1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Convert sparse tensor primitives to calls into a runtime support library. 10 // Note that this is a current implementation choice to keep the conversion 11 // simple. In principle, these primitives could also be converted to actual 12 // elaborate IR code that implements the primitives on the selected sparse 13 // tensor storage schemes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodegenUtils.h" 18 19 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 20 #include "mlir/Dialect/Func/IR/FuncOps.h" 21 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 22 #include "mlir/Dialect/Linalg/Utils/Utils.h" 23 #include "mlir/Dialect/MemRef/IR/MemRef.h" 24 #include "mlir/Dialect/SCF/SCF.h" 25 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 27 #include "mlir/Dialect/Tensor/IR/Tensor.h" 28 #include "mlir/ExecutionEngine/SparseTensorUtils.h" 29 #include "mlir/Transforms/DialectConversion.h" 30 31 using namespace mlir; 32 using namespace mlir::sparse_tensor; 33 34 namespace { 35 36 /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`, 37 /// `createFuncCall()`, and `replaceOpWithFuncCall()`. 38 enum class EmitCInterface : bool { Off = false, On = true }; 39 40 //===----------------------------------------------------------------------===// 41 // Helper methods. 42 //===----------------------------------------------------------------------===// 43 44 /// Returns the equivalent of `void*` for opaque arguments to the 45 /// execution engine. 46 static Type getOpaquePointerType(PatternRewriter &rewriter) { 47 return LLVM::LLVMPointerType::get(rewriter.getI8Type()); 48 } 49 50 /// Returns a function reference (first hit also inserts into module). Sets 51 /// the "_emit_c_interface" on the function declaration when requested, 52 /// so that LLVM lowering generates a wrapper function that takes care 53 /// of ABI complications with passing in and returning MemRefs to C functions. 54 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name, 55 TypeRange resultType, ValueRange operands, 56 EmitCInterface emitCInterface) { 57 MLIRContext *context = op->getContext(); 58 auto module = op->getParentOfType<ModuleOp>(); 59 auto result = SymbolRefAttr::get(context, name); 60 auto func = module.lookupSymbol<FuncOp>(result.getAttr()); 61 if (!func) { 62 OpBuilder moduleBuilder(module.getBodyRegion()); 63 func = moduleBuilder.create<FuncOp>( 64 op->getLoc(), name, 65 FunctionType::get(context, operands.getTypes(), resultType)); 66 func.setPrivate(); 67 if (static_cast<bool>(emitCInterface)) 68 func->setAttr("llvm.emit_c_interface", UnitAttr::get(context)); 69 } 70 return result; 71 } 72 73 /// Creates a `CallOp` to the function reference returned by `getFunc()`. 74 static func::CallOp createFuncCall(OpBuilder &builder, Operation *op, 75 StringRef name, TypeRange resultType, 76 ValueRange operands, 77 EmitCInterface emitCInterface) { 78 auto fn = getFunc(op, name, resultType, operands, emitCInterface); 79 return builder.create<func::CallOp>(op->getLoc(), resultType, fn, operands); 80 } 81 82 /// Replaces the `op` with a `CallOp` to the function reference returned 83 /// by `getFunc()`. 84 static func::CallOp replaceOpWithFuncCall(PatternRewriter &rewriter, 85 Operation *op, StringRef name, 86 TypeRange resultType, 87 ValueRange operands, 88 EmitCInterface emitCInterface) { 89 auto fn = getFunc(op, name, resultType, operands, emitCInterface); 90 return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn, 91 operands); 92 } 93 94 /// Generates dimension size call. 95 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op, 96 SparseTensorEncodingAttr &enc, Value src, 97 int64_t idx) { 98 // Permute the index according to an optional dimension ordering. 99 if (AffineMap p = enc.getDimOrdering()) 100 idx = p.getPermutedPosition(idx); 101 // Generate the call. 102 StringRef name = "sparseDimSize"; 103 SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)}; 104 Type iTp = rewriter.getIndexType(); 105 return createFuncCall(rewriter, op, name, iTp, params, EmitCInterface::Off) 106 .getResult(0); 107 } 108 109 /// Generates a call into the "swiss army knife" method of the sparse runtime 110 /// support library for materializing sparse tensors into the computation. 