1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/Linalg/Utils/Utils.h"
19 #include "mlir/Dialect/MemRef/IR/MemRef.h"
20 #include "mlir/Dialect/SCF/SCF.h"
21 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
22 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
23 #include "mlir/Dialect/StandardOps/IR/Ops.h"
24 #include "mlir/Dialect/Tensor/IR/Tensor.h"
25 #include "mlir/Transforms/DialectConversion.h"
26 
27 using namespace mlir;
28 using namespace mlir::sparse_tensor;
29 
30 namespace {
31 
32 /// New tensor storage action. Keep these values consistent with
33 /// the sparse runtime support library.
34 enum Action : uint32_t {
35   kEmpty = 0,
36   kFromFile = 1,
37   kFromCOO = 2,
38   kEmptyCOO = 3,
39   kToCOO = 4,
40   kToIter = 5
41 };
42 
43 //===----------------------------------------------------------------------===//
44 // Helper methods.
45 //===----------------------------------------------------------------------===//
46 
47 /// Returns internal type encoding for primary storage. Keep these
48 /// values consistent with the sparse runtime support library.
49 static uint32_t getPrimaryTypeEncoding(Type tp) {
50   if (tp.isF64())
51     return 1;
52   if (tp.isF32())
53     return 2;
54   if (tp.isInteger(64))
55     return 3;
56   if (tp.isInteger(32))
57     return 4;
58   if (tp.isInteger(16))
59     return 5;
60   if (tp.isInteger(8))
61     return 6;
62   return 0;
63 }
64 
65 /// Returns internal type encoding for overhead storage. Keep these
66 /// values consistent with the sparse runtime support library.
67 static uint32_t getOverheadTypeEncoding(unsigned width) {
68   switch (width) {
69   default:
70     return 1;
71   case 32:
72     return 2;
73   case 16:
74     return 3;
75   case 8:
76     return 4;
77   }
78 }
79 
80 /// Returns internal dimension level type encoding. Keep these
81 /// values consistent with the sparse runtime support library.
82 static uint32_t
83 getDimLevelTypeEncoding(SparseTensorEncodingAttr::DimLevelType dlt) {
84   switch (dlt) {
85   case SparseTensorEncodingAttr::DimLevelType::Dense:
86     return 0;
87   case SparseTensorEncodingAttr::DimLevelType::Compressed:
88     return 1;
89   case SparseTensorEncodingAttr::DimLevelType::Singleton:
90     return 2;
91   }
92   llvm_unreachable("Unknown SparseTensorEncodingAttr::DimLevelType");
93 }
94 
95 /// Generates a constant zero of the given type.
96 inline static Value constantZero(ConversionPatternRewriter &rewriter,
97                                  Location loc, Type t) {
98   return rewriter.create<arith::ConstantOp>(loc, t, rewriter.getZeroAttr(t));
99 }
100 
101 /// Generates a constant of `index` type.
102 inline static Value constantIndex(ConversionPatternRewriter &rewriter,
103                                   Location loc, int64_t i) {
104   return rewriter.create<arith::ConstantIndexOp>(loc, i);
105 }
106 
107 /// Generates a constant of `i32` type.
108 inline static Value constantI32(ConversionPatternRewriter &rewriter,
109                                 Location loc, int32_t i) {
110   return rewriter.create<arith::ConstantIntOp>(loc, i, 32);
111 }
112 
113 /// Generates a constant of `i8` type.
114 inline static Value constantI8(ConversionPatternRewriter &rewriter,
115                                Location loc, int8_t i) {
116   return rewriter.create<arith::ConstantIntOp>(loc, i, 8);
117 }
118 
119 /// Returns a function reference (first hit also inserts into module). Sets
120 /// the "_emit_c_interface" on the function declaration when requested,
121 /// so that LLVM lowering generates a wrapper function that takes care
122 /// of ABI complications with passing in and returning MemRefs to C functions.
