1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodegenUtils.h"
18 
19 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
20 #include "mlir/Dialect/Func/IR/FuncOps.h"
21 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
22 #include "mlir/Dialect/Linalg/Utils/Utils.h"
23 #include "mlir/Dialect/MemRef/IR/MemRef.h"
24 #include "mlir/Dialect/SCF/SCF.h"
25 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
27 #include "mlir/Dialect/Tensor/IR/Tensor.h"
28 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
29 #include "mlir/Transforms/DialectConversion.h"
30 
31 using namespace mlir;
32 using namespace mlir::sparse_tensor;
33 
34 namespace {
35 
36 /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
37 /// `createFuncCall()`, and `replaceOpWithFuncCall()`.
38 enum class EmitCInterface : bool { Off = false, On = true };
39 
40 //===----------------------------------------------------------------------===//
41 // Helper methods.
42 //===----------------------------------------------------------------------===//
43 
44 /// Returns the equivalent of `void*` for opaque arguments to the
45 /// execution engine.
46 static Type getOpaquePointerType(PatternRewriter &rewriter) {
47   return LLVM::LLVMPointerType::get(rewriter.getI8Type());
48 }
49 
50 /// Returns a function reference (first hit also inserts into module). Sets
51 /// the "_emit_c_interface" on the function declaration when requested,
52 /// so that LLVM lowering generates a wrapper function that takes care
53 /// of ABI complications with passing in and returning MemRefs to C functions.
54 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
55                                  TypeRange resultType, ValueRange operands,
56                                  EmitCInterface emitCInterface) {
57   MLIRContext *context = op->getContext();
58   auto module = op->getParentOfType<ModuleOp>();
59   auto result = SymbolRefAttr::get(context, name);
60   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
61   if (!func) {
62     OpBuilder moduleBuilder(module.getBodyRegion());
63     func = moduleBuilder.create<FuncOp>(
64         op->getLoc(), name,
65         FunctionType::get(context, operands.getTypes(), resultType));
66     func.setPrivate();
67     if (static_cast<bool>(emitCInterface))
68       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
69   }
70   return result;
71 }
72 
73 /// Creates a `CallOp` to the function reference returned by `getFunc()`.
74 static func::CallOp createFuncCall(OpBuilder &builder, Operation *op,
75                                    StringRef name, TypeRange resultType,
76                                    ValueRange operands,
77                                    EmitCInterface emitCInterface) {
78   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
79   return builder.create<func::CallOp>(op->getLoc(), resultType, fn, operands);
80 }
81 
82 /// Replaces the `op` with  a `CallOp` to the function reference returned
83 /// by `getFunc()`.
84 static func::CallOp replaceOpWithFuncCall(PatternRewriter &rewriter,
85                                           Operation *op, StringRef name,
86                                           TypeRange resultType,
87                                           ValueRange operands,
88                                           EmitCInterface emitCInterface) {
89   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
90   return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn,
91                                                    operands);
92 }
93 
94 /// Generates dimension size call.
95 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
96                             SparseTensorEncodingAttr &enc, Value src,
97                             int64_t idx) {
98   // Permute the index according to an optional dimension ordering.
99   if (AffineMap p = enc.getDimOrdering())
100     idx = p.getPermutedPosition(idx);
101   // Generate the call.
102   StringRef name = "sparseDimSize";
103   SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)};
104   Type iTp = rewriter.getIndexType();
105   return createFuncCall(rewriter, op, name, iTp, params, EmitCInterface::Off)
106       .getResult(0);
107 }
108 
109 /// Generates a call into the "swiss army knife" method of the sparse runtime
110 /// support library for materializing sparse tensors into the computation.
111 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
112                         ArrayRef<Value> params) {
113   StringRef name = "newSparseTensor";
114   Type pTp = getOpaquePointerType(rewriter);
115   return createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On)
116       .getResult(0);
117 }
118 
119 /// Populates given sizes array from type.
120 static void sizesFromType(ConversionPatternRewriter &rewriter,
121                           SmallVector<Value, 4> &sizes, Location loc,
122                           ShapedType stp) {
123   auto shape = stp.getShape();
124   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
125     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
126     sizes.push_back(constantIndex(rewriter, loc, s));
127   }
128 }
129 
130 /// Populates given sizes array from source.
