1 //===- Merger.cpp - Implementation of iteration lattices ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/SparseTensor/Utils/Merger.h" 10 11 #include "mlir/IR/Operation.h" 12 #include "llvm/Support/Debug.h" 13 14 namespace mlir { 15 namespace sparse_tensor { 16 17 // 18 // Constructors. 19 // 20 21 TensorExp::TensorExp(Kind k, unsigned x, unsigned y, Value v) 22 : kind(k), val(v) { 23 switch (kind) { 24 case Kind::kTensor: 25 assert(x != -1u && y == -1u && !v); 26 tensor = x; 27 break; 28 case Kind::kInvariant: 29 assert(x == -1u && y == -1u && v); 30 break; 31 case Kind::kZero: 32 assert(x == -1u && y == -1u && !v); 33 break; 34 default: 35 assert(x != -1u && y != -1u && !v); 36 children.e0 = x; 37 children.e1 = y; 38 break; 39 } 40 } 41 42 LatPoint::LatPoint(unsigned n, unsigned e, unsigned b) 43 : bits(n, false), simple(), exp(e) { 44 bits.set(b); 45 } 46 47 LatPoint::LatPoint(const llvm::BitVector &b, unsigned e) 48 : bits(b), simple(), exp(e) {} 49 50 // 51 // Lattice methods. 52 // 53 54 unsigned Merger::addExp(Kind k, unsigned e0, unsigned e1, Value v) { 55 unsigned e = tensorExps.size(); 56 tensorExps.push_back(TensorExp(k, e0, e1, v)); 57 return e; 58 } 59 60 unsigned Merger::addLat(unsigned t, unsigned i, unsigned e) { 61 assert(t < numTensors && i < numLoops); 62 unsigned p = latPoints.size(); 63 latPoints.push_back(LatPoint(numLoops * numTensors, e, numTensors * i + t)); 64 return p; 65 } 66 67 unsigned Merger::addSet() { 68 unsigned s = latSets.size(); 69 latSets.emplace_back(SmallVector<unsigned, 16>()); 70 return s; 71 } 72 73 unsigned Merger::conjLatPoint(Kind kind, unsigned p0, unsigned p1) { 74 unsigned p = latPoints.size(); 75 llvm::BitVector nb = llvm::BitVector(latPoints[p0].bits); 76 nb |= latPoints[p1].bits; 77 unsigned e = addExp(kind, latPoints[p0].exp, latPoints[p1].exp); 78 latPoints.push_back(LatPoint(nb, e)); 79 return p; 80 } 81 82 unsigned Merger::takeConj(Kind kind, unsigned s0, unsigned s1) { 83 unsigned s = addSet(); 84 for (unsigned p0 : latSets[s0]) 85 for (unsigned p1 : latSets[s1]) 86 latSets[s].push_back(conjLatPoint(kind, p0, p1)); 87 return s; 88 } 89 90 unsigned Merger::takeDisj(Kind kind, unsigned s0, unsigned s1) { 91 unsigned s = takeConj(kind, s0, s1); 92 // Followed by all in s0 and s1. 93 for (unsigned p : latSets[s0]) 94 latSets[s].push_back(p); 95 if (Kind::kSubF <= kind && kind <= Kind::kSubI) 96 s1 = mapZero(kind, s1); 97 for (unsigned p : latSets[s1]) 98 latSets[s].push_back(p); 99 return s; 100 } 101 102 unsigned Merger::mapZero(Kind kind, unsigned s0) { 103 assert(Kind::kSubF <= kind && kind <= Kind::kSubI); 104 unsigned s = addSet(); 105 unsigned z = addExp(Kind::kZero); 106 for (unsigned p : latSets[s0]) { 107 unsigned e = addExp(kind, z, latPoints[p].exp); 108 latPoints.push_back(LatPoint(latPoints[p].bits, e)); 109 latSets[s].push_back(latPoints.size() - 1); 110 } 111 return s; 112 } 113 114 unsigned Merger::optimizeSet(unsigned s0) { 115 unsigned s = addSet(); 116 assert(latSets[s0].size() != 0); 117 unsigned p0 = latSets[s0][0]; 118 for (unsigned p1 : latSets[s0]) { 119 bool add = true; 120 if (p0 != p1) { 121 // Is this a straightforward copy? 122 unsigned e = latPoints[p1].exp; 123 if (tensorExps[e].kind == Kind::kTensor && 124 tensorExps[e].tensor == outTensor) 125 continue; 126 // Conjunction already covered? 