos = 0, e = shape.size(); pos < e; ++pos) 702 if (!dimsToProject.contains(pos)) 703 projectedShape.push_back(shape[pos]); 704 inferredType = 705 RankedTensorType::get(projectedShape, inferredType.getElementType()); 706 } 707 return inferredType; 708 } 709 710 Type ExtractSliceOp::inferRankReducedResultType( 711 unsigned resultRank, RankedTensorType sourceRankedTensorType, 712 ArrayRef<OpFoldResult> leadingStaticOffsets, 713 ArrayRef<OpFoldResult> leadingStaticSizes, 714 ArrayRef<OpFoldResult> leadingStaticStrides) { 715 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 716 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 717 dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets, 718 staticOffsets, ShapedType::kDynamicStrideOrOffset); 719 dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes, 720 ShapedType::kDynamicSize); 721 dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides, 722 staticStrides, ShapedType::kDynamicStrideOrOffset); 723 return ExtractSliceOp::inferRankReducedResultType( 724 resultRank, sourceRankedTensorType, staticOffsets, staticSizes, 725 staticStrides); 726 } 727 728 /// Build an ExtractSliceOp with mixed static and dynamic entries and custom 729 /// result type. If the type passed is nullptr, it is inferred. 730 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, 731 RankedTensorType resultType, Value source, 732 ArrayRef<OpFoldResult> offsets, 733 ArrayRef<OpFoldResult> sizes, 734 ArrayRef<OpFoldResult> strides, 735 ArrayRef<NamedAttribute> attrs) { 736 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 737 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 738 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 739 ShapedType::kDynamicStrideOrOffset); 740 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 741 ShapedType::kDynamicSize); 742 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 743 ShapedType::kDynamicStrideOrOffset); 744 auto sourceRankedTensorType = source.getType().cast<RankedTensorType>(); 745 // Structuring implementation this way avoids duplication between builders. 746 if (!resultType) { 747 resultType = 748 ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets, 749 staticSizes, staticStrides) 750 .cast<RankedTensorType>(); 751 } 752 build(b, result, resultType, source, dynamicOffsets, dynamicSizes, 753 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 754 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 755 result.addAttributes(attrs); 756 } 757 758 /// Build an ExtractSliceOp with mixed static and dynamic entries and inferred 759 /// result type. 760 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, 761 ArrayRef<OpFoldResult> offsets, 762 ArrayRef<OpFoldResult> sizes, 763 ArrayRef<OpFoldResult> strides, 764 ArrayRef<NamedAttribute> attrs) { 765 build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); 766 } 767 768 /// Build an ExtractSliceOp with dynamic entries and custom result type. If the 769 /// type passed is nullptr, it is inferred. 770 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, 771 RankedTensorType resultType, Value source, 772 ValueRange offsets, ValueRange sizes, 773 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 774 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 775 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 776 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 777 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 778 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 779 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 780 build(b, result, resultType, source, offsetValues, sizeValues, strideValues); 781 } 782 783 /// Build an ExtractSliceOp with dynamic entries and inferred result type. 784 void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source, 785 ValueRange offsets, ValueRange sizes, 786 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 787 build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs); 788 } 789 790 enum SliceVerificationResult { 791 Success, 792 RankTooLarge, 793 SizeMismatch, 794 ElemTypeMismatch, 795 }; 796 797 /// Checks if `original` Type type can be rank reduced to `reduced` type. 798 /// This function is slight variant of `is subsequence` algorithm where 799 /// not matching dimension must be 1. 