1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
18 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/MemRef/IR/MemRef.h"
21 #include "mlir/Dialect/SCF/SCF.h"
22 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
23 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
24 #include "mlir/Dialect/StandardOps/IR/Ops.h"
25 #include "mlir/Dialect/Tensor/IR/Tensor.h"
26 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
27 #include "mlir/Transforms/DialectConversion.h"
28 
29 using namespace mlir;
30 using namespace mlir::sparse_tensor;
31 
32 namespace {
33 
34 //===----------------------------------------------------------------------===//
35 // Helper methods.
36 //===----------------------------------------------------------------------===//
37 
38 /// Generates a constant zero of the given type.
39 inline static Value constantZero(ConversionPatternRewriter &rewriter,
40                                  Location loc, Type t) {
41   return rewriter.create<arith::ConstantOp>(loc, t, rewriter.getZeroAttr(t));
42 }
43 
44 /// Generates a constant of `index` type.
45 inline static Value constantIndex(ConversionPatternRewriter &rewriter,
46                                   Location loc, int64_t i) {
47   return rewriter.create<arith::ConstantIndexOp>(loc, i);
48 }
49 
50 /// Generates a constant of `i32` type.
51 inline static Value constantI32(ConversionPatternRewriter &rewriter,
52                                 Location loc, int32_t i) {
53   return rewriter.create<arith::ConstantIntOp>(loc, i, 32);
54 }
55 
56 /// Generates a constant of `i8` type.
57 inline static Value constantI8(ConversionPatternRewriter &rewriter,
58                                Location loc, int8_t i) {
59   return rewriter.create<arith::ConstantIntOp>(loc, i, 8);
60 }
61 
62 /// Generates a constant of the given `Action`.
63 static Value constantAction(ConversionPatternRewriter &rewriter, Location loc,
64                             Action action) {
65   return constantI32(rewriter, loc, static_cast<uint32_t>(action));
66 }
67 
68 /// Generates a constant of the internal type encoding for overhead storage.
69 static Value constantOverheadTypeEncoding(ConversionPatternRewriter &rewriter,
70                                           Location loc, unsigned width) {
71   OverheadType sec;
72   switch (width) {
73   default:
74     sec = OverheadType::kU64;
75     break;
76   case 32:
77     sec = OverheadType::kU32;
78     break;
79   case 16:
80     sec = OverheadType::kU16;
81     break;
82   case 8:
83     sec = OverheadType::kU8;
84     break;
85   }
86   return constantI32(rewriter, loc, static_cast<uint32_t>(sec));
87 }
88 
89 /// Generates a constant of the internal type encoding for pointer
90 /// overhead storage.
91 static Value constantPointerTypeEncoding(ConversionPatternRewriter &rewriter,
92                                          Location loc,
93                                          SparseTensorEncodingAttr &enc) {
94   return constantOverheadTypeEncoding(rewriter, loc, enc.getPointerBitWidth());
95 }
96 
97 /// Generates a constant of the internal type encoding for index overhead
98 /// storage.
99 static Value constantIndexTypeEncoding(ConversionPatternRewriter &rewriter,
100                                        Location loc,
101                                        SparseTensorEncodingAttr &enc) {
102   return constantOverheadTypeEncoding(rewriter, loc, enc.getIndexBitWidth());
103 }
104 
105 /// Generates a constant of the internal type encoding for primary storage.
106 static Value constantPrimaryTypeEncoding(ConversionPatternRewriter &rewriter,
107                                          Location loc, Type tp) {
108   PrimaryType primary;
109   if (tp.isF64())
110     primary = PrimaryType::kF64;
111   else if (tp.isF32())
112     primary = PrimaryType::kF32;
113   else if (tp.isInteger(64))
114     primary = PrimaryType::kI64;
115   else if (tp.isInteger(32))
116     primary = PrimaryType::kI32;
117   else if (tp.isInteger(16))
118     primary = PrimaryType::kI16;
119   else if (tp.isInteger(8))
120     primary = PrimaryType::kI8;
121   else
122     llvm_unreachable("Unknown element type");
123   return constantI32(rewriter, loc, static_cast<uint32_t>(primary));
124 }
125 
126 /// Generates a constant of the internal dimension level type encoding.
