1 //===- SparseTensorLowering.cpp - Sparse tensor primitives conversion -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Convert sparse tensor primitives to calls into a runtime support library. 10 // Note that this is a current implementation choice to keep the conversion 11 // simple. In principle, these primitives could also be converted to actual 12 // elaborate IR code that implements the primitives on the selected sparse 13 // tensor storage schemes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/Linalg/Utils/Utils.h" 19 #include "mlir/Dialect/MemRef/IR/MemRef.h" 20 #include "mlir/Dialect/SCF/SCF.h" 21 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 22 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 23 #include "mlir/Dialect/StandardOps/IR/Ops.h" 24 #include "mlir/Dialect/Tensor/IR/Tensor.h" 25 #include "mlir/Transforms/DialectConversion.h" 26 27 using namespace mlir; 28 using namespace mlir::sparse_tensor; 29 30 namespace { 31 32 //===----------------------------------------------------------------------===// 33 // Helper methods. 34 //===----------------------------------------------------------------------===// 35 36 /// Returns internal type encoding for primary storage. Keep these 37 /// values consistent with the sparse runtime support library. 38 static unsigned getPrimaryTypeEncoding(Type tp) { 39 if (tp.isF64()) 40 return 1; 41 if (tp.isF32()) 42 return 2; 43 if (tp.isInteger(64)) 44 return 3; 45 if (tp.isInteger(32)) 46 return 4; 47 if (tp.isInteger(16)) 48 return 5; 49 if (tp.isInteger(8)) 50 return 6; 51 return 0; 52 } 53 54 /// Returns internal type encoding for overhead storage. Keep these 55 /// values consistent with the sparse runtime support library. 56 static unsigned getOverheadTypeEncoding(unsigned width) { 57 switch (width) { 58 default: 59 return 1; 60 case 32: 61 return 2; 62 case 16: 63 return 3; 64 case 8: 65 return 4; 66 } 67 } 68 69 /// Returns internal dimension level type encoding. Keep these 70 /// values consistent with the sparse runtime support library. 71 static unsigned 72 getDimLevelTypeEncoding(SparseTensorEncodingAttr::DimLevelType dlt) { 73 switch (dlt) { 74 case SparseTensorEncodingAttr::DimLevelType::Dense: 75 return 0; 76 case SparseTensorEncodingAttr::DimLevelType::Compressed: 77 return 1; 78 case SparseTensorEncodingAttr::DimLevelType::Singleton: 79 return 2; 80 } 81 llvm_unreachable("Unknown SparseTensorEncodingAttr::DimLevelType"); 82 } 83 84 /// Returns integers of given width and values as a constant tensor. 85 /// We cast the static shape into a dynamic shape to ensure that the 86 /// method signature remains uniform across different tensor dimensions. 87 static Value getTensor(ConversionPatternRewriter &rewriter, unsigned width, 88 Location loc, ArrayRef<APInt> values) { 89 Type etp = rewriter.getIntegerType(width); 90 unsigned sz = values.size(); 91 RankedTensorType tt1 = RankedTensorType::get({sz}, etp); 92 RankedTensorType tt2 = RankedTensorType::get({ShapedType::kDynamicSize}, etp); 93 auto elts = 94 rewriter.create<ConstantOp>(loc, DenseElementsAttr::get(tt1, values)); 95 return rewriter.create<tensor::CastOp>(loc, tt2, elts); 96 } 97 98 /// Returns a function reference (first hit also inserts into module). Sets 99 /// the "_emit_c_interface" on the function declaration when requested, 100 /// so that LLVM lowering generates a wrapper function that takes care 101 /// of ABI complications with passing in and returning MemRefs to C functions. 