111 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op, 112 ArrayRef<Value> params) { 113 StringRef name = "newSparseTensor"; 114 Type pTp = getOpaquePointerType(rewriter); 115 return createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On) 116 .getResult(0); 117 } 118 119 /// Populates given sizes array from type. 120 static void sizesFromType(ConversionPatternRewriter &rewriter, 121 SmallVector<Value, 4> &sizes, Location loc, 122 ShapedType stp) { 123 auto shape = stp.getShape(); 124 for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) { 125 uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i]; 126 sizes.push_back(constantIndex(rewriter, loc, s)); 127 } 128 } 129 130 /// Populates given sizes array from source. 131 static void sizesFromSrc(ConversionPatternRewriter &rewriter, 132 SmallVector<Value, 4> &sizes, Location loc, 133 Value src) { 134 unsigned rank = src.getType().cast<ShapedType>().getRank(); 135 for (unsigned i = 0; i < rank; i++) 136 sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i)); 137 } 138 139 /// Populates given sizes array from type (for static sizes) and from 140 /// an already converted into opague pointer source (for dynamic sizes). 141 static void sizesFromPtr(ConversionPatternRewriter &rewriter, 142 SmallVector<Value, 4> &sizes, Operation *op, 143 SparseTensorEncodingAttr &enc, ShapedType stp, 144 Value src) { 145 Location loc = op->getLoc(); 146 auto shape = stp.getShape(); 147 for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) 148 if (shape[i] == ShapedType::kDynamicSize) 149 sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i)); 150 else 151 sizes.push_back(constantIndex(rewriter, loc, shape[i])); 152 } 153 154 /// Generates an uninitialized temporary buffer of the given size and 155 /// type, but returns it as type `memref<? x $tp>` (rather than as type 156 /// `memref<$sz x $tp>`). 157 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc, 158 Value sz, Type tp) { 159 auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp); 160 return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{sz}); 161 } 162 163 /// Generates an uninitialized temporary buffer of the given size and 164 /// type, but returns it as type `memref<? x $tp>` (rather than as type 165 /// `memref<$sz x $tp>`). 166 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc, 167 unsigned sz, Type tp) { 168 return genAlloca(rewriter, loc, constantIndex(rewriter, loc, sz), tp); 169 } 170 171 /// Generates an uninitialized temporary buffer with room for one value 172 /// of the given type, and returns the `memref<$tp>`. 173 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc, 174 Type tp) { 175 return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp)); 176 } 177 178 /// Generates a temporary buffer of the given type and given contents. 179 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc, 180 ArrayRef<Value> values) { 181 unsigned sz = values.size(); 182 assert(sz >= 1); 183 Value buffer = genAlloca(rewriter, loc, sz, values[0].getType()); 184 for (unsigned i = 0; i < sz; i++) { 185 Value idx = constantIndex(rewriter, loc, i); 186 rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx); 187 } 188 return buffer; 189 } 190 191 /// Populates parameters required to call the "swiss army knife" method of the 192 /// sparse runtime support library for materializing sparse tensors into the 193 /// computation. 194 static void newParams(ConversionPatternRewriter &rewriter, 195 SmallVector<Value, 8> ¶ms, Operation *op, 196 ShapedType stp, SparseTensorEncodingAttr &enc, 197 Action action, ValueRange szs, Value ptr = Value()) { 198 Location loc = op->getLoc(); 199 ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType(); 200 unsigned sz = dlt.size(); 201 // Sparsity annotations. 202 SmallVector<Value, 4> attrs; 203 for (unsigned i = 0; i < sz; i++) 204 attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i])); 205 params.push_back(genBuffer(rewriter, loc, attrs)); 206 // Dimension sizes array of the enveloping tensor. Useful for either 207 // verification of external data, or for construction of internal data. 208 SmallVector<Value, 4> sizes; 209 for (Value s : szs) 210 sizes.push_back(s); 211 params.push_back(genBuffer(rewriter, loc, sizes)); 212 // Dimension order permutation array. This is the "identity" permutation by 213 // default, or otherwise the "reverse" permutation of a given ordering, so 214 // that indices can be mapped quickly to the right position. 