123 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
124                                  TypeRange resultType, ValueRange operands,
125                                  bool emitCInterface = false) {
126   MLIRContext *context = op->getContext();
127   auto module = op->getParentOfType<ModuleOp>();
128   auto result = SymbolRefAttr::get(context, name);
129   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
130   if (!func) {
131     OpBuilder moduleBuilder(module.getBodyRegion());
132     func = moduleBuilder.create<FuncOp>(
133         op->getLoc(), name,
134         FunctionType::get(context, operands.getTypes(), resultType));
135     func.setPrivate();
136     if (emitCInterface)
137       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
138   }
139   return result;
140 }
141 
142 /// Generates dimension size call.
143 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
144                             SparseTensorEncodingAttr &enc, Value src,
145                             int64_t idx) {
146   // Permute the index according to an optional dimension ordering.
147   if (AffineMap p = enc.getDimOrdering())
148     idx = p.getPermutedPosition(idx);
149   // Generate the call.
150   Location loc = op->getLoc();
151   StringRef name = "sparseDimSize";
152   SmallVector<Value, 2> params;
153   params.push_back(src);
154   params.push_back(constantIndex(rewriter, loc, idx));
155   Type iTp = rewriter.getIndexType();
156   auto fn = getFunc(op, name, iTp, params);
157   return rewriter.create<CallOp>(loc, iTp, fn, params).getResult(0);
158 }
159 
160 /// Generates a call into the "swiss army knife" method of the sparse runtime
161 /// support library for materializing sparse tensors into the computation.
162 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
163                         ArrayRef<Value> params) {
164   Location loc = op->getLoc();
165   StringRef name = "newSparseTensor";
166   Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
167   auto fn = getFunc(op, name, pTp, params, /*emitCInterface=*/true);
168   auto call = rewriter.create<CallOp>(loc, pTp, fn, params);
169   return call.getResult(0);
170 }
171 
172 /// Populates given sizes array from type.
173 static void sizesFromType(ConversionPatternRewriter &rewriter,
174                           SmallVector<Value, 4> &sizes, Location loc,
175                           ShapedType stp) {
176   auto shape = stp.getShape();
177   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
178     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
179     sizes.push_back(constantIndex(rewriter, loc, s));
180   }
181 }
182 
183 /// Populates given sizes array from source.
184 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
185                          SmallVector<Value, 4> &sizes, Location loc,
186                          Value src) {
187   ShapedType stp = src.getType().cast<ShapedType>();
188   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
189     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
190 }
191 
192 /// Populates given sizes array from type (for static sizes) and from
193 /// an already converted into opague pointer source (for dynamic sizes).
194 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
195                          SmallVector<Value, 4> &sizes, Operation *op,
196                          SparseTensorEncodingAttr &enc, ShapedType stp,
197                          Value src) {
198   auto shape = stp.getShape();
199   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
200     if (shape[i] == ShapedType::kDynamicSize)
201       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
202     else
203       sizes.push_back(constantIndex(rewriter, op->getLoc(), shape[i]));
204 }
205 
206 /// Generates an uninitialized temporary buffer of the given size and
207 /// type, but returns it as type `memref<? x $tp>` (rather than as type
208 /// `memref<$sz x $tp>`).
209 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
210                        unsigned sz, Type tp) {
211   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
212   Value a = constantIndex(rewriter, loc, sz);
213   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{a});
214 }
215 
216 /// Generates an uninitialized temporary buffer with room for one value
217 /// of the given type, and returns the `memref<$tp>`.
218 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
219                              Type tp) {
220   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
221 }
222 
223 /// Generates a temporary buffer of the given type and given contents.
224 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
225                        ArrayRef<Value> values) {
226   unsigned sz = values.size();
227   assert(sz >= 1);
228   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
229   for (unsigned i = 0; i < sz; i++) {
230     Value idx = constantIndex(rewriter, loc, i);
231     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
232   }
233   return buffer;
234 }
235 
236 /// Populates parameters required to call the "swiss army knife" method of the
237 /// sparse runtime support library for materializing sparse tensors into the
238 /// computation.
