1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodegenUtils.h"
18 
19 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
20 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
21 #include "mlir/Dialect/Linalg/Utils/Utils.h"
22 #include "mlir/Dialect/MemRef/IR/MemRef.h"
23 #include "mlir/Dialect/SCF/SCF.h"
24 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
25 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
26 #include "mlir/Dialect/StandardOps/IR/Ops.h"
27 #include "mlir/Dialect/Tensor/IR/Tensor.h"
28 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
29 #include "mlir/Transforms/DialectConversion.h"
30 
31 using namespace mlir;
32 using namespace mlir::sparse_tensor;
33 
34 namespace {
35 
36 /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
37 /// `createFuncCall()`, and `replaceOpWithFuncCall()`.
38 enum class EmitCInterface : bool { Off = false, On = true };
39 
40 //===----------------------------------------------------------------------===//
41 // Helper methods.
42 //===----------------------------------------------------------------------===//
43 
44 /// Returns the equivalent of `void*` for opaque arguments to the
45 /// execution engine.
46 static Type getOpaquePointerType(PatternRewriter &rewriter) {
47   return LLVM::LLVMPointerType::get(rewriter.getI8Type());
48 }
49 
50 /// Returns a function reference (first hit also inserts into module). Sets
51 /// the "_emit_c_interface" on the function declaration when requested,
52 /// so that LLVM lowering generates a wrapper function that takes care
53 /// of ABI complications with passing in and returning MemRefs to C functions.
54 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
55                                  TypeRange resultType, ValueRange operands,
56                                  EmitCInterface emitCInterface) {
57   MLIRContext *context = op->getContext();
58   auto module = op->getParentOfType<ModuleOp>();
59   auto result = SymbolRefAttr::get(context, name);
60   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
61   if (!func) {
62     OpBuilder moduleBuilder(module.getBodyRegion());
63     func = moduleBuilder.create<FuncOp>(
64         op->getLoc(), name,
65         FunctionType::get(context, operands.getTypes(), resultType));
66     func.setPrivate();
67     if (static_cast<bool>(emitCInterface))
68       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
69   }
70   return result;
71 }
72 
73 /// Creates a `CallOp` to the function reference returned by `getFunc()`.
74 static CallOp createFuncCall(OpBuilder &builder, Operation *op, StringRef name,
75                              TypeRange resultType, ValueRange operands,
76                              EmitCInterface emitCInterface) {
77   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
78   return builder.create<CallOp>(op->getLoc(), resultType, fn, operands);
79 }
80 
81 /// Replaces the `op` with  a `CallOp` to the function reference returned
82 /// by `getFunc()`.
83 static CallOp replaceOpWithFuncCall(PatternRewriter &rewriter, Operation *op,
84                                     StringRef name, TypeRange resultType,
85                                     ValueRange operands,
86                                     EmitCInterface emitCInterface) {
87   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
88   return rewriter.replaceOpWithNewOp<CallOp>(op, resultType, fn, operands);
89 }
90 
91 /// Generates dimension size call.
92 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
93                             SparseTensorEncodingAttr &enc, Value src,
94                             int64_t idx) {
95   // Permute the index according to an optional dimension ordering.
96   if (AffineMap p = enc.getDimOrdering())
97     idx = p.getPermutedPosition(idx);
98   // Generate the call.
99   StringRef name = "sparseDimSize";
100   SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)};
101   Type iTp = rewriter.getIndexType();
102   return createFuncCall(rewriter, op, name, iTp, params, EmitCInterface::Off)
103       .getResult(0);
104 }
105 
106 /// Generates a call into the "swiss army knife" method of the sparse runtime
107 /// support library for materializing sparse tensors into the computation.
108 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
109                         ArrayRef<Value> params) {
110   StringRef name = "newSparseTensor";
111   Type pTp = getOpaquePointerType(rewriter);
112   return createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On)
113       .getResult(0);
114 }
115 
116 /// Populates given sizes array from type.
117 static void sizesFromType(ConversionPatternRewriter &rewriter,
118                           SmallVector<Value, 4> &sizes, Location loc,
119                           ShapedType stp) {
120   auto shape = stp.getShape();
121   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
122     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
123     sizes.push_back(constantIndex(rewriter, loc, s));
124   }
125 }
126 
127 /// Populates given sizes array from source.