127 static Value
128 constantDimLevelTypeEncoding(ConversionPatternRewriter &rewriter, Location loc,
129                              SparseTensorEncodingAttr::DimLevelType dlt) {
130   DimLevelType dlt2;
131   switch (dlt) {
132   case SparseTensorEncodingAttr::DimLevelType::Dense:
133     dlt2 = DimLevelType::kDense;
134     break;
135   case SparseTensorEncodingAttr::DimLevelType::Compressed:
136     dlt2 = DimLevelType::kCompressed;
137     break;
138   case SparseTensorEncodingAttr::DimLevelType::Singleton:
139     dlt2 = DimLevelType::kSingleton;
140     break;
141   }
142   return constantI8(rewriter, loc, static_cast<uint8_t>(dlt2));
143 }
144 
145 /// Returns a function reference (first hit also inserts into module). Sets
146 /// the "_emit_c_interface" on the function declaration when requested,
147 /// so that LLVM lowering generates a wrapper function that takes care
148 /// of ABI complications with passing in and returning MemRefs to C functions.
149 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
150                                  TypeRange resultType, ValueRange operands,
151                                  bool emitCInterface = false) {
152   MLIRContext *context = op->getContext();
153   auto module = op->getParentOfType<ModuleOp>();
154   auto result = SymbolRefAttr::get(context, name);
155   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
156   if (!func) {
157     OpBuilder moduleBuilder(module.getBodyRegion());
158     func = moduleBuilder.create<FuncOp>(
159         op->getLoc(), name,
160         FunctionType::get(context, operands.getTypes(), resultType));
161     func.setPrivate();
162     if (emitCInterface)
163       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
164   }
165   return result;
166 }
167 
168 /// Generates dimension size call.
169 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
170                             SparseTensorEncodingAttr &enc, Value src,
171                             int64_t idx) {
172   // Permute the index according to an optional dimension ordering.
173   if (AffineMap p = enc.getDimOrdering())
174     idx = p.getPermutedPosition(idx);
175   // Generate the call.
176   Location loc = op->getLoc();
177   StringRef name = "sparseDimSize";
178   SmallVector<Value, 2> params;
179   params.push_back(src);
180   params.push_back(constantIndex(rewriter, loc, idx));
181   Type iTp = rewriter.getIndexType();
182   auto fn = getFunc(op, name, iTp, params);
183   return rewriter.create<CallOp>(loc, iTp, fn, params).getResult(0);
184 }
185 
186 /// Generates a call into the "swiss army knife" method of the sparse runtime
187 /// support library for materializing sparse tensors into the computation.
188 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
189                         ArrayRef<Value> params) {
190   Location loc = op->getLoc();
191   StringRef name = "newSparseTensor";
192   Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
193   auto fn = getFunc(op, name, pTp, params, /*emitCInterface=*/true);
194   auto call = rewriter.create<CallOp>(loc, pTp, fn, params);
195   return call.getResult(0);
196 }
197 
198 /// Populates given sizes array from type.
199 static void sizesFromType(ConversionPatternRewriter &rewriter,
200                           SmallVector<Value, 4> &sizes, Location loc,
201                           ShapedType stp) {
202   auto shape = stp.getShape();
203   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
204     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
205     sizes.push_back(constantIndex(rewriter, loc, s));
206   }
207 }
208 
209 /// Populates given sizes array from source.
210 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
211                          SmallVector<Value, 4> &sizes, Location loc,
212                          Value src) {
213   ShapedType stp = src.getType().cast<ShapedType>();
214   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
215     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
216 }
217 
218 /// Populates given sizes array from type (for static sizes) and from
219 /// an already converted into opague pointer source (for dynamic sizes).
220 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
221                          SmallVector<Value, 4> &sizes, Operation *op,
222                          SparseTensorEncodingAttr &enc, ShapedType stp,
223                          Value src) {
224   auto shape = stp.getShape();
225   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
226     if (shape[i] == ShapedType::kDynamicSize)
227       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
228     else
229       sizes.push_back(constantIndex(rewriter, op->getLoc(), shape[i]));
230 }
231 
232 /// Generates an uninitialized temporary buffer of the given size and
233 /// type, but returns it as type `memref<? x $tp>` (rather than as type
234 /// `memref<$sz x $tp>`).
235 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
236                        unsigned sz, Type tp) {
237   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
238   Value a = constantIndex(rewriter, loc, sz);
239   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{a});
240 }
241 
242 /// Generates an uninitialized temporary buffer with room for one value
243 /// of the given type, and returns the `memref<$tp>`.
244 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
245                              Type tp) {
246   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
247 }
248 
249 /// Generates a temporary buffer of the given type and given contents.