215 SmallVector<Value, 4> rev(sz); 216 if (AffineMap p = enc.getDimOrdering()) { 217 for (unsigned i = 0; i < sz; i++) 218 rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i); 219 } else { 220 for (unsigned i = 0; i < sz; i++) 221 rev[i] = constantIndex(rewriter, loc, i); 222 } 223 params.push_back(genBuffer(rewriter, loc, rev)); 224 // Secondary and primary types encoding. 225 Type elemTp = stp.getElementType(); 226 params.push_back(constantPointerTypeEncoding(rewriter, loc, enc)); 227 params.push_back(constantIndexTypeEncoding(rewriter, loc, enc)); 228 params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp)); 229 // User action. 230 params.push_back(constantAction(rewriter, loc, action)); 231 // Payload pointer. 232 if (!ptr) 233 ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter)); 234 params.push_back(ptr); 235 } 236 237 /// Generates the code to read the value from tensor[ivs], and conditionally 238 /// stores the indices ivs to the memory in ind. The generated code looks like 239 /// the following and the insertion point after this routine is inside the 240 /// if-then branch behind the assignment to ind. This is to ensure that the 241 /// addEltX call generated after is inside the if-then branch. 242 /// if (tensor[ivs]!=0) { 243 /// ind = ivs 244 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter, 245 Location loc, Value tensor, Value ind, 246 ValueRange ivs) { 247 Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs); 248 Value cond = genIsNonzero(rewriter, loc, val); 249 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false); 250 rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front()); 251 unsigned i = 0; 252 for (auto iv : ivs) { 253 Value idx = constantIndex(rewriter, loc, i++); 254 rewriter.create<memref::StoreOp>(loc, iv, ind, idx); 255 } 256 return val; 257 } 258 259 /// Generates a call that adds one element to a coordinate scheme. 260 /// In particular, this generates code like the following: 261 /// val = a[i1,..,ik]; 262 /// if val != 0 263 /// t->add(val, [i1,..,ik], [p1,..,pk]); 264 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op, 265 Type eltType, Value ptr, Value val, Value ind, 266 Value perm) { 267 SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)}; 268 SmallVector<Value, 4> params{ptr, val, ind, perm}; 269 Type pTp = getOpaquePointerType(rewriter); 270 createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On); 271 } 272 273 /// Generates a call to `iter->getNext()`. If there is a next element, 274 /// then it is copied into the out-parameters `ind` and `elemPtr`, 275 /// and the return value is true. If there isn't a next element, then 276 /// the memory for `iter` is freed and the return value is false. 277 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op, 278 Value iter, Value ind, Value elemPtr) { 279 Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType(); 280 SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)}; 281 SmallVector<Value, 3> params{iter, ind, elemPtr}; 282 Type i1 = rewriter.getI1Type(); 283 return createFuncCall(rewriter, op, name, i1, params, EmitCInterface::On) 284 .getResult(0); 285 } 286 287 /// If the tensor is a sparse constant, generates and returns the pair of 288 /// the constants for the indices and the values. 289 static Optional<std::pair<Value, Value>> 290 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc, 291 Value tensor) { 292 if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) { 293 if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) { 294 DenseElementsAttr indicesAttr = attr.getIndices(); 295 Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr); 296 DenseElementsAttr valuesAttr = attr.getValues(); 297 Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr); 298 return std::make_pair(indices, values); 299 } 300 } 301 return {}; 302 } 303 304 /// Generates the code to copy the index at indices[ivs] to ind, and return 305 /// the value at value[ivs]. 