1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Tensor/IR/Tensor.h" 10 #include "mlir/IR/BlockAndValueMapping.h" 11 #include "mlir/IR/Builders.h" 12 #include "mlir/IR/Matchers.h" 13 #include "mlir/IR/PatternMatch.h" 14 #include "mlir/IR/TypeUtilities.h" 15 #include "llvm/ADT/STLExtras.h" 16 17 using namespace mlir; 18 using namespace mlir::tensor; 19 20 //===----------------------------------------------------------------------===// 21 // CastOp 22 //===----------------------------------------------------------------------===// 23 24 /// Determines whether tensor::CastOp casts to a more dynamic version of the 25 /// source tensor. This is useful to fold a tensor.cast into a consuming op and 26 /// implement canonicalization patterns for ops in different dialects that may 27 /// consume the results of tensor.cast operations. Such foldable tensor.cast 28 /// operations are typically inserted as `subtensor` ops and are canonicalized, 29 /// to preserve the type compatibility of their uses. 30 /// 31 /// Returns true when all conditions are met: 32 /// 1. source and result are ranked tensors with same element type and rank. 33 /// 2. the tensor type has more static information than the result 34 /// 35 /// Example: 36 /// ```mlir 37 /// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32> 38 /// %2 = consumer %1 ... : tensor<?x?xf32> ... 39 /// ``` 40 /// 41 /// folds into: 42 /// 43 /// ```mlir 44 /// %2 = consumer %0 ... : tensor<8x16xf32> ... 45 /// ``` 46 bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) { 47 if (!castOp) 48 return false; 49 50 RankedTensorType sourceType = 51 castOp.source().getType().dyn_cast<RankedTensorType>(); 52 RankedTensorType resultType = castOp.getType().dyn_cast<RankedTensorType>(); 53 54 // Requires RankedTensorType. 55 if (!sourceType || !resultType) 56 return false; 57 58 // Requires same elemental type. 59 if (sourceType.getElementType() != resultType.getElementType()) 60 return false; 61 62 // Requires same rank. 63 if (sourceType.getRank() != resultType.getRank()) 64 return false; 65 66 // If cast is towards more static sizes along any dimension, don't fold. 67 for (auto t : llvm::zip(sourceType.getShape(), resultType.getShape())) { 68 if (ShapedType::isDynamic(std::get<0>(t)) && 69 !ShapedType::isDynamic(std::get<1>(t))) 70 return false; 71 } 72 73 return true; 74 } 75 76 bool CastOp::areCastCompatible(Type a, Type b) { 77 auto aT = a.dyn_cast<TensorType>(); 78 auto bT = b.dyn_cast<TensorType>(); 79 if (!aT || !bT) 80 return false; 81 82 if (aT.getElementType() != bT.getElementType()) 83 return false; 84 85 return succeeded(verifyCompatibleShape(aT, bT)); 86 } 87 88 OpFoldResult CastOp::fold(ArrayRef<Attribute> operands) { 89 return impl::foldCastOp(*this); 90 } 91 92 /// Compute a TensorType that has the joined shape knowledge of the two 93 /// given TensorTypes. The element types need to match. 94 static TensorType joinShapes(TensorType one, TensorType two) { 95 assert(one.getElementType() == two.getElementType()); 96 97 if (!one.hasRank()) 98 return two; 99 if (!two.hasRank()) 100 return one; 101 102 int64_t rank = one.getRank(); 103 if (rank != two.getRank()) 104 return {}; 105 106 SmallVector<int64_t, 4> join; 107 join.reserve(rank); 108 for (int64_t i = 0; i < rank; ++i) { 109 if (one.isDynamicDim(i)) { 110 join.push_back(two.getDimSize(i)); 111 continue; 112 } 113 if (two.isDynamicDim(i)) { 114 join.push_back(one.getDimSize(i)); 115 continue; 116 } 117 if (one.getDimSize(i) != two.getDimSize(i)) 118 return {}; 119 join.push_back(one.getDimSize(i)); 120 } 121 return RankedTensorType::get(join, one.getElementType()); 122 } 123 124 namespace { 125 126 /// Replaces chains of two tensor.cast operations by a single tensor.cast 127 /// operation if doing so does not remove runtime constraints. 128 struct ChainedTensorCast : public OpRewritePattern<CastOp> { 129 using OpRewritePattern<CastOp>::OpRewritePattern; 130 131 LogicalResult matchAndRewrite(CastOp tensorCast, 132 PatternRewriter &rewriter) const final { 133 auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>(); 134 135 if (!tensorCastOperand) 136 return failure(); 137 138 auto sourceType = 139 tensorCastOperand.getOperand().getType().cast<TensorType>(); 140 auto intermediateType = tensorCastOperand.getType().cast<TensorType>(); 141 auto resultType = tensorCast.getType().cast<TensorType>(); 142 143 // We can remove the intermediate cast if joining all three produces the 144 // same result as just joining the source and result shapes. 145 auto firstJoin = 146 joinShapes(joinShapes(sourceType, intermediateType), resultType); 147 148 // The join might not exist if the cast sequence would fail at runtime. 149 if (!firstJoin) 150 return failure(); 151 152 // The newJoin always exists if the above join exists, it might just contain 153 // less information. If so, we cannot drop the intermediate cast, as doing 154 // so would remove runtime checks. 