1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/Linalg/Utils/Utils.h"
19 #include "mlir/Dialect/MemRef/IR/MemRef.h"
20 #include "mlir/Dialect/SCF/SCF.h"
21 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
22 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
23 #include "mlir/Dialect/StandardOps/IR/Ops.h"
24 #include "mlir/Dialect/Tensor/IR/Tensor.h"
25 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
26 #include "mlir/Transforms/DialectConversion.h"
27 
28 using namespace mlir;
29 using namespace mlir::sparse_tensor;
30 
31 namespace {
32 
33 //===----------------------------------------------------------------------===//
34 // Helper methods.
35 //===----------------------------------------------------------------------===//
36 
37 /// Generates a constant zero of the given type.
38 inline static Value constantZero(ConversionPatternRewriter &rewriter,
39                                  Location loc, Type t) {
40   return rewriter.create<arith::ConstantOp>(loc, t, rewriter.getZeroAttr(t));
41 }
42 
43 /// Generates a constant of `index` type.
44 inline static Value constantIndex(ConversionPatternRewriter &rewriter,
45                                   Location loc, int64_t i) {
46   return rewriter.create<arith::ConstantIndexOp>(loc, i);
47 }
48 
49 /// Generates a constant of `i32` type.
50 inline static Value constantI32(ConversionPatternRewriter &rewriter,
51                                 Location loc, int32_t i) {
52   return rewriter.create<arith::ConstantIntOp>(loc, i, 32);
53 }
54 
55 /// Generates a constant of `i8` type.
56 inline static Value constantI8(ConversionPatternRewriter &rewriter,
57                                Location loc, int8_t i) {
58   return rewriter.create<arith::ConstantIntOp>(loc, i, 8);
59 }
60 
61 /// Generates a constant of the given `Action`.
62 static Value constantAction(ConversionPatternRewriter &rewriter, Location loc,
63                             Action action) {
64   return constantI32(rewriter, loc, static_cast<uint32_t>(action));
65 }
66 
67 /// Generates a constant of the internal type encoding for overhead storage.
68 static Value constantOverheadTypeEncoding(ConversionPatternRewriter &rewriter,
69                                           Location loc, unsigned width) {
70   OverheadType sec;
71   switch (width) {
72   default:
73     sec = OverheadType::kU64;
74     break;
75   case 32:
76     sec = OverheadType::kU32;
77     break;
78   case 16:
79     sec = OverheadType::kU16;
80     break;
81   case 8:
82     sec = OverheadType::kU8;
83     break;
84   }
85   return constantI32(rewriter, loc, static_cast<uint32_t>(sec));
86 }
87 
88 /// Generates a constant of the internal type encoding for pointer
89 /// overhead storage.
90 static Value constantPointerTypeEncoding(ConversionPatternRewriter &rewriter,
91                                          Location loc,
92                                          SparseTensorEncodingAttr &enc) {
93   return constantOverheadTypeEncoding(rewriter, loc, enc.getPointerBitWidth());
94 }
95 
96 /// Generates a constant of the internal type encoding for index overhead
97 /// storage.
98 static Value constantIndexTypeEncoding(ConversionPatternRewriter &rewriter,
99                                        Location loc,
100                                        SparseTensorEncodingAttr &enc) {
101   return constantOverheadTypeEncoding(rewriter, loc, enc.getIndexBitWidth());
102 }
103 
104 /// Generates a constant of the internal type encoding for primary storage.
105 static Value constantPrimaryTypeEncoding(ConversionPatternRewriter &rewriter,
106                                          Location loc, Type tp) {
107   PrimaryType primary;
108   if (tp.isF64())
109     primary = PrimaryType::kF64;
110   else if (tp.isF32())
111     primary = PrimaryType::kF32;
112   else if (tp.isInteger(64))
113     primary = PrimaryType::kI64;
114   else if (tp.isInteger(32))
115     primary = PrimaryType::kI32;
116   else if (tp.isInteger(16))
117     primary = PrimaryType::kI16;
118   else if (tp.isInteger(8))
119     primary = PrimaryType::kI8;
120   else
121     llvm_unreachable("Unknown element type");
122   return constantI32(rewriter, loc, static_cast<uint32_t>(primary));
123 }
124 
125 /// Generates a constant of the internal dimension level type encoding.