128 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
129                          SmallVector<Value, 4> &sizes, Location loc,
130                          Value src) {
131   unsigned rank = src.getType().cast<ShapedType>().getRank();
132   for (unsigned i = 0; i < rank; i++)
133     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
134 }
135 
136 /// Populates given sizes array from type (for static sizes) and from
137 /// an already converted into opague pointer source (for dynamic sizes).
138 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
139                          SmallVector<Value, 4> &sizes, Operation *op,
140                          SparseTensorEncodingAttr &enc, ShapedType stp,
141                          Value src) {
142   Location loc = op->getLoc();
143   auto shape = stp.getShape();
144   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
145     if (shape[i] == ShapedType::kDynamicSize)
146       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
147     else
148       sizes.push_back(constantIndex(rewriter, loc, shape[i]));
149 }
150 
151 /// Generates an uninitialized temporary buffer of the given size and
152 /// type, but returns it as type `memref<? x $tp>` (rather than as type
153 /// `memref<$sz x $tp>`).
154 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
155                        Value sz, Type tp) {
156   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
157   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
158 }
159 
160 /// Generates an uninitialized temporary buffer of the given size and
161 /// type, but returns it as type `memref<? x $tp>` (rather than as type
162 /// `memref<$sz x $tp>`).
163 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
164                        unsigned sz, Type tp) {
165   return genAlloca(rewriter, loc, constantIndex(rewriter, loc, sz), tp);
166 }
167 
168 /// Generates an uninitialized temporary buffer with room for one value
169 /// of the given type, and returns the `memref<$tp>`.
170 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
171                              Type tp) {
172   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
173 }
174 
175 /// Generates a temporary buffer of the given type and given contents.
176 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
177                        ArrayRef<Value> values) {
178   unsigned sz = values.size();
179   assert(sz >= 1);
180   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
181   for (unsigned i = 0; i < sz; i++) {
182     Value idx = constantIndex(rewriter, loc, i);
183     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
184   }
185   return buffer;
186 }
187 
188 /// Populates parameters required to call the "swiss army knife" method of the
189 /// sparse runtime support library for materializing sparse tensors into the
190 /// computation.
191 static void newParams(ConversionPatternRewriter &rewriter,
192                       SmallVector<Value, 8> &params, Operation *op,
193                       ShapedType stp, SparseTensorEncodingAttr &enc,
194                       Action action, ValueRange szs, Value ptr = Value()) {
195   Location loc = op->getLoc();
196   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
197   unsigned sz = dlt.size();
198   // Sparsity annotations.
199   SmallVector<Value, 4> attrs;
200   for (unsigned i = 0; i < sz; i++)
201     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
202   params.push_back(genBuffer(rewriter, loc, attrs));
203   // Dimension sizes array of the enveloping tensor. Useful for either
204   // verification of external data, or for construction of internal data.
205   SmallVector<Value, 4> sizes;
206   for (Value s : szs)
207     sizes.push_back(s);
208   params.push_back(genBuffer(rewriter, loc, sizes));
209   // Dimension order permutation array. This is the "identity" permutation by
210   // default, or otherwise the "reverse" permutation of a given ordering, so
211   // that indices can be mapped quickly to the right position.
212   SmallVector<Value, 4> rev(sz);
213   if (AffineMap p = enc.getDimOrdering()) {
214     for (unsigned i = 0; i < sz; i++)
215       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
216   } else {
217     for (unsigned i = 0; i < sz; i++)
218       rev[i] = constantIndex(rewriter, loc, i);
219   }
220   params.push_back(genBuffer(rewriter, loc, rev));
221   // Secondary and primary types encoding.
222   Type elemTp = stp.getElementType();
223   params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
224   params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
225   params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp));
226   // User action.
227   params.push_back(constantAction(rewriter, loc, action));
228   // Payload pointer.
229   if (!ptr)
230     ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter));
231   params.push_back(ptr);
232 }
233 
234 /// Generates the code to read the value from tensor[ivs], and conditionally
235 /// stores the indices ivs to the memory in ind. The generated code looks like
236 /// the following and the insertion point after this routine is inside the
237 /// if-then branch behind the assignment to ind. This is to ensure that the
238 /// addEltX call generated after is inside the if-then branch.