131 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
132                          SmallVector<Value, 4> &sizes, Location loc,
133                          Value src) {
134   unsigned rank = src.getType().cast<ShapedType>().getRank();
135   for (unsigned i = 0; i < rank; i++)
136     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
137 }
138 
139 /// Populates given sizes array from type (for static sizes) and from
140 /// an already converted into opague pointer source (for dynamic sizes).
141 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
142                          SmallVector<Value, 4> &sizes, Operation *op,
143                          SparseTensorEncodingAttr &enc, ShapedType stp,
144                          Value src) {
145   Location loc = op->getLoc();
146   auto shape = stp.getShape();
147   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
148     if (shape[i] == ShapedType::kDynamicSize)
149       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
150     else
151       sizes.push_back(constantIndex(rewriter, loc, shape[i]));
152 }
153 
154 /// Generates an uninitialized temporary buffer of the given size and
155 /// type, but returns it as type `memref<? x $tp>` (rather than as type
156 /// `memref<$sz x $tp>`).
157 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
158                        Value sz, Type tp) {
159   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
160   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
161 }
162 
163 /// Generates an uninitialized temporary buffer of the given size and
164 /// type, but returns it as type `memref<? x $tp>` (rather than as type
165 /// `memref<$sz x $tp>`).
166 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
167                        unsigned sz, Type tp) {
168   return genAlloca(rewriter, loc, constantIndex(rewriter, loc, sz), tp);
169 }
170 
171 /// Generates an uninitialized temporary buffer with room for one value
172 /// of the given type, and returns the `memref<$tp>`.
173 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
174                              Type tp) {
175   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
176 }
177 
178 /// Generates a temporary buffer of the given type and given contents.
179 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
180                        ValueRange values) {
181   unsigned sz = values.size();
182   assert(sz >= 1);
183   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
184   for (unsigned i = 0; i < sz; i++) {
185     Value idx = constantIndex(rewriter, loc, i);
186     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
187   }
188   return buffer;
189 }
190 
191 /// Populates parameters required to call the "swiss army knife" method of the
192 /// sparse runtime support library for materializing sparse tensors into the
193 /// computation.
194 static void newParams(ConversionPatternRewriter &rewriter,
195                       SmallVector<Value, 8> &params, Operation *op,
196                       ShapedType stp, SparseTensorEncodingAttr &enc,
197                       Action action, ValueRange szs, Value ptr = Value()) {
198   Location loc = op->getLoc();
199   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
200   unsigned sz = dlt.size();
201   // Sparsity annotations.
202   SmallVector<Value, 4> attrs;
203   for (unsigned i = 0; i < sz; i++)
204     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
205   params.push_back(genBuffer(rewriter, loc, attrs));
206   // Dimension sizes array of the enveloping tensor. Useful for either
207   // verification of external data, or for construction of internal data.
208   params.push_back(genBuffer(rewriter, loc, szs));
209   // Dimension order permutation array. This is the "identity" permutation by
210   // default, or otherwise the "reverse" permutation of a given ordering, so
211   // that indices can be mapped quickly to the right position.
212   SmallVector<Value, 4> rev(sz);
213   if (AffineMap p = enc.getDimOrdering()) {
214     for (unsigned i = 0; i < sz; i++)
215       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
216   } else {
217     for (unsigned i = 0; i < sz; i++)
218       rev[i] = constantIndex(rewriter, loc, i);
219   }
220   params.push_back(genBuffer(rewriter, loc, rev));
221   // Secondary and primary types encoding.
222   Type elemTp = stp.getElementType();
223   params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
224   params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
225   params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp));
226   // User action.
227   params.push_back(constantAction(rewriter, loc, action));
228   // Payload pointer.
229   if (!ptr)
230     ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter));
231   params.push_back(ptr);
232 }
233 
234 /// Generates the code to read the value from tensor[ivs], and conditionally
235 /// stores the indices ivs to the memory in ind. The generated code looks like
236 /// the following and the insertion point after this routine is inside the
237 /// if-then branch behind the assignment to ind. This is to ensure that the
238 /// addEltX call generated after is inside the if-then branch.
239 ///    if (tensor[ivs]!=0) {
240 ///      ind = ivs
241 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
242                                       Location loc, Value tensor, Value ind,
243                                       ValueRange ivs) {
244   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
245   Value cond = genIsNonzero(rewriter, loc, val);
246   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
247   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
248   unsigned i = 0;
249   for (auto iv : ivs) {
250     Value idx = constantIndex(rewriter, loc, i++);
251     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
252   }
253   return val;
254 }
255 
256 /// Generates a call that adds one element to a coordinate scheme.