306 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter, 307 Location loc, Value indices, 308 Value values, Value ind, ValueRange ivs, 309 unsigned rank) { 310 for (unsigned i = 0; i < rank; i++) { 311 Value idx = constantIndex(rewriter, loc, i); 312 Value val = rewriter.create<tensor::ExtractOp>(loc, indices, 313 ValueRange{ivs[0], idx}); 314 val = 315 rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), val); 316 rewriter.create<memref::StoreOp>(loc, val, ind, idx); 317 } 318 return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]); 319 } 320 321 /// Generates code to allocate a tensor of the given type, and zero 322 /// initialize it. If the tensor type has any dynamic sizes, then the 323 /// `sizes` parameter should be as filled by sizesFromPtr(); that way 324 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr(). 325 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc, 326 RankedTensorType tensorTp, ValueRange sizes) { 327 Type elemTp = tensorTp.getElementType(); 328 auto shape = tensorTp.getShape(); 329 auto memTp = MemRefType::get(shape, elemTp); 330 SmallVector<Value> dynamicSizes; 331 for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) { 332 if (shape[i] == ShapedType::kDynamicSize) 333 dynamicSizes.push_back(sizes[i]); 334 } 335 Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes); 336 Value zero = constantZero(rewriter, loc, elemTp); 337 rewriter.create<linalg::FillOp>(loc, zero, mem); 338 return mem; 339 } 340 341 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into 342 /// the tensor created by allocDenseTensor(). The `rank` is the rank 343 /// of the `tensor` and the length of `ind`. 344 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter, 345 Location loc, Value elemPtr, 346 Value tensor, unsigned rank, 347 Value ind) { 348 SmallVector<Value, 4> ivs; 349 ivs.reserve(rank); 350 for (unsigned i = 0; i < rank; i++) { 351 Value idx = constantIndex(rewriter, loc, i); 352 ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx)); 353 } 354 Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr); 355 rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs); 356 } 357 358 //===----------------------------------------------------------------------===// 359 // Conversion rules. 360 //===----------------------------------------------------------------------===// 361 362 /// Sparse conversion rule for returns. 363 class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> { 364 public: 365 using OpConversionPattern::OpConversionPattern; 366 LogicalResult 367 matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor, 368 ConversionPatternRewriter &rewriter) const override { 369 rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands()); 370 return success(); 371 } 372 }; 373 374 /// Sparse conversion rule for dimension accesses. 375 class SparseTensorToDimSizeConverter 376 : public OpConversionPattern<tensor::DimOp> { 377 public: 378 using OpConversionPattern::OpConversionPattern; 379 LogicalResult 380 matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor, 381 ConversionPatternRewriter &rewriter) const override { 382 // Only rewrite annotated DimOp with constant index. 383 auto enc = getSparseTensorEncoding(op.source().getType()); 384 if (!enc) 385 return failure(); 386 Optional<int64_t> index = op.getConstantIndex(); 387 if (!index.hasValue()) 388 return failure(); 389 // Generate the call. 390 Value src = adaptor.getOperands()[0]; 391 int64_t idx = index.getValue(); 392 rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx)); 393 return success(); 394 } 395 }; 396 397 /// Sparse conversion rule for trivial tensor casts. 398 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> { 399 using OpConversionPattern::OpConversionPattern; 400 LogicalResult 401 matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor, 402 ConversionPatternRewriter &rewriter) const override { 403 // Only rewrite identically annotated source/dest. 404 auto encDst = getSparseTensorEncoding(op.getType()); 405 auto encSrc = getSparseTensorEncoding(op.source().getType()); 406 if (!encDst || encDst != encSrc) 407 return failure(); 408 rewriter.replaceOp(op, adaptor.getOperands()); 409 return success(); 410 } 411 }; 412 413 /// Sparse conversion rule for the new operator. 414 class SparseTensorNewConverter : public OpConversionPattern<NewOp> { 415 using OpConversionPattern::OpConversionPattern; 416 LogicalResult 417 matchAndRewrite(NewOp op, OpAdaptor adaptor, 418 ConversionPatternRewriter &rewriter) const override { 419 Type resType = op.getType(); 420 auto enc = getSparseTensorEncoding(resType); 421 if (!enc) 422 return failure(); 423 // Generate the call to construct tensor from ptr. The sizes are 424 // inferred from the result type of the new operator. 