239 ///    if (tensor[ivs]!=0) {
240 ///      ind = ivs
241 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
242                                       Location loc, Value tensor, Value ind,
243                                       ValueRange ivs) {
244   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
245   Value cond = genIsNonzero(rewriter, loc, val);
246   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
247   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
248   unsigned i = 0;
249   for (auto iv : ivs) {
250     Value idx = constantIndex(rewriter, loc, i++);
251     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
252   }
253   return val;
254 }
255 
256 /// Generates a call that adds one element to a coordinate scheme.
257 /// In particular, this generates code like the following:
258 ///   val = a[i1,..,ik];
259 ///   if val != 0
260 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
261 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
262                           Type eltType, Value ptr, Value val, Value ind,
263                           Value perm) {
264   SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
265   SmallVector<Value, 4> params{ptr, val, ind, perm};
266   Type pTp = getOpaquePointerType(rewriter);
267   createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On);
268 }
269 
270 /// Generates a call to `iter->getNext()`.  If there is a next element,
271 /// then it is copied into the out-parameters `ind` and `elemPtr`,
272 /// and the return value is true.  If there isn't a next element, then
273 /// the memory for `iter` is freed and the return value is false.
274 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
275                             Value iter, Value ind, Value elemPtr) {
276   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
277   SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
278   SmallVector<Value, 3> params{iter, ind, elemPtr};
279   Type i1 = rewriter.getI1Type();
280   return createFuncCall(rewriter, op, name, i1, params, EmitCInterface::On)
281       .getResult(0);
282 }
283 
284 /// If the tensor is a sparse constant, generates and returns the pair of
285 /// the constants for the indices and the values.
286 static Optional<std::pair<Value, Value>>
287 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
288                        Value tensor) {
289   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
290     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
291       DenseElementsAttr indicesAttr = attr.getIndices();
292       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
293       DenseElementsAttr valuesAttr = attr.getValues();
294       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
295       return std::make_pair(indices, values);
296     }
297   }
298   return {};
299 }
300 
301 /// Generates the code to copy the index at indices[ivs] to ind, and return
302 /// the value at value[ivs].
303 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
304                                        Location loc, Value indices,
305                                        Value values, Value ind, ValueRange ivs,
306                                        unsigned rank) {
307   for (unsigned i = 0; i < rank; i++) {
308     Value idx = constantIndex(rewriter, loc, i);
309     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
310                                                    ValueRange{ivs[0], idx});
311     val =
312         rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), val);
313     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
314   }
315   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
316 }
317 
318 /// Generates code to allocate a tensor of the given type, and zero
319 /// initialize it.  If the tensor type has any dynamic sizes, then the
320 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
321 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
322 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
323                               RankedTensorType tensorTp, ValueRange sizes) {
324   Type elemTp = tensorTp.getElementType();
325   auto shape = tensorTp.getShape();
326   auto memTp = MemRefType::get(shape, elemTp);
327   SmallVector<Value> dynamicSizes;
328   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
329     if (shape[i] == ShapedType::kDynamicSize)
330       dynamicSizes.push_back(sizes[i]);
331   }
332   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
333   Value zero = constantZero(rewriter, loc, elemTp);
334   rewriter.create<linalg::FillOp>(loc, zero, mem);
335   return mem;
336 }
337 
338 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
339 /// the tensor created by allocDenseTensor().  The `rank` is the rank
340 /// of the `tensor` and the length of `ind`.
341 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
342                                         Location loc, Value elemPtr,
343                                         Value tensor, unsigned rank,
344                                         Value ind) {
345   SmallVector<Value, 4> ivs;
346   ivs.reserve(rank);
347   for (unsigned i = 0; i < rank; i++) {
348     Value idx = constantIndex(rewriter, loc, i);
349     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
350   }
351   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
352   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
353 }
354 
355 //===----------------------------------------------------------------------===//
356 // Conversion rules.
357 //===----------------------------------------------------------------------===//
358 
359 /// Sparse conversion rule for returns.
360 class SparseReturnConverter : public OpConversionPattern<ReturnOp> {
361 public:
362   using OpConversionPattern::OpConversionPattern;
363   LogicalResult
364   matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
365                   ConversionPatternRewriter &rewriter) const override {
366     rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands());
367     return success();
368   }
369 };
370 
371 /// Sparse conversion rule for dimension accesses.
