1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodegenUtils.h"
18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
19 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/MemRef/IR/MemRef.h"
22 #include "mlir/Dialect/SCF/SCF.h"
23 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
24 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
25 #include "mlir/Dialect/StandardOps/IR/Ops.h"
26 #include "mlir/Dialect/Tensor/IR/Tensor.h"
27 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
28 #include "mlir/Transforms/DialectConversion.h"
29 
30 using namespace mlir;
31 using namespace mlir::sparse_tensor;
32 
33 namespace {
34 
35 /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
36 /// `createFuncCall()`, and `replaceOpWithFuncCall()`.
37 enum class EmitCInterface : bool { Off = false, On = true };
38 
39 //===----------------------------------------------------------------------===//
40 // Helper methods.
41 //===----------------------------------------------------------------------===//
42 
43 /// Returns the equivalent of `void*` for opaque arguments to the
44 /// execution engine.
45 static Type getOpaquePointerType(PatternRewriter &rewriter) {
46   return LLVM::LLVMPointerType::get(rewriter.getI8Type());
47 }
48 
49 /// Returns a function reference (first hit also inserts into module). Sets
50 /// the "_emit_c_interface" on the function declaration when requested,
51 /// so that LLVM lowering generates a wrapper function that takes care
52 /// of ABI complications with passing in and returning MemRefs to C functions.
53 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
54                                  TypeRange resultType, ValueRange operands,
55                                  EmitCInterface emitCInterface) {
56   MLIRContext *context = op->getContext();
57   auto module = op->getParentOfType<ModuleOp>();
58   auto result = SymbolRefAttr::get(context, name);
59   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
60   if (!func) {
61     OpBuilder moduleBuilder(module.getBodyRegion());
62     func = moduleBuilder.create<FuncOp>(
63         op->getLoc(), name,
64         FunctionType::get(context, operands.getTypes(), resultType));
65     func.setPrivate();
66     if (static_cast<bool>(emitCInterface))
67       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
68   }
69   return result;
70 }
71 
72 /// Creates a `CallOp` to the function reference returned by `getFunc()`.
73 static CallOp createFuncCall(OpBuilder &builder, Operation *op, StringRef name,
74                              TypeRange resultType, ValueRange operands,
75                              EmitCInterface emitCInterface) {
76   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
77   return builder.create<CallOp>(op->getLoc(), resultType, fn, operands);
78 }
79 
80 /// Replaces the `op` with  a `CallOp` to the function reference returned
81 /// by `getFunc()`.
82 static CallOp replaceOpWithFuncCall(PatternRewriter &rewriter, Operation *op,
83                                     StringRef name, TypeRange resultType,
84                                     ValueRange operands,
85                                     EmitCInterface emitCInterface) {
86   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
87   return rewriter.replaceOpWithNewOp<CallOp>(op, resultType, fn, operands);
88 }
89 
90 /// Generates dimension size call.
91 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
92                             SparseTensorEncodingAttr &enc, Value src,
93                             int64_t idx) {
94   // Permute the index according to an optional dimension ordering.
95   if (AffineMap p = enc.getDimOrdering())
96     idx = p.getPermutedPosition(idx);
97   // Generate the call.
98   StringRef name = "sparseDimSize";
99   SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)};
100   Type iTp = rewriter.getIndexType();
101   return createFuncCall(rewriter, op, name, iTp, params, EmitCInterface::Off)
102       .getResult(0);
103 }
104 
105 /// Generates a call into the "swiss army knife" method of the sparse runtime
106 /// support library for materializing sparse tensors into the computation.
107 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
108                         ArrayRef<Value> params) {
109   StringRef name = "newSparseTensor";
110   Type pTp = getOpaquePointerType(rewriter);
111   return createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On)
112       .getResult(0);
113 }
114 
115 /// Populates given sizes array from type.