425 SmallVector<Value, 4> sizes; 426 SmallVector<Value, 8> params; 427 ShapedType stp = resType.cast<ShapedType>(); 428 sizesFromType(rewriter, sizes, op.getLoc(), stp); 429 Value ptr = adaptor.getOperands()[0]; 430 newParams(rewriter, params, op, stp, enc, Action::kFromFile, sizes, ptr); 431 rewriter.replaceOp(op, genNewCall(rewriter, op, params)); 432 return success(); 433 } 434 }; 435 436 /// Sparse conversion rule for the init operator. 437 class SparseTensorInitConverter : public OpConversionPattern<InitOp> { 438 using OpConversionPattern::OpConversionPattern; 439 LogicalResult 440 matchAndRewrite(InitOp op, OpAdaptor adaptor, 441 ConversionPatternRewriter &rewriter) const override { 442 Type resType = op.getType(); 443 auto enc = getSparseTensorEncoding(resType); 444 if (!enc) 445 return failure(); 446 // Generate the call to construct empty tensor. The sizes are 447 // explicitly defined by the arguments to the init operator. 448 SmallVector<Value, 8> params; 449 ShapedType stp = resType.cast<ShapedType>(); 450 newParams(rewriter, params, op, stp, enc, Action::kEmpty, 451 adaptor.getOperands()); 452 rewriter.replaceOp(op, genNewCall(rewriter, op, params)); 453 return success(); 454 } 455 }; 456 457 /// Sparse conversion rule for the convert operator. 458 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> { 459 using OpConversionPattern::OpConversionPattern; 460 LogicalResult 461 matchAndRewrite(ConvertOp op, OpAdaptor adaptor, 462 ConversionPatternRewriter &rewriter) const override { 463 Location loc = op->getLoc(); 464 Type resType = op.getType(); 465 Type srcType = op.source().getType(); 466 auto encDst = getSparseTensorEncoding(resType); 467 auto encSrc = getSparseTensorEncoding(srcType); 468 Value src = adaptor.getOperands()[0]; 469 if (encDst && encSrc) { 470 // This is a sparse => sparse conversion, which is handled as follows: 471 // t = src->toCOO(); ; src to COO in dst order 472 // dst = newSparseTensor(t) 473 // Using the coordinate scheme as an intermediate does not always 474 // yield the fastest conversion but avoids the need for a full 475 // O(N^2) conversion matrix. 476 if (encDst == encSrc) { 477 rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast 478 return success(); 479 } 480 SmallVector<Value, 4> sizes; 481 SmallVector<Value, 8> params; 482 ShapedType stp = srcType.cast<ShapedType>(); 483 sizesFromPtr(rewriter, sizes, op, encSrc, stp, src); 484 // Set up encoding with right mix of src and dst so that the two 485 // method calls can share most parameters, while still providing 486 // the correct sparsity information to either of them. 487 auto enc = SparseTensorEncodingAttr::get( 488 op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(), 489 encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth()); 490 newParams(rewriter, params, op, stp, enc, Action::kToCOO, sizes, src); 491 Value coo = genNewCall(rewriter, op, params); 492 params[3] = constantPointerTypeEncoding(rewriter, loc, encDst); 493 params[4] = constantIndexTypeEncoding(rewriter, loc, encDst); 494 params[6] = constantAction(rewriter, loc, Action::kFromCOO); 495 params[7] = coo; 496 rewriter.replaceOp(op, genNewCall(rewriter, op, params)); 497 return success(); 498 } 499 if (!encDst && encSrc) { 500 // This is sparse => dense conversion, which is handled as follows: 501 // dst = new Tensor(0); 502 // iter = src->toCOO(); 503 // iter->startIterator(); 504 // while (elem = iter->getNext()) { 505 // dst[elem.indices] = elem.value; 506 // } 507 RankedTensorType dstTensorTp = resType.cast<RankedTensorType>(); 508 RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>(); 509 unsigned rank = dstTensorTp.getRank(); 510 Type elemTp = dstTensorTp.getElementType(); 511 // Fabricate a no-permutation encoding for newParams(). 512 // The pointer/index types must be those of `src`. 513 // The dimLevelTypes aren't actually used by Action::kToIterator. 