1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
18 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/MemRef/IR/MemRef.h"
21 #include "mlir/Dialect/SCF/SCF.h"
22 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
23 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
24 #include "mlir/Dialect/StandardOps/IR/Ops.h"
25 #include "mlir/Dialect/Tensor/IR/Tensor.h"
26 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
27 #include "mlir/Transforms/DialectConversion.h"
28 
29 using namespace mlir;
30 using namespace mlir::sparse_tensor;
31 
32 namespace {
33 
34 /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
35 /// `createFuncCall()`, and `replaceOpWithFuncCall()`.
36 enum class EmitCInterface : bool { Off = false, On = true };
37 
38 //===----------------------------------------------------------------------===//
39 // Helper methods.
40 //===----------------------------------------------------------------------===//
41 
42 /// Generates a constant zero of the given type.
43 inline static Value constantZero(ConversionPatternRewriter &rewriter,
44                                  Location loc, Type t) {
45   return rewriter.create<arith::ConstantOp>(loc, t, rewriter.getZeroAttr(t));
46 }
47 
48 /// Generates a constant of `index` type.
49 inline static Value constantIndex(ConversionPatternRewriter &rewriter,
50                                   Location loc, int64_t i) {
51   return rewriter.create<arith::ConstantIndexOp>(loc, i);
52 }
53 
54 /// Generates a constant of `i32` type.
55 inline static Value constantI32(ConversionPatternRewriter &rewriter,
56                                 Location loc, int32_t i) {
57   return rewriter.create<arith::ConstantIntOp>(loc, i, 32);
58 }
59 
60 /// Generates a constant of `i8` type.
61 inline static Value constantI8(ConversionPatternRewriter &rewriter,
62                                Location loc, int8_t i) {
63   return rewriter.create<arith::ConstantIntOp>(loc, i, 8);
64 }
65 
66 /// Generates a constant of the given `Action`.
67 static Value constantAction(ConversionPatternRewriter &rewriter, Location loc,
68                             Action action) {
69   return constantI32(rewriter, loc, static_cast<uint32_t>(action));
70 }
71 
72 /// Generates a constant of the internal type encoding for overhead storage.
73 static Value constantOverheadTypeEncoding(ConversionPatternRewriter &rewriter,
74                                           Location loc, unsigned width) {
75   OverheadType sec;
76   switch (width) {
77   default:
78     sec = OverheadType::kU64;
79     break;
80   case 32:
81     sec = OverheadType::kU32;
82     break;
83   case 16:
84     sec = OverheadType::kU16;
85     break;
86   case 8:
87     sec = OverheadType::kU8;
88     break;
89   }
90   return constantI32(rewriter, loc, static_cast<uint32_t>(sec));
91 }
92 
93 /// Generates a constant of the internal type encoding for pointer
94 /// overhead storage.
95 static Value constantPointerTypeEncoding(ConversionPatternRewriter &rewriter,
96                                          Location loc,
97                                          SparseTensorEncodingAttr &enc) {
98   return constantOverheadTypeEncoding(rewriter, loc, enc.getPointerBitWidth());
99 }
100 
101 /// Generates a constant of the internal type encoding for index overhead
102 /// storage.
103 static Value constantIndexTypeEncoding(ConversionPatternRewriter &rewriter,
104                                        Location loc,
105                                        SparseTensorEncodingAttr &enc) {
106   return constantOverheadTypeEncoding(rewriter, loc, enc.getIndexBitWidth());
107 }
108 
109 /// Generates a constant of the internal type encoding for primary storage.
110 static Value constantPrimaryTypeEncoding(ConversionPatternRewriter &rewriter,
111                                          Location loc, Type tp) {
112   PrimaryType primary;
113   if (tp.isF64())
114     primary = PrimaryType::kF64;
115   else if (tp.isF32())
116     primary = PrimaryType::kF32;
117   else if (tp.isInteger(64))
118     primary = PrimaryType::kI64;
119   else if (tp.isInteger(32))
120     primary = PrimaryType::kI32;
121   else if (tp.isInteger(16))
122     primary = PrimaryType::kI16;
123   else if (tp.isInteger(8))
124     primary = PrimaryType::kI8;
125   else
126     llvm_unreachable("Unknown element type");
127   return constantI32(rewriter, loc, static_cast<uint32_t>(primary));
128 }
129 
130 /// Generates a constant of the internal dimension level type encoding.