257 /// In particular, this generates code like the following:
258 ///   val = a[i1,..,ik];
259 ///   if val != 0
260 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
261 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
262                           Type eltType, Value ptr, Value val, Value ind,
263                           Value perm) {
264   SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
265   SmallVector<Value, 4> params{ptr, val, ind, perm};
266   Type pTp = getOpaquePointerType(rewriter);
267   createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On);
268 }
269 
270 /// Generates a call to `iter->getNext()`.  If there is a next element,
271 /// then it is copied into the out-parameters `ind` and `elemPtr`,
272 /// and the return value is true.  If there isn't a next element, then
273 /// the memory for `iter` is freed and the return value is false.
274 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
275                             Value iter, Value ind, Value elemPtr) {
276   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
277   SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
278   SmallVector<Value, 3> params{iter, ind, elemPtr};
279   Type i1 = rewriter.getI1Type();
280   return createFuncCall(rewriter, op, name, i1, params, EmitCInterface::On)
281       .getResult(0);
282 }
283 
284 /// If the tensor is a sparse constant, generates and returns the pair of
285 /// the constants for the indices and the values.
286 static Optional<std::pair<Value, Value>>
287 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
288                        Value tensor) {
289   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
290     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
291       DenseElementsAttr indicesAttr = attr.getIndices();
292       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
293       DenseElementsAttr valuesAttr = attr.getValues();
294       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
295       return std::make_pair(indices, values);
296     }
297   }
298   return {};
299 }
300 
301 /// Generates the code to copy the index at indices[ivs] to ind, and return
302 /// the value at value[ivs].
303 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
304                                        Location loc, Value indices,
305                                        Value values, Value ind, ValueRange ivs,
306                                        unsigned rank) {
307   for (unsigned i = 0; i < rank; i++) {
308     Value idx = constantIndex(rewriter, loc, i);
309     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
310                                                    ValueRange{ivs[0], idx});
311     val =
312         rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), val);
313     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
314   }
315   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
316 }
317 
318 /// Generates code to allocate a tensor of the given type, and zero
319 /// initialize it.  If the tensor type has any dynamic sizes, then the
320 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
321 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
322 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
323                               RankedTensorType tensorTp, ValueRange sizes) {
324   Type elemTp = tensorTp.getElementType();
325   auto shape = tensorTp.getShape();
326   auto memTp = MemRefType::get(shape, elemTp);
327   SmallVector<Value> dynamicSizes;
328   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
329     if (shape[i] == ShapedType::kDynamicSize)
330       dynamicSizes.push_back(sizes[i]);
331   }
332   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
333   Value zero = constantZero(rewriter, loc, elemTp);
334   rewriter.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{mem});
335   return mem;
336 }
337 
338 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
339 /// the tensor created by allocDenseTensor().  The `rank` is the rank
340 /// of the `tensor` and the length of `ind`.
341 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
342                                         Location loc, Value elemPtr,
343                                         Value tensor, unsigned rank,
344                                         Value ind) {
345   SmallVector<Value, 4> ivs;
346   ivs.reserve(rank);
347   for (unsigned i = 0; i < rank; i++) {
348     Value idx = constantIndex(rewriter, loc, i);
349     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
350   }
351   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
352   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
353 }
354 
355 //===----------------------------------------------------------------------===//
356 // Conversion rules.
357 //===----------------------------------------------------------------------===//
358 
359 /// Sparse conversion rule for returns.
360 class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
361 public:
362   using OpConversionPattern::OpConversionPattern;
363   LogicalResult
364   matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
365                   ConversionPatternRewriter &rewriter) const override {
366     rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
367     return success();
368   }
369 };
370 
371 /// Sparse conversion rule for dimension accesses.
372 class SparseTensorToDimSizeConverter
373     : public OpConversionPattern<tensor::DimOp> {
374 public:
375   using OpConversionPattern::OpConversionPattern;
376   LogicalResult
377   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
378                   ConversionPatternRewriter &rewriter) const override {
379     // Only rewrite annotated DimOp with constant index.
