1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Convert sparse tensor primitives to calls into a runtime support library. 10 // Note that this is a current implementation choice to keep the conversion 11 // simple. In principle, these primitives could also be converted to actual 12 // elaborate IR code that implements the primitives on the selected sparse 13 // tensor storage schemes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodegenUtils.h" 18 19 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 20 #include "mlir/Dialect/Func/IR/FuncOps.h" 21 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 22 #include "mlir/Dialect/Linalg/Utils/Utils.h" 23 #include "mlir/Dialect/MemRef/IR/MemRef.h" 24 #include "mlir/Dialect/SCF/SCF.h" 25 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 27 #include "mlir/Dialect/Tensor/IR/Tensor.h" 28 #include "mlir/ExecutionEngine/SparseTensorUtils.h" 29 #include "mlir/Transforms/DialectConversion.h" 30 31 using namespace mlir; 32 using namespace mlir::sparse_tensor; 33 34 namespace { 35 36 /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`, 37 /// `createFuncCall()`, and `replaceOpWithFuncCall()`. 38 enum class EmitCInterface : bool { Off = false, On = true }; 39 40 //===----------------------------------------------------------------------===// 41 // Helper methods. 42 //===----------------------------------------------------------------------===// 43 44 /// Returns the equivalent of `void*` for opaque arguments to the 45 /// execution engine. 46 static Type getOpaquePointerType(PatternRewriter &rewriter) { 47 return LLVM::LLVMPointerType::get(rewriter.getI8Type()); 48 } 49 50 /// Returns a function reference (first hit also inserts into module). Sets 51 /// the "_emit_c_interface" on the function declaration when requested, 52 /// so that LLVM lowering generates a wrapper function that takes care 53 /// of ABI complications with passing in and returning MemRefs to C functions. 54 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name, 55 TypeRange resultType, ValueRange operands, 56 EmitCInterface emitCInterface) { 57 MLIRContext *context = op->getContext(); 58 auto module = op->getParentOfType<ModuleOp>(); 59 auto result = SymbolRefAttr::get(context, name); 60 auto func = module.lookupSymbol<FuncOp>(result.getAttr()); 61 if (!func) { 62 OpBuilder moduleBuilder(module.getBodyRegion()); 63 func = moduleBuilder.create<FuncOp>( 64 op->getLoc(), name, 65 FunctionType::get(context, operands.getTypes(), resultType)); 66 func.setPrivate(); 67 if (static_cast<bool>(emitCInterface)) 68 func->setAttr("llvm.emit_c_interface", UnitAttr::get(context)); 69 } 70 return result; 71 } 72 73 /// Creates a `CallOp` to the function reference returned by `getFunc()`. 74 static func::CallOp createFuncCall(OpBuilder &builder, Operation *op, 75 StringRef name, TypeRange resultType, 76 ValueRange operands, 77 EmitCInterface emitCInterface) { 78 auto fn = getFunc(op, name, resultType, operands, emitCInterface); 79 return builder.create<func::CallOp>(op->getLoc(), resultType, fn, operands); 80 } 81 82 /// Replaces the `op` with a `CallOp` to the function reference returned 83 /// by `getFunc()`. 84 static func::CallOp replaceOpWithFuncCall(PatternRewriter &rewriter, 85 Operation *op, StringRef name, 86 TypeRange resultType, 87 ValueRange operands, 88 EmitCInterface emitCInterface) { 89 auto fn = getFunc(op, name, resultType, operands, emitCInterface); 90 return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn, 91 operands); 92 } 93 94 /// Generates dimension size call. 95 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op, 96 SparseTensorEncodingAttr &enc, Value src, 97 int64_t idx) { 98 // Permute the index according to an optional dimension ordering. 99 if (AffineMap p = enc.getDimOrdering()) 100 idx = p.getPermutedPosition(idx); 101 // Generate the call. 102 StringRef name = "sparseDimSize"; 103 SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)}; 104 Type iTp = rewriter.getIndexType(); 105 return createFuncCall(rewriter, op, name, iTp, params, EmitCInterface::Off) 106 .getResult(0); 107 } 108 109 /// Generates a call into the "swiss army knife" method of the sparse runtime 110 /// support library for materializing sparse tensors into the computation. 