131 static Value
132 constantDimLevelTypeEncoding(ConversionPatternRewriter &rewriter, Location loc,
133                              SparseTensorEncodingAttr::DimLevelType dlt) {
134   DimLevelType dlt2;
135   switch (dlt) {
136   case SparseTensorEncodingAttr::DimLevelType::Dense:
137     dlt2 = DimLevelType::kDense;
138     break;
139   case SparseTensorEncodingAttr::DimLevelType::Compressed:
140     dlt2 = DimLevelType::kCompressed;
141     break;
142   case SparseTensorEncodingAttr::DimLevelType::Singleton:
143     dlt2 = DimLevelType::kSingleton;
144     break;
145   }
146   return constantI8(rewriter, loc, static_cast<uint8_t>(dlt2));
147 }
148 
149 /// Returns the equivalent of `void*` for opaque arguments to the
150 /// execution engine.
151 static Type getOpaquePointerType(PatternRewriter &rewriter) {
152   return LLVM::LLVMPointerType::get(rewriter.getI8Type());
153 }
154 
155 /// Returns a function reference (first hit also inserts into module). Sets
156 /// the "_emit_c_interface" on the function declaration when requested,
157 /// so that LLVM lowering generates a wrapper function that takes care
158 /// of ABI complications with passing in and returning MemRefs to C functions.
159 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
160                                  TypeRange resultType, ValueRange operands,
161                                  EmitCInterface emitCInterface) {
162   MLIRContext *context = op->getContext();
163   auto module = op->getParentOfType<ModuleOp>();
164   auto result = SymbolRefAttr::get(context, name);
165   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
166   if (!func) {
167     OpBuilder moduleBuilder(module.getBodyRegion());
168     func = moduleBuilder.create<FuncOp>(
169         op->getLoc(), name,
170         FunctionType::get(context, operands.getTypes(), resultType));
171     func.setPrivate();
172     if (static_cast<bool>(emitCInterface))
173       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
174   }
175   return result;
176 }
177 
178 /// Creates a `CallOp` to the function reference returned by `getFunc()`.
179 static CallOp createFuncCall(OpBuilder &builder, Operation *op, StringRef name,
180                              TypeRange resultType, ValueRange operands,
181                              EmitCInterface emitCInterface) {
182   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
183   return builder.create<CallOp>(op->getLoc(), resultType, fn, operands);
184 }
185 
186 /// Replaces the `op` with  a `CallOp` to the function reference returned
187 /// by `getFunc()`.
188 static CallOp replaceOpWithFuncCall(PatternRewriter &rewriter, Operation *op,
189                                     StringRef name, TypeRange resultType,
190                                     ValueRange operands,
191                                     EmitCInterface emitCInterface) {
192   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
193   return rewriter.replaceOpWithNewOp<CallOp>(op, resultType, fn, operands);
194 }
195 
196 /// Generates dimension size call.
197 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
198                             SparseTensorEncodingAttr &enc, Value src,
199                             int64_t idx) {
200   // Permute the index according to an optional dimension ordering.
201   if (AffineMap p = enc.getDimOrdering())
202     idx = p.getPermutedPosition(idx);
203   // Generate the call.
204   StringRef name = "sparseDimSize";
205   SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)};
206   Type iTp = rewriter.getIndexType();
207   return createFuncCall(rewriter, op, name, iTp, params, EmitCInterface::Off)
208       .getResult(0);
209 }
210 
211 /// Generates a call into the "swiss army knife" method of the sparse runtime
212 /// support library for materializing sparse tensors into the computation.
213 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
214                         ArrayRef<Value> params) {
215   StringRef name = "newSparseTensor";
216   Type pTp = getOpaquePointerType(rewriter);
217   return createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On)
218       .getResult(0);
219 }
220 
221 /// Populates given sizes array from type.
222 static void sizesFromType(ConversionPatternRewriter &rewriter,
223                           SmallVector<Value, 4> &sizes, Location loc,
224                           ShapedType stp) {
225   auto shape = stp.getShape();
226   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
227     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
228     sizes.push_back(constantIndex(rewriter, loc, s));
229   }
230 }
231 
232 /// Populates given sizes array from source.
233 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
234                          SmallVector<Value, 4> &sizes, Location loc,
235                          Value src) {
236   unsigned rank = src.getType().cast<ShapedType>().getRank();
237   for (unsigned i = 0; i < rank; i++)
238     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
239 }
240 
241 /// Populates given sizes array from type (for static sizes) and from
242 /// an already converted into opague pointer source (for dynamic sizes).