155 auto newJoin = joinShapes(sourceType, resultType); 156 if (firstJoin != newJoin) 157 return failure(); 158 159 rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType, 160 tensorCastOperand.getOperand()); 161 return success(); 162 } 163 }; 164 165 } // namespace 166 167 void CastOp::getCanonicalizationPatterns(OwningRewritePatternList &results, 168 MLIRContext *context) { 169 results.insert<ChainedTensorCast>(context); 170 } 171 172 //===----------------------------------------------------------------------===// 173 // ExtractOp 174 //===----------------------------------------------------------------------===// 175 176 static LogicalResult verify(ExtractOp op) { 177 // Verify the # indices match if we have a ranked type. 178 if (auto tensorType = op.tensor().getType().dyn_cast<RankedTensorType>()) 179 if (tensorType.getRank() != static_cast<int64_t>(op.indices().size())) 180 return op.emitOpError("incorrect number of indices for extract_element"); 181 182 return success(); 183 } 184 185 OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) { 186 // The tensor operand must be a known constant. 187 Attribute tensor = operands.front(); 188 if (!tensor) 189 return {}; 190 // If this is a splat elements attribute, simply return the value. All of the 191 // elements of a splat attribute are the same. 192 if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>()) 193 return splatTensor.getSplatValue(); 194 195 // Otherwise, collect the constant indices into the tensor. 196 SmallVector<uint64_t, 8> indices; 197 for (Attribute indice : llvm::drop_begin(operands, 1)) { 198 if (!indice || !indice.isa<IntegerAttr>()) 199 return {}; 200 indices.push_back(indice.cast<IntegerAttr>().getInt()); 201 } 202 203 // If this is an elements attribute, query the value at the given indices. 204 auto elementsAttr = tensor.dyn_cast<ElementsAttr>(); 205 if (elementsAttr && elementsAttr.isValidIndex(indices)) 206 return elementsAttr.getValue(indices); 207 return {}; 208 } 209 210 //===----------------------------------------------------------------------===// 211 // FromElementsOp 212 //===----------------------------------------------------------------------===// 213 214 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 215 Type elementType, ValueRange elements) { 216 Type resultTy = RankedTensorType::get({static_cast<int64_t>(elements.size())}, 217 elementType); 218 result.addOperands(elements); 219 result.addTypes(resultTy); 220 } 221 222 void FromElementsOp::build(OpBuilder &builder, OperationState &result, 223 ValueRange elements) { 224 assert(!elements.empty() && "expected at least one element"); 225 build(builder, result, elements.front().getType(), elements); 226 } 227 228 namespace { 229 230 // Canonicalizes the pattern of the form 231 // 232 // %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32> 233 // %extracted_element = tensor.extract %tensor[%c0] : tensor<1xi32> 234 // 235 // to just %element. 236 struct ExtractElementFromTensorFromElements 237 : public OpRewritePattern<tensor::ExtractOp> { 238 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 239 240 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 241 PatternRewriter &rewriter) const final { 242 if (extract.indices().size() != 1) 243 return failure(); 244 245 auto tensorFromElements = extract.tensor().getDefiningOp<FromElementsOp>(); 246 if (tensorFromElements == nullptr) 247 return failure(); 248 249 APInt index; 250 if (!matchPattern(*extract.indices().begin(), m_ConstantInt(&index))) 251 return failure(); 252 rewriter.replaceOp(extract, 253 tensorFromElements.getOperand(index.getZExtValue())); 254 return success(); 255 } 256 }; 257 258 } // namespace 259 260 void FromElementsOp::getCanonicalizationPatterns( 261 OwningRewritePatternList &results, MLIRContext *context) { 262 results.insert<ExtractElementFromTensorFromElements>(context); 263 } 264 265 //===----------------------------------------------------------------------===// 266 // GenerateOp 267 //===----------------------------------------------------------------------===// 268 269 static LogicalResult verify(GenerateOp op) { 270 // Ensure that the tensor type has as many dynamic dimensions as are specified 271 // by the operands. 272 RankedTensorType resultTy = op.getType().cast<RankedTensorType>(); 273 if (op.getNumOperands() != resultTy.getNumDynamicDims()) 274 return op.emitError("must have as many index operands as dynamic extents " 275 "in the result type"); 276 277 // Ensure that region arguments span the index space. 