102 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name, Type resultType, 103 ValueRange operands, 104 bool emitCInterface = false) { 105 MLIRContext *context = op->getContext(); 106 auto module = op->getParentOfType<ModuleOp>(); 107 auto result = SymbolRefAttr::get(context, name); 108 auto func = module.lookupSymbol<FuncOp>(result.getAttr()); 109 if (!func) { 110 OpBuilder moduleBuilder(module.getBodyRegion()); 111 func = moduleBuilder.create<FuncOp>( 112 op->getLoc(), name, 113 FunctionType::get(context, operands.getTypes(), resultType)); 114 func.setPrivate(); 115 if (emitCInterface) 116 func->setAttr("llvm.emit_c_interface", UnitAttr::get(context)); 117 } 118 return result; 119 } 120 121 /// Generates a call into the "swiss army knife" method of the sparse runtime 122 /// support library for materializing sparse tensors into the computation. The 123 /// method returns the call value and assigns the permutation to 'perm'. 124 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op, 125 SparseTensorEncodingAttr &enc, uint32_t action, 126 Value &perm, Value ptr = Value()) { 127 Location loc = op->getLoc(); 128 ShapedType resType = op->getResult(0).getType().cast<ShapedType>(); 129 SmallVector<Value, 8> params; 130 // Sparsity annotations in tensor constant form. 131 SmallVector<APInt, 4> attrs; 132 unsigned sz = enc.getDimLevelType().size(); 133 for (unsigned i = 0; i < sz; i++) 134 attrs.push_back( 135 APInt(8, getDimLevelTypeEncoding(enc.getDimLevelType()[i]))); 136 params.push_back(getTensor(rewriter, 8, loc, attrs)); 137 // Dimension sizes array of the enveloping *dense* tensor. Useful for either 138 // verification of external data, or for construction of internal data. 139 auto shape = resType.getShape(); 140 SmallVector<APInt, 4> sizes; 141 for (unsigned i = 0; i < sz; i++) { 142 uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i]; 143 sizes.push_back(APInt(64, s)); 144 } 145 params.push_back(getTensor(rewriter, 64, loc, sizes)); 146 // Dimension order permutation array. This is the "identity" permutation by 147 // default, or otherwise the "reverse" permutation of a given ordering, so 148 // that indices can be mapped quickly to the right position. 149 SmallVector<APInt, 4> rev(sz); 150 if (AffineMap p = enc.getDimOrdering()) { 151 for (unsigned i = 0; i < sz; i++) 152 rev[p.getDimPosition(i)] = APInt(64, i); 153 } else { 154 for (unsigned i = 0; i < sz; i++) 155 rev[i] = APInt(64, i); 156 } 157 perm = getTensor(rewriter, 64, loc, rev); 158 params.push_back(perm); 159 // Secondary and primary types encoding. 160 unsigned secPtr = getOverheadTypeEncoding(enc.getPointerBitWidth()); 161 unsigned secInd = getOverheadTypeEncoding(enc.getIndexBitWidth()); 162 unsigned primary = getPrimaryTypeEncoding(resType.getElementType()); 163 assert(primary); 164 params.push_back( 165 rewriter.create<ConstantOp>(loc, rewriter.getI64IntegerAttr(secPtr))); 166 params.push_back( 167 rewriter.create<ConstantOp>(loc, rewriter.getI64IntegerAttr(secInd))); 168 params.push_back( 169 rewriter.create<ConstantOp>(loc, rewriter.getI64IntegerAttr(primary))); 170 // User action and pointer. 171 Type pTp = LLVM::LLVMPointerType::get(IntegerType::get(op->getContext(), 8)); 172 if (!ptr) 173 ptr = rewriter.create<LLVM::NullOp>(loc, pTp); 174 params.push_back( 175 rewriter.create<ConstantOp>(loc, rewriter.getI32IntegerAttr(action))); 176 params.push_back(ptr); 177 // Generate the call to create new tensor. 178 StringRef name = "newSparseTensor"; 179 auto call = rewriter.create<CallOp>( 180 loc, pTp, getFunc(op, name, pTp, params, /*emitCInterface=*/true), 181 params); 182 return call.getResult(0); 183 } 184 185 /// Generates the comparison `v != 0` where `v` is of numeric type `t`. 186 /// For floating types, we use the "unordered" comparator (i.e., returns 187 /// true if `v` is NaN). 