243 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
244                          SmallVector<Value, 4> &sizes, Operation *op,
245                          SparseTensorEncodingAttr &enc, ShapedType stp,
246                          Value src) {
247   Location loc = op->getLoc();
248   auto shape = stp.getShape();
249   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
250     if (shape[i] == ShapedType::kDynamicSize)
251       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
252     else
253       sizes.push_back(constantIndex(rewriter, loc, shape[i]));
254 }
255 
256 /// Generates an uninitialized temporary buffer of the given size and
257 /// type, but returns it as type `memref<? x $tp>` (rather than as type
258 /// `memref<$sz x $tp>`).
259 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
260                        Value sz, Type tp) {
261   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
262   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
263 }
264 
265 /// Generates an uninitialized temporary buffer of the given size and
266 /// type, but returns it as type `memref<? x $tp>` (rather than as type
267 /// `memref<$sz x $tp>`).
268 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
269                        unsigned sz, Type tp) {
270   return genAlloca(rewriter, loc, constantIndex(rewriter, loc, sz), tp);
271 }
272 
273 /// Generates an uninitialized temporary buffer with room for one value
274 /// of the given type, and returns the `memref<$tp>`.
275 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
276                              Type tp) {
277   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
278 }
279 
280 /// Generates a temporary buffer of the given type and given contents.
281 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
282                        ArrayRef<Value> values) {
283   unsigned sz = values.size();
284   assert(sz >= 1);
285   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
286   for (unsigned i = 0; i < sz; i++) {
287     Value idx = constantIndex(rewriter, loc, i);
288     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
289   }
290   return buffer;
291 }
292 
293 /// Populates parameters required to call the "swiss army knife" method of the
294 /// sparse runtime support library for materializing sparse tensors into the
295 /// computation.
296 static void newParams(ConversionPatternRewriter &rewriter,
297                       SmallVector<Value, 8> &params, Operation *op,
298                       SparseTensorEncodingAttr &enc, Action action,
299                       ValueRange szs, Value ptr = Value()) {
300   Location loc = op->getLoc();
301   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
302   unsigned sz = dlt.size();
303   // Sparsity annotations.
304   SmallVector<Value, 4> attrs;
305   for (unsigned i = 0; i < sz; i++)
306     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
307   params.push_back(genBuffer(rewriter, loc, attrs));
308   // Dimension sizes array of the enveloping tensor. Useful for either
309   // verification of external data, or for construction of internal data.
310   SmallVector<Value, 4> sizes;
311   for (Value s : szs)
312     sizes.push_back(s);
313   params.push_back(genBuffer(rewriter, loc, sizes));
314   // Dimension order permutation array. This is the "identity" permutation by
315   // default, or otherwise the "reverse" permutation of a given ordering, so
316   // that indices can be mapped quickly to the right position.
317   SmallVector<Value, 4> rev(sz);
318   if (AffineMap p = enc.getDimOrdering()) {
319     for (unsigned i = 0; i < sz; i++)
320       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
321   } else {
322     for (unsigned i = 0; i < sz; i++)
323       rev[i] = constantIndex(rewriter, loc, i);
324   }
325   params.push_back(genBuffer(rewriter, loc, rev));
326   // Secondary and primary types encoding.
327   Type elemTp = op->getResult(0).getType().cast<ShapedType>().getElementType();
328   params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
329   params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
330   params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp));
331   // User action.
332   params.push_back(constantAction(rewriter, loc, action));
333   // Payload pointer.
334   if (!ptr)
335     ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter));
336   params.push_back(ptr);
337 }
338 
339 /// Generates the comparison `v != 0` where `v` is of numeric type `t`.
340 /// For floating types, we use the "unordered" comparator (i.e., returns
341 /// true if `v` is NaN).
342 static Value genIsNonzero(ConversionPatternRewriter &rewriter, Location loc,
343                           Value v) {
344   Type t = v.getType();
345   Value zero = constantZero(rewriter, loc, t);
346   if (t.isa<FloatType>())
347     return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNE, v,
348                                           zero);
349   if (t.isIntOrIndex())
350     return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, v,
351                                           zero);
352   llvm_unreachable("Unknown element type");
353 }
354 
355 /// Generates the code to read the value from tensor[ivs], and conditionally
356 /// stores the indices ivs to the memory in ind. The generated code looks like
357 /// the following and the insertion point after this routine is inside the
358 /// if-then branch behind the assignment to ind. This is to ensure that the
359 /// addEltX call generated after is inside the if-then branch.