278 if (!llvm::all_of(op.body().getArgumentTypes(), 279 [](Type ty) { return ty.isIndex(); })) 280 return op.emitError("all body arguments must be index"); 281 if (op.body().getNumArguments() != resultTy.getRank()) 282 return op.emitError("must have one body argument per input dimension"); 283 284 // Ensure that the region yields an element of the right type. 285 auto yieldOp = 286 llvm::cast<YieldOp>(op.body().getBlocks().front().getTerminator()); 287 if (yieldOp.value().getType() != resultTy.getElementType()) 288 return op.emitOpError( 289 "body must be terminated with a `yield` operation of the tensor " 290 "element type"); 291 292 return success(); 293 } 294 295 void GenerateOp::build( 296 OpBuilder &b, OperationState &result, Type resultTy, 297 ValueRange dynamicExtents, 298 function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) { 299 build(b, result, resultTy, dynamicExtents); 300 301 // Build and populate body. 302 OpBuilder::InsertionGuard guard(b); 303 Region *bodyRegion = result.regions.front().get(); 304 auto rank = resultTy.cast<RankedTensorType>().getRank(); 305 SmallVector<Type, 2> argumentTypes(rank, b.getIndexType()); 306 Block *bodyBlock = 307 b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes); 308 bodyBuilder(b, result.location, bodyBlock->getArguments()); 309 } 310 311 namespace { 312 313 /// Canonicalizes tensor.generate operations with a constant 314 /// operand into the equivalent operation with the operand expressed in the 315 /// result type, instead. We also insert a type cast to make sure that the 316 /// resulting IR is still well-typed. 317 struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> { 318 using OpRewritePattern<GenerateOp>::OpRewritePattern; 319 320 LogicalResult matchAndRewrite(GenerateOp tensorFromElements, 321 PatternRewriter &rewriter) const final { 322 auto resultType = 323 tensorFromElements.getResult().getType().cast<RankedTensorType>(); 324 325 if (resultType.hasStaticShape()) 326 return failure(); 327 328 SmallVector<Value, 4> newOperands; 329 SmallVector<int64_t, 4> newShape; 330 auto operandsIt = tensorFromElements.dynamicExtents().begin(); 331 332 for (int64_t dim : resultType.getShape()) { 333 if (dim != RankedTensorType::kDynamicSize) { 334 newShape.push_back(dim); 335 continue; 336 } 337 APInt index; 338 if (!matchPattern(*operandsIt, m_ConstantInt(&index))) { 339 newShape.push_back(RankedTensorType::kDynamicSize); 340 newOperands.push_back(*operandsIt++); 341 continue; 342 } 343 newShape.push_back(index.getSExtValue()); 344 operandsIt++; 345 } 346 347 if (newOperands.size() == tensorFromElements.dynamicExtents().size()) 348 return failure(); 349 350 auto loc = tensorFromElements.getLoc(); 351 auto newOp = rewriter.create<GenerateOp>( 352 loc, RankedTensorType::get(newShape, resultType.getElementType()), 353 newOperands); 354 rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(), 355 newOp.body().begin()); 356 rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType, 357 newOp); 358 return success(); 359 } 360 }; 361 362 /// Canonicalizes the pattern of the form 363 /// 364 /// %tensor = tensor.generate %x { 365 /// ^bb0(%arg0: index): // no predecessors 366 /// <computation> 367 /// yield %1 : index 368 /// } : tensor<?xindex> 369 /// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32> 370 /// 371 /// to just <computation> with %arg0 replaced by %c0. We only do this if the 372 /// tensor.generate operation has no side-effects. 373 struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> { 374 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 375 376 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 377 PatternRewriter &rewriter) const final { 378 auto tensorFromElements = extract.tensor().getDefiningOp<GenerateOp>(); 379 if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements)) 380 return failure(); 381 382 BlockAndValueMapping mapping; 383 Block *body = tensorFromElements.getBody(); 384 mapping.map(body->getArguments(), extract.indices()); 385 for (auto &op : body->without_terminator()) 386 rewriter.clone(op, mapping); 387 388 auto yield = cast<YieldOp>(body->getTerminator()); 389 390 rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value())); 391 return success(); 392 } 393 }; 394 395 /// Canonicalizes the pattern of the form 396 /// 397 /// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32> 398 /// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32> 399 /// 400 /// to 401 /// 402 /// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32> 403 struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> { 404 using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern; 405 406 LogicalResult matchAndRewrite(tensor::ExtractOp extract, 407 PatternRewriter &rewriter) const final { 408 auto tensorCast = extract.tensor().getDefiningOp<tensor::CastOp>(); 409 if (!tensorCast) 410 return failure(); 411 412 rewriter.replaceOpWithNewOp<tensor::ExtractOp>(extract, tensorCast.source(), 413 extract.indices()); 414 return success(); 415 } 416 }; 417 418 } // namespace 419 420 void GenerateOp::getCanonicalizationPatterns(OwningRewritePatternList &results, 421 MLIRContext *context) { 422 // TODO: Move extract patterns to tensor::ExtractOp. 423 results.insert<ExtractFromTensorGenerate, ExtractFromTensorCast, 424 StaticTensorGenerate>(context); 425 } 426 427 //===----------------------------------------------------------------------===// 428 // TableGen'd op method definitions 429 //===----------------------------------------------------------------------===// 430 431 #define GET_OP_CLASSES 432 #include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc" 433