111 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op, 112 ArrayRef<Value> params) { 113 StringRef name = "newSparseTensor"; 114 Type pTp = getOpaquePointerType(rewriter); 115 return createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On) 116 .getResult(0); 117 } 118 119 /// Populates given sizes array from type. 120 static void sizesFromType(ConversionPatternRewriter &rewriter, 121 SmallVector<Value, 4> &sizes, Location loc, 122 ShapedType stp) { 123 auto shape = stp.getShape(); 124 for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) { 125 uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i]; 126 sizes.push_back(constantIndex(rewriter, loc, s)); 127 } 128 } 129 130 /// Populates given sizes array from source. 131 static void sizesFromSrc(ConversionPatternRewriter &rewriter, 132 SmallVector<Value, 4> &sizes, Location loc, 133 Value src) { 134 unsigned rank = src.getType().cast<ShapedType>().getRank(); 135 for (unsigned i = 0; i < rank; i++) 136 sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i)); 137 } 138 139 /// Populates given sizes array from type (for static sizes) and from 140 /// an already converted into opague pointer source (for dynamic sizes). 141 static void sizesFromPtr(ConversionPatternRewriter &rewriter, 142 SmallVector<Value, 4> &sizes, Operation *op, 143 SparseTensorEncodingAttr &enc, ShapedType stp, 144 Value src) { 145 Location loc = op->getLoc(); 146 auto shape = stp.getShape(); 147 for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) 148 if (shape[i] == ShapedType::kDynamicSize) 149 sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i)); 150 else 151 sizes.push_back(constantIndex(rewriter, loc, shape[i])); 152 } 153 154 /// Generates an uninitialized temporary buffer of the given size and 155 /// type, but returns it as type `memref<? x $tp>` (rather than as type 156 /// `memref<$sz x $tp>`). 157 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc, 158 Value sz, Type tp) { 159 auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp); 160 return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{sz}); 161 } 162 163 /// Generates an uninitialized temporary buffer of the given size and 164 /// type, but returns it as type `memref<? x $tp>` (rather than as type 165 /// `memref<$sz x $tp>`). 166 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc, 167 unsigned sz, Type tp) { 168 return genAlloca(rewriter, loc, constantIndex(rewriter, loc, sz), tp); 169 } 170 171 /// Generates an uninitialized temporary buffer with room for one value 172 /// of the given type, and returns the `memref<$tp>`. 173 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc, 174 Type tp) { 175 return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp)); 176 } 177 178 /// Generates a temporary buffer of the given type and given contents. 179 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc, 180 ValueRange values) { 181 unsigned sz = values.size(); 182 assert(sz >= 1); 183 Value buffer = genAlloca(rewriter, loc, sz, values[0].getType()); 184 for (unsigned i = 0; i < sz; i++) { 185 Value idx = constantIndex(rewriter, loc, i); 186 rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx); 187 } 188 return buffer; 189 } 190 191 /// Populates parameters required to call the "swiss army knife" method of the 192 /// sparse runtime support library for materializing sparse tensors into the 193 /// computation. 194 static void newParams(ConversionPatternRewriter &rewriter, 195 SmallVector<Value, 8> ¶ms, Operation *op, 196 ShapedType stp, SparseTensorEncodingAttr &enc, 197 Action action, ValueRange szs, Value ptr = Value()) { 198 Location loc = op->getLoc(); 199 ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType(); 200 unsigned sz = dlt.size(); 201 // Sparsity annotations. 202 SmallVector<Value, 4> attrs; 203 for (unsigned i = 0; i < sz; i++) 204 attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i])); 205 params.push_back(genBuffer(rewriter, loc, attrs)); 206 // Dimension sizes array of the enveloping tensor. Useful for either 207 // verification of external data, or for construction of internal data. 208 params.push_back(genBuffer(rewriter, loc, szs)); 209 // Dimension order permutation array. This is the "identity" permutation by 210 // default, or otherwise the "reverse" permutation of a given ordering, so 211 // that indices can be mapped quickly to the right position. 