360 ///    if (tensor[ivs]!=0) {
361 ///      ind = ivs
362 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
363                                       Location loc, Value tensor, Value ind,
364                                       ValueRange ivs) {
365   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
366   Value cond = genIsNonzero(rewriter, loc, val);
367   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
368   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
369   unsigned i = 0;
370   for (auto iv : ivs) {
371     Value idx = constantIndex(rewriter, loc, i++);
372     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
373   }
374   return val;
375 }
376 
377 /// Generates a call that adds one element to a coordinate scheme.
378 /// In particular, this generates code like the following:
379 ///   val = a[i1,..,ik];
380 ///   if val != 0
381 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
382 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
383                           Type eltType, Value ptr, Value val, Value ind,
384                           Value perm) {
385   StringRef name;
386   if (eltType.isF64())
387     name = "addEltF64";
388   else if (eltType.isF32())
389     name = "addEltF32";
390   else if (eltType.isInteger(64))
391     name = "addEltI64";
392   else if (eltType.isInteger(32))
393     name = "addEltI32";
394   else if (eltType.isInteger(16))
395     name = "addEltI16";
396   else if (eltType.isInteger(8))
397     name = "addEltI8";
398   else
399     llvm_unreachable("Unknown element type");
400   SmallVector<Value, 4> params{ptr, val, ind, perm};
401   Type pTp = getOpaquePointerType(rewriter);
402   createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On);
403 }
404 
405 /// Generates a call to `iter->getNext()`.  If there is a next element,
406 /// then it is copied into the out-parameters `ind` and `elemPtr`,
407 /// and the return value is true.  If there isn't a next element, then
408 /// the memory for `iter` is freed and the return value is false.
409 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
410                             Value iter, Value ind, Value elemPtr) {
411   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
412   StringRef name;
413   if (elemTp.isF64())
414     name = "getNextF64";
415   else if (elemTp.isF32())
416     name = "getNextF32";
417   else if (elemTp.isInteger(64))
418     name = "getNextI64";
419   else if (elemTp.isInteger(32))
420     name = "getNextI32";
421   else if (elemTp.isInteger(16))
422     name = "getNextI16";
423   else if (elemTp.isInteger(8))
424     name = "getNextI8";
425   else
426     llvm_unreachable("Unknown element type");
427   SmallVector<Value, 3> params{iter, ind, elemPtr};
428   Type i1 = rewriter.getI1Type();
429   return createFuncCall(rewriter, op, name, i1, params, EmitCInterface::On)
430       .getResult(0);
431 }
432 
433 /// If the tensor is a sparse constant, generates and returns the pair of
434 /// the constants for the indices and the values.
435 static Optional<std::pair<Value, Value>>
436 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
437                        Value tensor) {
438   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
439     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
440       DenseElementsAttr indicesAttr = attr.getIndices();
441       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
442       DenseElementsAttr valuesAttr = attr.getValues();
443       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
444       return std::make_pair(indices, values);
445     }
446   }
447   return {};
448 }
449 
450 /// Generates the code to copy the index at indices[ivs] to ind, and return
451 /// the value at value[ivs].
452 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
453                                        Location loc, Value indices,
454                                        Value values, Value ind, ValueRange ivs,
455                                        unsigned rank) {
456   for (unsigned i = 0; i < rank; i++) {
457     Value idx = constantIndex(rewriter, loc, i);
458     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
459                                                    ValueRange{ivs[0], idx});
460     val =
461         rewriter.create<arith::IndexCastOp>(loc, val, rewriter.getIndexType());
462     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
463   }
464   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
465 }
466 
467 /// Generates code to allocate a tensor of the given type, and zero
468 /// initialize it.  If the tensor type has any dynamic sizes, then the
469 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
470 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
471 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
472                               RankedTensorType tensorTp, ValueRange sizes) {
473   Type elemTp = tensorTp.getElementType();
474   auto shape = tensorTp.getShape();
475   auto memTp = MemRefType::get(shape, elemTp);
476   SmallVector<Value> dynamicSizes;
477   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
478     if (shape[i] == ShapedType::kDynamicSize)
479       dynamicSizes.push_back(sizes[i]);
480   }
481   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
482   Value zero = constantZero(rewriter, loc, elemTp);
483   rewriter.create<linalg::FillOp>(loc, zero, mem);
484   return mem;
485 }
486 
487 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
488 /// the tensor created by allocDenseTensor().  The `rank` is the rank
489 /// of the `tensor` and the length of `ind`.
