1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
18 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/MemRef/IR/MemRef.h"
21 #include "mlir/Dialect/SCF/SCF.h"
22 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
23 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
24 #include "mlir/Dialect/StandardOps/IR/Ops.h"
25 #include "mlir/Dialect/Tensor/IR/Tensor.h"
26 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
27 #include "mlir/Transforms/DialectConversion.h"
28 
29 using namespace mlir;
30 using namespace mlir::sparse_tensor;
31 
32 namespace {
33 
34 //===----------------------------------------------------------------------===//
35 // Helper methods.
36 //===----------------------------------------------------------------------===//
37 
38 /// Generates a constant zero of the given type.
39 inline static Value constantZero(ConversionPatternRewriter &rewriter,
40                                  Location loc, Type t) {
41   return rewriter.create<arith::ConstantOp>(loc, t, rewriter.getZeroAttr(t));
42 }
43 
44 /// Generates a constant of `index` type.
45 inline static Value constantIndex(ConversionPatternRewriter &rewriter,
46                                   Location loc, int64_t i) {
47   return rewriter.create<arith::ConstantIndexOp>(loc, i);
48 }
49 
50 /// Generates a constant of `i32` type.
51 inline static Value constantI32(ConversionPatternRewriter &rewriter,
52                                 Location loc, int32_t i) {
53   return rewriter.create<arith::ConstantIntOp>(loc, i, 32);
54 }
55 
56 /// Generates a constant of `i8` type.
57 inline static Value constantI8(ConversionPatternRewriter &rewriter,
58                                Location loc, int8_t i) {
59   return rewriter.create<arith::ConstantIntOp>(loc, i, 8);
60 }
61 
62 /// Generates a constant of the given `Action`.
63 static Value constantAction(ConversionPatternRewriter &rewriter, Location loc,
64                             Action action) {
65   return constantI32(rewriter, loc, static_cast<uint32_t>(action));
66 }
67 
68 /// Generates a constant of the internal type encoding for overhead storage.
69 static Value constantOverheadTypeEncoding(ConversionPatternRewriter &rewriter,
70                                           Location loc, unsigned width) {
71   OverheadType sec;
72   switch (width) {
73   default:
74     sec = OverheadType::kU64;
75     break;
76   case 32:
77     sec = OverheadType::kU32;
78     break;
79   case 16:
80     sec = OverheadType::kU16;
81     break;
82   case 8:
83     sec = OverheadType::kU8;
84     break;
85   }
86   return constantI32(rewriter, loc, static_cast<uint32_t>(sec));
87 }
88 
89 /// Generates a constant of the internal type encoding for pointer
90 /// overhead storage.
91 static Value constantPointerTypeEncoding(ConversionPatternRewriter &rewriter,
92                                          Location loc,
93                                          SparseTensorEncodingAttr &enc) {
94   return constantOverheadTypeEncoding(rewriter, loc, enc.getPointerBitWidth());
95 }
96 
97 /// Generates a constant of the internal type encoding for index overhead
98 /// storage.
99 static Value constantIndexTypeEncoding(ConversionPatternRewriter &rewriter,
100                                        Location loc,
101                                        SparseTensorEncodingAttr &enc) {
102   return constantOverheadTypeEncoding(rewriter, loc, enc.getIndexBitWidth());
103 }
104 
105 /// Generates a constant of the internal type encoding for primary storage.
106 static Value constantPrimaryTypeEncoding(ConversionPatternRewriter &rewriter,
107                                          Location loc, Type tp) {
108   PrimaryType primary;
109   if (tp.isF64())
110     primary = PrimaryType::kF64;
111   else if (tp.isF32())
112     primary = PrimaryType::kF32;
113   else if (tp.isInteger(64))
114     primary = PrimaryType::kI64;
115   else if (tp.isInteger(32))
116     primary = PrimaryType::kI32;
117   else if (tp.isInteger(16))
118     primary = PrimaryType::kI16;
119   else if (tp.isInteger(8))
120     primary = PrimaryType::kI8;
121   else
122     llvm_unreachable("Unknown element type");
123   return constantI32(rewriter, loc, static_cast<uint32_t>(primary));
124 }
125 
126 /// Generates a constant of the internal dimension level type encoding.