212 SmallVector<Value, 4> rev(sz); 213 if (AffineMap p = enc.getDimOrdering()) { 214 for (unsigned i = 0; i < sz; i++) 215 rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i); 216 } else { 217 for (unsigned i = 0; i < sz; i++) 218 rev[i] = constantIndex(rewriter, loc, i); 219 } 220 params.push_back(genBuffer(rewriter, loc, rev)); 221 // Secondary and primary types encoding. 222 Type elemTp = stp.getElementType(); 223 params.push_back(constantPointerTypeEncoding(rewriter, loc, enc)); 224 params.push_back(constantIndexTypeEncoding(rewriter, loc, enc)); 225 params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp)); 226 // User action. 227 params.push_back(constantAction(rewriter, loc, action)); 228 // Payload pointer. 229 if (!ptr) 230 ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter)); 231 params.push_back(ptr); 232 } 233 234 /// Generates the code to read the value from tensor[ivs], and conditionally 235 /// stores the indices ivs to the memory in ind. The generated code looks like 236 /// the following and the insertion point after this routine is inside the 237 /// if-then branch behind the assignment to ind. This is to ensure that the 238 /// addEltX call generated after is inside the if-then branch. 239 /// if (tensor[ivs]!=0) { 240 /// ind = ivs 241 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter, 242 Location loc, Value tensor, Value ind, 243 ValueRange ivs) { 244 Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs); 245 Value cond = genIsNonzero(rewriter, loc, val); 246 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false); 247 rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front()); 248 unsigned i = 0; 249 for (auto iv : ivs) { 250 Value idx = constantIndex(rewriter, loc, i++); 251 rewriter.create<memref::StoreOp>(loc, iv, ind, idx); 252 } 253 return val; 254 } 255 256 /// Generates a call that adds one element to a coordinate scheme. 257 /// In particular, this generates code like the following: 258 /// val = a[i1,..,ik]; 259 /// if val != 0 260 /// t->add(val, [i1,..,ik], [p1,..,pk]); 261 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op, 262 Type eltType, Value ptr, Value val, Value ind, 263 Value perm) { 264 SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)}; 265 SmallVector<Value, 4> params{ptr, val, ind, perm}; 266 Type pTp = getOpaquePointerType(rewriter); 267 createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On); 268 } 269 270 /// Generates a call to `iter->getNext()`. If there is a next element, 271 /// then it is copied into the out-parameters `ind` and `elemPtr`, 272 /// and the return value is true. If there isn't a next element, then 273 /// the memory for `iter` is freed and the return value is false. 274 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op, 275 Value iter, Value ind, Value elemPtr) { 276 Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType(); 277 SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)}; 278 SmallVector<Value, 3> params{iter, ind, elemPtr}; 279 Type i1 = rewriter.getI1Type(); 280 return createFuncCall(rewriter, op, name, i1, params, EmitCInterface::On) 281 .getResult(0); 282 } 283 284 /// If the tensor is a sparse constant, generates and returns the pair of 285 /// the constants for the indices and the values. 286 static Optional<std::pair<Value, Value>> 287 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc, 288 Value tensor) { 289 if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) { 290 if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) { 291 DenseElementsAttr indicesAttr = attr.getIndices(); 292 Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr); 293 DenseElementsAttr valuesAttr = attr.getValues(); 294 Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr); 295 return std::make_pair(indices, values); 296 } 297 } 298 return {}; 299 } 300 301 /// Generates the code to copy the index at indices[ivs] to ind, and return 302 /// the value at value[ivs]. 303 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter, 304 Location loc, Value indices, 305 Value values, Value ind, ValueRange ivs, 306 unsigned rank) { 307 for (unsigned i = 0; i < rank; i++) { 308 Value idx = constantIndex(rewriter, loc, i); 309 Value val = rewriter.create<tensor::ExtractOp>(loc, indices, 310 ValueRange{ivs[0], idx}); 311 val = 312 rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), val); 313 rewriter.create<memref::StoreOp>(loc, val, ind, idx); 314 } 315 return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]); 316 } 317 318 /// Generates code to allocate a tensor of the given type, and zero 319 /// initialize it. If the tensor type has any dynamic sizes, then the 320 /// `sizes` parameter should be as filled by sizesFromPtr(); that way 321 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr(). 