250 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
251                        ArrayRef<Value> values) {
252   unsigned sz = values.size();
253   assert(sz >= 1);
254   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
255   for (unsigned i = 0; i < sz; i++) {
256     Value idx = constantIndex(rewriter, loc, i);
257     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
258   }
259   return buffer;
260 }
261 
262 /// Populates parameters required to call the "swiss army knife" method of the
263 /// sparse runtime support library for materializing sparse tensors into the
264 /// computation.
265 static void newParams(ConversionPatternRewriter &rewriter,
266                       SmallVector<Value, 8> &params, Operation *op,
267                       SparseTensorEncodingAttr &enc, Action action,
268                       ValueRange szs, Value ptr = Value()) {
269   Location loc = op->getLoc();
270   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
271   unsigned sz = dlt.size();
272   // Sparsity annotations.
273   SmallVector<Value, 4> attrs;
274   for (unsigned i = 0; i < sz; i++)
275     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
276   params.push_back(genBuffer(rewriter, loc, attrs));
277   // Dimension sizes array of the enveloping tensor. Useful for either
278   // verification of external data, or for construction of internal data.
279   SmallVector<Value, 4> sizes;
280   for (Value s : szs)
281     sizes.push_back(s);
282   params.push_back(genBuffer(rewriter, loc, sizes));
283   // Dimension order permutation array. This is the "identity" permutation by
284   // default, or otherwise the "reverse" permutation of a given ordering, so
285   // that indices can be mapped quickly to the right position.
286   SmallVector<Value, 4> rev(sz);
287   if (AffineMap p = enc.getDimOrdering()) {
288     for (unsigned i = 0; i < sz; i++)
289       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
290   } else {
291     for (unsigned i = 0; i < sz; i++)
292       rev[i] = constantIndex(rewriter, loc, i);
293   }
294   params.push_back(genBuffer(rewriter, loc, rev));
295   // Secondary and primary types encoding.
296   ShapedType resType = op->getResult(0).getType().cast<ShapedType>();
297   params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
298   params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
299   params.push_back(
300       constantPrimaryTypeEncoding(rewriter, loc, resType.getElementType()));
301   // User action and pointer.
302   Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
303   if (!ptr)
304     ptr = rewriter.create<LLVM::NullOp>(loc, pTp);
305   params.push_back(constantAction(rewriter, loc, action));
306   params.push_back(ptr);
307 }
308 
309 /// Generates the comparison `v != 0` where `v` is of numeric type `t`.
310 /// For floating types, we use the "unordered" comparator (i.e., returns
311 /// true if `v` is NaN).
312 static Value genIsNonzero(ConversionPatternRewriter &rewriter, Location loc,
313                           Value v) {
314   Type t = v.getType();
315   Value zero = constantZero(rewriter, loc, t);
316   if (t.isa<FloatType>())
317     return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNE, v,
318                                           zero);
319   if (t.isIntOrIndex())
320     return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, v,
321                                           zero);
322   llvm_unreachable("Unknown element type");
323 }
324 
325 /// Generates the code to read the value from tensor[ivs], and conditionally
326 /// stores the indices ivs to the memory in ind. The generated code looks like
327 /// the following and the insertion point after this routine is inside the
328 /// if-then branch behind the assignment to ind. This is to ensure that the
329 /// addEltX call generated after is inside the if-then branch.
330 ///    if (tensor[ivs]!=0) {
331 ///      ind = ivs
332 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
333                                       Location loc, Value tensor, Value ind,
334                                       ValueRange ivs) {
335   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
336   Value cond = genIsNonzero(rewriter, loc, val);
337   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
338   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
339   unsigned i = 0;
340   for (auto iv : ivs) {
341     Value idx = constantIndex(rewriter, loc, i++);
342     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
343   }
344   return val;
345 }
346 
347 /// Generates a call that adds one element to a coordinate scheme.
348 /// In particular, this generates code like the following:
349 ///   val = a[i1,..,ik];
350 ///   if val != 0
351 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
352 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
353                           Type eltType, Value ptr, Value val, Value ind,
354                           Value perm) {
355   Location loc = op->getLoc();
356   StringRef name;
357   if (eltType.isF64())
358     name = "addEltF64";
359   else if (eltType.isF32())
360     name = "addEltF32";
361   else if (eltType.isInteger(64))
362     name = "addEltI64";
363   else if (eltType.isInteger(32))
364     name = "addEltI32";
365   else if (eltType.isInteger(16))
366     name = "addEltI16";
367   else if (eltType.isInteger(8))
368     name = "addEltI8";
369   else
370     llvm_unreachable("Unknown element type");
371   SmallVector<Value, 8> params;
372   params.push_back(ptr);
373   params.push_back(val);
374   params.push_back(ind);
375   params.push_back(perm);
376   Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
377   auto fn = getFunc(op, name, pTp, params, /*emitCInterface=*/true);
378   rewriter.create<CallOp>(loc, pTp, fn, params);
379 }
380 
381 /// Generates a call to `iter->getNext()`.  If there is a next element,
382 /// then it is copied into the out-parameters `ind` and `elemPtr`,
383 /// and the return value is true.  If there isn't a next element, then
384 /// the memory for `iter` is freed and the return value is false.