126 static Value
127 constantDimLevelTypeEncoding(ConversionPatternRewriter &rewriter, Location loc,
128                              SparseTensorEncodingAttr::DimLevelType dlt) {
129   DimLevelType dlt2;
130   switch (dlt) {
131   case SparseTensorEncodingAttr::DimLevelType::Dense:
132     dlt2 = DimLevelType::kDense;
133     break;
134   case SparseTensorEncodingAttr::DimLevelType::Compressed:
135     dlt2 = DimLevelType::kCompressed;
136     break;
137   case SparseTensorEncodingAttr::DimLevelType::Singleton:
138     dlt2 = DimLevelType::kSingleton;
139     break;
140   }
141   return constantI8(rewriter, loc, static_cast<uint8_t>(dlt2));
142 }
143 
144 /// Returns a function reference (first hit also inserts into module). Sets
145 /// the "_emit_c_interface" on the function declaration when requested,
146 /// so that LLVM lowering generates a wrapper function that takes care
147 /// of ABI complications with passing in and returning MemRefs to C functions.
148 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
149                                  TypeRange resultType, ValueRange operands,
150                                  bool emitCInterface = false) {
151   MLIRContext *context = op->getContext();
152   auto module = op->getParentOfType<ModuleOp>();
153   auto result = SymbolRefAttr::get(context, name);
154   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
155   if (!func) {
156     OpBuilder moduleBuilder(module.getBodyRegion());
157     func = moduleBuilder.create<FuncOp>(
158         op->getLoc(), name,
159         FunctionType::get(context, operands.getTypes(), resultType));
160     func.setPrivate();
161     if (emitCInterface)
162       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
163   }
164   return result;
165 }
166 
167 /// Generates dimension size call.
168 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
169                             SparseTensorEncodingAttr &enc, Value src,
170                             int64_t idx) {
171   // Permute the index according to an optional dimension ordering.
172   if (AffineMap p = enc.getDimOrdering())
173     idx = p.getPermutedPosition(idx);
174   // Generate the call.
175   Location loc = op->getLoc();
176   StringRef name = "sparseDimSize";
177   SmallVector<Value, 2> params;
178   params.push_back(src);
179   params.push_back(constantIndex(rewriter, loc, idx));
180   Type iTp = rewriter.getIndexType();
181   auto fn = getFunc(op, name, iTp, params);
182   return rewriter.create<CallOp>(loc, iTp, fn, params).getResult(0);
183 }
184 
185 /// Generates a call into the "swiss army knife" method of the sparse runtime
186 /// support library for materializing sparse tensors into the computation.
187 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
188                         ArrayRef<Value> params) {
189   Location loc = op->getLoc();
190   StringRef name = "newSparseTensor";
191   Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
192   auto fn = getFunc(op, name, pTp, params, /*emitCInterface=*/true);
193   auto call = rewriter.create<CallOp>(loc, pTp, fn, params);
194   return call.getResult(0);
195 }
196 
197 /// Populates given sizes array from type.
198 static void sizesFromType(ConversionPatternRewriter &rewriter,
199                           SmallVector<Value, 4> &sizes, Location loc,
200                           ShapedType stp) {
201   auto shape = stp.getShape();
202   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
203     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
204     sizes.push_back(constantIndex(rewriter, loc, s));
205   }
206 }
207 
208 /// Populates given sizes array from source.
209 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
210                          SmallVector<Value, 4> &sizes, Location loc,
211                          Value src) {
212   ShapedType stp = src.getType().cast<ShapedType>();
213   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
214     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
215 }
216 
217 /// Populates given sizes array from type (for static sizes) and from
218 /// an already converted into opague pointer source (for dynamic sizes).
219 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
220                          SmallVector<Value, 4> &sizes, Operation *op,
221                          SparseTensorEncodingAttr &enc, ShapedType stp,
222                          Value src) {
223   auto shape = stp.getShape();
224   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
225     if (shape[i] == ShapedType::kDynamicSize)
226       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
227     else
228       sizes.push_back(constantIndex(rewriter, op->getLoc(), shape[i]));
229 }
230 
231 /// Generates an uninitialized temporary buffer of the given size and
232 /// type, but returns it as type `memref<? x $tp>` (rather than as type
233 /// `memref<$sz x $tp>`).