116 static void sizesFromType(ConversionPatternRewriter &rewriter,
117                           SmallVector<Value, 4> &sizes, Location loc,
118                           ShapedType stp) {
119   auto shape = stp.getShape();
120   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
121     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
122     sizes.push_back(constantIndex(rewriter, loc, s));
123   }
124 }
125 
126 /// Populates given sizes array from source.
127 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
128                          SmallVector<Value, 4> &sizes, Location loc,
129                          Value src) {
130   unsigned rank = src.getType().cast<ShapedType>().getRank();
131   for (unsigned i = 0; i < rank; i++)
132     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
133 }
134 
135 /// Populates given sizes array from type (for static sizes) and from
136 /// an already converted into opague pointer source (for dynamic sizes).
137 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
138                          SmallVector<Value, 4> &sizes, Operation *op,
139                          SparseTensorEncodingAttr &enc, ShapedType stp,
140                          Value src) {
141   Location loc = op->getLoc();
142   auto shape = stp.getShape();
143   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
144     if (shape[i] == ShapedType::kDynamicSize)
145       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
146     else
147       sizes.push_back(constantIndex(rewriter, loc, shape[i]));
148 }
149 
150 /// Generates an uninitialized temporary buffer of the given size and
151 /// type, but returns it as type `memref<? x $tp>` (rather than as type
152 /// `memref<$sz x $tp>`).
153 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
154                        Value sz, Type tp) {
155   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
156   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
157 }
158 
159 /// Generates an uninitialized temporary buffer of the given size and
160 /// type, but returns it as type `memref<? x $tp>` (rather than as type
161 /// `memref<$sz x $tp>`).
162 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
163                        unsigned sz, Type tp) {
164   return genAlloca(rewriter, loc, constantIndex(rewriter, loc, sz), tp);
165 }
166 
167 /// Generates an uninitialized temporary buffer with room for one value
168 /// of the given type, and returns the `memref<$tp>`.
169 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
170                              Type tp) {
171   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
172 }
173 
174 /// Generates a temporary buffer of the given type and given contents.
175 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
176                        ArrayRef<Value> values) {
177   unsigned sz = values.size();
178   assert(sz >= 1);
179   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
180   for (unsigned i = 0; i < sz; i++) {
181     Value idx = constantIndex(rewriter, loc, i);
182     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
183   }
184   return buffer;
185 }
186 
187 /// Populates parameters required to call the "swiss army knife" method of the
188 /// sparse runtime support library for materializing sparse tensors into the
189 /// computation.
190 static void newParams(ConversionPatternRewriter &rewriter,
191                       SmallVector<Value, 8> &params, Operation *op,
192                       SparseTensorEncodingAttr &enc, Action action,
193                       ValueRange szs, Value ptr = Value()) {
194   Location loc = op->getLoc();
195   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
196   unsigned sz = dlt.size();
197   // Sparsity annotations.
198   SmallVector<Value, 4> attrs;
199   for (unsigned i = 0; i < sz; i++)
200     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
201   params.push_back(genBuffer(rewriter, loc, attrs));
202   // Dimension sizes array of the enveloping tensor. Useful for either
203   // verification of external data, or for construction of internal data.
204   SmallVector<Value, 4> sizes;
205   for (Value s : szs)
206     sizes.push_back(s);
207   params.push_back(genBuffer(rewriter, loc, sizes));
208   // Dimension order permutation array. This is the "identity" permutation by
209   // default, or otherwise the "reverse" permutation of a given ordering, so
210   // that indices can be mapped quickly to the right position.
211   SmallVector<Value, 4> rev(sz);
212   if (AffineMap p = enc.getDimOrdering()) {
213     for (unsigned i = 0; i < sz; i++)
214       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
215   } else {
216     for (unsigned i = 0; i < sz; i++)
217       rev[i] = constantIndex(rewriter, loc, i);
218   }
219   params.push_back(genBuffer(rewriter, loc, rev));
220   // Secondary and primary types encoding.