239 static void newParams(ConversionPatternRewriter &rewriter,
240                       SmallVector<Value, 8> &params, Operation *op,
241                       SparseTensorEncodingAttr &enc, uint32_t action,
242                       ValueRange szs, Value ptr = Value()) {
243   Location loc = op->getLoc();
244   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
245   unsigned sz = dlt.size();
246   // Sparsity annotations.
247   SmallVector<Value, 4> attrs;
248   for (unsigned i = 0; i < sz; i++)
249     attrs.push_back(constantI8(rewriter, loc, getDimLevelTypeEncoding(dlt[i])));
250   params.push_back(genBuffer(rewriter, loc, attrs));
251   // Dimension sizes array of the enveloping tensor. Useful for either
252   // verification of external data, or for construction of internal data.
253   SmallVector<Value, 4> sizes;
254   for (Value s : szs)
255     sizes.push_back(s);
256   params.push_back(genBuffer(rewriter, loc, sizes));
257   // Dimension order permutation array. This is the "identity" permutation by
258   // default, or otherwise the "reverse" permutation of a given ordering, so
259   // that indices can be mapped quickly to the right position.
260   SmallVector<Value, 4> rev(sz);
261   if (AffineMap p = enc.getDimOrdering()) {
262     for (unsigned i = 0; i < sz; i++)
263       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
264   } else {
265     for (unsigned i = 0; i < sz; i++)
266       rev[i] = constantIndex(rewriter, loc, i);
267   }
268   params.push_back(genBuffer(rewriter, loc, rev));
269   // Secondary and primary types encoding.
270   ShapedType resType = op->getResult(0).getType().cast<ShapedType>();
271   uint32_t secPtr = getOverheadTypeEncoding(enc.getPointerBitWidth());
272   uint32_t secInd = getOverheadTypeEncoding(enc.getIndexBitWidth());
273   uint32_t primary = getPrimaryTypeEncoding(resType.getElementType());
274   assert(primary);
275   params.push_back(constantI32(rewriter, loc, secPtr));
276   params.push_back(constantI32(rewriter, loc, secInd));
277   params.push_back(constantI32(rewriter, loc, primary));
278   // User action and pointer.
279   Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
280   if (!ptr)
281     ptr = rewriter.create<LLVM::NullOp>(loc, pTp);
282   params.push_back(constantI32(rewriter, loc, action));
283   params.push_back(ptr);
284 }
285 
286 /// Generates the comparison `v != 0` where `v` is of numeric type `t`.
287 /// For floating types, we use the "unordered" comparator (i.e., returns
288 /// true if `v` is NaN).
289 static Value genIsNonzero(ConversionPatternRewriter &rewriter, Location loc,
290                           Value v) {
291   Type t = v.getType();
292   Value zero = constantZero(rewriter, loc, t);
293   if (t.isa<FloatType>())
294     return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNE, v,
295                                           zero);
296   if (t.isIntOrIndex())
297     return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, v,
298                                           zero);
299   llvm_unreachable("Unknown element type");
300 }
301 
302 /// Generates the code to read the value from tensor[ivs], and conditionally
303 /// stores the indices ivs to the memory in ind. The generated code looks like
304 /// the following and the insertion point after this routine is inside the
305 /// if-then branch behind the assignment to ind. This is to ensure that the
306 /// addEltX call generated after is inside the if-then branch.
307 ///    if (tensor[ivs]!=0) {
308 ///      ind = ivs
309 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
310                                       Location loc, Value tensor, Value ind,
311                                       ValueRange ivs) {
312   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
313   Value cond = genIsNonzero(rewriter, loc, val);
314   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
315   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
316   unsigned i = 0;
317   for (auto iv : ivs) {
318     Value idx = constantIndex(rewriter, loc, i++);
319     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
320   }
321   return val;
322 }
323 
324 /// Generates a call that adds one element to a coordinate scheme.