490 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
491                                         Location loc, Value elemPtr,
492                                         Value tensor, unsigned rank,
493                                         Value ind) {
494   SmallVector<Value, 4> ivs;
495   ivs.reserve(rank);
496   for (unsigned i = 0; i < rank; i++) {
497     Value idx = constantIndex(rewriter, loc, i);
498     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
499   }
500   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
501   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
502 }
503 
504 //===----------------------------------------------------------------------===//
505 // Conversion rules.
506 //===----------------------------------------------------------------------===//
507 
508 /// Sparse conversion rule for returns.
509 class SparseReturnConverter : public OpConversionPattern<ReturnOp> {
510 public:
511   using OpConversionPattern::OpConversionPattern;
512   LogicalResult
513   matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
514                   ConversionPatternRewriter &rewriter) const override {
515     rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands());
516     return success();
517   }
518 };
519 
520 /// Sparse conversion rule for dimension accesses.
521 class SparseTensorToDimSizeConverter
522     : public OpConversionPattern<tensor::DimOp> {
523 public:
524   using OpConversionPattern::OpConversionPattern;
525   LogicalResult
526   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
527                   ConversionPatternRewriter &rewriter) const override {
528     // Only rewrite annotated DimOp with constant index.
529     auto enc = getSparseTensorEncoding(op.source().getType());
530     if (!enc)
531       return failure();
532     Optional<int64_t> index = op.getConstantIndex();
533     if (!index.hasValue())
534       return failure();
535     // Generate the call.
536     Value src = adaptor.getOperands()[0];
537     int64_t idx = index.getValue();
538     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
539     return success();
540   }
541 };
542 
543 /// Sparse conversion rule for trivial tensor casts.
544 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
545   using OpConversionPattern::OpConversionPattern;
546   LogicalResult
547   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
548                   ConversionPatternRewriter &rewriter) const override {
549     // Only rewrite identically annotated source/dest.
550     auto encDst = getSparseTensorEncoding(op.getType());
551     auto encSrc = getSparseTensorEncoding(op.source().getType());
552     if (!encDst || encDst != encSrc)
553       return failure();
554     rewriter.replaceOp(op, adaptor.getOperands());
555     return success();
556   }
557 };
558 
559 /// Sparse conversion rule for the new operator.
560 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
561   using OpConversionPattern::OpConversionPattern;
562   LogicalResult
563   matchAndRewrite(NewOp op, OpAdaptor adaptor,
564                   ConversionPatternRewriter &rewriter) const override {
565     Type resType = op.getType();
566     auto enc = getSparseTensorEncoding(resType);
567     if (!enc)
568       return failure();
569     // Generate the call to construct tensor from ptr. The sizes are
570     // inferred from the result type of the new operator.
571     SmallVector<Value, 4> sizes;
572     SmallVector<Value, 8> params;
573     sizesFromType(rewriter, sizes, op.getLoc(), resType.cast<ShapedType>());
574     Value ptr = adaptor.getOperands()[0];
575     newParams(rewriter, params, op, enc, Action::kFromFile, sizes, ptr);
576     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
577     return success();
578   }
579 };
580 
581 /// Sparse conversion rule for the init operator.
582 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
583   using OpConversionPattern::OpConversionPattern;
584   LogicalResult
585   matchAndRewrite(InitOp op, OpAdaptor adaptor,
586                   ConversionPatternRewriter &rewriter) const override {
587     Type resType = op.getType();
588     auto enc = getSparseTensorEncoding(resType);
589     if (!enc)
590       return failure();
591     // Generate the call to construct empty tensor. The sizes are
592     // explicitly defined by the arguments to the init operator.
593     SmallVector<Value, 8> params;
594     newParams(rewriter, params, op, enc, Action::kEmpty, adaptor.getOperands());
595     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
596     return success();
597   }
598 };
599 
600 /// Sparse conversion rule for the convert operator.
601 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
602   using OpConversionPattern::OpConversionPattern;
603   LogicalResult
604   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
605                   ConversionPatternRewriter &rewriter) const override {
606     Location loc = op->getLoc();
607     Type resType = op.getType();
608     Type srcType = op.source().getType();
609     auto encDst = getSparseTensorEncoding(resType);
610     auto encSrc = getSparseTensorEncoding(srcType);
611     Value src = adaptor.getOperands()[0];
612     if (encDst && encSrc) {
613       // This is a sparse => sparse conversion, which is handled as follows:
614       //   t = src->toCOO();         ; src to COO in dst order
615       //   dst = newSparseTensor(t)
616       // Using the coordinate scheme as an intermediate does not always
617       // yield the fastest conversion but avoids the need for a full
618       // O(N^2) conversion matrix.