188 static Value genIsNonzero(ConversionPatternRewriter &rewriter, Location loc, 189 Type t, Value v) { 190 Value zero = rewriter.create<ConstantOp>(loc, rewriter.getZeroAttr(t)); 191 if (t.isa<FloatType>()) 192 return rewriter.create<CmpFOp>(loc, CmpFPredicate::UNE, v, zero); 193 if (t.isIntOrIndex()) 194 return rewriter.create<CmpIOp>(loc, CmpIPredicate::ne, v, zero); 195 llvm_unreachable("Unknown element type"); 196 } 197 198 /// Generates the code to read the value from tensor[ivs], and conditionally 199 /// stores the indices ivs to the memory in ind. The generated code looks like 200 /// the following and the insertion point after this routine is inside the 201 /// if-then branch behind the assignment to ind. This is to ensure that the 202 /// addEltX call generated after is inside the if-then branch. 203 /// if (tensor[ivs]!=0) { 204 /// ind = ivs 205 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter, 206 Operation *op, Type eltType, Value tensor, 207 Value ind, ValueRange ivs) { 208 Location loc = op->getLoc(); 209 Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs); 210 Value cond = genIsNonzero(rewriter, loc, eltType, val); 211 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false); 212 rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 213 unsigned i = 0; 214 for (auto iv : ivs) { 215 Value idx = rewriter.create<ConstantOp>(loc, rewriter.getIndexAttr(i++)); 216 rewriter.create<memref::StoreOp>(loc, iv, ind, idx); 217 } 218 return val; 219 } 220 221 /// Generates a call that adds one element to a coordinate scheme. 222 /// In particular, this generates code like the following: 223 /// val = a[i1,..,ik]; 224 /// if val != 0 225 /// t->add(val, [i1,..,ik], [p1,..,pk]); 226 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op, 227 Type eltType, Value ptr, Value val, Value ind, 228 Value perm) { 229 Location loc = op->getLoc(); 230 StringRef name; 231 if (eltType.isF64()) 232 name = "addEltF64"; 233 else if (eltType.isF32()) 234 name = "addEltF32"; 235 else if (eltType.isInteger(64)) 236 name = "addEltI64"; 237 else if (eltType.isInteger(32)) 238 name = "addEltI32"; 239 else if (eltType.isInteger(16)) 240 name = "addEltI16"; 241 else if (eltType.isInteger(8)) 242 name = "addEltI8"; 243 else 244 llvm_unreachable("Unknown element type"); 245 SmallVector<Value, 8> params; 246 params.push_back(ptr); 247 params.push_back(val); 248 params.push_back(ind); 249 params.push_back(perm); 250 Type pTp = LLVM::LLVMPointerType::get(IntegerType::get(op->getContext(), 8)); 251 rewriter.create<CallOp>( 252 loc, pTp, getFunc(op, name, pTp, params, /*emitCInterface=*/true), 253 params); 254 } 255 256 /// If the tensor is a sparse constant, generates and returns the pair of 257 /// the constants for the indices and the values. 258 static Optional<std::pair<Value, Value>> 259 genSplitSparseConstant(ConversionPatternRewriter &rewriter, ConvertOp op, 260 Value tensor) { 261 if (auto constOp = tensor.getDefiningOp<ConstantOp>()) { 262 if (auto attr = constOp.value().dyn_cast<SparseElementsAttr>()) { 263 Location loc = op->getLoc(); 264 DenseElementsAttr indicesAttr = attr.getIndices(); 265 Value indices = rewriter.create<ConstantOp>(loc, indicesAttr); 266 DenseElementsAttr valuesAttr = attr.getValues(); 267 Value values = rewriter.create<ConstantOp>(loc, valuesAttr); 268 return std::make_pair(indices, values); 269 } 270 } 271 return {}; 272 } 273 274 /// Generates the code to copy the index at indices[ivs] to ind, and return 275 /// the value at value[ivs]. 276 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter, 277 Operation *op, Value indices, 278 Value values, Value ind, ValueRange ivs, 279 unsigned rank) { 280 Location loc = op->getLoc(); 281 for (unsigned i = 0; i < rank; i++) { 282 Value idx = rewriter.create<ConstantOp>(loc, rewriter.getIndexAttr(i)); 283 Value val = rewriter.create<tensor::ExtractOp>(loc, indices, 284 ValueRange{ivs[0], idx}); 285 val = rewriter.create<IndexCastOp>(loc, val, rewriter.getIndexType()); 286 rewriter.create<memref::StoreOp>(loc, val, ind, idx); 287 } 288 return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]); 289 } 290 291 //===----------------------------------------------------------------------===// 292 // Conversion rules. 