221   Type elemTp = op->getResult(0).getType().cast<ShapedType>().getElementType();
222   params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
223   params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
224   params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp));
225   // User action.
226   params.push_back(constantAction(rewriter, loc, action));
227   // Payload pointer.
228   if (!ptr)
229     ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter));
230   params.push_back(ptr);
231 }
232 
233 /// Generates the code to read the value from tensor[ivs], and conditionally
234 /// stores the indices ivs to the memory in ind. The generated code looks like
235 /// the following and the insertion point after this routine is inside the
236 /// if-then branch behind the assignment to ind. This is to ensure that the
237 /// addEltX call generated after is inside the if-then branch.
238 ///    if (tensor[ivs]!=0) {
239 ///      ind = ivs
240 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
241                                       Location loc, Value tensor, Value ind,
242                                       ValueRange ivs) {
243   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
244   Value cond = genIsNonzero(rewriter, loc, val);
245   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
246   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
247   unsigned i = 0;
248   for (auto iv : ivs) {
249     Value idx = constantIndex(rewriter, loc, i++);
250     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
251   }
252   return val;
253 }
254 
255 /// Generates a call that adds one element to a coordinate scheme.
256 /// In particular, this generates code like the following:
257 ///   val = a[i1,..,ik];
258 ///   if val != 0
259 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
260 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
261                           Type eltType, Value ptr, Value val, Value ind,
262                           Value perm) {
263   StringRef name;
264   if (eltType.isF64())
265     name = "addEltF64";
266   else if (eltType.isF32())
267     name = "addEltF32";
268   else if (eltType.isInteger(64))
269     name = "addEltI64";
270   else if (eltType.isInteger(32))
271     name = "addEltI32";
272   else if (eltType.isInteger(16))
273     name = "addEltI16";
274   else if (eltType.isInteger(8))
275     name = "addEltI8";
276   else
277     llvm_unreachable("Unknown element type");
278   SmallVector<Value, 4> params{ptr, val, ind, perm};
279   Type pTp = getOpaquePointerType(rewriter);
280   createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On);
281 }
282 
283 /// Generates a call to `iter->getNext()`.  If there is a next element,
284 /// then it is copied into the out-parameters `ind` and `elemPtr`,
285 /// and the return value is true.  If there isn't a next element, then
286 /// the memory for `iter` is freed and the return value is false.
287 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
288                             Value iter, Value ind, Value elemPtr) {
289   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
290   StringRef name;
291   if (elemTp.isF64())
292     name = "getNextF64";
293   else if (elemTp.isF32())
294     name = "getNextF32";
295   else if (elemTp.isInteger(64))
296     name = "getNextI64";
297   else if (elemTp.isInteger(32))
298     name = "getNextI32";
299   else if (elemTp.isInteger(16))
300     name = "getNextI16";
301   else if (elemTp.isInteger(8))
302     name = "getNextI8";
303   else
304     llvm_unreachable("Unknown element type");
305   SmallVector<Value, 3> params{iter, ind, elemPtr};
306   Type i1 = rewriter.getI1Type();
307   return createFuncCall(rewriter, op, name, i1, params, EmitCInterface::On)
308       .getResult(0);
309 }
310 
311 /// If the tensor is a sparse constant, generates and returns the pair of
312 /// the constants for the indices and the values.
313 static Optional<std::pair<Value, Value>>
314 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
315                        Value tensor) {
316   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
317     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
318       DenseElementsAttr indicesAttr = attr.getIndices();
319       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
320       DenseElementsAttr valuesAttr = attr.getValues();
321       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
322       return std::make_pair(indices, values);
323     }
324   }
325   return {};
326 }
327 
328 /// Generates the code to copy the index at indices[ivs] to ind, and return
329 /// the value at value[ivs].