514 encDst = SparseTensorEncodingAttr::get( 515 op->getContext(), 516 SmallVector<SparseTensorEncodingAttr::DimLevelType>( 517 rank, SparseTensorEncodingAttr::DimLevelType::Dense), 518 AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth()); 519 SmallVector<Value, 4> sizes; 520 SmallVector<Value, 8> params; 521 sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src); 522 newParams(rewriter, params, op, dstTensorTp, encDst, Action::kToIterator, 523 sizes, src); 524 Value iter = genNewCall(rewriter, op, params); 525 Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType()); 526 Value elemPtr = genAllocaScalar(rewriter, loc, elemTp); 527 Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes); 528 SmallVector<Value> noArgs; 529 SmallVector<Type> noTypes; 530 auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs); 531 Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes); 532 rewriter.setInsertionPointToEnd(before); 533 Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr); 534 rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 535 Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes); 536 rewriter.setInsertionPointToStart(after); 537 insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind); 538 rewriter.create<scf::YieldOp>(loc); 539 rewriter.setInsertionPointAfter(whileOp); 540 rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst); 541 return success(); 542 } 543 if (!encDst && !encSrc) { 544 // dense => dense 545 return failure(); 546 } 547 // This is a dense => sparse conversion or a sparse constant in COO => 548 // sparse conversion, which is handled as follows: 549 // t = newSparseCOO() 550 // ...code to fill the COO tensor t... 551 // s = newSparseTensor(t) 552 // 553 // To fill the COO tensor from a dense tensor: 554 // for i1 in dim1 555 // .. 556 // for ik in dimk 557 // val = a[i1,..,ik] 558 // if val != 0 559 // t->add(val, [i1,..,ik], [p1,..,pk]) 560 // 561 // To fill the COO tensor from a sparse constant in COO format: 562 // for i in range(NNZ) 563 // val = values[i] 564 // [i1,..,ik] = indices[i] 565 // t->add(val, [i1,..,ik], [p1,..,pk]) 566 // 567 // Note that the dense tensor traversal code is actually implemented 568 // using MLIR IR to avoid having to expose too much low-level 569 // memref traversal details to the runtime support library. 570 // Also note that the code below only generates the "new" ops and 571 // the loop-nest per se; whereas the entire body of the innermost 572 // loop is generated by genAddElt(). 573 ShapedType stp = resType.cast<ShapedType>(); 574 unsigned rank = stp.getRank(); 575 SmallVector<Value, 4> sizes; 576 SmallVector<Value, 8> params; 577 sizesFromSrc(rewriter, sizes, loc, src); 578 newParams(rewriter, params, op, stp, encDst, Action::kEmptyCOO, sizes); 579 Value ptr = genNewCall(rewriter, op, params); 580 Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType()); 581 Value perm = params[2]; 582 SmallVector<Value> lo; 583 SmallVector<Value> hi; 584 SmallVector<Value> st; 585 Value zero = constantIndex(rewriter, loc, 0); 586 Value one = constantIndex(rewriter, loc, 1); 587 auto indicesValues = genSplitSparseConstant(rewriter, loc, src); 588 bool isCOOConstant = indicesValues.hasValue(); 589 Value indices; 590 Value values; 591 if (isCOOConstant) { 592 indices = indicesValues->first; 593 values = indicesValues->second; 594 lo.push_back(zero); 595 hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0)); 596 st.push_back(one); 597 } else { 598 for (unsigned i = 0; i < rank; i++) { 599 lo.push_back(zero); 600 hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i)); 601 st.push_back(one); 602 } 603 } 604 Type eltType = stp.getElementType(); 605 scf::buildLoopNest( 606 rewriter, op.getLoc(), lo, hi, st, {}, 607 [&](OpBuilder &builder, Location loc, ValueRange ivs, 608 ValueRange args) -> scf::ValueVector { 609 Value val; 610 if (isCOOConstant) 611 val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind, 612 ivs, rank); 613 else 614 val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs); 615 genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm); 616 return {}; 617 }); 618 // Final call to construct sparse tensor storage. 619 params[6] = constantAction(rewriter, loc, Action::kFromCOO); 620 params[7] = ptr; 621 rewriter.replaceOp(op, genNewCall(rewriter, op, params)); 622 return success(); 623 } 624 }; 625 626 /// Sparse conversion rule for the release operator. 