372 class SparseTensorToDimSizeConverter
373     : public OpConversionPattern<tensor::DimOp> {
374 public:
375   using OpConversionPattern::OpConversionPattern;
376   LogicalResult
377   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
378                   ConversionPatternRewriter &rewriter) const override {
379     // Only rewrite annotated DimOp with constant index.
380     auto enc = getSparseTensorEncoding(op.source().getType());
381     if (!enc)
382       return failure();
383     Optional<int64_t> index = op.getConstantIndex();
384     if (!index.hasValue())
385       return failure();
386     // Generate the call.
387     Value src = adaptor.getOperands()[0];
388     int64_t idx = index.getValue();
389     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
390     return success();
391   }
392 };
393 
394 /// Sparse conversion rule for trivial tensor casts.
395 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
396   using OpConversionPattern::OpConversionPattern;
397   LogicalResult
398   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
399                   ConversionPatternRewriter &rewriter) const override {
400     // Only rewrite identically annotated source/dest.
401     auto encDst = getSparseTensorEncoding(op.getType());
402     auto encSrc = getSparseTensorEncoding(op.source().getType());
403     if (!encDst || encDst != encSrc)
404       return failure();
405     rewriter.replaceOp(op, adaptor.getOperands());
406     return success();
407   }
408 };
409 
410 /// Sparse conversion rule for the new operator.
411 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
412   using OpConversionPattern::OpConversionPattern;
413   LogicalResult
414   matchAndRewrite(NewOp op, OpAdaptor adaptor,
415                   ConversionPatternRewriter &rewriter) const override {
416     Type resType = op.getType();
417     auto enc = getSparseTensorEncoding(resType);
418     if (!enc)
419       return failure();
420     // Generate the call to construct tensor from ptr. The sizes are
421     // inferred from the result type of the new operator.
422     SmallVector<Value, 4> sizes;
423     SmallVector<Value, 8> params;
424     ShapedType stp = resType.cast<ShapedType>();
425     sizesFromType(rewriter, sizes, op.getLoc(), stp);
426     Value ptr = adaptor.getOperands()[0];
427     newParams(rewriter, params, op, stp, enc, Action::kFromFile, sizes, ptr);
428     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
429     return success();
430   }
431 };
432 
433 /// Sparse conversion rule for the init operator.
434 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
435   using OpConversionPattern::OpConversionPattern;
436   LogicalResult
437   matchAndRewrite(InitOp op, OpAdaptor adaptor,
438                   ConversionPatternRewriter &rewriter) const override {
439     Type resType = op.getType();
440     auto enc = getSparseTensorEncoding(resType);
441     if (!enc)
442       return failure();
443     // Generate the call to construct empty tensor. The sizes are
444     // explicitly defined by the arguments to the init operator.
445     SmallVector<Value, 8> params;
446     ShapedType stp = resType.cast<ShapedType>();
447     newParams(rewriter, params, op, stp, enc, Action::kEmpty,
448               adaptor.getOperands());
449     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
450     return success();
451   }
452 };
453 
454 /// Sparse conversion rule for the convert operator.
455 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
456   using OpConversionPattern::OpConversionPattern;
457   LogicalResult
458   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
459                   ConversionPatternRewriter &rewriter) const override {
460     Location loc = op->getLoc();
461     Type resType = op.getType();
462     Type srcType = op.source().getType();
463     auto encDst = getSparseTensorEncoding(resType);
464     auto encSrc = getSparseTensorEncoding(srcType);
465     Value src = adaptor.getOperands()[0];
466     if (encDst && encSrc) {
467       // This is a sparse => sparse conversion, which is handled as follows:
468       //   t = src->toCOO();         ; src to COO in dst order
469       //   dst = newSparseTensor(t)
470       // Using the coordinate scheme as an intermediate does not always
471       // yield the fastest conversion but avoids the need for a full
472       // O(N^2) conversion matrix.