380     auto enc = getSparseTensorEncoding(op.source().getType());
381     if (!enc)
382       return failure();
383     Optional<int64_t> index = op.getConstantIndex();
384     if (!index.hasValue())
385       return failure();
386     // Generate the call.
387     Value src = adaptor.getOperands()[0];
388     int64_t idx = index.getValue();
389     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
390     return success();
391   }
392 };
393 
394 /// Sparse conversion rule for trivial tensor casts.
395 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
396   using OpConversionPattern::OpConversionPattern;
397   LogicalResult
398   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
399                   ConversionPatternRewriter &rewriter) const override {
400     // Only rewrite identically annotated source/dest.
401     auto encDst = getSparseTensorEncoding(op.getType());
402     auto encSrc = getSparseTensorEncoding(op.source().getType());
403     if (!encDst || encDst != encSrc)
404       return failure();
405     rewriter.replaceOp(op, adaptor.getOperands());
406     return success();
407   }
408 };
409 
410 /// Sparse conversion rule for the new operator.
411 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
412   using OpConversionPattern::OpConversionPattern;
413   LogicalResult
414   matchAndRewrite(NewOp op, OpAdaptor adaptor,
415                   ConversionPatternRewriter &rewriter) const override {
416     Type resType = op.getType();
417     auto enc = getSparseTensorEncoding(resType);
418     if (!enc)
419       return failure();
420     // Generate the call to construct tensor from ptr. The sizes are
421     // inferred from the result type of the new operator.
422     SmallVector<Value, 4> sizes;
423     SmallVector<Value, 8> params;
424     ShapedType stp = resType.cast<ShapedType>();
425     sizesFromType(rewriter, sizes, op.getLoc(), stp);
426     Value ptr = adaptor.getOperands()[0];
427     newParams(rewriter, params, op, stp, enc, Action::kFromFile, sizes, ptr);
428     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
429     return success();
430   }
431 };
432 
433 /// Sparse conversion rule for the init operator.
434 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
435   using OpConversionPattern::OpConversionPattern;
436   LogicalResult
437   matchAndRewrite(InitOp op, OpAdaptor adaptor,
438                   ConversionPatternRewriter &rewriter) const override {
439     Type resType = op.getType();
440     auto enc = getSparseTensorEncoding(resType);
441     if (!enc)
442       return failure();
443     // Generate the call to construct empty tensor. The sizes are
444     // explicitly defined by the arguments to the init operator.
445     SmallVector<Value, 8> params;
446     ShapedType stp = resType.cast<ShapedType>();
447     newParams(rewriter, params, op, stp, enc, Action::kEmpty,
448               adaptor.getOperands());
449     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
450     return success();
451   }
452 };
453 
454 /// Sparse conversion rule for the convert operator.
455 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
456   /// Options to control sparse code generation.
457   SparseTensorConversionOptions options;
458 
459 public:
460   using OpConversionPattern::OpConversionPattern;
461   SparseTensorConvertConverter(MLIRContext *context,
462                                SparseTensorConversionOptions o)
463       : OpConversionPattern<ConvertOp>(context), options(o) {}
464   SparseTensorConvertConverter(TypeConverter &typeConv, MLIRContext *context,
465                                SparseTensorConversionOptions o)
466       : OpConversionPattern<ConvertOp>(typeConv, context), options(o) {}
467 
468   LogicalResult
469   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
470                   ConversionPatternRewriter &rewriter) const override {
471     Location loc = op->getLoc();
472     Type resType = op.getType();
473     Type srcType = op.source().getType();
474     auto encDst = getSparseTensorEncoding(resType);
475     auto encSrc = getSparseTensorEncoding(srcType);
476     Value src = adaptor.getOperands()[0];
477     if (encDst && encSrc) {
478       // This is a sparse => sparse conversion, which is handled as follows:
479       //   t = src->toCOO();         ; src to COO in dst order
480       //   dst = newSparseTensor(t)
481       // Using the coordinate scheme as an intermediate does not always
482       // yield the fastest conversion but avoids the need for a full
483       // O(N^2) conversion matrix.
484       if (encDst == encSrc) {
485         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
486         return success();
487       }
488       SmallVector<Value, 4> sizes;
489       SmallVector<Value, 8> params;
490       ShapedType stp = srcType.cast<ShapedType>();
491       sizesFromPtr(rewriter, sizes, op, encSrc, stp, src);
492       // Set up encoding with right mix of src and dst so that the two
493       // method calls can share most parameters, while still providing
494       // the correct sparsity information to either of them.