800 static SliceVerificationResult 801 isRankReducedType(Type originalType, Type candidateReducedType, 802 std::string *errMsg = nullptr) { 803 if (originalType == candidateReducedType) 804 return SliceVerificationResult::Success; 805 if (!originalType.isa<RankedTensorType>()) 806 return SliceVerificationResult::Success; 807 if (originalType.isa<RankedTensorType>() && 808 !candidateReducedType.isa<RankedTensorType>()) 809 return SliceVerificationResult::Success; 810 811 ShapedType originalShapedType = originalType.cast<ShapedType>(); 812 ShapedType candidateReducedShapedType = 813 candidateReducedType.cast<ShapedType>(); 814 815 // Rank and size logic is valid for all ShapedTypes. 816 ArrayRef<int64_t> originalShape = originalShapedType.getShape(); 817 ArrayRef<int64_t> candidateReducedShape = 818 candidateReducedShapedType.getShape(); 819 unsigned originalRank = originalShape.size(), 820 candidateReducedRank = candidateReducedShape.size(); 821 if (candidateReducedRank > originalRank) 822 return SliceVerificationResult::RankTooLarge; 823 824 auto optionalUnusedDimsMask = 825 computeRankReductionMask(originalShape, candidateReducedShape); 826 827 // Sizes cannot be matched in case empty vector is returned. 828 if (!optionalUnusedDimsMask.hasValue()) 829 return SliceVerificationResult::SizeMismatch; 830 831 if (originalShapedType.getElementType() != 832 candidateReducedShapedType.getElementType()) 833 return SliceVerificationResult::ElemTypeMismatch; 834 835 // We are done for the tensor case. 836 if (originalType.isa<RankedTensorType>()) 837 return SliceVerificationResult::Success; 838 839 return SliceVerificationResult::Success; 840 } 841 842 template <typename OpTy> 843 static LogicalResult produceSliceErrorMsg(SliceVerificationResult result, 844 OpTy op, Type expectedType, 845 StringRef errMsg = "") { 846 auto memrefType = expectedType.cast<ShapedType>(); 847 switch (result) { 848 case SliceVerificationResult::Success: 849 return success(); 850 case SliceVerificationResult::RankTooLarge: 851 return op.emitError("expected result rank to be smaller or equal to ") 852 << "the source rank. " << errMsg; 853 case SliceVerificationResult::SizeMismatch: 854 return op.emitError("expected result type to be ") 855 << expectedType 856 << " or a rank-reduced version. (mismatch of result sizes) " 857 << errMsg; 858 case SliceVerificationResult::ElemTypeMismatch: 859 return op.emitError("expected result element type to be ") 860 << memrefType.getElementType() << errMsg; 861 } 862 llvm_unreachable("unexpected extract_slice op verification result"); 863 } 864 865 /// Verifier for ExtractSliceOp. 866 static LogicalResult verify(ExtractSliceOp op) { 867 // Verify result type against inferred type. 868 auto expectedType = ExtractSliceOp::inferResultType( 869 op.getSourceType(), extractFromI64ArrayAttr(op.static_offsets()), 870 extractFromI64ArrayAttr(op.static_sizes()), 871 extractFromI64ArrayAttr(op.static_strides())); 872 auto result = isRankReducedType(expectedType, op.getType()); 873 return produceSliceErrorMsg(result, op, expectedType); 874 } 875 876 /// Infer the canonical type of the result of an extract_slice op. Returns a 877 /// type with rank `resultRank` that is either the rank of the rank-reduced 878 /// type, or the non-rank-reduced type. 879 static RankedTensorType 880 getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType, 881 ArrayRef<OpFoldResult> mixedOffsets, 882 ArrayRef<OpFoldResult> mixedSizes, 883 ArrayRef<OpFoldResult> mixedStrides) { 884 auto resultType = 885 ExtractSliceOp::inferRankReducedResultType( 886 resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides) 887 .cast<RankedTensorType>(); 888 if (resultType.getRank() != resultRank) { 889 resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets, 890 mixedSizes, mixedStrides) 891 .cast<RankedTensorType>(); 892 } 893 return resultType; 894 } 895 896 namespace { 897 /// Pattern to rewrite an extract_slice op with tensor::Cast arguments. 898 /// This essentially pushes memref_cast past its consuming slice when 899 /// `canFoldIntoConsumerOp` is true. 900 /// 901 /// Example: 902 /// ``` 903 /// %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32> 904 /// %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to 905 /// tensor<3x4xf32> 906 /// ``` 907 /// is rewritten into: 908 /// ``` 909 /// %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to 910 /// tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32> 911 /// ``` 912 class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> { 913 public: 914 using OpRewritePattern<ExtractSliceOp>::OpRewritePattern; 915 916 LogicalResult matchAndRewrite(ExtractSliceOp sliceOp, 917 PatternRewriter &rewriter) const override { 918 // Any constant operand, just return to let SubViewOpConstantFolder kick in. 919 if (llvm::any_of(sliceOp.getOperands(), [](Value operand) { 920 return matchPattern(operand, matchConstantIndex()); 921 })) 922 return failure(); 923 924 auto castOp = sliceOp.source().getDefiningOp<tensor::CastOp>(); 925 if (!castOp) 926 return failure(); 927 928 if (!canFoldIntoConsumerOp(castOp)) 929 return failure(); 930 931 /// Deduce the type of the result to use for the canonicalized operation. 