330 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
331                                        Location loc, Value indices,
332                                        Value values, Value ind, ValueRange ivs,
333                                        unsigned rank) {
334   for (unsigned i = 0; i < rank; i++) {
335     Value idx = constantIndex(rewriter, loc, i);
336     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
337                                                    ValueRange{ivs[0], idx});
338     val =
339         rewriter.create<arith::IndexCastOp>(loc, val, rewriter.getIndexType());
340     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
341   }
342   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
343 }
344 
345 /// Generates code to allocate a tensor of the given type, and zero
346 /// initialize it.  If the tensor type has any dynamic sizes, then the
347 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
348 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
349 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
350                               RankedTensorType tensorTp, ValueRange sizes) {
351   Type elemTp = tensorTp.getElementType();
352   auto shape = tensorTp.getShape();
353   auto memTp = MemRefType::get(shape, elemTp);
354   SmallVector<Value> dynamicSizes;
355   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
356     if (shape[i] == ShapedType::kDynamicSize)
357       dynamicSizes.push_back(sizes[i]);
358   }
359   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
360   Value zero = constantZero(rewriter, loc, elemTp);
361   rewriter.create<linalg::FillOp>(loc, zero, mem);
362   return mem;
363 }
364 
365 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
366 /// the tensor created by allocDenseTensor().  The `rank` is the rank
367 /// of the `tensor` and the length of `ind`.
368 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
369                                         Location loc, Value elemPtr,
370                                         Value tensor, unsigned rank,
371                                         Value ind) {
372   SmallVector<Value, 4> ivs;
373   ivs.reserve(rank);
374   for (unsigned i = 0; i < rank; i++) {
375     Value idx = constantIndex(rewriter, loc, i);
376     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
377   }
378   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
379   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
380 }
381 
382 //===----------------------------------------------------------------------===//
383 // Conversion rules.
384 //===----------------------------------------------------------------------===//
385 
386 /// Sparse conversion rule for returns.
387 class SparseReturnConverter : public OpConversionPattern<ReturnOp> {
388 public:
389   using OpConversionPattern::OpConversionPattern;
390   LogicalResult
391   matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
392                   ConversionPatternRewriter &rewriter) const override {
393     rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands());
394     return success();
395   }
396 };
397 
398 /// Sparse conversion rule for dimension accesses.
399 class SparseTensorToDimSizeConverter
400     : public OpConversionPattern<tensor::DimOp> {
401 public:
402   using OpConversionPattern::OpConversionPattern;
403   LogicalResult
404   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
405                   ConversionPatternRewriter &rewriter) const override {
406     // Only rewrite annotated DimOp with constant index.
407     auto enc = getSparseTensorEncoding(op.source().getType());
408     if (!enc)
409       return failure();
410     Optional<int64_t> index = op.getConstantIndex();
411     if (!index.hasValue())
412       return failure();
413     // Generate the call.
414     Value src = adaptor.getOperands()[0];
415     int64_t idx = index.getValue();
416     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
417     return success();
418   }
419 };
420 
421 /// Sparse conversion rule for trivial tensor casts.
422 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
423   using OpConversionPattern::OpConversionPattern;
424   LogicalResult
425   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
426                   ConversionPatternRewriter &rewriter) const override {
427     // Only rewrite identically annotated source/dest.
428     auto encDst = getSparseTensorEncoding(op.getType());
429     auto encSrc = getSparseTensorEncoding(op.source().getType());
430     if (!encDst || encDst != encSrc)
431       return failure();
432     rewriter.replaceOp(op, adaptor.getOperands());
433     return success();
434   }
435 };
436 
437 /// Sparse conversion rule for the new operator.
438 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
439   using OpConversionPattern::OpConversionPattern;
440   LogicalResult
441   matchAndRewrite(NewOp op, OpAdaptor adaptor,
442                   ConversionPatternRewriter &rewriter) const override {
443     Type resType = op.getType();
444     auto enc = getSparseTensorEncoding(resType);
445     if (!enc)
446       return failure();
447     // Generate the call to construct tensor from ptr. The sizes are
448     // inferred from the result type of the new operator.