127 static Value
128 constantDimLevelTypeEncoding(ConversionPatternRewriter &rewriter, Location loc,
129                              SparseTensorEncodingAttr::DimLevelType dlt) {
130   DimLevelType dlt2;
131   switch (dlt) {
132   case SparseTensorEncodingAttr::DimLevelType::Dense:
133     dlt2 = DimLevelType::kDense;
134     break;
135   case SparseTensorEncodingAttr::DimLevelType::Compressed:
136     dlt2 = DimLevelType::kCompressed;
137     break;
138   case SparseTensorEncodingAttr::DimLevelType::Singleton:
139     dlt2 = DimLevelType::kSingleton;
140     break;
141   }
142   return constantI8(rewriter, loc, static_cast<uint8_t>(dlt2));
143 }
144 
145 /// Returns the equivalent of `void*` for opaque arguments to the
146 /// execution engine.
147 static Type getOpaquePointerType(PatternRewriter &rewriter) {
148   return LLVM::LLVMPointerType::get(rewriter.getI8Type());
149 }
150 
151 /// Returns a function reference (first hit also inserts into module). Sets
152 /// the "_emit_c_interface" on the function declaration when requested,
153 /// so that LLVM lowering generates a wrapper function that takes care
154 /// of ABI complications with passing in and returning MemRefs to C functions.
155 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
156                                  TypeRange resultType, ValueRange operands,
157                                  bool emitCInterface) {
158   MLIRContext *context = op->getContext();
159   auto module = op->getParentOfType<ModuleOp>();
160   auto result = SymbolRefAttr::get(context, name);
161   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
162   if (!func) {
163     OpBuilder moduleBuilder(module.getBodyRegion());
164     func = moduleBuilder.create<FuncOp>(
165         op->getLoc(), name,
166         FunctionType::get(context, operands.getTypes(), resultType));
167     func.setPrivate();
168     if (emitCInterface)
169       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
170   }
171   return result;
172 }
173 
174 /// Creates a `CallOp` to the function reference returned by `getFunc()`.
175 static CallOp createFuncCall(OpBuilder &builder, Operation *op, StringRef name,
176                              TypeRange resultType, ValueRange operands,
177                              bool emitCInterface = false) {
178   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
179   return builder.create<CallOp>(op->getLoc(), resultType, fn, operands);
180 }
181 
182 /// Replaces the `op` with  a `CallOp` to the function reference returned
183 /// by `getFunc()`.
184 static CallOp replaceOpWithFuncCall(PatternRewriter &rewriter, Operation *op,
185                                     StringRef name, TypeRange resultType,
186                                     ValueRange operands,
187                                     bool emitCInterface = false) {
188   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
189   return rewriter.replaceOpWithNewOp<CallOp>(op, resultType, fn, operands);
190 }
191 
192 /// Generates dimension size call.
193 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
194                             SparseTensorEncodingAttr &enc, Value src,
195                             int64_t idx) {
196   // Permute the index according to an optional dimension ordering.
197   if (AffineMap p = enc.getDimOrdering())
198     idx = p.getPermutedPosition(idx);
199   // Generate the call.
200   StringRef name = "sparseDimSize";
201   SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)};
202   Type iTp = rewriter.getIndexType();
203   return createFuncCall(rewriter, op, name, iTp, params).getResult(0);
204 }
205 
206 /// Generates a call into the "swiss army knife" method of the sparse runtime
207 /// support library for materializing sparse tensors into the computation.
208 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
209                         ArrayRef<Value> params) {
210   StringRef name = "newSparseTensor";
211   Type pTp = getOpaquePointerType(rewriter);
212   auto call = createFuncCall(rewriter, op, name, pTp, params,
213                              /*emitCInterface=*/true);
214   return call.getResult(0);
215 }
216 
217 /// Populates given sizes array from type.
218 static void sizesFromType(ConversionPatternRewriter &rewriter,
219                           SmallVector<Value, 4> &sizes, Location loc,
220                           ShapedType stp) {
221   auto shape = stp.getShape();
222   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
223     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
224     sizes.push_back(constantIndex(rewriter, loc, s));
225   }
226 }
227 
228 /// Populates given sizes array from source.