932 RankedTensorType resultType = getCanonicalSliceResultType( 933 sliceOp.getType().getRank(), sliceOp.getSourceType(), 934 sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(), 935 sliceOp.getMixedStrides()); 936 Value newSlice = rewriter.create<ExtractSliceOp>( 937 sliceOp.getLoc(), resultType, castOp.source(), sliceOp.offsets(), 938 sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(), 939 sliceOp.static_sizes(), sliceOp.static_strides()); 940 rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(), 941 newSlice); 942 return success(); 943 } 944 }; 945 } // namespace 946 947 /// Return the canonical type of the result of an extract_slice op. 948 struct SliceReturnTypeCanonicalizer { 949 RankedTensorType operator()(ExtractSliceOp op, 950 ArrayRef<OpFoldResult> mixedOffsets, 951 ArrayRef<OpFoldResult> mixedSizes, 952 ArrayRef<OpFoldResult> mixedStrides) { 953 return getCanonicalSliceResultType(op.getType().getRank(), 954 op.getSourceType(), mixedOffsets, 955 mixedSizes, mixedStrides); 956 } 957 }; 958 959 /// A canonicalizer wrapper to replace ExtractSliceOps. 960 struct SliceCanonicalizer { 961 void operator()(PatternRewriter &rewriter, ExtractSliceOp op, 962 ExtractSliceOp newOp) { 963 Value replacement = newOp.getResult(); 964 if (replacement.getType() != op.getType()) 965 replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(), 966 replacement); 967 rewriter.replaceOp(op, replacement); 968 } 969 }; 970 971 void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, 972 MLIRContext *context) { 973 results.add< 974 OpWithOffsetSizesAndStridesConstantArgumentFolder< 975 ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>, 976 ExtractSliceOpCastFolder>(context); 977 } 978 979 // 980 static LogicalResult 981 foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op, 982 ShapedType shapedType) { 983 OpBuilder b(op.getContext()); 984 for (OpFoldResult ofr : op.getMixedOffsets()) 985 if (getConstantIntValue(ofr) != static_cast<int64_t>(0)) 986 return failure(); 987 // Rank-reducing noops only need to inspect the leading dimensions: llvm::zip 988 // is appropriate. 989 auto shape = shapedType.getShape(); 990 for (auto it : llvm::zip(op.getMixedSizes(), shape)) 991 if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it)) 992 return failure(); 993 for (OpFoldResult ofr : op.getMixedStrides()) 994 if (getConstantIntValue(ofr) != static_cast<int64_t>(1)) 995 return failure(); 996 return success(); 997 } 998 999 OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute>) { 1000 if (getSourceType() == getType() && 1001 succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) 1002 return this->source(); 1003 return OpFoldResult(); 1004 } 1005 1006 //===----------------------------------------------------------------------===// 1007 // InsertSliceOp 1008 //===----------------------------------------------------------------------===// 1009 1010 // Build a InsertSliceOp with mixed static and dynamic entries. 1011 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1012 Value dest, ArrayRef<OpFoldResult> offsets, 1013 ArrayRef<OpFoldResult> sizes, 1014 ArrayRef<OpFoldResult> strides, 1015 ArrayRef<NamedAttribute> attrs) { 1016 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1017 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1018 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1019 ShapedType::kDynamicStrideOrOffset); 1020 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1021 ShapedType::kDynamicSize); 1022 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1023 ShapedType::kDynamicStrideOrOffset); 1024 build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes, 1025 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1026 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1027 result.addAttributes(attrs); 1028 } 1029 1030 // Build a InsertSliceOp with dynamic entries. 