627 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> { 628 public: 629 using OpConversionPattern::OpConversionPattern; 630 LogicalResult 631 matchAndRewrite(ReleaseOp op, OpAdaptor adaptor, 632 ConversionPatternRewriter &rewriter) const override { 633 StringRef name = "delSparseTensor"; 634 TypeRange noTp; 635 createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(), 636 EmitCInterface::Off); 637 rewriter.eraseOp(op); 638 return success(); 639 } 640 }; 641 642 /// Sparse conversion rule for pointer accesses. 643 class SparseTensorToPointersConverter 644 : public OpConversionPattern<ToPointersOp> { 645 public: 646 using OpConversionPattern::OpConversionPattern; 647 LogicalResult 648 matchAndRewrite(ToPointersOp op, OpAdaptor adaptor, 649 ConversionPatternRewriter &rewriter) const override { 650 Type resType = op.getType(); 651 Type ptrType = resType.cast<ShapedType>().getElementType(); 652 SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)}; 653 replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(), 654 EmitCInterface::On); 655 return success(); 656 } 657 }; 658 659 /// Sparse conversion rule for index accesses. 660 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> { 661 public: 662 using OpConversionPattern::OpConversionPattern; 663 LogicalResult 664 matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor, 665 ConversionPatternRewriter &rewriter) const override { 666 Type resType = op.getType(); 667 Type indType = resType.cast<ShapedType>().getElementType(); 668 SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)}; 669 replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(), 670 EmitCInterface::On); 671 return success(); 672 } 673 }; 674 675 /// Sparse conversion rule for value accesses. 676 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> { 677 public: 678 using OpConversionPattern::OpConversionPattern; 679 LogicalResult 680 matchAndRewrite(ToValuesOp op, OpAdaptor adaptor, 681 ConversionPatternRewriter &rewriter) const override { 682 Type resType = op.getType(); 683 Type eltType = resType.cast<ShapedType>().getElementType(); 684 SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltType)}; 685 replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(), 686 EmitCInterface::On); 687 return success(); 688 } 689 }; 690 691 /// Sparse conversion rule for tensor rematerialization. 692 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> { 693 public: 694 using OpConversionPattern::OpConversionPattern; 695 LogicalResult 696 matchAndRewrite(LoadOp op, OpAdaptor adaptor, 697 ConversionPatternRewriter &rewriter) const override { 698 if (op.hasInserts()) { 699 // Finalize any pending insertions. 700 StringRef name = "endInsert"; 701 TypeRange noTp; 702 createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(), 703 EmitCInterface::Off); 704 } 705 rewriter.replaceOp(op, adaptor.getOperands()); 706 return success(); 707 } 708 }; 709 710 /// Sparse conversion rule for inserting in lexicographic index order. 711 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> { 712 public: 713 using OpConversionPattern::OpConversionPattern; 714 LogicalResult 715 matchAndRewrite(LexInsertOp op, OpAdaptor adaptor, 716 ConversionPatternRewriter &rewriter) const override { 717 Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType(); 718 SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)}; 719 TypeRange noTp; 720 replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(), 721 EmitCInterface::On); 722 return success(); 723 } 724 }; 725 726 class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> { 727 public: 728 using OpConversionPattern::OpConversionPattern; 729 LogicalResult 730 matchAndRewrite(ExpandOp op, OpAdaptor adaptor, 731 ConversionPatternRewriter &rewriter) const override { 732 Location loc = op->getLoc(); 733 ShapedType srcType = op.tensor().getType().cast<ShapedType>(); 734 Type eltType = srcType.getElementType(); 735 Type boolType = rewriter.getIntegerType(1); 736 Type idxType = rewriter.getIndexType(); 737 // All initialization should be done on entry of the loop nest. 738 rewriter.setInsertionPointAfter(op.tensor().getDefiningOp()); 739 // Determine the size for access expansion. 740 auto enc = getSparseTensorEncoding(srcType); 741 Value src = adaptor.getOperands()[0]; 742 Value sz = genDimSizeCall(rewriter, op, enc, src, srcType.getRank() - 1); 743 // Allocate temporary stack buffers for values, filled-switch, and indices. 