495       auto enc = SparseTensorEncodingAttr::get(
496           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
497           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
498       newParams(rewriter, params, op, stp, enc, Action::kToCOO, sizes, src);
499       Value coo = genNewCall(rewriter, op, params);
500       params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
501       params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
502       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
503       params[7] = coo;
504       rewriter.replaceOp(op, genNewCall(rewriter, op, params));
505       return success();
506     }
507     if (!encDst && encSrc) {
508       // This is sparse => dense conversion, which is handled as follows:
509       //   dst = new Tensor(0);
510       //   iter = src->toCOO();
511       //   iter->startIterator();
512       //   while (elem = iter->getNext()) {
513       //     dst[elem.indices] = elem.value;
514       //   }
515       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
516       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
517       unsigned rank = dstTensorTp.getRank();
518       Type elemTp = dstTensorTp.getElementType();
519       // Fabricate a no-permutation encoding for newParams().
520       // The pointer/index types must be those of `src`.
521       // The dimLevelTypes aren't actually used by Action::kToIterator.
522       encDst = SparseTensorEncodingAttr::get(
523           op->getContext(),
524           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
525               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
526           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
527       SmallVector<Value, 4> sizes;
528       SmallVector<Value, 8> params;
529       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
530       newParams(rewriter, params, op, dstTensorTp, encDst, Action::kToIterator,
531                 sizes, src);
532       Value iter = genNewCall(rewriter, op, params);
533       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
534       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
535       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
536       SmallVector<Value> noArgs;
537       SmallVector<Type> noTypes;
538       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
539       Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
540       rewriter.setInsertionPointToEnd(before);
541       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
542       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
543       Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
544       rewriter.setInsertionPointToStart(after);
545       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
546       rewriter.create<scf::YieldOp>(loc);
547       rewriter.setInsertionPointAfter(whileOp);
548       rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
549       return success();
550     }
551     if (!encDst && !encSrc) {
552       // dense => dense
553       return failure();
554     }
555     // This is a dense => sparse conversion or a sparse constant in COO =>
556     // sparse conversion, which is handled as follows:
557     //   t = newSparseCOO()
558     //   ...code to fill the COO tensor t...
559     //   s = newSparseTensor(t)
560     //
561     // To fill the COO tensor from a dense tensor:
562     //   for i1 in dim1
563     //    ..
564     //     for ik in dimk
565     //       val = a[i1,..,ik]
566     //       if val != 0
567     //         t->add(val, [i1,..,ik], [p1,..,pk])
568     //
569     // To fill the COO tensor from a sparse constant in COO format:
570     //   for i in range(NNZ)
571     //     val = values[i]
572     //     [i1,..,ik] = indices[i]
573     //     t->add(val, [i1,..,ik], [p1,..,pk])
574     //
575     // Note that the dense tensor traversal code is actually implemented
576     // using MLIR IR to avoid having to expose too much low-level
577     // memref traversal details to the runtime support library.
578     // Also note that the code below only generates the "new" ops and
579     // the loop-nest per se; whereas the entire body of the innermost
580     // loop is generated by genAddElt().
581     ShapedType stp = resType.cast<ShapedType>();
582     unsigned rank = stp.getRank();
583     SmallVector<Value, 4> sizes;
584     SmallVector<Value, 8> params;
585     sizesFromSrc(rewriter, sizes, loc, src);
586     newParams(rewriter, params, op, stp, encDst, Action::kEmptyCOO, sizes);
587     Value ptr = genNewCall(rewriter, op, params);
588     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
589     Value perm = params[2];
590     SmallVector<Value> lo;
591     SmallVector<Value> hi;
592     SmallVector<Value> st;
593     Value zero = constantIndex(rewriter, loc, 0);
594     Value one = constantIndex(rewriter, loc, 1);
595     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
596     bool isCOOConstant = indicesValues.hasValue();
597     Value indices;
598     Value values;
599     if (isCOOConstant) {
600       indices = indicesValues->first;
601       values = indicesValues->second;
602       lo.push_back(zero);
603       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
604       st.push_back(one);
605     } else {
606       for (unsigned i = 0; i < rank; i++) {
607         lo.push_back(zero);
608         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
609         st.push_back(one);
610       }
611     }
612     Type eltType = stp.getElementType();
613     scf::buildLoopNest(
614         rewriter, op.getLoc(), lo, hi, st, {},
615         [&](OpBuilder &builder, Location loc, ValueRange ivs,
616             ValueRange args) -> scf::ValueVector {
617           Value val;
618           if (isCOOConstant)
619             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
620                                             ivs, rank);
621           else
622             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
623           genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
624           return {};
625         });
626     // Final call to construct sparse tensor storage.