234 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
235                        unsigned sz, Type tp) {
236   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
237   Value a = constantIndex(rewriter, loc, sz);
238   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{a});
239 }
240 
241 /// Generates an uninitialized temporary buffer with room for one value
242 /// of the given type, and returns the `memref<$tp>`.
243 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
244                              Type tp) {
245   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
246 }
247 
248 /// Generates a temporary buffer of the given type and given contents.
249 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
250                        ArrayRef<Value> values) {
251   unsigned sz = values.size();
252   assert(sz >= 1);
253   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
254   for (unsigned i = 0; i < sz; i++) {
255     Value idx = constantIndex(rewriter, loc, i);
256     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
257   }
258   return buffer;
259 }
260 
261 /// Populates parameters required to call the "swiss army knife" method of the
262 /// sparse runtime support library for materializing sparse tensors into the
263 /// computation.
264 static void newParams(ConversionPatternRewriter &rewriter,
265                       SmallVector<Value, 8> &params, Operation *op,
266                       SparseTensorEncodingAttr &enc, Action action,
267                       ValueRange szs, Value ptr = Value()) {
268   Location loc = op->getLoc();
269   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
270   unsigned sz = dlt.size();
271   // Sparsity annotations.
272   SmallVector<Value, 4> attrs;
273   for (unsigned i = 0; i < sz; i++)
274     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
275   params.push_back(genBuffer(rewriter, loc, attrs));
276   // Dimension sizes array of the enveloping tensor. Useful for either
277   // verification of external data, or for construction of internal data.
278   SmallVector<Value, 4> sizes;
279   for (Value s : szs)
280     sizes.push_back(s);
281   params.push_back(genBuffer(rewriter, loc, sizes));
282   // Dimension order permutation array. This is the "identity" permutation by
283   // default, or otherwise the "reverse" permutation of a given ordering, so
284   // that indices can be mapped quickly to the right position.
285   SmallVector<Value, 4> rev(sz);
286   if (AffineMap p = enc.getDimOrdering()) {
287     for (unsigned i = 0; i < sz; i++)
288       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
289   } else {
290     for (unsigned i = 0; i < sz; i++)
291       rev[i] = constantIndex(rewriter, loc, i);
292   }
293   params.push_back(genBuffer(rewriter, loc, rev));
294   // Secondary and primary types encoding.
295   ShapedType resType = op->getResult(0).getType().cast<ShapedType>();
296   params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
297   params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
298   params.push_back(
299       constantPrimaryTypeEncoding(rewriter, loc, resType.getElementType()));
300   // User action and pointer.
301   Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
302   if (!ptr)
303     ptr = rewriter.create<LLVM::NullOp>(loc, pTp);
304   params.push_back(constantAction(rewriter, loc, action));
305   params.push_back(ptr);
306 }
307 
308 /// Generates the comparison `v != 0` where `v` is of numeric type `t`.
309 /// For floating types, we use the "unordered" comparator (i.e., returns
310 /// true if `v` is NaN).
311 static Value genIsNonzero(ConversionPatternRewriter &rewriter, Location loc,
312                           Value v) {
313   Type t = v.getType();
314   Value zero = constantZero(rewriter, loc, t);
315   if (t.isa<FloatType>())
316     return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNE, v,
317                                           zero);
318   if (t.isIntOrIndex())
319     return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, v,
320                                           zero);
321   llvm_unreachable("Unknown element type");
322 }
323 
324 /// Generates the code to read the value from tensor[ivs], and conditionally
325 /// stores the indices ivs to the memory in ind. The generated code looks like
326 /// the following and the insertion point after this routine is inside the
327 /// if-then branch behind the assignment to ind. This is to ensure that the
328 /// addEltX call generated after is inside the if-then branch.
