1 //===- Merger.cpp - Implementation of iteration lattices ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/SparseTensor/Utils/Merger.h" 10 11 #include "mlir/IR/Operation.h" 12 #include "llvm/Support/Debug.h" 13 14 namespace mlir { 15 namespace sparse_tensor { 16 17 // 18 // Lattice methods. 19 // 20 21 unsigned Merger::addExp(Kind k, unsigned e0, unsigned e1, Value v) { 22 unsigned e = tensorExps.size(); 23 tensorExps.push_back(TensorExp(k, e0, e1, v)); 24 return e; 25 } 26 27 unsigned Merger::addLat(unsigned t, unsigned i, unsigned e) { 28 assert(t < numTensors && i < numLoops); 29 unsigned p = latPoints.size(); 30 latPoints.push_back(LatPoint(numLoops * numTensors, e, numTensors * i + t)); 31 return p; 32 } 33 34 unsigned Merger::addSet() { 35 unsigned s = latSets.size(); 36 latSets.emplace_back(SmallVector<unsigned, 16>()); 37 return s; 38 } 39 40 unsigned Merger::conjLatPoint(Kind kind, unsigned p0, unsigned p1) { 41 unsigned p = latPoints.size(); 42 llvm::BitVector nb = llvm::BitVector(latPoints[p0].bits); 43 nb |= latPoints[p1].bits; 44 unsigned e = addExp(kind, latPoints[p0].exp, latPoints[p1].exp); 45 latPoints.push_back(LatPoint(nb, e)); 46 return p; 47 } 48 49 unsigned Merger::takeConj(Kind kind, unsigned s0, unsigned s1) { 50 unsigned s = addSet(); 51 for (unsigned p0 : latSets[s0]) 52 for (unsigned p1 : latSets[s1]) 53 latSets[s].push_back(conjLatPoint(kind, p0, p1)); 54 return s; 55 } 56 57 unsigned Merger::takeDisj(Kind kind, unsigned s0, unsigned s1) { 58 unsigned s = takeConj(kind, s0, s1); 59 for (unsigned p : latSets[s0]) 60 latSets[s].push_back(p); 61 for (unsigned p : latSets[s1]) 62 latSets[s].push_back(p); 63 return s; 64 } 65 66 unsigned Merger::optimizeSet(unsigned s0) { 67 unsigned s = addSet(); 68 assert(latSets[s0].size() != 0); 69 unsigned p0 = latSets[s0][0]; 70 for (unsigned p1 : latSets[s0]) { 71 bool add = true; 72 if (p0 != p1) { 73 // Is this a straightforward copy? 74 unsigned e = latPoints[p1].exp; 75 if (tensorExps[e].kind == Kind::kTensor && tensorExps[e].e0 == outTensor) 76 continue; 77 // Conjunction already covered? 78 for (unsigned p2 : latSets[s]) { 79 assert(!latGT(p1, p2)); // Lj => Li would be bad 80 if (onlyDenseDiff(p2, p1)) { 81 add = false; 82 break; 83 } 84 } 85 assert(!add || latGT(p0, p1)); 86 } 87 if (add) 88 latSets[s].push_back(p1); 89 } 90 for (unsigned p : latSets[s]) 91 latPoints[p].simple = simplifyCond(s, p); 92 return s; 93 } 94 95 llvm::BitVector Merger::simplifyCond(unsigned s, unsigned p0) { 96 // First determine if this lattice point is a *singleton*, i.e., 97 // the last point in a lattice, no other is less than this one. 98 bool isSingleton = true; 99 for (unsigned p1 : latSets[s]) { 100 if (p0 != p1 && latGT(p0, p1)) { 101 isSingleton = false; 102 break; 103 } 104 } 105 // Now apply the two basic rules. 106 llvm::BitVector simple = latPoints[p0].bits; 107 bool reset = isSingleton && hasAnyDimOf(simple, Dim::kSparse); 108 for (unsigned b = 0, be = simple.size(); b < be; b++) { 109 if (simple[b] && !isDim(b, Dim::kSparse)) { 110 if (reset) 111 simple.reset(b); 112 reset = true; 113 } 114 } 115 return simple; 116 } 117 118 bool Merger::latGT(unsigned i, unsigned j) const { 119 const llvm::BitVector &bitsi = latPoints[i].bits; 120 const llvm::BitVector &bitsj = latPoints[j].bits; 121 assert(bitsi.size() == bitsj.size()); 122 if (bitsi.count() > bitsj.count()) { 123 for (unsigned b = 0, be = bitsj.size(); b < be; b++) 124 if (bitsj[b] && !bitsi[b]) 125 return false; 126 return true; 127 } 128 return false; 129 } 130 131 bool Merger::onlyDenseDiff(unsigned i, unsigned j) { 132 llvm::BitVector tmp = latPoints[j].bits; 133 tmp ^= latPoints[i].bits; 134 return !hasAnyDimOf(tmp, Dim::kSparse); 135 } 136 137 bool Merger::hasAnyDimOf(const llvm::BitVector &bits, Dim d) const { 138 for (unsigned b = 0, be = bits.size(); b < be; b++) 139 if (bits[b] && isDim(b, d)) 140 return true; 141 return false; 142 } 143 144 #ifndef NDEBUG 145 146 // 147 // Print methods (for debugging). 