229 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
230                          SmallVector<Value, 4> &sizes, Location loc,
231                          Value src) {
232   unsigned rank = src.getType().cast<ShapedType>().getRank();
233   for (unsigned i = 0; i < rank; i++)
234     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
235 }
236 
237 /// Populates given sizes array from type (for static sizes) and from
238 /// an already converted into opague pointer source (for dynamic sizes).
239 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
240                          SmallVector<Value, 4> &sizes, Operation *op,
241                          SparseTensorEncodingAttr &enc, ShapedType stp,
242                          Value src) {
243   Location loc = op->getLoc();
244   auto shape = stp.getShape();
245   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
246     if (shape[i] == ShapedType::kDynamicSize)
247       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
248     else
249       sizes.push_back(constantIndex(rewriter, loc, shape[i]));
250 }
251 
252 /// Generates an uninitialized temporary buffer of the given size and
253 /// type, but returns it as type `memref<? x $tp>` (rather than as type
254 /// `memref<$sz x $tp>`).
255 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
256                        unsigned sz, Type tp) {
257   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
258   Value a = constantIndex(rewriter, loc, sz);
259   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{a});
260 }
261 
262 /// Generates an uninitialized temporary buffer with room for one value
263 /// of the given type, and returns the `memref<$tp>`.
264 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
265                              Type tp) {
266   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
267 }
268 
269 /// Generates a temporary buffer of the given type and given contents.
270 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
271                        ArrayRef<Value> values) {
272   unsigned sz = values.size();
273   assert(sz >= 1);
274   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
275   for (unsigned i = 0; i < sz; i++) {
276     Value idx = constantIndex(rewriter, loc, i);
277     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
278   }
279   return buffer;
280 }
281 
282 /// Populates parameters required to call the "swiss army knife" method of the
283 /// sparse runtime support library for materializing sparse tensors into the
284 /// computation.
285 static void newParams(ConversionPatternRewriter &rewriter,
286                       SmallVector<Value, 8> &params, Operation *op,
287                       SparseTensorEncodingAttr &enc, Action action,
288                       ValueRange szs, Value ptr = Value()) {
289   Location loc = op->getLoc();
290   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
291   unsigned sz = dlt.size();
292   // Sparsity annotations.
293   SmallVector<Value, 4> attrs;
294   for (unsigned i = 0; i < sz; i++)
295     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
296   params.push_back(genBuffer(rewriter, loc, attrs));
297   // Dimension sizes array of the enveloping tensor. Useful for either
298   // verification of external data, or for construction of internal data.
299   SmallVector<Value, 4> sizes;
300   for (Value s : szs)
301     sizes.push_back(s);
302   params.push_back(genBuffer(rewriter, loc, sizes));
303   // Dimension order permutation array. This is the "identity" permutation by
304   // default, or otherwise the "reverse" permutation of a given ordering, so
305   // that indices can be mapped quickly to the right position.
306   SmallVector<Value, 4> rev(sz);
307   if (AffineMap p = enc.getDimOrdering()) {
308     for (unsigned i = 0; i < sz; i++)
309       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
310   } else {
311     for (unsigned i = 0; i < sz; i++)
312       rev[i] = constantIndex(rewriter, loc, i);
313   }
314   params.push_back(genBuffer(rewriter, loc, rev));
315   // Secondary and primary types encoding.
316   Type elemTp = op->getResult(0).getType().cast<ShapedType>().getElementType();
317   params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
318   params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
319   params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp));
320   // User action.
321   params.push_back(constantAction(rewriter, loc, action));
322   // Payload pointer.
323   if (!ptr)
324     ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter));
325   params.push_back(ptr);
326 }
327 
328 /// Generates the comparison `v != 0` where `v` is of numeric type `t`.
329 /// For floating types, we use the "unordered" comparator (i.e., returns
330 /// true if `v` is NaN).