293 //===----------------------------------------------------------------------===// 294 295 /// Sparse conversion rule for returns. 296 class SparseReturnConverter : public OpConversionPattern<ReturnOp> { 297 public: 298 using OpConversionPattern::OpConversionPattern; 299 LogicalResult 300 matchAndRewrite(ReturnOp op, OpAdaptor adaptor, 301 ConversionPatternRewriter &rewriter) const override { 302 rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands()); 303 return success(); 304 } 305 }; 306 307 /// Sparse conversion rule for dimension accesses. 308 class SparseTensorToDimSizeConverter 309 : public OpConversionPattern<tensor::DimOp> { 310 public: 311 using OpConversionPattern::OpConversionPattern; 312 LogicalResult 313 matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor, 314 ConversionPatternRewriter &rewriter) const override { 315 Type resType = op.getType(); 316 auto enc = getSparseTensorEncoding(op.source().getType()); 317 if (!enc) 318 return failure(); 319 // Permute the dim index. 320 Optional<int64_t> index = op.getConstantIndex(); 321 if (!index.hasValue()) 322 return failure(); 323 int64_t idx = index.getValue(); 324 if (AffineMap p = enc.getDimOrdering()) 325 idx = p.getPermutedPosition(idx); 326 // Generate the call. 327 StringRef name = "sparseDimSize"; 328 SmallVector<Value, 2> params; 329 params.push_back(adaptor.getOperands()[0]); 330 params.push_back( 331 rewriter.create<ConstantOp>(op.getLoc(), rewriter.getIndexAttr(idx))); 332 rewriter.replaceOpWithNewOp<CallOp>( 333 op, resType, getFunc(op, name, resType, params), params); 334 return success(); 335 } 336 }; 337 338 /// Sparse conversion rule for the new operator. 339 class SparseTensorNewConverter : public OpConversionPattern<NewOp> { 340 using OpConversionPattern::OpConversionPattern; 341 LogicalResult 342 matchAndRewrite(NewOp op, OpAdaptor adaptor, 343 ConversionPatternRewriter &rewriter) const override { 344 Type resType = op.getType(); 345 auto enc = getSparseTensorEncoding(resType); 346 if (!enc) 347 return failure(); 348 Value perm; 349 rewriter.replaceOp( 350 op, genNewCall(rewriter, op, enc, 0, perm, adaptor.getOperands()[0])); 351 return success(); 352 } 353 }; 354 355 /// Sparse conversion rule for the convert operator. 356 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> { 357 using OpConversionPattern::OpConversionPattern; 358 LogicalResult 359 matchAndRewrite(ConvertOp op, OpAdaptor adaptor, 360 ConversionPatternRewriter &rewriter) const override { 361 Type resType = op.getType(); 362 auto encDst = getSparseTensorEncoding(resType); 363 auto encSrc = getSparseTensorEncoding(op.source().getType()); 364 if (encDst && encSrc) { 365 // This is a sparse => sparse conversion, which is handled as follows: 366 // t = src->asCOO(); ; src to COO in dst order 367 // dst = newSparseTensor(t) 368 // Using the coordinate scheme as an intermediate does not always 369 // yield the fastest conversion but avoids the need for a full 370 // O(N^2) conversion matrix. 371 Value perm; 372 Value coo = 373 genNewCall(rewriter, op, encDst, 3, perm, adaptor.getOperands()[0]); 374 rewriter.replaceOp(op, genNewCall(rewriter, op, encDst, 1, perm, coo)); 375 return success(); 376 } 377 if (!encDst || encSrc) { 378 // TODO: sparse => dense 379 return failure(); 380 } 381 // This is a dense => sparse conversion or a sparse constant in COO => 382 // sparse conversion, which is handled as follows: 383 // t = newSparseCOO() 384 // ...code to fill the COO tensor t... 385 // s = newSparseTensor(t) 386 // 387 // To fill the COO tensor from a dense tensor: 388 // for i1 in dim1 389 // .. 