127 for (unsigned p2 : latSets[s]) { 128 assert(!latGT(p1, p2)); // Lj => Li would be bad 129 if (onlyDenseDiff(p2, p1)) { 130 add = false; 131 break; 132 } 133 } 134 assert(!add || latGT(p0, p1)); 135 } 136 if (add) 137 latSets[s].push_back(p1); 138 } 139 for (unsigned p : latSets[s]) 140 latPoints[p].simple = simplifyCond(s, p); 141 return s; 142 } 143 144 llvm::BitVector Merger::simplifyCond(unsigned s0, unsigned p0) { 145 // First determine if this lattice point is a *singleton*, i.e., 146 // the last point in a lattice, no other is less than this one. 147 bool isSingleton = true; 148 for (unsigned p1 : latSets[s0]) { 149 if (p0 != p1 && latGT(p0, p1)) { 150 isSingleton = false; 151 break; 152 } 153 } 154 // Now apply the two basic rules. 155 llvm::BitVector simple = latPoints[p0].bits; 156 bool reset = isSingleton && hasAnyDimOf(simple, Dim::kSparse); 157 for (unsigned b = 0, be = simple.size(); b < be; b++) { 158 if (simple[b] && !isDim(b, Dim::kSparse)) { 159 if (reset) 160 simple.reset(b); 161 reset = true; 162 } 163 } 164 return simple; 165 } 166 167 bool Merger::latGT(unsigned i, unsigned j) const { 168 const llvm::BitVector &bitsi = latPoints[i].bits; 169 const llvm::BitVector &bitsj = latPoints[j].bits; 170 assert(bitsi.size() == bitsj.size()); 171 if (bitsi.count() > bitsj.count()) { 172 for (unsigned b = 0, be = bitsj.size(); b < be; b++) 173 if (bitsj[b] && !bitsi[b]) 174 return false; 175 return true; 176 } 177 return false; 178 } 179 180 bool Merger::onlyDenseDiff(unsigned i, unsigned j) { 181 llvm::BitVector tmp = latPoints[j].bits; 182 tmp ^= latPoints[i].bits; 183 return !hasAnyDimOf(tmp, Dim::kSparse); 184 } 185 186 bool Merger::hasAnyDimOf(const llvm::BitVector &bits, Dim d) const { 187 for (unsigned b = 0, be = bits.size(); b < be; b++) 188 if (bits[b] && isDim(b, d)) 189 return true; 190 return false; 191 } 192 193 #ifndef NDEBUG 194 195 // 196 // Print methods (for debugging). 197 // 198 199 static char kindToOpSymbol(Kind kind) { 200 switch (kind) { 201 case Kind::kMulF: 202 case Kind::kMulI: 203 return '*'; 204 case Kind::kAddF: 205 case Kind::kAddI: 206 return '+'; 207 case Kind::kSubF: 208 case Kind::kSubI: 209 return '-'; 210 default: 211 break; 212 } 213 llvm_unreachable("unexpected kind"); 214 } 215 216 void Merger::dumpExp(unsigned e) const { 217 switch (tensorExps[e].kind) { 218 case Kind::kTensor: 219 if (tensorExps[e].tensor == syntheticTensor) 220 llvm::dbgs() << "synthetic_"; 221 else if (tensorExps[e].tensor == outTensor) 222 llvm::dbgs() << "output_"; 223 llvm::dbgs() << "tensor_" << tensorExps[e].tensor; 224 break; 225 case Kind::kInvariant: 226 llvm::dbgs() << "invariant"; 227 break; 228 case Kind::kZero: 229 llvm::dbgs() << "zero"; 230 break; 231 default: 232 llvm::dbgs() << "("; 233 dumpExp(tensorExps[e].children.e0); 234 llvm::dbgs() << " " << kindToOpSymbol(tensorExps[e].kind) << " "; 235 dumpExp(tensorExps[e].children.e1); 236 llvm::dbgs() << ")"; 237 } 238 } 239 240 void Merger::dumpLat(unsigned p) const { 241 llvm::dbgs() << "lat("; 242 dumpBits(latPoints[p].bits); 243 llvm::dbgs() << " :"; 244 dumpBits(latPoints[p].simple); 245 llvm::dbgs() << " : "; 246 dumpExp(latPoints[p].exp); 247 llvm::dbgs() << " )\n"; 248 } 249 250 void Merger::dumpSet(unsigned s) const { 251 llvm::dbgs() << "{ #" << latSets[s].size() << "\n"; 252 for (unsigned p : latSets[s]) { 253 llvm::dbgs() << " "; 254 dumpLat(p); 255 } 256 llvm::dbgs() << "}\n"; 257 } 258 259 void Merger::dumpBits(const llvm::BitVector &bits) const { 260 for (unsigned b = 0, be = bits.size(); b < be; b++) { 261 if (bits[b]) { 262 unsigned t = tensor(b); 263 unsigned i = index(b); 264 llvm::dbgs() << " i_" << t << "_" << i << "_"; 265 switch (dims[t][i]) { 266 case Dim::kSparse: 267 llvm::dbgs() << "S"; 268 break; 269 case Dim::kDense: 270 llvm::dbgs() << "D"; 271 break; 272 case Dim::kSingle: 273 llvm::dbgs() << "T"; 274 break; 275 case Dim::kUndef: 276 llvm::dbgs() << "U"; 277 break; 278 } 279 } 280 } 281 } 282 283 #endif // NDEBUG 284 285 // 286 // Builder methods. 