329 ///    if (tensor[ivs]!=0) {
330 ///      ind = ivs
331 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
332                                       Location loc, Value tensor, Value ind,
333                                       ValueRange ivs) {
334   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
335   Value cond = genIsNonzero(rewriter, loc, val);
336   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
337   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
338   unsigned i = 0;
339   for (auto iv : ivs) {
340     Value idx = constantIndex(rewriter, loc, i++);
341     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
342   }
343   return val;
344 }
345 
346 /// Generates a call that adds one element to a coordinate scheme.
347 /// In particular, this generates code like the following:
348 ///   val = a[i1,..,ik];
349 ///   if val != 0
350 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
351 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
352                           Type eltType, Value ptr, Value val, Value ind,
353                           Value perm) {
354   Location loc = op->getLoc();
355   StringRef name;
356   if (eltType.isF64())
357     name = "addEltF64";
358   else if (eltType.isF32())
359     name = "addEltF32";
360   else if (eltType.isInteger(64))
361     name = "addEltI64";
362   else if (eltType.isInteger(32))
363     name = "addEltI32";
364   else if (eltType.isInteger(16))
365     name = "addEltI16";
366   else if (eltType.isInteger(8))
367     name = "addEltI8";
368   else
369     llvm_unreachable("Unknown element type");
370   SmallVector<Value, 8> params;
371   params.push_back(ptr);
372   params.push_back(val);
373   params.push_back(ind);
374   params.push_back(perm);
375   Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
376   auto fn = getFunc(op, name, pTp, params, /*emitCInterface=*/true);
377   rewriter.create<CallOp>(loc, pTp, fn, params);
378 }
379 
380 /// Generates a call to `iter->getNext()`.  If there is a next element,
381 /// then it is copied into the out-parameters `ind` and `elemPtr`,
382 /// and the return value is true.  If there isn't a next element, then
383 /// the memory for `iter` is freed and the return value is false.
384 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
385                             Value iter, Value ind, Value elemPtr) {
386   Location loc = op->getLoc();
387   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
388   StringRef name;
389   if (elemTp.isF64())
390     name = "getNextF64";
391   else if (elemTp.isF32())
392     name = "getNextF32";
393   else if (elemTp.isInteger(64))
394     name = "getNextI64";
395   else if (elemTp.isInteger(32))
396     name = "getNextI32";
397   else if (elemTp.isInteger(16))
398     name = "getNextI16";
399   else if (elemTp.isInteger(8))
400     name = "getNextI8";
401   else
402     llvm_unreachable("Unknown element type");
403   SmallVector<Value, 3> params;
404   params.push_back(iter);
405   params.push_back(ind);
406   params.push_back(elemPtr);
407   Type i1 = rewriter.getI1Type();
408   auto fn = getFunc(op, name, i1, params, /*emitCInterface=*/true);
409   auto call = rewriter.create<CallOp>(loc, i1, fn, params);
410   return call.getResult(0);
411 }
412 
413 /// If the tensor is a sparse constant, generates and returns the pair of
414 /// the constants for the indices and the values.
415 static Optional<std::pair<Value, Value>>
416 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
417                        Value tensor) {
418   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
419     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
420       DenseElementsAttr indicesAttr = attr.getIndices();
421       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
422       DenseElementsAttr valuesAttr = attr.getValues();
423       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
424       return std::make_pair(indices, values);
425     }
426   }
427   return {};
428 }
429 
430 /// Generates the code to copy the index at indices[ivs] to ind, and return
431 /// the value at value[ivs].
432 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
433                                        Location loc, Value indices,
434                                        Value values, Value ind, ValueRange ivs,
435                                        unsigned rank) {
436   for (unsigned i = 0; i < rank; i++) {
437     Value idx = constantIndex(rewriter, loc, i);
438     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
439                                                    ValueRange{ivs[0], idx});
440     val =
441         rewriter.create<arith::IndexCastOp>(loc, val, rewriter.getIndexType());
442     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
443   }
444   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
445 }
446 
447 /// Generates code to allocate a tensor of the given type, and zero
448 /// initialize it.  If the tensor type has any dynamic sizes, then the
449 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
450 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
451 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
452                               RankedTensorType tensorTp, ValueRange sizes) {
453   Type elemTp = tensorTp.getElementType();
454   auto shape = tensorTp.getShape();
455   auto memTp = MemRefType::get(shape, elemTp);
456   SmallVector<Value> dynamicSizes;
457   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
458     if (shape[i] == ShapedType::kDynamicSize)
459       dynamicSizes.push_back(sizes[i]);
460   }
461   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
462   Value zero = constantZero(rewriter, loc, elemTp);
463   rewriter.create<linalg::FillOp>(loc, zero, mem).result();
464   return mem;
465 }
466 
467 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
468 /// the tensor created by allocDenseTensor().  The `rank` is the rank
469 /// of the `tensor` and the length of `ind`.