473       if (encDst == encSrc) {
474         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
475         return success();
476       }
477       SmallVector<Value, 4> sizes;
478       SmallVector<Value, 8> params;
479       ShapedType stp = srcType.cast<ShapedType>();
480       sizesFromPtr(rewriter, sizes, op, encSrc, stp, src);
481       // Set up encoding with right mix of src and dst so that the two
482       // method calls can share most parameters, while still providing
483       // the correct sparsity information to either of them.
484       auto enc = SparseTensorEncodingAttr::get(
485           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
486           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
487       newParams(rewriter, params, op, stp, enc, Action::kToCOO, sizes, src);
488       Value coo = genNewCall(rewriter, op, params);
489       params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
490       params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
491       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
492       params[7] = coo;
493       rewriter.replaceOp(op, genNewCall(rewriter, op, params));
494       return success();
495     }
496     if (!encDst && encSrc) {
497       // This is sparse => dense conversion, which is handled as follows:
498       //   dst = new Tensor(0);
499       //   iter = src->toCOO();
500       //   iter->startIterator();
501       //   while (elem = iter->getNext()) {
502       //     dst[elem.indices] = elem.value;
503       //   }
504       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
505       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
506       unsigned rank = dstTensorTp.getRank();
507       Type elemTp = dstTensorTp.getElementType();
508       // Fabricate a no-permutation encoding for newParams().
509       // The pointer/index types must be those of `src`.
510       // The dimLevelTypes aren't actually used by Action::kToIterator.
511       encDst = SparseTensorEncodingAttr::get(
512           op->getContext(),
513           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
514               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
515           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
516       SmallVector<Value, 4> sizes;
517       SmallVector<Value, 8> params;
518       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
519       newParams(rewriter, params, op, dstTensorTp, encDst, Action::kToIterator,
520                 sizes, src);
521       Value iter = genNewCall(rewriter, op, params);
522       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
523       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
524       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
525       SmallVector<Value> noArgs;
526       SmallVector<Type> noTypes;
527       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
528       Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
529       rewriter.setInsertionPointToEnd(before);
530       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
531       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
532       Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
533       rewriter.setInsertionPointToStart(after);
534       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
535       rewriter.create<scf::YieldOp>(loc);
536       rewriter.setInsertionPointAfter(whileOp);
537       rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
538       return success();
539     }
540     if (!encDst && !encSrc) {
541       // dense => dense
542       return failure();
543     }
544     // This is a dense => sparse conversion or a sparse constant in COO =>
545     // sparse conversion, which is handled as follows:
546     //   t = newSparseCOO()
547     //   ...code to fill the COO tensor t...
548     //   s = newSparseTensor(t)
549     //
550     // To fill the COO tensor from a dense tensor:
551     //   for i1 in dim1
552     //    ..
553     //     for ik in dimk
554     //       val = a[i1,..,ik]
555     //       if val != 0
556     //         t->add(val, [i1,..,ik], [p1,..,pk])
557     //
558     // To fill the COO tensor from a sparse constant in COO format:
559     //   for i in range(NNZ)
560     //     val = values[i]
561     //     [i1,..,ik] = indices[i]
562     //     t->add(val, [i1,..,ik], [p1,..,pk])
563     //
564     // Note that the dense tensor traversal code is actually implemented
565     // using MLIR IR to avoid having to expose too much low-level
566     // memref traversal details to the runtime support library.
567     // Also note that the code below only generates the "new" ops and
568     // the loop-nest per se; whereas the entire body of the innermost
569     // loop is generated by genAddElt().
570     ShapedType stp = resType.cast<ShapedType>();
571     unsigned rank = stp.getRank();
572     SmallVector<Value, 4> sizes;
573     SmallVector<Value, 8> params;
574     sizesFromSrc(rewriter, sizes, loc, src);
575     newParams(rewriter, params, op, stp, encDst, Action::kEmptyCOO, sizes);
576     Value ptr = genNewCall(rewriter, op, params);
577     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
578     Value perm = params[2];
579     SmallVector<Value> lo;
580     SmallVector<Value> hi;
581     SmallVector<Value> st;
582     Value zero = constantIndex(rewriter, loc, 0);
583     Value one = constantIndex(rewriter, loc, 1);
584     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
585     bool isCOOConstant = indicesValues.hasValue();
586     Value indices;
587     Value values;
588     if (isCOOConstant) {
589       indices = indicesValues->first;
590       values = indicesValues->second;
591       lo.push_back(zero);
592       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
593       st.push_back(one);
594     } else {
595       for (unsigned i = 0; i < rank; i++) {
596         lo.push_back(zero);
597         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
598         st.push_back(one);
599       }
600     }
601     Type eltType = stp.getElementType();
602     scf::buildLoopNest(
603         rewriter, op.getLoc(), lo, hi, st, {},
604         [&](OpBuilder &builder, Location loc, ValueRange ivs,
605             ValueRange args) -> scf::ValueVector {
606           Value val;
607           if (isCOOConstant)
608             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
609                                             ivs, rank);
610           else
611             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
612           genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
613           return {};
614         });
615     // Final call to construct sparse tensor storage.