619       if (encDst == encSrc) {
620         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
621         return success();
622       }
623       SmallVector<Value, 4> sizes;
624       SmallVector<Value, 8> params;
625       sizesFromPtr(rewriter, sizes, op, encSrc, srcType.cast<ShapedType>(),
626                    src);
627       // Set up encoding with right mix of src and dst so that the two
628       // method calls can share most parameters, while still providing
629       // the correct sparsity information to either of them.
630       auto enc = SparseTensorEncodingAttr::get(
631           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
632           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
633       newParams(rewriter, params, op, enc, Action::kToCOO, sizes, src);
634       Value coo = genNewCall(rewriter, op, params);
635       params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
636       params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
637       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
638       params[7] = coo;
639       rewriter.replaceOp(op, genNewCall(rewriter, op, params));
640       return success();
641     }
642     if (!encDst && encSrc) {
643       // This is sparse => dense conversion, which is handled as follows:
644       //   dst = new Tensor(0);
645       //   iter = src->toCOO();
646       //   iter->startIterator();
647       //   while (elem = iter->getNext()) {
648       //     dst[elem.indices] = elem.value;
649       //   }
650       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
651       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
652       unsigned rank = dstTensorTp.getRank();
653       Type elemTp = dstTensorTp.getElementType();
654       // Fabricate a no-permutation encoding for newParams().
655       // The pointer/index types must be those of `src`.
656       // The dimLevelTypes aren't actually used by Action::kToIterator.
657       encDst = SparseTensorEncodingAttr::get(
658           op->getContext(),
659           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
660               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
661           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
662       SmallVector<Value, 4> sizes;
663       SmallVector<Value, 8> params;
664       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
665       newParams(rewriter, params, op, encDst, Action::kToIterator, sizes, src);
666       Value iter = genNewCall(rewriter, op, params);
667       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
668       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
669       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
670       SmallVector<Value> noArgs;
671       SmallVector<Type> noTypes;
672       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
673       Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
674       rewriter.setInsertionPointToEnd(before);
675       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
676       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
677       Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
678       rewriter.setInsertionPointToStart(after);
679       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
680       rewriter.create<scf::YieldOp>(loc);
681       rewriter.setInsertionPointAfter(whileOp);
682       rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
683       return success();
684     }
685     if (!encDst && !encSrc) {
686       // dense => dense
687       return failure();
688     }
689     // This is a dense => sparse conversion or a sparse constant in COO =>
690     // sparse conversion, which is handled as follows:
691     //   t = newSparseCOO()
692     //   ...code to fill the COO tensor t...
693     //   s = newSparseTensor(t)
694     //
695     // To fill the COO tensor from a dense tensor:
696     //   for i1 in dim1
697     //    ..
698     //     for ik in dimk
699     //       val = a[i1,..,ik]
700     //       if val != 0
701     //         t->add(val, [i1,..,ik], [p1,..,pk])
702     //
703     // To fill the COO tensor from a sparse constant in COO format:
704     //   for i in range(NNZ)
705     //     val = values[i]
706     //     [i1,..,ik] = indices[i]
707     //     t->add(val, [i1,..,ik], [p1,..,pk])
708     //
709     // Note that the dense tensor traversal code is actually implemented
710     // using MLIR IR to avoid having to expose too much low-level
711     // memref traversal details to the runtime support library.
712     // Also note that the code below only generates the "new" ops and
713     // the loop-nest per se; whereas the entire body of the innermost
714     // loop is generated by genAddElt().
715     ShapedType stp = resType.cast<ShapedType>();
716     unsigned rank = stp.getRank();
717     SmallVector<Value, 4> sizes;
718     SmallVector<Value, 8> params;
719     sizesFromSrc(rewriter, sizes, loc, src);
720     newParams(rewriter, params, op, encDst, Action::kEmptyCOO, sizes);
721     Value ptr = genNewCall(rewriter, op, params);
722     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
723     Value perm = params[2];
724     SmallVector<Value> lo;
725     SmallVector<Value> hi;
726     SmallVector<Value> st;
727     Value zero = constantIndex(rewriter, loc, 0);
728     Value one = constantIndex(rewriter, loc, 1);
729     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
730     bool isCOOConstant = indicesValues.hasValue();
731     Value indices;
732     Value values;
733     if (isCOOConstant) {
734       indices = indicesValues->first;
735       values = indicesValues->second;
736       lo.push_back(zero);
737       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
738       st.push_back(one);
739     } else {
740       for (unsigned i = 0; i < rank; i++) {
741         lo.push_back(zero);
742         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
743         st.push_back(one);
744       }
745     }
746     Type eltType = stp.getElementType();
747     scf::buildLoopNest(
748         rewriter, op.getLoc(), lo, hi, st, {},
749         [&](OpBuilder &builder, Location loc, ValueRange ivs,
750             ValueRange args) -> scf::ValueVector {
751           Value val;
752           if (isCOOConstant)
753             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
754                                             ivs, rank);
755           else
756             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
757           genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
758           return {};
759         });
760     // Final call to construct sparse tensor storage.