449     SmallVector<Value, 4> sizes;
450     SmallVector<Value, 8> params;
451     sizesFromType(rewriter, sizes, op.getLoc(), resType.cast<ShapedType>());
452     Value ptr = adaptor.getOperands()[0];
453     newParams(rewriter, params, op, enc, Action::kFromFile, sizes, ptr);
454     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
455     return success();
456   }
457 };
458 
459 /// Sparse conversion rule for the init operator.
460 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
461   using OpConversionPattern::OpConversionPattern;
462   LogicalResult
463   matchAndRewrite(InitOp op, OpAdaptor adaptor,
464                   ConversionPatternRewriter &rewriter) const override {
465     Type resType = op.getType();
466     auto enc = getSparseTensorEncoding(resType);
467     if (!enc)
468       return failure();
469     // Generate the call to construct empty tensor. The sizes are
470     // explicitly defined by the arguments to the init operator.
471     SmallVector<Value, 8> params;
472     newParams(rewriter, params, op, enc, Action::kEmpty, adaptor.getOperands());
473     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
474     return success();
475   }
476 };
477 
478 /// Sparse conversion rule for the convert operator.
479 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
480   using OpConversionPattern::OpConversionPattern;
481   LogicalResult
482   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
483                   ConversionPatternRewriter &rewriter) const override {
484     Location loc = op->getLoc();
485     Type resType = op.getType();
486     Type srcType = op.source().getType();
487     auto encDst = getSparseTensorEncoding(resType);
488     auto encSrc = getSparseTensorEncoding(srcType);
489     Value src = adaptor.getOperands()[0];
490     if (encDst && encSrc) {
491       // This is a sparse => sparse conversion, which is handled as follows:
492       //   t = src->toCOO();         ; src to COO in dst order
493       //   dst = newSparseTensor(t)
494       // Using the coordinate scheme as an intermediate does not always
495       // yield the fastest conversion but avoids the need for a full
496       // O(N^2) conversion matrix.
497       if (encDst == encSrc) {
498         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
499         return success();
500       }
501       SmallVector<Value, 4> sizes;
502       SmallVector<Value, 8> params;
503       sizesFromPtr(rewriter, sizes, op, encSrc, srcType.cast<ShapedType>(),
504                    src);
505       // Set up encoding with right mix of src and dst so that the two
506       // method calls can share most parameters, while still providing
507       // the correct sparsity information to either of them.
508       auto enc = SparseTensorEncodingAttr::get(
509           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
510           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
511       newParams(rewriter, params, op, enc, Action::kToCOO, sizes, src);
512       Value coo = genNewCall(rewriter, op, params);
513       params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
514       params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
515       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
516       params[7] = coo;
517       rewriter.replaceOp(op, genNewCall(rewriter, op, params));
518       return success();
519     }
520     if (!encDst && encSrc) {
521       // This is sparse => dense conversion, which is handled as follows:
522       //   dst = new Tensor(0);
523       //   iter = src->toCOO();
524       //   iter->startIterator();
525       //   while (elem = iter->getNext()) {
526       //     dst[elem.indices] = elem.value;
527       //   }
528       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
529       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
530       unsigned rank = dstTensorTp.getRank();
531       Type elemTp = dstTensorTp.getElementType();
532       // Fabricate a no-permutation encoding for newParams().
533       // The pointer/index types must be those of `src`.
534       // The dimLevelTypes aren't actually used by Action::kToIterator.