616     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
617     params[7] = ptr;
618     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
619     return success();
620   }
621 };
622 
623 /// Sparse conversion rule for the release operator.
624 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
625 public:
626   using OpConversionPattern::OpConversionPattern;
627   LogicalResult
628   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
629                   ConversionPatternRewriter &rewriter) const override {
630     StringRef name = "delSparseTensor";
631     TypeRange noTp;
632     createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
633                    EmitCInterface::Off);
634     rewriter.eraseOp(op);
635     return success();
636   }
637 };
638 
639 /// Sparse conversion rule for pointer accesses.
640 class SparseTensorToPointersConverter
641     : public OpConversionPattern<ToPointersOp> {
642 public:
643   using OpConversionPattern::OpConversionPattern;
644   LogicalResult
645   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
646                   ConversionPatternRewriter &rewriter) const override {
647     Type resType = op.getType();
648     Type ptrType = resType.cast<ShapedType>().getElementType();
649     SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)};
650     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
651                           EmitCInterface::On);
652     return success();
653   }
654 };
655 
656 /// Sparse conversion rule for index accesses.
657 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
658 public:
659   using OpConversionPattern::OpConversionPattern;
660   LogicalResult
661   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
662                   ConversionPatternRewriter &rewriter) const override {
663     Type resType = op.getType();
664     Type indType = resType.cast<ShapedType>().getElementType();
665     SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)};
666     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
667                           EmitCInterface::On);
668     return success();
669   }
670 };
671 
672 /// Sparse conversion rule for value accesses.
673 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
674 public:
675   using OpConversionPattern::OpConversionPattern;
676   LogicalResult
677   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
678                   ConversionPatternRewriter &rewriter) const override {
679     Type resType = op.getType();
680     Type eltType = resType.cast<ShapedType>().getElementType();
681     SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltType)};
682     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
683                           EmitCInterface::On);
684     return success();
685   }
686 };
687 
688 /// Sparse conversion rule for tensor rematerialization.
689 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
690 public:
691   using OpConversionPattern::OpConversionPattern;
692   LogicalResult
693   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
694                   ConversionPatternRewriter &rewriter) const override {
695     if (op.hasInserts()) {
696       // Finalize any pending insertions.
697       StringRef name = "endInsert";
698       TypeRange noTp;
699       createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
700                      EmitCInterface::Off);
701     }
702     rewriter.replaceOp(op, adaptor.getOperands());
703     return success();
704   }
705 };
706 
707 /// Sparse conversion rule for inserting in lexicographic index order.
708 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
709 public:
710   using OpConversionPattern::OpConversionPattern;
711   LogicalResult
712   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
713                   ConversionPatternRewriter &rewriter) const override {
714     Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
715     SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
716     TypeRange noTp;
717     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
718                           EmitCInterface::On);
719     return success();
720   }
721 };
722 
723 class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
724 public:
725   using OpConversionPattern::OpConversionPattern;
726   LogicalResult
727   matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
728                   ConversionPatternRewriter &rewriter) const override {
729     Location loc = op->getLoc();
730     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
731     Type eltType = srcType.getElementType();
732     Type boolType = rewriter.getIntegerType(1);
733     Type idxType = rewriter.getIndexType();
734     // All initialization should be done on entry of the loop nest.
735     rewriter.setInsertionPointAfter(op.tensor().getDefiningOp());
736     // Determine the size for access expansion.