470 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
471                                         Location loc, Value elemPtr,
472                                         Value tensor, unsigned rank,
473                                         Value ind) {
474   SmallVector<Value, 4> ivs;
475   ivs.reserve(rank);
476   for (unsigned i = 0; i < rank; i++) {
477     Value idx = constantIndex(rewriter, loc, i);
478     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
479   }
480   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
481   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
482 }
483 
484 //===----------------------------------------------------------------------===//
485 // Conversion rules.
486 //===----------------------------------------------------------------------===//
487 
488 /// Sparse conversion rule for returns.
489 class SparseReturnConverter : public OpConversionPattern<ReturnOp> {
490 public:
491   using OpConversionPattern::OpConversionPattern;
492   LogicalResult
493   matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
494                   ConversionPatternRewriter &rewriter) const override {
495     rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands());
496     return success();
497   }
498 };
499 
500 /// Sparse conversion rule for dimension accesses.
501 class SparseTensorToDimSizeConverter
502     : public OpConversionPattern<tensor::DimOp> {
503 public:
504   using OpConversionPattern::OpConversionPattern;
505   LogicalResult
506   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
507                   ConversionPatternRewriter &rewriter) const override {
508     // Only rewrite annotated DimOp with constant index.
509     auto enc = getSparseTensorEncoding(op.source().getType());
510     if (!enc)
511       return failure();
512     Optional<int64_t> index = op.getConstantIndex();
513     if (!index.hasValue())
514       return failure();
515     // Generate the call.
516     Value src = adaptor.getOperands()[0];
517     int64_t idx = index.getValue();
518     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
519     return success();
520   }
521 };
522 
523 /// Sparse conversion rule for trivial tensor casts.
524 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
525   using OpConversionPattern::OpConversionPattern;
526   LogicalResult
527   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
528                   ConversionPatternRewriter &rewriter) const override {
529     // Only rewrite identically annotated source/dest.
530     auto encDst = getSparseTensorEncoding(op.getType());
531     auto encSrc = getSparseTensorEncoding(op.source().getType());
532     if (!encDst || encDst != encSrc)
533       return failure();
534     rewriter.replaceOp(op, adaptor.getOperands());
535     return success();
536   }
537 };
538 
539 /// Sparse conversion rule for the new operator.
540 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
541   using OpConversionPattern::OpConversionPattern;
542   LogicalResult
543   matchAndRewrite(NewOp op, OpAdaptor adaptor,
544                   ConversionPatternRewriter &rewriter) const override {
545     Type resType = op.getType();
546     auto enc = getSparseTensorEncoding(resType);
547     if (!enc)
548       return failure();
549     // Generate the call to construct tensor from ptr. The sizes are
550     // inferred from the result type of the new operator.
551     SmallVector<Value, 4> sizes;
552     SmallVector<Value, 8> params;
553     sizesFromType(rewriter, sizes, op.getLoc(), resType.cast<ShapedType>());
554     Value ptr = adaptor.getOperands()[0];
555     newParams(rewriter, params, op, enc, Action::kFromFile, sizes, ptr);
556     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
557     return success();
558   }
559 };
560 
561 /// Sparse conversion rule for the init operator.
562 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
563   using OpConversionPattern::OpConversionPattern;
564   LogicalResult
565   matchAndRewrite(InitOp op, OpAdaptor adaptor,
566                   ConversionPatternRewriter &rewriter) const override {
567     Type resType = op.getType();
568     auto enc = getSparseTensorEncoding(resType);
569     if (!enc)
570       return failure();
571     // Generate the call to construct empty tensor. The sizes are
572     // explicitly defined by the arguments to the init operator.