1031 void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source, 1032 Value dest, ValueRange offsets, ValueRange sizes, 1033 ValueRange strides, ArrayRef<NamedAttribute> attrs) { 1034 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1035 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 1036 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1037 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1038 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1039 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1040 build(b, result, source, dest, offsetValues, sizeValues, strideValues); 1041 } 1042 1043 OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) { 1044 if (getSourceType().hasStaticShape() && getType().hasStaticShape() && 1045 getSourceType() == getType() && 1046 succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType()))) 1047 return this->source(); 1048 return OpFoldResult(); 1049 } 1050 1051 namespace { 1052 /// Pattern to rewrite a insert_slice op with constant arguments. 1053 class InsertSliceOpConstantArgumentFolder final 1054 : public OpRewritePattern<InsertSliceOp> { 1055 public: 1056 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1057 1058 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1059 PatternRewriter &rewriter) const override { 1060 // No constant operand, just return. 1061 if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) { 1062 return matchPattern(operand, matchConstantIndex()); 1063 })) 1064 return failure(); 1065 1066 // At least one of offsets/sizes/strides is a new constant. 1067 // Form the new list of operands and constant attributes from the 1068 // existing. 1069 SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets()); 1070 SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes()); 1071 SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides()); 1072 canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset); 1073 canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic); 1074 canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset); 1075 1076 // Create the new op in canonical form. 1077 rewriter.replaceOpWithNewOp<InsertSliceOp>( 1078 insertSliceOp, insertSliceOp.source(), insertSliceOp.dest(), 1079 mixedOffsets, mixedSizes, mixedStrides); 1080 return success(); 1081 } 1082 }; 1083 1084 /// Fold tensor_casts with insert_slice operations. 1085 struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertSliceOp> { 1086 using OpRewritePattern<InsertSliceOp>::OpRewritePattern; 1087 1088 LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp, 1089 PatternRewriter &rewriter) const override { 1090 if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) { 1091 return matchPattern(operand, matchConstantIndex()); 1092 })) 1093 return failure(); 1094 1095 auto getSourceOfCastOp = [](Value v) -> Optional<Value> { 1096 auto castOp = v.getDefiningOp<tensor::CastOp>(); 1097 if (!castOp || !canFoldIntoConsumerOp(castOp)) 1098 return llvm::None; 1099 return castOp.source(); 1100 }; 1101 Optional<Value> sourceCastSource = 1102 getSourceOfCastOp(insertSliceOp.source()); 1103 Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.dest()); 1104 if (!sourceCastSource && !destCastSource) 1105 return failure(); 1106 1107 Value replacement = rewriter.create<InsertSliceOp>( 1108 insertSliceOp.getLoc(), 1109 (sourceCastSource ? *sourceCastSource : insertSliceOp.source()), 1110 (destCastSource ? *destCastSource : insertSliceOp.dest()), 1111 insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(), 1112 insertSliceOp.getMixedStrides()); 1113 1114 if (replacement.getType() != insertSliceOp.getType()) { 1115 replacement = rewriter.create<tensor::CastOp>( 1116 insertSliceOp.getLoc(), insertSliceOp.getType(), replacement); 1117 } 1118 rewriter.replaceOp(insertSliceOp, replacement); 1119 return success(); 1120 } 1121 }; 1122 } // namespace 1123 1124 void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results, 1125 MLIRContext *context) { 1126 results.add<InsertSliceOpConstantArgumentFolder, InsertSliceOpCastFolder>( 1127 context); 1128 } 1129 1130 //===----------------------------------------------------------------------===// 1131 // TableGen'd op method definitions 1132 //===----------------------------------------------------------------------===// 1133 1134 #define GET_OP_CLASSES 1135 #include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc" 1136