390 // for ik in dimk 391 // val = a[i1,..,ik] 392 // if val != 0 393 // t->add(val, [i1,..,ik], [p1,..,pk]) 394 // 395 // To fill the COO tensor from a sparse constant in COO format: 396 // for i in range(NNZ) 397 // val = values[i] 398 // [i1,..,ik] = indices[i] 399 // t->add(val, [i1,..,ik], [p1,..,pk]) 400 // 401 // Note that the dense tensor traversal code is actually implemented 402 // using MLIR IR to avoid having to expose too much low-level 403 // memref traversal details to the runtime support library. 404 // Also note that the code below only generates the "new" ops and 405 // the loop-nest per se; whereas the entire body of the innermost 406 // loop is generated by genAddElt(). 407 Location loc = op->getLoc(); 408 ShapedType shape = resType.cast<ShapedType>(); 409 auto memTp = 410 MemRefType::get({ShapedType::kDynamicSize}, rewriter.getIndexType()); 411 Value perm; 412 Value ptr = genNewCall(rewriter, op, encDst, 2, perm); 413 Value arg = rewriter.create<ConstantOp>( 414 loc, rewriter.getIndexAttr(shape.getRank())); 415 Value ind = rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{arg}); 416 SmallVector<Value> lo; 417 SmallVector<Value> hi; 418 SmallVector<Value> st; 419 Value zero = rewriter.create<ConstantOp>(loc, rewriter.getIndexAttr(0)); 420 Value one = rewriter.create<ConstantOp>(loc, rewriter.getIndexAttr(1)); 421 Value tensor = adaptor.getOperands()[0]; 422 auto indicesValues = genSplitSparseConstant(rewriter, op, tensor); 423 bool isCOOConstant = indicesValues.hasValue(); 424 Value indices; 425 Value values; 426 if (isCOOConstant) { 427 indices = indicesValues->first; 428 values = indicesValues->second; 429 lo.push_back(zero); 430 hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0)); 431 st.push_back(one); 432 } else { 433 for (unsigned i = 0, rank = shape.getRank(); i < rank; i++) { 434 lo.push_back(zero); 435 hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, tensor, i)); 436 st.push_back(one); 437 } 438 } 439 Type eltType = shape.getElementType(); 440 unsigned rank = shape.getRank(); 441 scf::buildLoopNest(rewriter, op.getLoc(), lo, hi, st, {}, 442 [&](OpBuilder &builder, Location loc, ValueRange ivs, 443 ValueRange args) -> scf::ValueVector { 444 Value val; 445 if (isCOOConstant) 446 val = genIndexAndValueForSparse( 447 rewriter, op, indices, values, ind, ivs, rank); 448 else 449 val = genIndexAndValueForDense(rewriter, op, eltType, 450 tensor, ind, ivs); 451 genAddEltCall(rewriter, op, eltType, ptr, val, ind, 452 perm); 453 return {}; 454 }); 455 rewriter.replaceOp(op, genNewCall(rewriter, op, encDst, 1, perm, ptr)); 456 return success(); 457 } 458 }; 459 460 /// Sparse conversion rule for pointer accesses. 461 class SparseTensorToPointersConverter 462 : public OpConversionPattern<ToPointersOp> { 463 public: 464 using OpConversionPattern::OpConversionPattern; 465 LogicalResult 466 matchAndRewrite(ToPointersOp op, OpAdaptor adaptor, 467 ConversionPatternRewriter &rewriter) const override { 468 Type resType = op.getType(); 469 Type eltType = resType.cast<ShapedType>().getElementType(); 470 StringRef name; 471 if (eltType.isIndex()) 472 name = "sparsePointers"; 473 else if (eltType.isInteger(64)) 474 name = "sparsePointers64"; 475 else if (eltType.isInteger(32)) 476 name = "sparsePointers32"; 477 else if (eltType.isInteger(16)) 478 name = "sparsePointers16"; 479 else if (eltType.isInteger(8)) 480 name = "sparsePointers8"; 481 else 482 return failure(); 483 rewriter.replaceOpWithNewOp<CallOp>(op, resType, 484 getFunc(op, name, resType, 485 adaptor.getOperands(), 486 /*emitCInterface=*/true), 487 adaptor.getOperands()); 488 return success(); 489 } 490 }; 491 492 /// Sparse conversion rule for index accesses. 