322 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc, 323 RankedTensorType tensorTp, ValueRange sizes) { 324 Type elemTp = tensorTp.getElementType(); 325 auto shape = tensorTp.getShape(); 326 auto memTp = MemRefType::get(shape, elemTp); 327 SmallVector<Value> dynamicSizes; 328 for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) { 329 if (shape[i] == ShapedType::kDynamicSize) 330 dynamicSizes.push_back(sizes[i]); 331 } 332 Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes); 333 Value zero = constantZero(rewriter, loc, elemTp); 334 rewriter.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{mem}); 335 return mem; 336 } 337 338 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into 339 /// the tensor created by allocDenseTensor(). The `rank` is the rank 340 /// of the `tensor` and the length of `ind`. 341 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter, 342 Location loc, Value elemPtr, 343 Value tensor, unsigned rank, 344 Value ind) { 345 SmallVector<Value, 4> ivs; 346 ivs.reserve(rank); 347 for (unsigned i = 0; i < rank; i++) { 348 Value idx = constantIndex(rewriter, loc, i); 349 ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx)); 350 } 351 Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr); 352 rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs); 353 } 354 355 //===----------------------------------------------------------------------===// 356 // Conversion rules. 357 //===----------------------------------------------------------------------===// 358 359 /// Sparse conversion rule for returns. 360 class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> { 361 public: 362 using OpConversionPattern::OpConversionPattern; 363 LogicalResult 364 matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor, 365 ConversionPatternRewriter &rewriter) const override { 366 rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands()); 367 return success(); 368 } 369 }; 370 371 /// Sparse conversion rule for dimension accesses. 372 class SparseTensorToDimSizeConverter 373 : public OpConversionPattern<tensor::DimOp> { 374 public: 375 using OpConversionPattern::OpConversionPattern; 376 LogicalResult 377 matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor, 378 ConversionPatternRewriter &rewriter) const override { 379 // Only rewrite annotated DimOp with constant index. 380 auto enc = getSparseTensorEncoding(op.source().getType()); 381 if (!enc) 382 return failure(); 383 Optional<int64_t> index = op.getConstantIndex(); 384 if (!index.hasValue()) 385 return failure(); 386 // Generate the call. 387 Value src = adaptor.getOperands()[0]; 388 int64_t idx = index.getValue(); 389 rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx)); 390 return success(); 391 } 392 }; 393 394 /// Sparse conversion rule for trivial tensor casts. 395 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> { 396 using OpConversionPattern::OpConversionPattern; 397 LogicalResult 398 matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor, 399 ConversionPatternRewriter &rewriter) const override { 400 // Only rewrite identically annotated source/dest. 401 auto encDst = getSparseTensorEncoding(op.getType()); 402 auto encSrc = getSparseTensorEncoding(op.source().getType()); 403 if (!encDst || encDst != encSrc) 404 return failure(); 405 rewriter.replaceOp(op, adaptor.getOperands()); 406 return success(); 407 } 408 }; 409 410 /// Sparse conversion rule for the new operator. 411 class SparseTensorNewConverter : public OpConversionPattern<NewOp> { 412 using OpConversionPattern::OpConversionPattern; 413 LogicalResult 414 matchAndRewrite(NewOp op, OpAdaptor adaptor, 415 ConversionPatternRewriter &rewriter) const override { 416 Type resType = op.getType(); 417 auto enc = getSparseTensorEncoding(resType); 418 if (!enc) 419 return failure(); 420 // Generate the call to construct tensor from ptr. The sizes are 421 // inferred from the result type of the new operator. 