535       encDst = SparseTensorEncodingAttr::get(
536           op->getContext(),
537           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
538               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
539           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
540       SmallVector<Value, 4> sizes;
541       SmallVector<Value, 8> params;
542       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
543       newParams(rewriter, params, op, encDst, Action::kToIterator, sizes, src);
544       Value iter = genNewCall(rewriter, op, params);
545       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
546       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
547       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
548       SmallVector<Value> noArgs;
549       SmallVector<Type> noTypes;
550       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
551       Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
552       rewriter.setInsertionPointToEnd(before);
553       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
554       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
555       Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
556       rewriter.setInsertionPointToStart(after);
557       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
558       rewriter.create<scf::YieldOp>(loc);
559       rewriter.setInsertionPointAfter(whileOp);
560       rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
561       return success();
562     }
563     if (!encDst && !encSrc) {
564       // dense => dense
565       return failure();
566     }
567     // This is a dense => sparse conversion or a sparse constant in COO =>
568     // sparse conversion, which is handled as follows:
569     //   t = newSparseCOO()
570     //   ...code to fill the COO tensor t...
571     //   s = newSparseTensor(t)
572     //
573     // To fill the COO tensor from a dense tensor:
574     //   for i1 in dim1
575     //    ..
576     //     for ik in dimk
577     //       val = a[i1,..,ik]
578     //       if val != 0
579     //         t->add(val, [i1,..,ik], [p1,..,pk])
580     //
581     // To fill the COO tensor from a sparse constant in COO format:
582     //   for i in range(NNZ)
583     //     val = values[i]
584     //     [i1,..,ik] = indices[i]
585     //     t->add(val, [i1,..,ik], [p1,..,pk])
586     //
587     // Note that the dense tensor traversal code is actually implemented
588     // using MLIR IR to avoid having to expose too much low-level
589     // memref traversal details to the runtime support library.
590     // Also note that the code below only generates the "new" ops and
591     // the loop-nest per se; whereas the entire body of the innermost
592     // loop is generated by genAddElt().
593     ShapedType stp = resType.cast<ShapedType>();
594     unsigned rank = stp.getRank();
595     SmallVector<Value, 4> sizes;
596     SmallVector<Value, 8> params;
597     sizesFromSrc(rewriter, sizes, loc, src);
598     newParams(rewriter, params, op, encDst, Action::kEmptyCOO, sizes);
599     Value ptr = genNewCall(rewriter, op, params);
600     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
601     Value perm = params[2];
602     SmallVector<Value> lo;
603     SmallVector<Value> hi;
604     SmallVector<Value> st;
605     Value zero = constantIndex(rewriter, loc, 0);
606     Value one = constantIndex(rewriter, loc, 1);
607     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
608     bool isCOOConstant = indicesValues.hasValue();
609     Value indices;
610     Value values;
611     if (isCOOConstant) {
612       indices = indicesValues->first;
613       values = indicesValues->second;
614       lo.push_back(zero);
615       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
616       st.push_back(one);
617     } else {
618       for (unsigned i = 0; i < rank; i++) {
619         lo.push_back(zero);
620         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
621         st.push_back(one);
622       }
623     }
624     Type eltType = stp.getElementType();
625     scf::buildLoopNest(
626         rewriter, op.getLoc(), lo, hi, st, {},
627         [&](OpBuilder &builder, Location loc, ValueRange ivs,
628             ValueRange args) -> scf::ValueVector {
629           Value val;
630           if (isCOOConstant)
631             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
632                                             ivs, rank);
633           else
634             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
635           genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
636           return {};
637         });
638     // Final call to construct sparse tensor storage.
639     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
640     params[7] = ptr;
641     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
642     return success();
643   }
644 };
645 
646 /// Sparse conversion rule for the release operator.
647 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
648 public:
649   using OpConversionPattern::OpConversionPattern;
650   LogicalResult
651   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
652                   ConversionPatternRewriter &rewriter) const override {
653     StringRef name = "delSparseTensor";
654     TypeRange noTp;
655     createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
656                    EmitCInterface::Off);
657     rewriter.eraseOp(op);
658     return success();
659   }
660 };
661 
662 /// Sparse conversion rule for pointer accesses.