325 /// In particular, this generates code like the following:
326 ///   val = a[i1,..,ik];
327 ///   if val != 0
328 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
329 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
330                           Type eltType, Value ptr, Value val, Value ind,
331                           Value perm) {
332   Location loc = op->getLoc();
333   StringRef name;
334   if (eltType.isF64())
335     name = "addEltF64";
336   else if (eltType.isF32())
337     name = "addEltF32";
338   else if (eltType.isInteger(64))
339     name = "addEltI64";
340   else if (eltType.isInteger(32))
341     name = "addEltI32";
342   else if (eltType.isInteger(16))
343     name = "addEltI16";
344   else if (eltType.isInteger(8))
345     name = "addEltI8";
346   else
347     llvm_unreachable("Unknown element type");
348   SmallVector<Value, 8> params;
349   params.push_back(ptr);
350   params.push_back(val);
351   params.push_back(ind);
352   params.push_back(perm);
353   Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
354   auto fn = getFunc(op, name, pTp, params, /*emitCInterface=*/true);
355   rewriter.create<CallOp>(loc, pTp, fn, params);
356 }
357 
358 /// Generates a call to `iter->getNext()`.  If there is a next element,
359 /// then it is copied into the out-parameters `ind` and `elemPtr`,
360 /// and the return value is true.  If there isn't a next element, then
361 /// the memory for `iter` is freed and the return value is false.
362 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
363                             Value iter, Value ind, Value elemPtr) {
364   Location loc = op->getLoc();
365   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
366   StringRef name;
367   if (elemTp.isF64())
368     name = "getNextF64";
369   else if (elemTp.isF32())
370     name = "getNextF32";
371   else if (elemTp.isInteger(64))
372     name = "getNextI64";
373   else if (elemTp.isInteger(32))
374     name = "getNextI32";
375   else if (elemTp.isInteger(16))
376     name = "getNextI16";
377   else if (elemTp.isInteger(8))
378     name = "getNextI8";
379   else
380     llvm_unreachable("Unknown element type");
381   SmallVector<Value, 3> params;
382   params.push_back(iter);
383   params.push_back(ind);
384   params.push_back(elemPtr);
385   Type i1 = rewriter.getI1Type();
386   auto fn = getFunc(op, name, i1, params, /*emitCInterface=*/true);
387   auto call = rewriter.create<CallOp>(loc, i1, fn, params);
388   return call.getResult(0);
389 }
390 
391 /// If the tensor is a sparse constant, generates and returns the pair of
392 /// the constants for the indices and the values.
393 static Optional<std::pair<Value, Value>>
394 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
395                        Value tensor) {
396   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
397     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
398       DenseElementsAttr indicesAttr = attr.getIndices();
399       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
400       DenseElementsAttr valuesAttr = attr.getValues();
401       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
402       return std::make_pair(indices, values);
403     }
404   }
405   return {};
406 }
407 
408 /// Generates the code to copy the index at indices[ivs] to ind, and return
409 /// the value at value[ivs].
410 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
411                                        Location loc, Value indices,
412                                        Value values, Value ind, ValueRange ivs,
413                                        unsigned rank) {
414   for (unsigned i = 0; i < rank; i++) {
415     Value idx = constantIndex(rewriter, loc, i);
416     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
417                                                    ValueRange{ivs[0], idx});
418     val =
419         rewriter.create<arith::IndexCastOp>(loc, val, rewriter.getIndexType());
420     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
421   }
422   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
423 }
424 
425 /// Generates code to allocate a tensor of the given type, and zero
426 /// initialize it.  If the tensor type has any dynamic sizes, then the
427 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
428 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
429 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
430                               RankedTensorType tensorTp, ValueRange sizes) {
431   Type elemTp = tensorTp.getElementType();
432   auto shape = tensorTp.getShape();
433   auto memTp = MemRefType::get(shape, elemTp);
434   SmallVector<Value> dynamicSizes;
435   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
436     if (shape[i] == ShapedType::kDynamicSize)
437       dynamicSizes.push_back(sizes[i]);
438   }
439   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
440   Value zero = constantZero(rewriter, loc, elemTp);
441   rewriter.create<linalg::FillOp>(loc, zero, mem).result();
442   return mem;
443 }
444 
445 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
446 /// the tensor created by allocDenseTensor().  The `rank` is the rank
447 /// of the `tensor` and the length of `ind`.