148 // 149 150 void Merger::dumpExp(unsigned e) const { 151 switch (tensorExps[e].kind) { 152 case Kind::kTensor: 153 if (tensorExps[e].e0 == syntheticTensor) 154 llvm::dbgs() << "synthetic_"; 155 else if (tensorExps[e].e0 == outTensor) 156 llvm::dbgs() << "output_"; 157 llvm::dbgs() << "tensor_" << tensorExps[e].e0; 158 break; 159 case Kind::kInvariant: 160 llvm::dbgs() << "invariant"; 161 break; 162 default: 163 case Kind::kMulI: 164 llvm::dbgs() << "("; 165 dumpExp(tensorExps[e].e0); 166 llvm::dbgs() << " * "; 167 dumpExp(tensorExps[e].e1); 168 llvm::dbgs() << ")"; 169 break; 170 case Kind::kAddF: 171 case Kind::kAddI: 172 llvm::dbgs() << "("; 173 dumpExp(tensorExps[e].e0); 174 llvm::dbgs() << " + "; 175 dumpExp(tensorExps[e].e1); 176 llvm::dbgs() << ")"; 177 break; 178 } 179 } 180 181 void Merger::dumpLat(unsigned p) const { 182 llvm::dbgs() << "lat("; 183 dumpBits(latPoints[p].bits); 184 llvm::dbgs() << " :"; 185 dumpBits(latPoints[p].simple); 186 llvm::dbgs() << " / "; 187 dumpExp(latPoints[p].exp); 188 llvm::dbgs() << " )\n"; 189 } 190 191 void Merger::dumpSet(unsigned s) const { 192 llvm::dbgs() << "{ #" << latSets[s].size() << "\n"; 193 for (unsigned p : latSets[s]) { 194 llvm::dbgs() << " "; 195 dumpLat(p); 196 } 197 llvm::dbgs() << "}\n"; 198 } 199 200 void Merger::dumpBits(const llvm::BitVector &bits) const { 201 for (unsigned b = 0, be = bits.size(); b < be; b++) { 202 if (bits[b]) { 203 unsigned t = tensor(b); 204 unsigned i = index(b); 205 llvm::dbgs() << " i_" << t << "_" << i << "_"; 206 switch (dims[t][i]) { 207 case Dim::kSparse: 208 llvm::dbgs() << "S"; 209 break; 210 case Dim::kDense: 211 llvm::dbgs() << "D"; 212 break; 213 case Dim::kSingle: 214 llvm::dbgs() << "T"; 215 break; 216 case Dim::kUndef: 217 llvm::dbgs() << "U"; 218 break; 219 } 220 } 221 } 222 } 223 224 #endif // NDEBUG 225 226 // 227 // Builder methods. 228 // 229 230 unsigned Merger::buildLattices(unsigned e, unsigned idx) { 231 Kind kind = tensorExps[e].kind; 232 if (kind == Kind::kTensor || kind == Kind::kInvariant) { 233 // Either the index is really used in the tensor expression, or it is 234 // set to the undefined index in that dimension. An invariant expression 235 // is set to a synthetic tensor with undefined indices only. 236 unsigned s = addSet(); 237 unsigned t = kind == Kind::kTensor ? tensorExps[e].e0 : syntheticTensor; 238 latSets[s].push_back(addLat(t, idx, e)); 239 return s; 240 } 241 unsigned s0 = buildLattices(tensorExps[e].e0, idx); 242 unsigned s1 = buildLattices(tensorExps[e].e1, idx); 243 switch (kind) { 244 case Kind::kTensor: 245 case Kind::kInvariant: 246 llvm_unreachable("handled above"); 247 case Kind::kMulF: 248 case Kind::kMulI: 249 return takeConj(kind, s0, s1); 250 case Kind::kAddF: 251 case Kind::kAddI: 252 return takeDisj(kind, s0, s1); 253 } 254 llvm_unreachable("unexpected expression kind"); 255 } 256 257 Optional<unsigned> Merger::buildTensorExpFromLinalg(linalg::GenericOp op) { 258 Operation *yield = op.region().front().getTerminator(); 259 return buildTensorExp(op, yield->getOperand(0)); 260 } 261 262 Optional<unsigned> Merger::buildTensorExp(linalg::GenericOp op, Value val) { 263 if (auto arg = val.dyn_cast<BlockArgument>()) { 264 unsigned argN = arg.getArgNumber(); 265 // Any argument of the generic op that is not marked as a scalar 266 // argument is considered a tensor, indexed by the implicit loop 267 // bounds. This includes rank-0 tensor arguments. 268 if (arg.getOwner()->getParentOp() == op) { 269 OpOperand *t = op.getInputAndOutputOperands()[argN]; 270 if (!op.isScalar(t)) 271 return addExp(Kind::kTensor, argN); 272 val = t->get(); // get scalar value 273 } 274 // Any other argument (marked as scalar argument for the generic op 275 // or belonging to an enveloping op) is considered invariant. 276 return addExp(Kind::kInvariant, val); 277 } 278 // Something defined outside is invariant. 279 Operation *def = val.getDefiningOp(); 280 if (def->getBlock() != &op.region().front()) 281 return addExp(Kind::kInvariant, val); 282 // Construct binary operations if subexpressions could be built. 283 if (def->getNumOperands() == 2) { 284 auto x = buildTensorExp(op, def->getOperand(0)); 285 auto y = buildTensorExp(op, def->getOperand(1)); 286 if (x.hasValue() && y.hasValue()) { 287 unsigned e0 = x.getValue(); 288 unsigned e1 = y.getValue(); 289 if (isa<MulFOp>(def)) 290 return addExp(Kind::kMulF, e0, e1); 291 if (isa<MulIOp>(def)) 292 return addExp(Kind::kMulI, e0, e1); 293 if (isa<AddFOp>(def)) 294 return addExp(Kind::kAddF, e0, e1); 295 if (isa<AddIOp>(def)) 296 return addExp(Kind::kAddI, e0, e1); 297 } 298 } 299 // Cannot build. 300 return None; 301 } 302 303 } // namespace sparse_tensor 304 } // namespace mlir 305