663 class SparseTensorToPointersConverter
664     : public OpConversionPattern<ToPointersOp> {
665 public:
666   using OpConversionPattern::OpConversionPattern;
667   LogicalResult
668   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
669                   ConversionPatternRewriter &rewriter) const override {
670     Type resType = op.getType();
671     Type eltType = resType.cast<ShapedType>().getElementType();
672     StringRef name;
673     if (eltType.isIndex())
674       name = "sparsePointers";
675     else if (eltType.isInteger(64))
676       name = "sparsePointers64";
677     else if (eltType.isInteger(32))
678       name = "sparsePointers32";
679     else if (eltType.isInteger(16))
680       name = "sparsePointers16";
681     else if (eltType.isInteger(8))
682       name = "sparsePointers8";
683     else
684       return failure();
685     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
686                           EmitCInterface::On);
687     return success();
688   }
689 };
690 
691 /// Sparse conversion rule for index accesses.
692 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
693 public:
694   using OpConversionPattern::OpConversionPattern;
695   LogicalResult
696   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
697                   ConversionPatternRewriter &rewriter) const override {
698     Type resType = op.getType();
699     Type eltType = resType.cast<ShapedType>().getElementType();
700     StringRef name;
701     if (eltType.isIndex())
702       name = "sparseIndices";
703     else if (eltType.isInteger(64))
704       name = "sparseIndices64";
705     else if (eltType.isInteger(32))
706       name = "sparseIndices32";
707     else if (eltType.isInteger(16))
708       name = "sparseIndices16";
709     else if (eltType.isInteger(8))
710       name = "sparseIndices8";
711     else
712       return failure();
713     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
714                           EmitCInterface::On);
715     return success();
716   }
717 };
718 
719 /// Sparse conversion rule for value accesses.
720 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
721 public:
722   using OpConversionPattern::OpConversionPattern;
723   LogicalResult
724   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
725                   ConversionPatternRewriter &rewriter) const override {
726     Type resType = op.getType();
727     Type eltType = resType.cast<ShapedType>().getElementType();
728     StringRef name;
729     if (eltType.isF64())
730       name = "sparseValuesF64";
731     else if (eltType.isF32())
732       name = "sparseValuesF32";
733     else if (eltType.isInteger(64))
734       name = "sparseValuesI64";
735     else if (eltType.isInteger(32))
736       name = "sparseValuesI32";
737     else if (eltType.isInteger(16))
738       name = "sparseValuesI16";
739     else if (eltType.isInteger(8))
740       name = "sparseValuesI8";
741     else
742       return failure();
743     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
744                           EmitCInterface::On);
745     return success();
746   }
747 };
748 
749 /// Sparse conversion rule for tensor rematerialization.
750 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
751 public:
752   using OpConversionPattern::OpConversionPattern;
753   LogicalResult
754   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
755                   ConversionPatternRewriter &rewriter) const override {
756     if (op.hasInserts()) {
757       // Finalize any pending insertions.
758       StringRef name = "endInsert";
759       TypeRange noTp;
760       createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
761                      EmitCInterface::Off);
762     }
763     rewriter.replaceOp(op, adaptor.getOperands());
764     return success();
765   }
766 };
767 
768 /// Sparse conversion rule for inserting in lexicographic index order.
769 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
770 public:
771   using OpConversionPattern::OpConversionPattern;
772   LogicalResult
773   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
774                   ConversionPatternRewriter &rewriter) const override {
775     Type srcType = op.tensor().getType();
776     Type eltType = srcType.cast<ShapedType>().getElementType();
777     StringRef name;
778     if (eltType.isF64())
779       name = "lexInsertF64";
780     else if (eltType.isF32())
781       name = "lexInsertF32";
782     else if (eltType.isInteger(64))
783       name = "lexInsertI64";
784     else if (eltType.isInteger(32))
785       name = "lexInsertI32";
786     else if (eltType.isInteger(16))
787       name = "lexInsertI16";
788     else if (eltType.isInteger(8))
789       name = "lexInsertI8";
790     else
791       llvm_unreachable("Unknown element type");
792     TypeRange noTp;
793     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
794                           EmitCInterface::On);
795     return success();
796   }
797 };
798 
799 class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
800 public:
801   using OpConversionPattern::OpConversionPattern;
802   LogicalResult
803   matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
804                   ConversionPatternRewriter &rewriter) const override {
805     Location loc = op->getLoc();
806     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
807     Type eltType = srcType.getElementType();
808     Type boolType = rewriter.getIntegerType(1);
809     Type idxType = rewriter.getIndexType();
810     // All initialization should be done on entry of the loop nest.