422 SmallVector<Value, 4> sizes; 423 SmallVector<Value, 8> params; 424 ShapedType stp = resType.cast<ShapedType>(); 425 sizesFromType(rewriter, sizes, op.getLoc(), stp); 426 Value ptr = adaptor.getOperands()[0]; 427 newParams(rewriter, params, op, stp, enc, Action::kFromFile, sizes, ptr); 428 rewriter.replaceOp(op, genNewCall(rewriter, op, params)); 429 return success(); 430 } 431 }; 432 433 /// Sparse conversion rule for the init operator. 434 class SparseTensorInitConverter : public OpConversionPattern<InitOp> { 435 using OpConversionPattern::OpConversionPattern; 436 LogicalResult 437 matchAndRewrite(InitOp op, OpAdaptor adaptor, 438 ConversionPatternRewriter &rewriter) const override { 439 Type resType = op.getType(); 440 auto enc = getSparseTensorEncoding(resType); 441 if (!enc) 442 return failure(); 443 // Generate the call to construct empty tensor. The sizes are 444 // explicitly defined by the arguments to the init operator. 445 SmallVector<Value, 8> params; 446 ShapedType stp = resType.cast<ShapedType>(); 447 newParams(rewriter, params, op, stp, enc, Action::kEmpty, 448 adaptor.getOperands()); 449 rewriter.replaceOp(op, genNewCall(rewriter, op, params)); 450 return success(); 451 } 452 }; 453 454 /// Sparse conversion rule for the convert operator. 455 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> { 456 /// Options to control sparse code generation. 457 SparseTensorConversionOptions options; 458 459 public: 460 using OpConversionPattern::OpConversionPattern; 461 SparseTensorConvertConverter(MLIRContext *context, 462 SparseTensorConversionOptions o) 463 : OpConversionPattern<ConvertOp>(context), options(o) {} 464 SparseTensorConvertConverter(TypeConverter &typeConv, MLIRContext *context, 465 SparseTensorConversionOptions o) 466 : OpConversionPattern<ConvertOp>(typeConv, context), options(o) {} 467 468 LogicalResult 469 matchAndRewrite(ConvertOp op, OpAdaptor adaptor, 470 ConversionPatternRewriter &rewriter) const override { 471 Location loc = op->getLoc(); 472 Type resType = op.getType(); 473 Type srcType = op.source().getType(); 474 auto encDst = getSparseTensorEncoding(resType); 475 auto encSrc = getSparseTensorEncoding(srcType); 476 Value src = adaptor.getOperands()[0]; 477 if (encDst && encSrc) { 478 // This is a sparse => sparse conversion, which is handled as follows: 479 // t = src->toCOO(); ; src to COO in dst order 480 // dst = newSparseTensor(t) 481 // Using the coordinate scheme as an intermediate does not always 482 // yield the fastest conversion but avoids the need for a full 483 // O(N^2) conversion matrix. 484 if (encDst == encSrc) { 485 rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast 486 return success(); 487 } 488 SmallVector<Value, 4> sizes; 489 SmallVector<Value, 8> params; 490 ShapedType stp = srcType.cast<ShapedType>(); 491 sizesFromPtr(rewriter, sizes, op, encSrc, stp, src); 492 // Set up encoding with right mix of src and dst so that the two 493 // method calls can share most parameters, while still providing 494 // the correct sparsity information to either of them. 495 auto enc = SparseTensorEncodingAttr::get( 496 op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(), 497 encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth()); 498 newParams(rewriter, params, op, stp, enc, Action::kToCOO, sizes, src); 499 Value coo = genNewCall(rewriter, op, params); 500 params[3] = constantPointerTypeEncoding(rewriter, loc, encDst); 501 params[4] = constantIndexTypeEncoding(rewriter, loc, encDst); 502 params[6] = constantAction(rewriter, loc, Action::kFromCOO); 503 params[7] = coo; 504 rewriter.replaceOp(op, genNewCall(rewriter, op, params)); 505 return success(); 506 } 507 if (!encDst && encSrc) { 508 // This is sparse => dense conversion, which is handled as follows: 509 // dst = new Tensor(0); 510 // iter = src->toCOO(); 511 // iter->startIterator(); 512 // while (elem = iter->getNext()) { 513 // dst[elem.indices] = elem.value; 514 // } 515 RankedTensorType dstTensorTp = resType.cast<RankedTensorType>(); 516 RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>(); 517 unsigned rank = dstTensorTp.getRank(); 518 Type elemTp = dstTensorTp.getElementType(); 519 // Fabricate a no-permutation encoding for newParams(). 520 // The pointer/index types must be those of `src`. 521 // The dimLevelTypes aren't actually used by Action::kToIterator. 