737     auto enc = getSparseTensorEncoding(srcType);
738     Value src = adaptor.getOperands()[0];
739     Value sz = genDimSizeCall(rewriter, op, enc, src, srcType.getRank() - 1);
740     // Allocate temporary stack buffers for values, filled-switch, and indices.
741     Value values = genAlloca(rewriter, loc, sz, eltType);
742     Value filled = genAlloca(rewriter, loc, sz, boolType);
743     Value indices = genAlloca(rewriter, loc, sz, idxType);
744     Value zero = constantZero(rewriter, loc, idxType);
745     // Reset the values/filled-switch to all-zero/false. Note that this
746     // introduces an O(N) operation into the computation, but this reset
747     // operation is amortized over the innermost loops for the access
748     // pattern expansion.
749     rewriter.create<linalg::FillOp>(loc, constantZero(rewriter, loc, eltType),
750                                     values);
751     rewriter.create<linalg::FillOp>(loc, constantZero(rewriter, loc, boolType),
752                                     filled);
753     // Replace expansion op with these buffers and initial index.
754     assert(op.getNumResults() == 4);
755     rewriter.replaceOp(op, {values, filled, indices, zero});
756     return success();
757   }
758 };
759 
760 class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
761 public:
762   using OpConversionPattern::OpConversionPattern;
763   LogicalResult
764   matchAndRewrite(CompressOp op, OpAdaptor adaptor,
765                   ConversionPatternRewriter &rewriter) const override {
766     // Note that this method call resets the values/filled-switch back to
767     // all-zero/false by only iterating over the set elements, so the
768     // complexity remains proportional to the sparsity of the expanded
769     // access pattern.
770     Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
771     SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
772     TypeRange noTp;
773     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
774                           EmitCInterface::On);
775     return success();
776   }
777 };
778 
779 class SparseTensorOutConverter : public OpConversionPattern<OutOp> {
780 public:
781   using OpConversionPattern::OpConversionPattern;
782   LogicalResult
783   matchAndRewrite(OutOp op, OpAdaptor adaptor,
784                   ConversionPatternRewriter &rewriter) const override {
785     Location loc = op->getLoc();
786     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
787     // Convert to default permuted COO.
788     Value src = adaptor.getOperands()[0];
789     auto encSrc = getSparseTensorEncoding(srcType);
790     SmallVector<Value, 4> sizes;
791     SmallVector<Value, 8> params;
792     sizesFromPtr(rewriter, sizes, op, encSrc, srcType, src);
793     auto enc = SparseTensorEncodingAttr::get(
794         op->getContext(), encSrc.getDimLevelType(), AffineMap(),
795         encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
796     newParams(rewriter, params, op, srcType, enc, Action::kToCOO, sizes, src);
797     Value coo = genNewCall(rewriter, op, params);
798     // Then output the tensor to external file with indices in the externally
799     // visible lexicographic index order. A sort is required if the source was
800     // not in that order yet (note that the sort can be dropped altogether if
801     // external format does not care about the order at all, but here we assume
802     // it does).
803     bool sort =
804         encSrc.getDimOrdering() && !encSrc.getDimOrdering().isIdentity();
805     params.clear();
806     params.push_back(coo);
807     params.push_back(adaptor.getOperands()[1]);
808     params.push_back(constantI1(rewriter, loc, sort));
809     Type eltType = srcType.getElementType();
810     SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(eltType)};
811     TypeRange noTp;
812     replaceOpWithFuncCall(rewriter, op, name, noTp, params,
813                           EmitCInterface::Off);
814     return success();
815   }
816 };
817 
818 } // namespace
819 
820 //===----------------------------------------------------------------------===//
821 // Public method for populating conversion rules.
822 //===----------------------------------------------------------------------===//
823 
824 /// Populates the given patterns list with conversion rules required for
825 /// the sparsification of linear algebra operations.
826 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
827                                                   RewritePatternSet &patterns) {
828   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
829                SparseCastConverter, SparseTensorNewConverter,
830                SparseTensorInitConverter, SparseTensorConvertConverter,
831                SparseTensorReleaseConverter, SparseTensorToPointersConverter,
832                SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
833                SparseTensorLoadConverter, SparseTensorLexInsertConverter,
834                SparseTensorExpandConverter, SparseTensorCompressConverter,
835                SparseTensorOutConverter>(typeConverter, patterns.getContext());
836 }
837