493 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> { 494 public: 495 using OpConversionPattern::OpConversionPattern; 496 LogicalResult 497 matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor, 498 ConversionPatternRewriter &rewriter) const override { 499 Type resType = op.getType(); 500 Type eltType = resType.cast<ShapedType>().getElementType(); 501 StringRef name; 502 if (eltType.isIndex()) 503 name = "sparseIndices"; 504 else if (eltType.isInteger(64)) 505 name = "sparseIndices64"; 506 else if (eltType.isInteger(32)) 507 name = "sparseIndices32"; 508 else if (eltType.isInteger(16)) 509 name = "sparseIndices16"; 510 else if (eltType.isInteger(8)) 511 name = "sparseIndices8"; 512 else 513 return failure(); 514 rewriter.replaceOpWithNewOp<CallOp>(op, resType, 515 getFunc(op, name, resType, 516 adaptor.getOperands(), 517 /*emitCInterface=*/true), 518 adaptor.getOperands()); 519 return success(); 520 } 521 }; 522 523 /// Sparse conversion rule for value accesses. 524 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> { 525 public: 526 using OpConversionPattern::OpConversionPattern; 527 LogicalResult 528 matchAndRewrite(ToValuesOp op, OpAdaptor adaptor, 529 ConversionPatternRewriter &rewriter) const override { 530 Type resType = op.getType(); 531 Type eltType = resType.cast<ShapedType>().getElementType(); 532 StringRef name; 533 if (eltType.isF64()) 534 name = "sparseValuesF64"; 535 else if (eltType.isF32()) 536 name = "sparseValuesF32"; 537 else if (eltType.isInteger(64)) 538 name = "sparseValuesI64"; 539 else if (eltType.isInteger(32)) 540 name = "sparseValuesI32"; 541 else if (eltType.isInteger(16)) 542 name = "sparseValuesI16"; 543 else if (eltType.isInteger(8)) 544 name = "sparseValuesI8"; 545 else 546 return failure(); 547 rewriter.replaceOpWithNewOp<CallOp>(op, resType, 548 getFunc(op, name, resType, 549 adaptor.getOperands(), 550 /*emitCInterface=*/true), 551 adaptor.getOperands()); 552 return success(); 553 } 554 }; 555 556 /// Sparse conversion rule for tensor reconstruction. 557 class SparseTensorToTensorConverter : public OpConversionPattern<ToTensorOp> { 558 public: 559 using OpConversionPattern::OpConversionPattern; 560 LogicalResult 561 // Simply fold the operator into the pointer to the sparse storage scheme. 562 matchAndRewrite(ToTensorOp op, OpAdaptor adaptor, 563 ConversionPatternRewriter &rewriter) const override { 564 // Check that all arguments of the tensor reconstruction operators are calls 565 // into the support library that query exactly the same opaque pointer. 566 Value ptr; 567 for (Value op : adaptor.getOperands()) { 568 if (auto call = op.getDefiningOp<CallOp>()) { 569 Value arg = call.getOperand(0); 570 if (!arg.getType().isa<LLVM::LLVMPointerType>()) 571 return failure(); 572 if (!ptr) 573 ptr = arg; 574 else if (arg != ptr) 575 return failure(); 576 } 577 } 578 // If a single opaque pointer is found, perform the folding. 579 if (!ptr) 580 return failure(); 581 rewriter.replaceOp(op, ptr); 582 return success(); 583 } 584 }; 585 586 } // namespace 587 588 //===----------------------------------------------------------------------===// 589 // Public method for populating conversion rules. 590 //===----------------------------------------------------------------------===// 591 592 /// Populates the given patterns list with conversion rules required for 593 /// the sparsification of linear algebra operations. 594 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter, 595 RewritePatternSet &patterns) { 596 patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter, 597 SparseTensorNewConverter, SparseTensorConvertConverter, 598 SparseTensorToPointersConverter, SparseTensorToIndicesConverter, 599 SparseTensorToValuesConverter, SparseTensorToTensorConverter>( 600 typeConverter, patterns.getContext()); 601 } 602