811     rewriter.setInsertionPointAfter(op.tensor().getDefiningOp());
812     // Determine the size for access expansion.
813     auto enc = getSparseTensorEncoding(srcType);
814     Value src = adaptor.getOperands()[0];
815     Value sz = genDimSizeCall(rewriter, op, enc, src, srcType.getRank() - 1);
816     // Allocate temporary stack buffers for values, filled-switch, and indices.
817     Value values = genAlloca(rewriter, loc, sz, eltType);
818     Value filled = genAlloca(rewriter, loc, sz, boolType);
819     Value indices = genAlloca(rewriter, loc, sz, idxType);
820     Value zero = constantZero(rewriter, loc, idxType);
821     // Reset the values/filled-switch to all-zero/false. Note that this
822     // introduces an O(N) operation into the computation, but this reset
823     // operation is amortized over the innermost loops for the access
824     // pattern expansion.
825     rewriter.create<linalg::FillOp>(loc, constantZero(rewriter, loc, eltType),
826                                     values);
827     rewriter.create<linalg::FillOp>(loc, constantZero(rewriter, loc, boolType),
828                                     filled);
829     // Replace expansion op with these buffers and initial index.
830     assert(op.getNumResults() == 4);
831     rewriter.replaceOp(op, {values, filled, indices, zero});
832     return success();
833   }
834 };
835 
836 class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
837 public:
838   using OpConversionPattern::OpConversionPattern;
839   LogicalResult
840   matchAndRewrite(CompressOp op, OpAdaptor adaptor,
841                   ConversionPatternRewriter &rewriter) const override {
842     // Note that this method call resets the values/filled-switch back to
843     // all-zero/false by only iterating over the set elements, so the
844     // complexity remains proportional to the sparsity of the expanded
845     // access pattern.
846     Type srcType = op.tensor().getType();
847     Type eltType = srcType.cast<ShapedType>().getElementType();
848     StringRef name;
849     if (eltType.isF64())
850       name = "expInsertF64";
851     else if (eltType.isF32())
852       name = "expInsertF32";
853     else if (eltType.isInteger(64))
854       name = "expInsertI64";
855     else if (eltType.isInteger(32))
856       name = "expInsertI32";
857     else if (eltType.isInteger(16))
858       name = "expInsertI16";
859     else if (eltType.isInteger(8))
860       name = "expInsertI8";
861     else
862       return failure();
863     TypeRange noTp;
864     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
865                           EmitCInterface::On);
866     return success();
867   }
868 };
869 
870 } // namespace
871 
872 //===----------------------------------------------------------------------===//
873 // Public method for populating conversion rules.
874 //===----------------------------------------------------------------------===//
875 
876 /// Populates the given patterns list with conversion rules required for
877 /// the sparsification of linear algebra operations.
878 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
879                                                   RewritePatternSet &patterns) {
880   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
881                SparseCastConverter, SparseTensorNewConverter,
882                SparseTensorInitConverter, SparseTensorConvertConverter,
883                SparseTensorReleaseConverter, SparseTensorToPointersConverter,
884                SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
885                SparseTensorLoadConverter, SparseTensorLexInsertConverter,
886                SparseTensorExpandConverter, SparseTensorCompressConverter>(
887       typeConverter, patterns.getContext());
888 }
889