448 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
449                                         Location loc, Value elemPtr,
450                                         Value tensor, unsigned rank,
451                                         Value ind) {
452   SmallVector<Value, 4> ivs;
453   ivs.reserve(rank);
454   for (unsigned i = 0; i < rank; i++) {
455     Value idx = constantIndex(rewriter, loc, i);
456     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
457   }
458   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
459   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
460 }
461 
462 //===----------------------------------------------------------------------===//
463 // Conversion rules.
464 //===----------------------------------------------------------------------===//
465 
466 /// Sparse conversion rule for returns.
467 class SparseReturnConverter : public OpConversionPattern<ReturnOp> {
468 public:
469   using OpConversionPattern::OpConversionPattern;
470   LogicalResult
471   matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
472                   ConversionPatternRewriter &rewriter) const override {
473     rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands());
474     return success();
475   }
476 };
477 
478 /// Sparse conversion rule for dimension accesses.
479 class SparseTensorToDimSizeConverter
480     : public OpConversionPattern<tensor::DimOp> {
481 public:
482   using OpConversionPattern::OpConversionPattern;
483   LogicalResult
484   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
485                   ConversionPatternRewriter &rewriter) const override {
486     // Only rewrite annotated DimOp with constant index.
487     auto enc = getSparseTensorEncoding(op.source().getType());
488     if (!enc)
489       return failure();
490     Optional<int64_t> index = op.getConstantIndex();
491     if (!index.hasValue())
492       return failure();
493     // Generate the call.
494     Value src = adaptor.getOperands()[0];
495     int64_t idx = index.getValue();
496     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
497     return success();
498   }
499 };
500 
501 /// Sparse conversion rule for trivial tensor casts.
502 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
503   using OpConversionPattern::OpConversionPattern;
504   LogicalResult
505   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
506                   ConversionPatternRewriter &rewriter) const override {
507     // Only rewrite identically annotated source/dest.
508     auto encDst = getSparseTensorEncoding(op.getType());
509     auto encSrc = getSparseTensorEncoding(op.source().getType());
510     if (!encDst || encDst != encSrc)
511       return failure();
512     rewriter.replaceOp(op, adaptor.getOperands());
513     return success();
514   }
515 };
516 
517 /// Sparse conversion rule for the new operator.
518 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
519   using OpConversionPattern::OpConversionPattern;
520   LogicalResult
521   matchAndRewrite(NewOp op, OpAdaptor adaptor,
522                   ConversionPatternRewriter &rewriter) const override {
523     Type resType = op.getType();
524     auto enc = getSparseTensorEncoding(resType);
525     if (!enc)
526       return failure();
527     // Generate the call to construct tensor from ptr. The sizes are
528     // inferred from the result type of the new operator.
529     SmallVector<Value, 4> sizes;
530     SmallVector<Value, 8> params;
531     sizesFromType(rewriter, sizes, op.getLoc(), resType.cast<ShapedType>());
532     Value ptr = adaptor.getOperands()[0];
533     newParams(rewriter, params, op, enc, kFromFile, sizes, ptr);
534     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
535     return success();
536   }
537 };
538 
539 /// Sparse conversion rule for the init operator.
540 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
541   using OpConversionPattern::OpConversionPattern;
542   LogicalResult
543   matchAndRewrite(InitOp op, OpAdaptor adaptor,
544                   ConversionPatternRewriter &rewriter) const override {
545     Type resType = op.getType();
546     auto enc = getSparseTensorEncoding(resType);
547     if (!enc)
548       return failure();
549     // Generate the call to construct empty tensor. The sizes are
550     // explicitly defined by the arguments to the init operator.
551     SmallVector<Value, 8> params;
552     newParams(rewriter, params, op, enc, kEmpty, adaptor.getOperands());
553     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
554     return success();
555   }
556 };
557 
558 /// Sparse conversion rule for the convert operator.
