1 //===- SparseTensorPasses.cpp - Pass for autogen sparse tensor code -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 10 #include "mlir/Dialect/Func/IR/FuncOps.h" 11 #include "mlir/Dialect/Func/Transforms/FuncConversions.h" 12 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 13 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 14 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 15 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 16 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 17 18 using namespace mlir; 19 using namespace mlir::sparse_tensor; 20 21 namespace { 22 23 //===----------------------------------------------------------------------===// 24 // Passes declaration. 25 //===----------------------------------------------------------------------===// 26 27 #define GEN_PASS_CLASSES 28 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc" 29 30 //===----------------------------------------------------------------------===// 31 // Passes implementation. 32 //===----------------------------------------------------------------------===// 33 34 struct SparsificationPass : public SparsificationBase<SparsificationPass> { 35 36 SparsificationPass() = default; 37 SparsificationPass(const SparsificationPass &pass) = default; 38 SparsificationPass(const SparsificationOptions &options) { 39 parallelization = static_cast<int32_t>(options.parallelizationStrategy); 40 vectorization = static_cast<int32_t>(options.vectorizationStrategy); 41 vectorLength = options.vectorLength; 42 enableSIMDIndex32 = options.enableSIMDIndex32; 43 } 44 45 void runOnOperation() override { 46 auto *ctx = &getContext(); 47 RewritePatternSet patterns(ctx); 48 // Translate strategy flags to strategy options. 49 SparsificationOptions options( 50 sparseParallelizationStrategy(parallelization), 51 sparseVectorizationStrategy(vectorization), vectorLength, 52 enableSIMDIndex32); 53 // Apply rewriting. 54 populateSparsificationPatterns(patterns, options); 55 vector::populateVectorToVectorCanonicalizationPatterns(patterns); 56 (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)); 57 } 58 }; 59 60 class SparseTensorTypeConverter : public TypeConverter { 61 public: 62 SparseTensorTypeConverter() { 63 addConversion([](Type type) { return type; }); 64 addConversion(convertSparseTensorTypes); 65 } 66 // Maps each sparse tensor type to an opaque pointer. 67 static Optional<Type> convertSparseTensorTypes(Type type) { 68 if (getSparseTensorEncoding(type) != nullptr) 69 return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8)); 70 return llvm::None; 71 } 72 }; 73 74 struct SparseTensorConversionPass 75 : public SparseTensorConversionBase<SparseTensorConversionPass> { 76 void runOnOperation() override { 77 auto *ctx = &getContext(); 78 RewritePatternSet patterns(ctx); 79 SparseTensorTypeConverter converter; 80 ConversionTarget target(*ctx); 81 // Everything in the sparse dialect must go! 82 target.addIllegalDialect<SparseTensorDialect>(); 83 // All dynamic rules below accept new function, call, return, and tensor 84 // dim and cast operations as legal output of the rewriting provided that 85 // all sparse tensor types have been fully rewritten. 86 target.addDynamicallyLegalOp<FuncOp>( 87 [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); }); 88 target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) { 89 return converter.isSignatureLegal(op.getCalleeType()); 90 }); 91 target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) { 92 return converter.isLegal(op.getOperandTypes()); 93 }); 94 target.addDynamicallyLegalOp<tensor::DimOp>([&](tensor::DimOp op) { 95 return converter.isLegal(op.getOperandTypes()); 96 }); 97 target.addDynamicallyLegalOp<tensor::CastOp>([&](tensor::CastOp op) { 98 return converter.isLegal(op.getOperand().getType()); 99 }); 100 // The following operations and dialects may be introduced by the 101 // rewriting rules, and are therefore marked as legal. 102 target.addLegalOp<arith::CmpFOp, arith::CmpIOp, arith::ConstantOp, 103 arith::IndexCastOp, linalg::FillOp, linalg::YieldOp, 104 tensor::ExtractOp>(); 105 target 106 .addLegalDialect<bufferization::BufferizationDialect, LLVM::LLVMDialect, 107 memref::MemRefDialect, scf::SCFDialect>(); 108 // Populate with rules and apply rewriting rules. 109 populateFunctionOpInterfaceTypeConversionPattern<FuncOp>(patterns, 110 converter); 111 populateCallOpTypeConversionPattern(patterns, converter); 112 populateSparseTensorConversionPatterns(converter, patterns); 113 if (failed(applyPartialConversion(getOperation(), target, 114 std::move(patterns)))) 115 signalPassFailure(); 116 } 117 }; 118 119 } // namespace 120 121 SparseParallelizationStrategy 122 mlir::sparseParallelizationStrategy(int32_t flag) { 123 switch (flag) { 124 default: 125 return SparseParallelizationStrategy::kNone; 126 case 1: 127 return SparseParallelizationStrategy::kDenseOuterLoop; 128 case 2: 129 return SparseParallelizationStrategy::kAnyStorageOuterLoop; 130 case 3: 131 return SparseParallelizationStrategy::kDenseAnyLoop; 132 case 4: 133 return SparseParallelizationStrategy::kAnyStorageAnyLoop; 134 } 135 } 136 137 SparseVectorizationStrategy mlir::sparseVectorizationStrategy(int32_t flag) { 138 switch (flag) { 139 default: 140 return SparseVectorizationStrategy::kNone; 141 case 1: 142 return SparseVectorizationStrategy::kDenseInnerLoop; 143 case 2: 144 return SparseVectorizationStrategy::kAnyStorageInnerLoop; 145 } 146 } 147 148 std::unique_ptr<Pass> mlir::createSparsificationPass() { 149 return std::make_unique<SparsificationPass>(); 150 } 151 152 std::unique_ptr<Pass> 153 mlir::createSparsificationPass(const SparsificationOptions &options) { 154 return std::make_unique<SparsificationPass>(options); 155 } 156 157 std::unique_ptr<Pass> mlir::createSparseTensorConversionPass() { 158 return std::make_unique<SparseTensorConversionPass>(); 159 } 160