573     SmallVector<Value, 8> params;
574     newParams(rewriter, params, op, enc, Action::kEmpty, adaptor.getOperands());
575     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
576     return success();
577   }
578 };
579 
580 /// Sparse conversion rule for the convert operator.
581 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
582   using OpConversionPattern::OpConversionPattern;
583   LogicalResult
584   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
585                   ConversionPatternRewriter &rewriter) const override {
586     Location loc = op->getLoc();
587     Type resType = op.getType();
588     Type srcType = op.source().getType();
589     auto encDst = getSparseTensorEncoding(resType);
590     auto encSrc = getSparseTensorEncoding(srcType);
591     Value src = adaptor.getOperands()[0];
592     if (encDst && encSrc) {
593       // This is a sparse => sparse conversion, which is handled as follows:
594       //   t = src->toCOO();         ; src to COO in dst order
595       //   dst = newSparseTensor(t)
596       // Using the coordinate scheme as an intermediate does not always
597       // yield the fastest conversion but avoids the need for a full
598       // O(N^2) conversion matrix.
599       if (encDst == encSrc) {
600         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
601         return success();
602       }
603       SmallVector<Value, 4> sizes;
604       SmallVector<Value, 8> params;
605       sizesFromPtr(rewriter, sizes, op, encSrc, srcType.cast<ShapedType>(),
606                    src);
607       // Set up encoding with right mix of src and dst so that the two
608       // method calls can share most parameters, while still providing
609       // the correct sparsity information to either of them.
610       auto enc = SparseTensorEncodingAttr::get(
611           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
612           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
613       newParams(rewriter, params, op, enc, Action::kToCOO, sizes, src);
614       Value coo = genNewCall(rewriter, op, params);
615       params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
616       params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
617       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
618       params[7] = coo;
619       rewriter.replaceOp(op, genNewCall(rewriter, op, params));
620       return success();
621     }
622     if (!encDst && encSrc) {
623       // This is sparse => dense conversion, which is handled as follows:
624       //   dst = new Tensor(0);
625       //   iter = src->toCOO();
626       //   iter->startIterator();
627       //   while (elem = iter->getNext()) {
628       //     dst[elem.indices] = elem.value;
629       //   }
630       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
631       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
632       unsigned rank = dstTensorTp.getRank();
633       Type elemTp = dstTensorTp.getElementType();
634       // Fabricate a no-permutation encoding for newParams().
635       // The pointer/index types must be those of `src`.
636       // The dimLevelTypes aren't actually used by Action::kToIterator.
637       encDst = SparseTensorEncodingAttr::get(
638           op->getContext(),
639           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
640               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
641           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
642       SmallVector<Value, 4> sizes;
643       SmallVector<Value, 8> params;
644       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
645       newParams(rewriter, params, op, encDst, Action::kToIterator, sizes, src);
646       Value iter = genNewCall(rewriter, op, params);
647       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
648       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
649       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
650       SmallVector<Value> noArgs;
651       SmallVector<Type> noTypes;
652       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
653       Block *before = rewriter.createBlock(&whileOp.before(), {}, noTypes);
654       rewriter.setInsertionPointToEnd(before);
655       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
656       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
657       Block *after = rewriter.createBlock(&whileOp.after(), {}, noTypes);
658       rewriter.setInsertionPointToStart(after);
659       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
660       rewriter.create<scf::YieldOp>(loc);
661       rewriter.setInsertionPointAfter(whileOp);
662       rewriter.replaceOpWithNewOp<memref::TensorLoadOp>(op, resType, dst);
663       return success();
664     }
665     if (!encDst && !encSrc) {
666       // dense => dense
667       return failure();
668     }
669     // This is a dense => sparse conversion or a sparse constant in COO =>
670     // sparse conversion, which is handled as follows:
671     //   t = newSparseCOO()
672     //   ...code to fill the COO tensor t...
673     //   s = newSparseTensor(t)
674     //
675     // To fill the COO tensor from a dense tensor:
676     //   for i1 in dim1
677     //    ..