522 encDst = SparseTensorEncodingAttr::get( 523 op->getContext(), 524 SmallVector<SparseTensorEncodingAttr::DimLevelType>( 525 rank, SparseTensorEncodingAttr::DimLevelType::Dense), 526 AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth()); 527 SmallVector<Value, 4> sizes; 528 SmallVector<Value, 8> params; 529 sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src); 530 newParams(rewriter, params, op, dstTensorTp, encDst, Action::kToIterator, 531 sizes, src); 532 Value iter = genNewCall(rewriter, op, params); 533 Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType()); 534 Value elemPtr = genAllocaScalar(rewriter, loc, elemTp); 535 Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes); 536 SmallVector<Value> noArgs; 537 SmallVector<Type> noTypes; 538 auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs); 539 Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes); 540 rewriter.setInsertionPointToEnd(before); 541 Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr); 542 rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 543 Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes); 544 rewriter.setInsertionPointToStart(after); 545 insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind); 546 rewriter.create<scf::YieldOp>(loc); 547 rewriter.setInsertionPointAfter(whileOp); 548 rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst); 549 return success(); 550 } 551 if (!encDst && !encSrc) { 552 // dense => dense 553 return failure(); 554 } 555 // This is a dense => sparse conversion or a sparse constant in COO => 556 // sparse conversion, which is handled as follows: 557 // t = newSparseCOO() 558 // ...code to fill the COO tensor t... 559 // s = newSparseTensor(t) 560 // 561 // To fill the COO tensor from a dense tensor: 562 // for i1 in dim1 563 // .. 564 // for ik in dimk 565 // val = a[i1,..,ik] 566 // if val != 0 567 // t->add(val, [i1,..,ik], [p1,..,pk]) 568 // 569 // To fill the COO tensor from a sparse constant in COO format: 570 // for i in range(NNZ) 571 // val = values[i] 572 // [i1,..,ik] = indices[i] 573 // t->add(val, [i1,..,ik], [p1,..,pk]) 574 // 575 // Note that the dense tensor traversal code is actually implemented 576 // using MLIR IR to avoid having to expose too much low-level 577 // memref traversal details to the runtime support library. 578 // Also note that the code below only generates the "new" ops and 579 // the loop-nest per se; whereas the entire body of the innermost 580 // loop is generated by genAddElt(). 581 ShapedType stp = resType.cast<ShapedType>(); 582 unsigned rank = stp.getRank(); 583 SmallVector<Value, 4> sizes; 584 SmallVector<Value, 8> params; 585 sizesFromSrc(rewriter, sizes, loc, src); 586 newParams(rewriter, params, op, stp, encDst, Action::kEmptyCOO, sizes); 587 Value ptr = genNewCall(rewriter, op, params); 588 Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType()); 589 Value perm = params[2]; 590 SmallVector<Value> lo; 591 SmallVector<Value> hi; 592 SmallVector<Value> st; 593 Value zero = constantIndex(rewriter, loc, 0); 594 Value one = constantIndex(rewriter, loc, 1); 595 auto indicesValues = genSplitSparseConstant(rewriter, loc, src); 596 bool isCOOConstant = indicesValues.hasValue(); 597 Value indices; 598 Value values; 599 if (isCOOConstant) { 600 indices = indicesValues->first; 601 values = indicesValues->second; 602 lo.push_back(zero); 603 hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0)); 604 st.push_back(one); 605 } else { 606 for (unsigned i = 0; i < rank; i++) { 607 lo.push_back(zero); 608 hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i)); 609 st.push_back(one); 610 } 611 } 612 Type eltType = stp.getElementType(); 613 scf::buildLoopNest( 614 rewriter, op.getLoc(), lo, hi, st, {}, 615 [&](OpBuilder &builder, Location loc, ValueRange ivs, 616 ValueRange args) -> scf::ValueVector { 617 Value val; 618 if (isCOOConstant) 619 val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind, 620 ivs, rank); 621 else 622 val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs); 623 genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm); 624 return {}; 625 }); 626 // Final call to construct sparse tensor storage. 627 params[6] = constantAction(rewriter, loc, Action::kFromCOO); 628 params[7] = ptr; 629 rewriter.replaceOp(op, genNewCall(rewriter, op, params)); 630 return success(); 631 } 632 }; 633 634 /// Sparse conversion rule for the release operator. 