287 // 288 289 unsigned Merger::buildLattices(unsigned e, unsigned idx) { 290 Kind kind = tensorExps[e].kind; 291 switch (kind) { 292 case Kind::kTensor: 293 case Kind::kInvariant: 294 case Kind::kZero: { 295 // Either the index is really used in the tensor expression, or it is 296 // set to the undefined index in that dimension. An invariant expression 297 // is set to a synthetic tensor with undefined indices only. 298 unsigned s = addSet(); 299 unsigned t = kind == Kind::kTensor ? tensorExps[e].tensor : syntheticTensor; 300 latSets[s].push_back(addLat(t, idx, e)); 301 return s; 302 } 303 case Kind::kMulF: 304 case Kind::kMulI: 305 return takeConj(kind, // take binary conjunction 306 buildLattices(tensorExps[e].children.e0, idx), 307 buildLattices(tensorExps[e].children.e1, idx)); 308 case Kind::kSubF: 309 case Kind::kSubI: 310 if (tensorExps[tensorExps[e].children.e0].kind == Kind::kZero) 311 return mapZero(kind, // maps to 0-y with just y's lattices 312 buildLattices(tensorExps[e].children.e1, idx)); 313 LLVM_FALLTHROUGH; 314 case Kind::kAddF: 315 case Kind::kAddI: 316 return takeDisj(kind, // take binary disjunction 317 buildLattices(tensorExps[e].children.e0, idx), 318 buildLattices(tensorExps[e].children.e1, idx)); 319 } 320 llvm_unreachable("unexpected expression kind"); 321 } 322 323 Optional<unsigned> Merger::buildTensorExpFromLinalg(linalg::GenericOp op) { 324 Operation *yield = op.region().front().getTerminator(); 325 return buildTensorExp(op, yield->getOperand(0)); 326 } 327 328 Optional<unsigned> Merger::buildTensorExp(linalg::GenericOp op, Value val) { 329 if (auto arg = val.dyn_cast<BlockArgument>()) { 330 unsigned argN = arg.getArgNumber(); 331 // Any argument of the generic op that is not marked as a scalar 332 // argument is considered a tensor, indexed by the implicit loop 333 // bounds. This includes rank-0 tensor arguments. 334 if (arg.getOwner()->getParentOp() == op) { 335 OpOperand *t = op.getInputAndOutputOperands()[argN]; 336 if (!op.isScalar(t)) 337 return addExp(Kind::kTensor, argN); 338 val = t->get(); // get scalar value 339 } 340 // Any other argument (marked as scalar argument for the generic op 341 // or belonging to an enveloping op) is considered invariant. 342 return addExp(Kind::kInvariant, val); 343 } 344 // Something defined outside is invariant. 345 Operation *def = val.getDefiningOp(); 346 if (def->getBlock() != &op.region().front()) 347 return addExp(Kind::kInvariant, val); 348 // Construct unary operations if subexpression can be built. 349 if (def->getNumOperands() == 1) { 350 auto x = buildTensorExp(op, def->getOperand(0)); 351 if (x.hasValue()) { 352 unsigned e0 = addExp(Kind::kZero); 353 unsigned e1 = x.getValue(); 354 if (isa<NegFOp>(def)) 355 return addExp(Kind::kSubF, e0, e1); 356 // TODO: no negi in std? 357 } 358 } 359 // Construct binary operations if subexpressions can be built. 360 if (def->getNumOperands() == 2) { 361 auto x = buildTensorExp(op, def->getOperand(0)); 362 auto y = buildTensorExp(op, def->getOperand(1)); 363 if (x.hasValue() && y.hasValue()) { 364 unsigned e0 = x.getValue(); 365 unsigned e1 = y.getValue(); 366 if (isa<MulFOp>(def)) 367 return addExp(Kind::kMulF, e0, e1); 368 if (isa<MulIOp>(def)) 369 return addExp(Kind::kMulI, e0, e1); 370 if (isa<AddFOp>(def)) 371 return addExp(Kind::kAddF, e0, e1); 372 if (isa<AddIOp>(def)) 373 return addExp(Kind::kAddI, e0, e1); 374 if (isa<SubFOp>(def)) 375 return addExp(Kind::kSubF, e0, e1); 376 if (isa<SubIOp>(def)) 377 return addExp(Kind::kSubI, e0, e1); 378 } 379 } 380 // Cannot build. 381 return None; 382 } 383 384 } // namespace sparse_tensor 385 } // namespace mlir 386