678     //     for ik in dimk
679     //       val = a[i1,..,ik]
680     //       if val != 0
681     //         t->add(val, [i1,..,ik], [p1,..,pk])
682     //
683     // To fill the COO tensor from a sparse constant in COO format:
684     //   for i in range(NNZ)
685     //     val = values[i]
686     //     [i1,..,ik] = indices[i]
687     //     t->add(val, [i1,..,ik], [p1,..,pk])
688     //
689     // Note that the dense tensor traversal code is actually implemented
690     // using MLIR IR to avoid having to expose too much low-level
691     // memref traversal details to the runtime support library.
692     // Also note that the code below only generates the "new" ops and
693     // the loop-nest per se; whereas the entire body of the innermost
694     // loop is generated by genAddElt().
695     ShapedType stp = resType.cast<ShapedType>();
696     unsigned rank = stp.getRank();
697     SmallVector<Value, 4> sizes;
698     SmallVector<Value, 8> params;
699     sizesFromSrc(rewriter, sizes, loc, src);
700     newParams(rewriter, params, op, encDst, Action::kEmptyCOO, sizes);
701     Value ptr = genNewCall(rewriter, op, params);
702     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
703     Value perm = params[2];
704     SmallVector<Value> lo;
705     SmallVector<Value> hi;
706     SmallVector<Value> st;
707     Value zero = constantIndex(rewriter, loc, 0);
708     Value one = constantIndex(rewriter, loc, 1);
709     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
710     bool isCOOConstant = indicesValues.hasValue();
711     Value indices;
712     Value values;
713     if (isCOOConstant) {
714       indices = indicesValues->first;
715       values = indicesValues->second;
716       lo.push_back(zero);
717       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
718       st.push_back(one);
719     } else {
720       for (unsigned i = 0; i < rank; i++) {
721         lo.push_back(zero);
722         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
723         st.push_back(one);
724       }
725     }
726     Type eltType = stp.getElementType();
727     scf::buildLoopNest(
728         rewriter, op.getLoc(), lo, hi, st, {},
729         [&](OpBuilder &builder, Location loc, ValueRange ivs,
730             ValueRange args) -> scf::ValueVector {
731           Value val;
732           if (isCOOConstant)
733             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
734                                             ivs, rank);
735           else
736             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
737           genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
738           return {};
739         });
740     // Final call to construct sparse tensor storage.
741     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
742     params[7] = ptr;
743     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
744     return success();
745   }
746 };
747 
748 /// Sparse conversion rule for the release operator.
749 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
750 public:
751   using OpConversionPattern::OpConversionPattern;
752   LogicalResult
753   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
754                   ConversionPatternRewriter &rewriter) const override {
755     StringRef name = "delSparseTensor";
756     TypeRange none;
757     auto fn = getFunc(op, name, none, adaptor.getOperands());
758     rewriter.create<CallOp>(op.getLoc(), none, fn, adaptor.getOperands());
759     rewriter.eraseOp(op);
760     return success();
761   }
762 };
763 
764 /// Sparse conversion rule for pointer accesses.
765 class SparseTensorToPointersConverter
766     : public OpConversionPattern<ToPointersOp> {
767 public:
768   using OpConversionPattern::OpConversionPattern;
769   LogicalResult
770   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
771                   ConversionPatternRewriter &rewriter) const override {
772     Type resType = op.getType();
773     Type eltType = resType.cast<ShapedType>().getElementType();
774     StringRef name;
775     if (eltType.isIndex())
776       name = "sparsePointers";
777     else if (eltType.isInteger(64))
778       name = "sparsePointers64";
779     else if (eltType.isInteger(32))
780       name = "sparsePointers32";
781     else if (eltType.isInteger(16))
782       name = "sparsePointers16";
783     else if (eltType.isInteger(8))
784       name = "sparsePointers8";
785     else
786       return failure();
787     auto fn = getFunc(op, name, resType, adaptor.getOperands(),
788                       /*emitCInterface=*/true);
789     rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
790     return success();
791   }
792 };
793 
794 /// Sparse conversion rule for index accesses.