635 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> { 636 public: 637 using OpConversionPattern::OpConversionPattern; 638 LogicalResult 639 matchAndRewrite(ReleaseOp op, OpAdaptor adaptor, 640 ConversionPatternRewriter &rewriter) const override { 641 StringRef name = "delSparseTensor"; 642 TypeRange noTp; 643 createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(), 644 EmitCInterface::Off); 645 rewriter.eraseOp(op); 646 return success(); 647 } 648 }; 649 650 /// Sparse conversion rule for pointer accesses. 651 class SparseTensorToPointersConverter 652 : public OpConversionPattern<ToPointersOp> { 653 public: 654 using OpConversionPattern::OpConversionPattern; 655 LogicalResult 656 matchAndRewrite(ToPointersOp op, OpAdaptor adaptor, 657 ConversionPatternRewriter &rewriter) const override { 658 Type resType = op.getType(); 659 Type ptrType = resType.cast<ShapedType>().getElementType(); 660 SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)}; 661 replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(), 662 EmitCInterface::On); 663 return success(); 664 } 665 }; 666 667 /// Sparse conversion rule for index accesses. 668 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> { 669 public: 670 using OpConversionPattern::OpConversionPattern; 671 LogicalResult 672 matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor, 673 ConversionPatternRewriter &rewriter) const override { 674 Type resType = op.getType(); 675 Type indType = resType.cast<ShapedType>().getElementType(); 676 SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)}; 677 replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(), 678 EmitCInterface::On); 679 return success(); 680 } 681 }; 682 683 /// Sparse conversion rule for value accesses. 684 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> { 685 public: 686 using OpConversionPattern::OpConversionPattern; 687 LogicalResult 688 matchAndRewrite(ToValuesOp op, OpAdaptor adaptor, 689 ConversionPatternRewriter &rewriter) const override { 690 Type resType = op.getType(); 691 Type eltType = resType.cast<ShapedType>().getElementType(); 692 SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltType)}; 693 replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(), 694 EmitCInterface::On); 695 return success(); 696 } 697 }; 698 699 /// Sparse conversion rule for tensor rematerialization. 700 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> { 701 public: 702 using OpConversionPattern::OpConversionPattern; 703 LogicalResult 704 matchAndRewrite(LoadOp op, OpAdaptor adaptor, 705 ConversionPatternRewriter &rewriter) const override { 706 if (op.hasInserts()) { 707 // Finalize any pending insertions. 708 StringRef name = "endInsert"; 709 TypeRange noTp; 710 createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(), 711 EmitCInterface::Off); 712 } 713 rewriter.replaceOp(op, adaptor.getOperands()); 714 return success(); 715 } 716 }; 717 718 /// Sparse conversion rule for inserting in lexicographic index order. 719 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> { 720 public: 721 using OpConversionPattern::OpConversionPattern; 722 LogicalResult 723 matchAndRewrite(LexInsertOp op, OpAdaptor adaptor, 724 ConversionPatternRewriter &rewriter) const override { 725 Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType(); 726 SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)}; 727 TypeRange noTp; 728 replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(), 729 EmitCInterface::On); 730 return success(); 731 } 732 }; 733 734 class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> { 735 public: 736 using OpConversionPattern::OpConversionPattern; 737 LogicalResult 738 matchAndRewrite(ExpandOp op, OpAdaptor adaptor, 739 ConversionPatternRewriter &rewriter) const override { 740 Location loc = op->getLoc(); 741 ShapedType srcType = op.tensor().getType().cast<ShapedType>(); 742 Type eltType = srcType.getElementType(); 743 Type boolType = rewriter.getIntegerType(1); 744 Type idxType = rewriter.getIndexType(); 745 // All initialization should be done on entry of the loop nest. 746 rewriter.setInsertionPointAfter(op.tensor().getDefiningOp()); 747 // Determine the size for access expansion. 748 auto enc = getSparseTensorEncoding(srcType); 749 Value src = adaptor.getOperands()[0]; 750 Value sz = genDimSizeCall(rewriter, op, enc, src, srcType.getRank() - 1); 751 // Allocate temporary stack buffers for values, filled-switch, and indices. 