331 static Value genIsNonzero(ConversionPatternRewriter &rewriter, Location loc,
332                           Value v) {
333   Type t = v.getType();
334   Value zero = constantZero(rewriter, loc, t);
335   if (t.isa<FloatType>())
336     return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNE, v,
337                                           zero);
338   if (t.isIntOrIndex())
339     return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, v,
340                                           zero);
341   llvm_unreachable("Unknown element type");
342 }
343 
344 /// Generates the code to read the value from tensor[ivs], and conditionally
345 /// stores the indices ivs to the memory in ind. The generated code looks like
346 /// the following and the insertion point after this routine is inside the
347 /// if-then branch behind the assignment to ind. This is to ensure that the
348 /// addEltX call generated after is inside the if-then branch.
349 ///    if (tensor[ivs]!=0) {
350 ///      ind = ivs
351 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
352                                       Location loc, Value tensor, Value ind,
353                                       ValueRange ivs) {
354   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
355   Value cond = genIsNonzero(rewriter, loc, val);
356   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
357   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
358   unsigned i = 0;
359   for (auto iv : ivs) {
360     Value idx = constantIndex(rewriter, loc, i++);
361     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
362   }
363   return val;
364 }
365 
366 /// Generates a call that adds one element to a coordinate scheme.
367 /// In particular, this generates code like the following:
368 ///   val = a[i1,..,ik];
369 ///   if val != 0
370 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
371 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
372                           Type eltType, Value ptr, Value val, Value ind,
373                           Value perm) {
374   StringRef name;
375   if (eltType.isF64())
376     name = "addEltF64";
377   else if (eltType.isF32())
378     name = "addEltF32";
379   else if (eltType.isInteger(64))
380     name = "addEltI64";
381   else if (eltType.isInteger(32))
382     name = "addEltI32";
383   else if (eltType.isInteger(16))
384     name = "addEltI16";
385   else if (eltType.isInteger(8))
386     name = "addEltI8";
387   else
388     llvm_unreachable("Unknown element type");
389   SmallVector<Value, 4> params{ptr, val, ind, perm};
390   Type pTp = getOpaquePointerType(rewriter);
391   createFuncCall(rewriter, op, name, pTp, params, /*emitCInterface=*/true);
392 }
393 
394 /// Generates a call to `iter->getNext()`.  If there is a next element,
395 /// then it is copied into the out-parameters `ind` and `elemPtr`,
396 /// and the return value is true.  If there isn't a next element, then
397 /// the memory for `iter` is freed and the return value is false.
398 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
399                             Value iter, Value ind, Value elemPtr) {
400   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
401   StringRef name;
402   if (elemTp.isF64())
403     name = "getNextF64";
404   else if (elemTp.isF32())
405     name = "getNextF32";
406   else if (elemTp.isInteger(64))
407     name = "getNextI64";
408   else if (elemTp.isInteger(32))
409     name = "getNextI32";
410   else if (elemTp.isInteger(16))
411     name = "getNextI16";
412   else if (elemTp.isInteger(8))
413     name = "getNextI8";
414   else
415     llvm_unreachable("Unknown element type");
416   SmallVector<Value, 3> params{iter, ind, elemPtr};
417   Type i1 = rewriter.getI1Type();
418   auto call = createFuncCall(rewriter, op, name, i1, params,
419                              /*emitCInterface=*/true);
420   return call.getResult(0);
421 }
422 
423 /// If the tensor is a sparse constant, generates and returns the pair of
424 /// the constants for the indices and the values.
425 static Optional<std::pair<Value, Value>>
426 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
427                        Value tensor) {
428   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
429     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
430       DenseElementsAttr indicesAttr = attr.getIndices();
431       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
432       DenseElementsAttr valuesAttr = attr.getValues();
433       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
434       return std::make_pair(indices, values);
435     }
436   }
437   return {};
438 }
439 
440 /// Generates the code to copy the index at indices[ivs] to ind, and return
441 /// the value at value[ivs].