761     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
762     params[7] = ptr;
763     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
764     return success();
765   }
766 };
767 
768 /// Sparse conversion rule for the release operator.
769 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
770 public:
771   using OpConversionPattern::OpConversionPattern;
772   LogicalResult
773   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
774                   ConversionPatternRewriter &rewriter) const override {
775     StringRef name = "delSparseTensor";
776     TypeRange noTp;
777     createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
778                    EmitCInterface::Off);
779     rewriter.eraseOp(op);
780     return success();
781   }
782 };
783 
784 /// Sparse conversion rule for pointer accesses.
785 class SparseTensorToPointersConverter
786     : public OpConversionPattern<ToPointersOp> {
787 public:
788   using OpConversionPattern::OpConversionPattern;
789   LogicalResult
790   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
791                   ConversionPatternRewriter &rewriter) const override {
792     Type resType = op.getType();
793     Type eltType = resType.cast<ShapedType>().getElementType();
794     StringRef name;
795     if (eltType.isIndex())
796       name = "sparsePointers";
797     else if (eltType.isInteger(64))
798       name = "sparsePointers64";
799     else if (eltType.isInteger(32))
800       name = "sparsePointers32";
801     else if (eltType.isInteger(16))
802       name = "sparsePointers16";
803     else if (eltType.isInteger(8))
804       name = "sparsePointers8";
805     else
806       return failure();
807     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
808                           EmitCInterface::On);
809     return success();
810   }
811 };
812 
813 /// Sparse conversion rule for index accesses.
814 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
815 public:
816   using OpConversionPattern::OpConversionPattern;
817   LogicalResult
818   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
819                   ConversionPatternRewriter &rewriter) const override {
820     Type resType = op.getType();
821     Type eltType = resType.cast<ShapedType>().getElementType();
822     StringRef name;
823     if (eltType.isIndex())
824       name = "sparseIndices";
825     else if (eltType.isInteger(64))
826       name = "sparseIndices64";
827     else if (eltType.isInteger(32))
828       name = "sparseIndices32";
829     else if (eltType.isInteger(16))
830       name = "sparseIndices16";
831     else if (eltType.isInteger(8))
832       name = "sparseIndices8";
833     else
834       return failure();
835     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
836                           EmitCInterface::On);
837     return success();
838   }
839 };
840 
841 /// Sparse conversion rule for value accesses.
842 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
843 public:
844   using OpConversionPattern::OpConversionPattern;
845   LogicalResult
846   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
847                   ConversionPatternRewriter &rewriter) const override {
848     Type resType = op.getType();
849     Type eltType = resType.cast<ShapedType>().getElementType();
850     StringRef name;
851     if (eltType.isF64())
852       name = "sparseValuesF64";
853     else if (eltType.isF32())
854       name = "sparseValuesF32";
855     else if (eltType.isInteger(64))
856       name = "sparseValuesI64";
857     else if (eltType.isInteger(32))
858       name = "sparseValuesI32";
859     else if (eltType.isInteger(16))
860       name = "sparseValuesI16";
861     else if (eltType.isInteger(8))
862       name = "sparseValuesI8";
863     else
864       return failure();
865     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
866                           EmitCInterface::On);
867     return success();
868   }
869 };
870 
871 /// Sparse conversion rule for tensor rematerialization.
872 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
873 public:
874   using OpConversionPattern::OpConversionPattern;
875   LogicalResult
876   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
877                   ConversionPatternRewriter &rewriter) const override {
878     if (op.hasInserts()) {
879       // Finalize any pending insertions.
880       StringRef name = "endInsert";
881       TypeRange noTp;
882       createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
883                      EmitCInterface::Off);
884     }
885     rewriter.replaceOp(op, adaptor.getOperands());
886     return success();
887   }
888 };
889 
890 /// Sparse conversion rule for inserting in lexicographic index order.