752 Value values = genAlloca(rewriter, loc, sz, eltType); 753 Value filled = genAlloca(rewriter, loc, sz, boolType); 754 Value indices = genAlloca(rewriter, loc, sz, idxType); 755 Value zero = constantZero(rewriter, loc, idxType); 756 // Reset the values/filled-switch to all-zero/false. Note that this 757 // introduces an O(N) operation into the computation, but this reset 758 // operation is amortized over the innermost loops for the access 759 // pattern expansion. 760 rewriter.create<linalg::FillOp>( 761 loc, ValueRange{constantZero(rewriter, loc, eltType)}, 762 ValueRange{values}); 763 rewriter.create<linalg::FillOp>( 764 loc, ValueRange{constantZero(rewriter, loc, boolType)}, 765 ValueRange{filled}); 766 // Replace expansion op with these buffers and initial index. 767 assert(op.getNumResults() == 4); 768 rewriter.replaceOp(op, {values, filled, indices, zero}); 769 return success(); 770 } 771 }; 772 773 class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> { 774 public: 775 using OpConversionPattern::OpConversionPattern; 776 LogicalResult 777 matchAndRewrite(CompressOp op, OpAdaptor adaptor, 778 ConversionPatternRewriter &rewriter) const override { 779 // Note that this method call resets the values/filled-switch back to 780 // all-zero/false by only iterating over the set elements, so the 781 // complexity remains proportional to the sparsity of the expanded 782 // access pattern. 783 Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType(); 784 SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)}; 785 TypeRange noTp; 786 replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(), 787 EmitCInterface::On); 788 return success(); 789 } 790 }; 791 792 class SparseTensorOutConverter : public OpConversionPattern<OutOp> { 793 public: 794 using OpConversionPattern::OpConversionPattern; 795 LogicalResult 796 matchAndRewrite(OutOp op, OpAdaptor adaptor, 797 ConversionPatternRewriter &rewriter) const override { 798 Location loc = op->getLoc(); 799 ShapedType srcType = op.tensor().getType().cast<ShapedType>(); 800 // Convert to default permuted COO. 801 Value src = adaptor.getOperands()[0]; 802 auto encSrc = getSparseTensorEncoding(srcType); 803 SmallVector<Value, 4> sizes; 804 SmallVector<Value, 8> params; 805 sizesFromPtr(rewriter, sizes, op, encSrc, srcType, src); 806 auto enc = SparseTensorEncodingAttr::get( 807 op->getContext(), encSrc.getDimLevelType(), AffineMap(), 808 encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth()); 809 newParams(rewriter, params, op, srcType, enc, Action::kToCOO, sizes, src); 810 Value coo = genNewCall(rewriter, op, params); 811 // Then output the tensor to external file with indices in the externally 812 // visible lexicographic index order. A sort is required if the source was 813 // not in that order yet (note that the sort can be dropped altogether if 814 // external format does not care about the order at all, but here we assume 815 // it does). 816 bool sort = 817 encSrc.getDimOrdering() && !encSrc.getDimOrdering().isIdentity(); 818 params.clear(); 819 params.push_back(coo); 820 params.push_back(adaptor.getOperands()[1]); 821 params.push_back(constantI1(rewriter, loc, sort)); 822 Type eltType = srcType.getElementType(); 823 SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(eltType)}; 824 TypeRange noTp; 825 replaceOpWithFuncCall(rewriter, op, name, noTp, params, 826 EmitCInterface::Off); 827 return success(); 828 } 829 }; 830 831 } // namespace 832 833 //===----------------------------------------------------------------------===// 834 // Public method for populating conversion rules. 835 //===----------------------------------------------------------------------===// 836 837 /// Populates the given patterns list with conversion rules required for 838 /// the sparsification of linear algebra operations. 839 void mlir::populateSparseTensorConversionPatterns( 840 TypeConverter &typeConverter, RewritePatternSet &patterns, 841 const SparseTensorConversionOptions &options) { 842 patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter, 843 SparseCastConverter, SparseTensorNewConverter, 844 SparseTensorInitConverter, SparseTensorReleaseConverter, 845 SparseTensorToPointersConverter, SparseTensorToIndicesConverter, 846 SparseTensorToValuesConverter, SparseTensorLoadConverter, 847 SparseTensorLexInsertConverter, SparseTensorExpandConverter, 848 SparseTensorCompressConverter, SparseTensorOutConverter>( 849 typeConverter, patterns.getContext()); 850 patterns.add<SparseTensorConvertConverter>(typeConverter, 851 patterns.getContext(), options); 852 } 853