744 Value values = genAlloca(rewriter, loc, sz, eltType); 745 Value filled = genAlloca(rewriter, loc, sz, boolType); 746 Value indices = genAlloca(rewriter, loc, sz, idxType); 747 Value zero = constantZero(rewriter, loc, idxType); 748 // Reset the values/filled-switch to all-zero/false. Note that this 749 // introduces an O(N) operation into the computation, but this reset 750 // operation is amortized over the innermost loops for the access 751 // pattern expansion. 752 rewriter.create<linalg::FillOp>(loc, constantZero(rewriter, loc, eltType), 753 values); 754 rewriter.create<linalg::FillOp>(loc, constantZero(rewriter, loc, boolType), 755 filled); 756 // Replace expansion op with these buffers and initial index. 757 assert(op.getNumResults() == 4); 758 rewriter.replaceOp(op, {values, filled, indices, zero}); 759 return success(); 760 } 761 }; 762 763 class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> { 764 public: 765 using OpConversionPattern::OpConversionPattern; 766 LogicalResult 767 matchAndRewrite(CompressOp op, OpAdaptor adaptor, 768 ConversionPatternRewriter &rewriter) const override { 769 // Note that this method call resets the values/filled-switch back to 770 // all-zero/false by only iterating over the set elements, so the 771 // complexity remains proportional to the sparsity of the expanded 772 // access pattern. 773 Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType(); 774 SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)}; 775 TypeRange noTp; 776 replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(), 777 EmitCInterface::On); 778 return success(); 779 } 780 }; 781 782 class SparseTensorOutConverter : public OpConversionPattern<OutOp> { 783 public: 784 using OpConversionPattern::OpConversionPattern; 785 LogicalResult 786 matchAndRewrite(OutOp op, OpAdaptor adaptor, 787 ConversionPatternRewriter &rewriter) const override { 788 Location loc = op->getLoc(); 789 ShapedType srcType = op.tensor().getType().cast<ShapedType>(); 790 // Convert to default permuted COO. 791 Value src = adaptor.getOperands()[0]; 792 auto encSrc = getSparseTensorEncoding(srcType); 793 SmallVector<Value, 4> sizes; 794 SmallVector<Value, 8> params; 795 sizesFromPtr(rewriter, sizes, op, encSrc, srcType, src); 796 auto enc = SparseTensorEncodingAttr::get( 797 op->getContext(), encSrc.getDimLevelType(), AffineMap(), 798 encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth()); 799 newParams(rewriter, params, op, srcType, enc, Action::kToCOO, sizes, src); 800 Value coo = genNewCall(rewriter, op, params); 801 // Then output the tensor to external file with indices in the externally 802 // visible lexicographic index order. A sort is required if the source was 803 // not in that order yet (note that the sort can be dropped altogether if 804 // external format does not care about the order at all, but here we assume 805 // it does). 806 bool sort = 807 encSrc.getDimOrdering() && !encSrc.getDimOrdering().isIdentity(); 808 params.clear(); 809 params.push_back(coo); 810 params.push_back(adaptor.getOperands()[1]); 811 params.push_back(constantI1(rewriter, loc, sort)); 812 Type eltType = srcType.getElementType(); 813 SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(eltType)}; 814 TypeRange noTp; 815 replaceOpWithFuncCall(rewriter, op, name, noTp, params, 816 EmitCInterface::Off); 817 return success(); 818 } 819 }; 820 821 } // namespace 822 823 //===----------------------------------------------------------------------===// 824 // Public method for populating conversion rules. 825 //===----------------------------------------------------------------------===// 826 827 /// Populates the given patterns list with conversion rules required for 828 /// the sparsification of linear algebra operations. 829 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter, 830 RewritePatternSet &patterns) { 831 patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter, 832 SparseCastConverter, SparseTensorNewConverter, 833 SparseTensorInitConverter, SparseTensorConvertConverter, 834 SparseTensorReleaseConverter, SparseTensorToPointersConverter, 835 SparseTensorToIndicesConverter, SparseTensorToValuesConverter, 836 SparseTensorLoadConverter, SparseTensorLexInsertConverter, 837 SparseTensorExpandConverter, SparseTensorCompressConverter, 838 SparseTensorOutConverter>(typeConverter, patterns.getContext()); 839 } 840