442 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
443                                        Location loc, Value indices,
444                                        Value values, Value ind, ValueRange ivs,
445                                        unsigned rank) {
446   for (unsigned i = 0; i < rank; i++) {
447     Value idx = constantIndex(rewriter, loc, i);
448     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
449                                                    ValueRange{ivs[0], idx});
450     val =
451         rewriter.create<arith::IndexCastOp>(loc, val, rewriter.getIndexType());
452     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
453   }
454   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
455 }
456 
457 /// Generates code to allocate a tensor of the given type, and zero
458 /// initialize it.  If the tensor type has any dynamic sizes, then the
459 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
460 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
461 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
462                               RankedTensorType tensorTp, ValueRange sizes) {
463   Type elemTp = tensorTp.getElementType();
464   auto shape = tensorTp.getShape();
465   auto memTp = MemRefType::get(shape, elemTp);
466   SmallVector<Value> dynamicSizes;
467   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
468     if (shape[i] == ShapedType::kDynamicSize)
469       dynamicSizes.push_back(sizes[i]);
470   }
471   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
472   Value zero = constantZero(rewriter, loc, elemTp);
473   rewriter.create<linalg::FillOp>(loc, zero, mem);
474   return mem;
475 }
476 
477 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
478 /// the tensor created by allocDenseTensor().  The `rank` is the rank
479 /// of the `tensor` and the length of `ind`.
480 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
481                                         Location loc, Value elemPtr,
482                                         Value tensor, unsigned rank,
483                                         Value ind) {
484   SmallVector<Value, 4> ivs;
485   ivs.reserve(rank);
486   for (unsigned i = 0; i < rank; i++) {
487     Value idx = constantIndex(rewriter, loc, i);
488     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
489   }
490   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
491   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
492 }
493 
494 //===----------------------------------------------------------------------===//
495 // Conversion rules.
496 //===----------------------------------------------------------------------===//
497 
498 /// Sparse conversion rule for returns.
499 class SparseReturnConverter : public OpConversionPattern<ReturnOp> {
500 public:
501   using OpConversionPattern::OpConversionPattern;
502   LogicalResult
503   matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
504                   ConversionPatternRewriter &rewriter) const override {
505     rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands());
506     return success();
507   }
508 };
509 
510 /// Sparse conversion rule for dimension accesses.
511 class SparseTensorToDimSizeConverter
512     : public OpConversionPattern<tensor::DimOp> {
513 public:
514   using OpConversionPattern::OpConversionPattern;
515   LogicalResult
516   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
517                   ConversionPatternRewriter &rewriter) const override {
518     // Only rewrite annotated DimOp with constant index.
519     auto enc = getSparseTensorEncoding(op.source().getType());
520     if (!enc)
521       return failure();
522     Optional<int64_t> index = op.getConstantIndex();
523     if (!index.hasValue())
524       return failure();
525     // Generate the call.
526     Value src = adaptor.getOperands()[0];
527     int64_t idx = index.getValue();
528     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
529     return success();
530   }
531 };
532 
533 /// Sparse conversion rule for trivial tensor casts.
534 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
535   using OpConversionPattern::OpConversionPattern;
536   LogicalResult
537   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
538                   ConversionPatternRewriter &rewriter) const override {
539     // Only rewrite identically annotated source/dest.
540     auto encDst = getSparseTensorEncoding(op.getType());
541     auto encSrc = getSparseTensorEncoding(op.source().getType());
542     if (!encDst || encDst != encSrc)
543       return failure();
544     rewriter.replaceOp(op, adaptor.getOperands());
545     return success();
546   }
547 };
548 
549 /// Sparse conversion rule for the new operator.
550 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
551   using OpConversionPattern::OpConversionPattern;
552   LogicalResult
553   matchAndRewrite(NewOp op, OpAdaptor adaptor,
554                   ConversionPatternRewriter &rewriter) const override {
555     Type resType = op.getType();
556     auto enc = getSparseTensorEncoding(resType);
557     if (!enc)
558       return failure();
559     // Generate the call to construct tensor from ptr. The sizes are
560     // inferred from the result type of the new operator.
561     SmallVector<Value, 4> sizes;
562     SmallVector<Value, 8> params;
563     sizesFromType(rewriter, sizes, op.getLoc(), resType.cast<ShapedType>());
564     Value ptr = adaptor.getOperands()[0];
565     newParams(rewriter, params, op, enc, Action::kFromFile, sizes, ptr);
566     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
567     return success();
568   }
569 };
570 
571 /// Sparse conversion rule for the init operator.