559 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
560   using OpConversionPattern::OpConversionPattern;
561   LogicalResult
562   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
563                   ConversionPatternRewriter &rewriter) const override {
564     Location loc = op->getLoc();
565     Type resType = op.getType();
566     Type srcType = op.source().getType();
567     auto encDst = getSparseTensorEncoding(resType);
568     auto encSrc = getSparseTensorEncoding(srcType);
569     Value src = adaptor.getOperands()[0];
570     if (encDst && encSrc) {
571       // This is a sparse => sparse conversion, which is handled as follows:
572       //   t = src->toCOO();         ; src to COO in dst order
573       //   dst = newSparseTensor(t)
574       // Using the coordinate scheme as an intermediate does not always
575       // yield the fastest conversion but avoids the need for a full
576       // O(N^2) conversion matrix.
577       if (encDst == encSrc) {
578         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
579         return success();
580       }
581       SmallVector<Value, 4> sizes;
582       SmallVector<Value, 8> params;
583       sizesFromPtr(rewriter, sizes, op, encSrc, srcType.cast<ShapedType>(),
584                    src);
585       // Set up encoding with right mix of src and dst so that the two
586       // method calls can share most parameters, while still providing
587       // the correct sparsity information to either of them.
588       auto enc = SparseTensorEncodingAttr::get(
589           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
590           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
591       newParams(rewriter, params, op, enc, kToCOO, sizes, src);
592       Value coo = genNewCall(rewriter, op, params);
593       params[3] = constantI32(
594           rewriter, loc, getOverheadTypeEncoding(encDst.getPointerBitWidth()));
595       params[4] = constantI32(
596           rewriter, loc, getOverheadTypeEncoding(encDst.getIndexBitWidth()));
597       params[6] = constantI32(rewriter, loc, kFromCOO);
598       params[7] = coo;
599       rewriter.replaceOp(op, genNewCall(rewriter, op, params));
600       return success();
601     }
602     if (!encDst && encSrc) {
603       // This is sparse => dense conversion, which is handled as follows:
604       //   dst = new Tensor(0);
605       //   iter = src->toCOO();
606       //   iter->startIterator();
607       //   while (elem = iter->getNext()) {
608       //     dst[elem.indices] = elem.value;
609       //   }
610       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
611       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
612       unsigned rank = dstTensorTp.getRank();
613       Type elemTp = dstTensorTp.getElementType();
614       // Fabricate a no-permutation encoding for newParams().
615       // The pointer/index types must be those of `src`.
616       // The dimLevelTypes aren't actually used by kToIter.
617       encDst = SparseTensorEncodingAttr::get(
618           op->getContext(),
619           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
620               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
621           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
622       SmallVector<Value, 4> sizes;
623       SmallVector<Value, 8> params;
624       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
625       newParams(rewriter, params, op, encDst, kToIter, sizes, src);
626       Value iter = genNewCall(rewriter, op, params);
627       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
628       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
629       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
630       SmallVector<Value> noArgs;
631       SmallVector<Type> noTypes;
632       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
633       Block *before = rewriter.createBlock(&whileOp.before(), {}, noTypes);
634       rewriter.setInsertionPointToEnd(before);
635       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
636       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
637       Block *after = rewriter.createBlock(&whileOp.after(), {}, noTypes);
638       rewriter.setInsertionPointToStart(after);
639       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
640       rewriter.create<scf::YieldOp>(loc);
641       rewriter.setInsertionPointAfter(whileOp);
642       rewriter.replaceOpWithNewOp<memref::TensorLoadOp>(op, resType, dst);
643       return success();
644     }
645     if (!encDst && !encSrc) {
646       // dense => dense
647       return failure();
648     }
649     // This is a dense => sparse conversion or a sparse constant in COO =>
650     // sparse conversion, which is handled as follows:
651     //   t = newSparseCOO()
652     //   ...code to fill the COO tensor t...