795 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
796 public:
797   using OpConversionPattern::OpConversionPattern;
798   LogicalResult
799   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
800                   ConversionPatternRewriter &rewriter) const override {
801     Type resType = op.getType();
802     Type eltType = resType.cast<ShapedType>().getElementType();
803     StringRef name;
804     if (eltType.isIndex())
805       name = "sparseIndices";
806     else if (eltType.isInteger(64))
807       name = "sparseIndices64";
808     else if (eltType.isInteger(32))
809       name = "sparseIndices32";
810     else if (eltType.isInteger(16))
811       name = "sparseIndices16";
812     else if (eltType.isInteger(8))
813       name = "sparseIndices8";
814     else
815       return failure();
816     auto fn = getFunc(op, name, resType, adaptor.getOperands(),
817                       /*emitCInterface=*/true);
818     rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
819     return success();
820   }
821 };
822 
823 /// Sparse conversion rule for value accesses.
824 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
825 public:
826   using OpConversionPattern::OpConversionPattern;
827   LogicalResult
828   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
829                   ConversionPatternRewriter &rewriter) const override {
830     Type resType = op.getType();
831     Type eltType = resType.cast<ShapedType>().getElementType();
832     StringRef name;
833     if (eltType.isF64())
834       name = "sparseValuesF64";
835     else if (eltType.isF32())
836       name = "sparseValuesF32";
837     else if (eltType.isInteger(64))
838       name = "sparseValuesI64";
839     else if (eltType.isInteger(32))
840       name = "sparseValuesI32";
841     else if (eltType.isInteger(16))
842       name = "sparseValuesI16";
843     else if (eltType.isInteger(8))
844       name = "sparseValuesI8";
845     else
846       return failure();
847     auto fn = getFunc(op, name, resType, adaptor.getOperands(),
848                       /*emitCInterface=*/true);
849     rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
850     return success();
851   }
852 };
853 
854 /// Sparse conversion rule for tensor rematerialization.
855 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
856 public:
857   using OpConversionPattern::OpConversionPattern;
858   LogicalResult
859   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
860                   ConversionPatternRewriter &rewriter) const override {
861     if (op.hasInserts()) {
862       // Finalize any pending insertions.
863       StringRef name = "endInsert";
864       TypeRange noTp;
865       auto fn = getFunc(op, name, noTp, adaptor.getOperands());
866       rewriter.create<CallOp>(op.getLoc(), noTp, fn, adaptor.getOperands());
867     }
868     rewriter.replaceOp(op, adaptor.getOperands());
869     return success();
870   }
871 };
872 
873 /// Sparse conversion rule for inserting in lexicographic index order.
874 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
875 public:
876   using OpConversionPattern::OpConversionPattern;
877   LogicalResult
878   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
879                   ConversionPatternRewriter &rewriter) const override {
880     Type srcType = op.tensor().getType();
881     Type eltType = srcType.cast<ShapedType>().getElementType();
882     StringRef name;
883     if (eltType.isF64())
884       name = "lexInsertF64";
885     else if (eltType.isF32())
886       name = "lexInsertF32";
887     else if (eltType.isInteger(64))
888       name = "lexInsertI64";
889     else if (eltType.isInteger(32))
890       name = "lexInsertI32";
891     else if (eltType.isInteger(16))
892       name = "lexInsertI16";
893     else if (eltType.isInteger(8))
894       name = "lexInsertI8";
895     else
896       llvm_unreachable("Unknown element type");
897     TypeRange noTp;
898     auto fn =
899         getFunc(op, name, noTp, adaptor.getOperands(), /*emitCInterface=*/true);
900     rewriter.replaceOpWithNewOp<CallOp>(op, noTp, fn, adaptor.getOperands());
901     return success();
902   }
903 };
904 
905 } // namespace
906 
907 //===----------------------------------------------------------------------===//
908 // Public method for populating conversion rules.
909 //===----------------------------------------------------------------------===//
910 
911 /// Populates the given patterns list with conversion rules required for
912 /// the sparsification of linear algebra operations.
913 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
914                                                   RewritePatternSet &patterns) {
915   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
916                SparseCastConverter, SparseTensorNewConverter,
917                SparseTensorInitConverter, SparseTensorConvertConverter,
918                SparseTensorReleaseConverter, SparseTensorToPointersConverter,
919                SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
920                SparseTensorLoadConverter, SparseTensorLexInsertConverter>(
921       typeConverter, patterns.getContext());
922 }
923