572 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
573   using OpConversionPattern::OpConversionPattern;
574   LogicalResult
575   matchAndRewrite(InitOp op, OpAdaptor adaptor,
576                   ConversionPatternRewriter &rewriter) const override {
577     Type resType = op.getType();
578     auto enc = getSparseTensorEncoding(resType);
579     if (!enc)
580       return failure();
581     // Generate the call to construct empty tensor. The sizes are
582     // explicitly defined by the arguments to the init operator.
583     SmallVector<Value, 8> params;
584     newParams(rewriter, params, op, enc, Action::kEmpty, adaptor.getOperands());
585     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
586     return success();
587   }
588 };
589 
590 /// Sparse conversion rule for the convert operator.
591 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
592   using OpConversionPattern::OpConversionPattern;
593   LogicalResult
594   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
595                   ConversionPatternRewriter &rewriter) const override {
596     Location loc = op->getLoc();
597     Type resType = op.getType();
598     Type srcType = op.source().getType();
599     auto encDst = getSparseTensorEncoding(resType);
600     auto encSrc = getSparseTensorEncoding(srcType);
601     Value src = adaptor.getOperands()[0];
602     if (encDst && encSrc) {
603       // This is a sparse => sparse conversion, which is handled as follows:
604       //   t = src->toCOO();         ; src to COO in dst order
605       //   dst = newSparseTensor(t)
606       // Using the coordinate scheme as an intermediate does not always
607       // yield the fastest conversion but avoids the need for a full
608       // O(N^2) conversion matrix.
609       if (encDst == encSrc) {
610         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
611         return success();
612       }
613       SmallVector<Value, 4> sizes;
614       SmallVector<Value, 8> params;
615       sizesFromPtr(rewriter, sizes, op, encSrc, srcType.cast<ShapedType>(),
616                    src);
617       // Set up encoding with right mix of src and dst so that the two
618       // method calls can share most parameters, while still providing
619       // the correct sparsity information to either of them.
620       auto enc = SparseTensorEncodingAttr::get(
621           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
622           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
623       newParams(rewriter, params, op, enc, Action::kToCOO, sizes, src);
624       Value coo = genNewCall(rewriter, op, params);
625       params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
626       params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
627       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
628       params[7] = coo;
629       rewriter.replaceOp(op, genNewCall(rewriter, op, params));
630       return success();
631     }
632     if (!encDst && encSrc) {
633       // This is sparse => dense conversion, which is handled as follows:
634       //   dst = new Tensor(0);
635       //   iter = src->toCOO();
636       //   iter->startIterator();
637       //   while (elem = iter->getNext()) {
638       //     dst[elem.indices] = elem.value;
639       //   }
640       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
641       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
642       unsigned rank = dstTensorTp.getRank();
643       Type elemTp = dstTensorTp.getElementType();
644       // Fabricate a no-permutation encoding for newParams().
645       // The pointer/index types must be those of `src`.
646       // The dimLevelTypes aren't actually used by Action::kToIterator.
647       encDst = SparseTensorEncodingAttr::get(
648           op->getContext(),
649           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
650               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
651           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
652       SmallVector<Value, 4> sizes;
653       SmallVector<Value, 8> params;
654       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
655       newParams(rewriter, params, op, encDst, Action::kToIterator, sizes, src);
656       Value iter = genNewCall(rewriter, op, params);
657       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
658       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
659       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
660       SmallVector<Value> noArgs;
661       SmallVector<Type> noTypes;
662       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
663       Block *before = rewriter.createBlock(&whileOp.before(), {}, noTypes);
664       rewriter.setInsertionPointToEnd(before);
665       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
666       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
667       Block *after = rewriter.createBlock(&whileOp.after(), {}, noTypes);
668       rewriter.setInsertionPointToStart(after);
669       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
670       rewriter.create<scf::YieldOp>(loc);
671       rewriter.setInsertionPointAfter(whileOp);
672       rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
673       return success();
674     }
675     if (!encDst && !encSrc) {
676       // dense => dense
677       return failure();
678     }
679     // This is a dense => sparse conversion or a sparse constant in COO =>
680     // sparse conversion, which is handled as follows:
681     //   t = newSparseCOO()
682     //   ...code to fill the COO tensor t...