653     //   s = newSparseTensor(t)
654     //
655     // To fill the COO tensor from a dense tensor:
656     //   for i1 in dim1
657     //    ..
658     //     for ik in dimk
659     //       val = a[i1,..,ik]
660     //       if val != 0
661     //         t->add(val, [i1,..,ik], [p1,..,pk])
662     //
663     // To fill the COO tensor from a sparse constant in COO format:
664     //   for i in range(NNZ)
665     //     val = values[i]
666     //     [i1,..,ik] = indices[i]
667     //     t->add(val, [i1,..,ik], [p1,..,pk])
668     //
669     // Note that the dense tensor traversal code is actually implemented
670     // using MLIR IR to avoid having to expose too much low-level
671     // memref traversal details to the runtime support library.
672     // Also note that the code below only generates the "new" ops and
673     // the loop-nest per se; whereas the entire body of the innermost
674     // loop is generated by genAddElt().
675     ShapedType stp = resType.cast<ShapedType>();
676     unsigned rank = stp.getRank();
677     SmallVector<Value, 4> sizes;
678     SmallVector<Value, 8> params;
679     sizesFromSrc(rewriter, sizes, loc, src);
680     newParams(rewriter, params, op, encDst, kEmptyCOO, sizes);
681     Value ptr = genNewCall(rewriter, op, params);
682     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
683     Value perm = params[2];
684     SmallVector<Value> lo;
685     SmallVector<Value> hi;
686     SmallVector<Value> st;
687     Value zero = constantIndex(rewriter, loc, 0);
688     Value one = constantIndex(rewriter, loc, 1);
689     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
690     bool isCOOConstant = indicesValues.hasValue();
691     Value indices;
692     Value values;
693     if (isCOOConstant) {
694       indices = indicesValues->first;
695       values = indicesValues->second;
696       lo.push_back(zero);
697       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
698       st.push_back(one);
699     } else {
700       for (unsigned i = 0; i < rank; i++) {
701         lo.push_back(zero);
702         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
703         st.push_back(one);
704       }
705     }
706     Type eltType = stp.getElementType();
707     scf::buildLoopNest(
708         rewriter, op.getLoc(), lo, hi, st, {},
709         [&](OpBuilder &builder, Location loc, ValueRange ivs,
710             ValueRange args) -> scf::ValueVector {
711           Value val;
712           if (isCOOConstant)
713             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
714                                             ivs, rank);
715           else
716             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
717           genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
718           return {};
719         });
720     // Final call to construct sparse tensor storage.
721     params[6] = constantI32(rewriter, loc, kFromCOO);
722     params[7] = ptr;
723     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
724     return success();
725   }
726 };
727 
728 /// Sparse conversion rule for the release operator.
729 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
730 public:
731   using OpConversionPattern::OpConversionPattern;
732   LogicalResult
733   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
734                   ConversionPatternRewriter &rewriter) const override {
735     StringRef name = "delSparseTensor";
736     TypeRange none;
737     auto fn = getFunc(op, name, none, adaptor.getOperands());
738     rewriter.create<CallOp>(op.getLoc(), none, fn, adaptor.getOperands());
739     rewriter.eraseOp(op);
740     return success();
741   }
742 };
743 
744 /// Sparse conversion rule for pointer accesses.
745 class SparseTensorToPointersConverter
746     : public OpConversionPattern<ToPointersOp> {
747 public:
748   using OpConversionPattern::OpConversionPattern;
749   LogicalResult
750   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
751                   ConversionPatternRewriter &rewriter) const override {
752     Type resType = op.getType();
753     Type eltType = resType.cast<ShapedType>().getElementType();
754     StringRef name;
755     if (eltType.isIndex())
756       name = "sparsePointers";
757     else if (eltType.isInteger(64))
758       name = "sparsePointers64";
759     else if (eltType.isInteger(32))
760       name = "sparsePointers32";
761     else if (eltType.isInteger(16))
762       name = "sparsePointers16";
763     else if (eltType.isInteger(8))
764       name = "sparsePointers8";
765     else
766       return failure();
767     auto fn = getFunc(op, name, resType, adaptor.getOperands(),
768                       /*emitCInterface=*/true);
769     rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
770     return success();
771   }
772 };
773 
774 /// Sparse conversion rule for index accesses.