891 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
892 public:
893   using OpConversionPattern::OpConversionPattern;
894   LogicalResult
895   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
896                   ConversionPatternRewriter &rewriter) const override {
897     Type srcType = op.tensor().getType();
898     Type eltType = srcType.cast<ShapedType>().getElementType();
899     StringRef name;
900     if (eltType.isF64())
901       name = "lexInsertF64";
902     else if (eltType.isF32())
903       name = "lexInsertF32";
904     else if (eltType.isInteger(64))
905       name = "lexInsertI64";
906     else if (eltType.isInteger(32))
907       name = "lexInsertI32";
908     else if (eltType.isInteger(16))
909       name = "lexInsertI16";
910     else if (eltType.isInteger(8))
911       name = "lexInsertI8";
912     else
913       llvm_unreachable("Unknown element type");
914     TypeRange noTp;
915     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
916                           EmitCInterface::On);
917     return success();
918   }
919 };
920 
921 class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
922 public:
923   using OpConversionPattern::OpConversionPattern;
924   LogicalResult
925   matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
926                   ConversionPatternRewriter &rewriter) const override {
927     Location loc = op->getLoc();
928     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
929     Type eltType = srcType.getElementType();
930     Type boolType = rewriter.getIntegerType(1);
931     Type idxType = rewriter.getIndexType();
932     // All initialization should be done on entry of the loop nest.
933     rewriter.setInsertionPointAfter(op.tensor().getDefiningOp());
934     // Determine the size for access expansion.
935     auto enc = getSparseTensorEncoding(srcType);
936     Value src = adaptor.getOperands()[0];
937     Value sz = genDimSizeCall(rewriter, op, enc, src, srcType.getRank() - 1);
938     // Allocate temporary stack buffers for values, filled-switch, and indices.
939     Value values = genAlloca(rewriter, loc, sz, eltType);
940     Value filled = genAlloca(rewriter, loc, sz, boolType);
941     Value indices = genAlloca(rewriter, loc, sz, idxType);
942     Value zero = constantZero(rewriter, loc, idxType);
943     // Reset the values/filled-switch to all-zero/false. Note that this
944     // introduces an O(N) operation into the computation, but this reset
945     // operation is amortized over the innermost loops for the access
946     // pattern expansion.
947     rewriter.create<linalg::FillOp>(loc, constantZero(rewriter, loc, eltType),
948                                     values);
949     rewriter.create<linalg::FillOp>(loc, constantZero(rewriter, loc, boolType),
950                                     filled);
951     // Replace expansion op with these buffers and initial index.
952     assert(op.getNumResults() == 4);
953     rewriter.replaceOp(op, {values, filled, indices, zero});
954     return success();
955   }
956 };
957 
958 class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
959 public:
960   using OpConversionPattern::OpConversionPattern;
961   LogicalResult
962   matchAndRewrite(CompressOp op, OpAdaptor adaptor,
963                   ConversionPatternRewriter &rewriter) const override {
964     // Note that this method call resets the values/filled-switch back to
965     // all-zero/false by only iterating over the set elements, so the
966     // complexity remains proportional to the sparsity of the expanded
967     // access pattern.
968     Type srcType = op.tensor().getType();
969     Type eltType = srcType.cast<ShapedType>().getElementType();
970     StringRef name;
971     if (eltType.isF64())
972       name = "expInsertF64";
973     else if (eltType.isF32())
974       name = "expInsertF32";
975     else if (eltType.isInteger(64))
976       name = "expInsertI64";
977     else if (eltType.isInteger(32))
978       name = "expInsertI32";
979     else if (eltType.isInteger(16))
980       name = "expInsertI16";
981     else if (eltType.isInteger(8))
982       name = "expInsertI8";
983     else
984       return failure();
985     TypeRange noTp;
986     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
987                           EmitCInterface::On);
988     return success();
989   }
990 };
991 
992 } // namespace
993 
994 //===----------------------------------------------------------------------===//
995 // Public method for populating conversion rules.
996 //===----------------------------------------------------------------------===//
997 
998 /// Populates the given patterns list with conversion rules required for
999 /// the sparsification of linear algebra operations.
1000 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
1001                                                   RewritePatternSet &patterns) {
1002   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
1003                SparseCastConverter, SparseTensorNewConverter,
1004                SparseTensorInitConverter, SparseTensorConvertConverter,
1005                SparseTensorReleaseConverter, SparseTensorToPointersConverter,
1006                SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
1007                SparseTensorLoadConverter, SparseTensorLexInsertConverter,
1008                SparseTensorExpandConverter, SparseTensorCompressConverter>(
1009       typeConverter, patterns.getContext());
1010 }
1011