683     //   s = newSparseTensor(t)
684     //
685     // To fill the COO tensor from a dense tensor:
686     //   for i1 in dim1
687     //    ..
688     //     for ik in dimk
689     //       val = a[i1,..,ik]
690     //       if val != 0
691     //         t->add(val, [i1,..,ik], [p1,..,pk])
692     //
693     // To fill the COO tensor from a sparse constant in COO format:
694     //   for i in range(NNZ)
695     //     val = values[i]
696     //     [i1,..,ik] = indices[i]
697     //     t->add(val, [i1,..,ik], [p1,..,pk])
698     //
699     // Note that the dense tensor traversal code is actually implemented
700     // using MLIR IR to avoid having to expose too much low-level
701     // memref traversal details to the runtime support library.
702     // Also note that the code below only generates the "new" ops and
703     // the loop-nest per se; whereas the entire body of the innermost
704     // loop is generated by genAddElt().
705     ShapedType stp = resType.cast<ShapedType>();
706     unsigned rank = stp.getRank();
707     SmallVector<Value, 4> sizes;
708     SmallVector<Value, 8> params;
709     sizesFromSrc(rewriter, sizes, loc, src);
710     newParams(rewriter, params, op, encDst, Action::kEmptyCOO, sizes);
711     Value ptr = genNewCall(rewriter, op, params);
712     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
713     Value perm = params[2];
714     SmallVector<Value> lo;
715     SmallVector<Value> hi;
716     SmallVector<Value> st;
717     Value zero = constantIndex(rewriter, loc, 0);
718     Value one = constantIndex(rewriter, loc, 1);
719     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
720     bool isCOOConstant = indicesValues.hasValue();
721     Value indices;
722     Value values;
723     if (isCOOConstant) {
724       indices = indicesValues->first;
725       values = indicesValues->second;
726       lo.push_back(zero);
727       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
728       st.push_back(one);
729     } else {
730       for (unsigned i = 0; i < rank; i++) {
731         lo.push_back(zero);
732         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
733         st.push_back(one);
734       }
735     }
736     Type eltType = stp.getElementType();
737     scf::buildLoopNest(
738         rewriter, op.getLoc(), lo, hi, st, {},
739         [&](OpBuilder &builder, Location loc, ValueRange ivs,
740             ValueRange args) -> scf::ValueVector {
741           Value val;
742           if (isCOOConstant)
743             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
744                                             ivs, rank);
745           else
746             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
747           genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
748           return {};
749         });
750     // Final call to construct sparse tensor storage.
751     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
752     params[7] = ptr;
753     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
754     return success();
755   }
756 };
757 
758 /// Sparse conversion rule for the release operator.
759 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
760 public:
761   using OpConversionPattern::OpConversionPattern;
762   LogicalResult
763   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
764                   ConversionPatternRewriter &rewriter) const override {
765     StringRef name = "delSparseTensor";
766     TypeRange noTp;
767     createFuncCall(rewriter, op, name, noTp, adaptor.getOperands());
768     rewriter.eraseOp(op);
769     return success();
770   }
771 };
772 
773 /// Sparse conversion rule for pointer accesses.
774 class SparseTensorToPointersConverter
775     : public OpConversionPattern<ToPointersOp> {
776 public:
777   using OpConversionPattern::OpConversionPattern;
778   LogicalResult
779   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
780                   ConversionPatternRewriter &rewriter) const override {
781     Type resType = op.getType();
782     Type eltType = resType.cast<ShapedType>().getElementType();
783     StringRef name;
784     if (eltType.isIndex())
785       name = "sparsePointers";
786     else if (eltType.isInteger(64))
787       name = "sparsePointers64";
788     else if (eltType.isInteger(32))
789       name = "sparsePointers32";
790     else if (eltType.isInteger(16))
791       name = "sparsePointers16";
792     else if (eltType.isInteger(8))
793       name = "sparsePointers8";
794     else
795       return failure();
796     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
797                           /*emitCInterface=*/true);
798     return success();
799   }
800 };
801 
802 /// Sparse conversion rule for index accesses.