775 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
776 public:
777   using OpConversionPattern::OpConversionPattern;
778   LogicalResult
779   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
780                   ConversionPatternRewriter &rewriter) const override {
781     Type resType = op.getType();
782     Type eltType = resType.cast<ShapedType>().getElementType();
783     StringRef name;
784     if (eltType.isIndex())
785       name = "sparseIndices";
786     else if (eltType.isInteger(64))
787       name = "sparseIndices64";
788     else if (eltType.isInteger(32))
789       name = "sparseIndices32";
790     else if (eltType.isInteger(16))
791       name = "sparseIndices16";
792     else if (eltType.isInteger(8))
793       name = "sparseIndices8";
794     else
795       return failure();
796     auto fn = getFunc(op, name, resType, adaptor.getOperands(),
797                       /*emitCInterface=*/true);
798     rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
799     return success();
800   }
801 };
802 
803 /// Sparse conversion rule for value accesses.
804 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
805 public:
806   using OpConversionPattern::OpConversionPattern;
807   LogicalResult
808   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
809                   ConversionPatternRewriter &rewriter) const override {
810     Type resType = op.getType();
811     Type eltType = resType.cast<ShapedType>().getElementType();
812     StringRef name;
813     if (eltType.isF64())
814       name = "sparseValuesF64";
815     else if (eltType.isF32())
816       name = "sparseValuesF32";
817     else if (eltType.isInteger(64))
818       name = "sparseValuesI64";
819     else if (eltType.isInteger(32))
820       name = "sparseValuesI32";
821     else if (eltType.isInteger(16))
822       name = "sparseValuesI16";
823     else if (eltType.isInteger(8))
824       name = "sparseValuesI8";
825     else
826       return failure();
827     auto fn = getFunc(op, name, resType, adaptor.getOperands(),
828                       /*emitCInterface=*/true);
829     rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
830     return success();
831   }
832 };
833 
834 /// Sparse conversion rule for tensor reconstruction.
835 class SparseTensorToTensorConverter : public OpConversionPattern<ToTensorOp> {
836 public:
837   using OpConversionPattern::OpConversionPattern;
838   LogicalResult
839   // Simply fold the operator into the pointer to the sparse storage scheme.
840   matchAndRewrite(ToTensorOp op, OpAdaptor adaptor,
841                   ConversionPatternRewriter &rewriter) const override {
842     // Check that all arguments of the tensor reconstruction operators are calls
843     // into the support library that query exactly the same opaque pointer.
844     Value ptr;
845     for (Value op : adaptor.getOperands()) {
846       if (auto call = op.getDefiningOp<CallOp>()) {
847         Value arg = call.getOperand(0);
848         if (!arg.getType().isa<LLVM::LLVMPointerType>())
849           return failure();
850         if (!ptr)
851           ptr = arg;
852         else if (arg != ptr)
853           return failure();
854       }
855     }
856     // If a single opaque pointer is found, perform the folding.
857     if (!ptr)
858       return failure();
859     rewriter.replaceOp(op, ptr);
860     return success();
861   }
862 };
863 
864 } // namespace
865 
866 //===----------------------------------------------------------------------===//
867 // Public method for populating conversion rules.
868 //===----------------------------------------------------------------------===//
869 
870 /// Populates the given patterns list with conversion rules required for
871 /// the sparsification of linear algebra operations.
872 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
873                                                   RewritePatternSet &patterns) {
874   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
875                SparseCastConverter, SparseTensorNewConverter,
876                SparseTensorInitConverter, SparseTensorConvertConverter,
877                SparseTensorReleaseConverter, SparseTensorToPointersConverter,
878                SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
879                SparseTensorToTensorConverter>(typeConverter,
880                                               patterns.getContext());
881 }
882