627     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
628     params[7] = ptr;
629     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
630     return success();
631   }
632 };
633 
634 /// Sparse conversion rule for the release operator.
635 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
636 public:
637   using OpConversionPattern::OpConversionPattern;
638   LogicalResult
639   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
640                   ConversionPatternRewriter &rewriter) const override {
641     StringRef name = "delSparseTensor";
642     TypeRange noTp;
643     createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
644                    EmitCInterface::Off);
645     rewriter.eraseOp(op);
646     return success();
647   }
648 };
649 
650 /// Sparse conversion rule for pointer accesses.
651 class SparseTensorToPointersConverter
652     : public OpConversionPattern<ToPointersOp> {
653 public:
654   using OpConversionPattern::OpConversionPattern;
655   LogicalResult
656   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
657                   ConversionPatternRewriter &rewriter) const override {
658     Type resType = op.getType();
659     Type ptrType = resType.cast<ShapedType>().getElementType();
660     SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)};
661     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
662                           EmitCInterface::On);
663     return success();
664   }
665 };
666 
667 /// Sparse conversion rule for index accesses.
668 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
669 public:
670   using OpConversionPattern::OpConversionPattern;
671   LogicalResult
672   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
673                   ConversionPatternRewriter &rewriter) const override {
674     Type resType = op.getType();
675     Type indType = resType.cast<ShapedType>().getElementType();
676     SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)};
677     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
678                           EmitCInterface::On);
679     return success();
680   }
681 };
682 
683 /// Sparse conversion rule for value accesses.
684 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
685 public:
686   using OpConversionPattern::OpConversionPattern;
687   LogicalResult
688   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
689                   ConversionPatternRewriter &rewriter) const override {
690     Type resType = op.getType();
691     Type eltType = resType.cast<ShapedType>().getElementType();
692     SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltType)};
693     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
694                           EmitCInterface::On);
695     return success();
696   }
697 };
698 
699 /// Sparse conversion rule for tensor rematerialization.
700 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
701 public:
702   using OpConversionPattern::OpConversionPattern;
703   LogicalResult
704   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
705                   ConversionPatternRewriter &rewriter) const override {
706     if (op.hasInserts()) {
707       // Finalize any pending insertions.
708       StringRef name = "endInsert";
709       TypeRange noTp;
710       createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
711                      EmitCInterface::Off);
712     }
713     rewriter.replaceOp(op, adaptor.getOperands());
714     return success();
715   }
716 };
717 
718 /// Sparse conversion rule for inserting in lexicographic index order.
719 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
720 public:
721   using OpConversionPattern::OpConversionPattern;
722   LogicalResult
723   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
724                   ConversionPatternRewriter &rewriter) const override {
725     Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
726     SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
727     TypeRange noTp;
728     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
729                           EmitCInterface::On);
730     return success();
731   }
732 };
733 
734 class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
735 public:
736   using OpConversionPattern::OpConversionPattern;
737   LogicalResult
738   matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
739                   ConversionPatternRewriter &rewriter) const override {
740     Location loc = op->getLoc();
741     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
742     Type eltType = srcType.getElementType();
743     Type boolType = rewriter.getIntegerType(1);
744     Type idxType = rewriter.getIndexType();
745     // All initialization should be done on entry of the loop nest.
746     rewriter.setInsertionPointAfter(op.tensor().getDefiningOp());
747     // Determine the size for access expansion.
748     auto enc = getSparseTensorEncoding(srcType);
749     Value src = adaptor.getOperands()[0];
750     Value sz = genDimSizeCall(rewriter, op, enc, src, srcType.getRank() - 1);
751     // Allocate temporary stack buffers for values, filled-switch, and indices.