803 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
804 public:
805   using OpConversionPattern::OpConversionPattern;
806   LogicalResult
807   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
808                   ConversionPatternRewriter &rewriter) const override {
809     Type resType = op.getType();
810     Type eltType = resType.cast<ShapedType>().getElementType();
811     StringRef name;
812     if (eltType.isIndex())
813       name = "sparseIndices";
814     else if (eltType.isInteger(64))
815       name = "sparseIndices64";
816     else if (eltType.isInteger(32))
817       name = "sparseIndices32";
818     else if (eltType.isInteger(16))
819       name = "sparseIndices16";
820     else if (eltType.isInteger(8))
821       name = "sparseIndices8";
822     else
823       return failure();
824     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
825                           /*emitCInterface=*/true);
826     return success();
827   }
828 };
829 
830 /// Sparse conversion rule for value accesses.
831 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
832 public:
833   using OpConversionPattern::OpConversionPattern;
834   LogicalResult
835   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
836                   ConversionPatternRewriter &rewriter) const override {
837     Type resType = op.getType();
838     Type eltType = resType.cast<ShapedType>().getElementType();
839     StringRef name;
840     if (eltType.isF64())
841       name = "sparseValuesF64";
842     else if (eltType.isF32())
843       name = "sparseValuesF32";
844     else if (eltType.isInteger(64))
845       name = "sparseValuesI64";
846     else if (eltType.isInteger(32))
847       name = "sparseValuesI32";
848     else if (eltType.isInteger(16))
849       name = "sparseValuesI16";
850     else if (eltType.isInteger(8))
851       name = "sparseValuesI8";
852     else
853       return failure();
854     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
855                           /*emitCInterface=*/true);
856     return success();
857   }
858 };
859 
860 /// Sparse conversion rule for tensor rematerialization.
861 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
862 public:
863   using OpConversionPattern::OpConversionPattern;
864   LogicalResult
865   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
866                   ConversionPatternRewriter &rewriter) const override {
867     if (op.hasInserts()) {
868       // Finalize any pending insertions.
869       StringRef name = "endInsert";
870       TypeRange noTp;
871       createFuncCall(rewriter, op, name, noTp, adaptor.getOperands());
872     }
873     rewriter.replaceOp(op, adaptor.getOperands());
874     return success();
875   }
876 };
877 
878 /// Sparse conversion rule for inserting in lexicographic index order.
879 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
880 public:
881   using OpConversionPattern::OpConversionPattern;
882   LogicalResult
883   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
884                   ConversionPatternRewriter &rewriter) const override {
885     Type srcType = op.tensor().getType();
886     Type eltType = srcType.cast<ShapedType>().getElementType();
887     StringRef name;
888     if (eltType.isF64())
889       name = "lexInsertF64";
890     else if (eltType.isF32())
891       name = "lexInsertF32";
892     else if (eltType.isInteger(64))
893       name = "lexInsertI64";
894     else if (eltType.isInteger(32))
895       name = "lexInsertI32";
896     else if (eltType.isInteger(16))
897       name = "lexInsertI16";
898     else if (eltType.isInteger(8))
899       name = "lexInsertI8";
900     else
901       llvm_unreachable("Unknown element type");
902     TypeRange noTp;
903     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
904                           /*emitCInterface=*/true);
905     return success();
906   }
907 };
908 
909 } // namespace
910 
911 //===----------------------------------------------------------------------===//
912 // Public method for populating conversion rules.
913 //===----------------------------------------------------------------------===//
914 
915 /// Populates the given patterns list with conversion rules required for
916 /// the sparsification of linear algebra operations.
917 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
918                                                   RewritePatternSet &patterns) {
919   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
920                SparseCastConverter, SparseTensorNewConverter,
921                SparseTensorInitConverter, SparseTensorConvertConverter,
922                SparseTensorReleaseConverter, SparseTensorToPointersConverter,
923                SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
924                SparseTensorLoadConverter, SparseTensorLexInsertConverter>(
925       typeConverter, patterns.getContext());
926 }
927