752     Value values = genAlloca(rewriter, loc, sz, eltType);
753     Value filled = genAlloca(rewriter, loc, sz, boolType);
754     Value indices = genAlloca(rewriter, loc, sz, idxType);
755     Value zero = constantZero(rewriter, loc, idxType);
756     // Reset the values/filled-switch to all-zero/false. Note that this
757     // introduces an O(N) operation into the computation, but this reset
758     // operation is amortized over the innermost loops for the access
759     // pattern expansion.
760     rewriter.create<linalg::FillOp>(
761         loc, ValueRange{constantZero(rewriter, loc, eltType)},
762         ValueRange{values});
763     rewriter.create<linalg::FillOp>(
764         loc, ValueRange{constantZero(rewriter, loc, boolType)},
765         ValueRange{filled});
766     // Replace expansion op with these buffers and initial index.
767     assert(op.getNumResults() == 4);
768     rewriter.replaceOp(op, {values, filled, indices, zero});
769     return success();
770   }
771 };
772 
773 class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
774 public:
775   using OpConversionPattern::OpConversionPattern;
776   LogicalResult
777   matchAndRewrite(CompressOp op, OpAdaptor adaptor,
778                   ConversionPatternRewriter &rewriter) const override {
779     // Note that this method call resets the values/filled-switch back to
780     // all-zero/false by only iterating over the set elements, so the
781     // complexity remains proportional to the sparsity of the expanded
782     // access pattern.
783     Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
784     SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
785     TypeRange noTp;
786     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
787                           EmitCInterface::On);
788     return success();
789   }
790 };
791 
792 class SparseTensorOutConverter : public OpConversionPattern<OutOp> {
793 public:
794   using OpConversionPattern::OpConversionPattern;
795   LogicalResult
796   matchAndRewrite(OutOp op, OpAdaptor adaptor,
797                   ConversionPatternRewriter &rewriter) const override {
798     Location loc = op->getLoc();
799     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
800     // Convert to default permuted COO.
801     Value src = adaptor.getOperands()[0];
802     auto encSrc = getSparseTensorEncoding(srcType);
803     SmallVector<Value, 4> sizes;
804     SmallVector<Value, 8> params;
805     sizesFromPtr(rewriter, sizes, op, encSrc, srcType, src);
806     auto enc = SparseTensorEncodingAttr::get(
807         op->getContext(), encSrc.getDimLevelType(), AffineMap(),
808         encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
809     newParams(rewriter, params, op, srcType, enc, Action::kToCOO, sizes, src);
810     Value coo = genNewCall(rewriter, op, params);
811     // Then output the tensor to external file with indices in the externally
812     // visible lexicographic index order. A sort is required if the source was
813     // not in that order yet (note that the sort can be dropped altogether if
814     // external format does not care about the order at all, but here we assume
815     // it does).
816     bool sort =
817         encSrc.getDimOrdering() && !encSrc.getDimOrdering().isIdentity();
818     params.clear();
819     params.push_back(coo);
820     params.push_back(adaptor.getOperands()[1]);
821     params.push_back(constantI1(rewriter, loc, sort));
822     Type eltType = srcType.getElementType();
823     SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(eltType)};
824     TypeRange noTp;
825     replaceOpWithFuncCall(rewriter, op, name, noTp, params,
826                           EmitCInterface::Off);
827     return success();
828   }
829 };
830 
831 } // namespace
832 
833 //===----------------------------------------------------------------------===//
834 // Public method for populating conversion rules.
835 //===----------------------------------------------------------------------===//
836 
837 /// Populates the given patterns list with conversion rules required for
838 /// the sparsification of linear algebra operations.
839 void mlir::populateSparseTensorConversionPatterns(
840     TypeConverter &typeConverter, RewritePatternSet &patterns,
841     const SparseTensorConversionOptions &options) {
842   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
843                SparseCastConverter, SparseTensorNewConverter,
844                SparseTensorInitConverter, SparseTensorReleaseConverter,
845                SparseTensorToPointersConverter, SparseTensorToIndicesConverter,
846                SparseTensorToValuesConverter, SparseTensorLoadConverter,
847                SparseTensorLexInsertConverter, SparseTensorExpandConverter,
848                SparseTensorCompressConverter, SparseTensorOutConverter>(
849       typeConverter, patterns.getContext());
850   patterns.add<SparseTensorConvertConverter>(typeConverter,
851                                              patterns.getContext(), options);
852 }
853