385 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
386                             Value iter, Value ind, Value elemPtr) {
387   Location loc = op->getLoc();
388   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
389   StringRef name;
390   if (elemTp.isF64())
391     name = "getNextF64";
392   else if (elemTp.isF32())
393     name = "getNextF32";
394   else if (elemTp.isInteger(64))
395     name = "getNextI64";
396   else if (elemTp.isInteger(32))
397     name = "getNextI32";
398   else if (elemTp.isInteger(16))
399     name = "getNextI16";
400   else if (elemTp.isInteger(8))
401     name = "getNextI8";
402   else
403     llvm_unreachable("Unknown element type");
404   SmallVector<Value, 3> params;
405   params.push_back(iter);
406   params.push_back(ind);
407   params.push_back(elemPtr);
408   Type i1 = rewriter.getI1Type();
409   auto fn = getFunc(op, name, i1, params, /*emitCInterface=*/true);
410   auto call = rewriter.create<CallOp>(loc, i1, fn, params);
411   return call.getResult(0);
412 }
413 
414 /// If the tensor is a sparse constant, generates and returns the pair of
415 /// the constants for the indices and the values.
416 static Optional<std::pair<Value, Value>>
417 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
418                        Value tensor) {
419   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
420     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
421       DenseElementsAttr indicesAttr = attr.getIndices();
422       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
423       DenseElementsAttr valuesAttr = attr.getValues();
424       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
425       return std::make_pair(indices, values);
426     }
427   }
428   return {};
429 }
430 
431 /// Generates the code to copy the index at indices[ivs] to ind, and return
432 /// the value at value[ivs].
433 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
434                                        Location loc, Value indices,
435                                        Value values, Value ind, ValueRange ivs,
436                                        unsigned rank) {
437   for (unsigned i = 0; i < rank; i++) {
438     Value idx = constantIndex(rewriter, loc, i);
439     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
440                                                    ValueRange{ivs[0], idx});
441     val =
442         rewriter.create<arith::IndexCastOp>(loc, val, rewriter.getIndexType());
443     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
444   }
445   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
446 }
447 
448 /// Generates code to allocate a tensor of the given type, and zero
449 /// initialize it.  If the tensor type has any dynamic sizes, then the
450 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
451 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
452 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
453                               RankedTensorType tensorTp, ValueRange sizes) {
454   Type elemTp = tensorTp.getElementType();
455   auto shape = tensorTp.getShape();
456   auto memTp = MemRefType::get(shape, elemTp);
457   SmallVector<Value> dynamicSizes;
458   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
459     if (shape[i] == ShapedType::kDynamicSize)
460       dynamicSizes.push_back(sizes[i]);
461   }
462   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
463   Value zero = constantZero(rewriter, loc, elemTp);
464   rewriter.create<linalg::FillOp>(loc, zero, mem).result();
465   return mem;
466 }
467 
468 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
469 /// the tensor created by allocDenseTensor().  The `rank` is the rank
470 /// of the `tensor` and the length of `ind`.
471 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
472                                         Location loc, Value elemPtr,
473                                         Value tensor, unsigned rank,
474                                         Value ind) {
475   SmallVector<Value, 4> ivs;
476   ivs.reserve(rank);
477   for (unsigned i = 0; i < rank; i++) {
478     Value idx = constantIndex(rewriter, loc, i);
479     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
480   }
481   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
482   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
483 }
484 
485 //===----------------------------------------------------------------------===//
486 // Conversion rules.
487 //===----------------------------------------------------------------------===//
488 
489 /// Sparse conversion rule for returns.
490 class SparseReturnConverter : public OpConversionPattern<ReturnOp> {
491 public:
492   using OpConversionPattern::OpConversionPattern;
493   LogicalResult
494   matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
495                   ConversionPatternRewriter &rewriter) const override {
496     rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands());
497     return success();
498   }
499 };
500 
501 /// Sparse conversion rule for dimension accesses.
502 class SparseTensorToDimSizeConverter
503     : public OpConversionPattern<tensor::DimOp> {
504 public:
505   using OpConversionPattern::OpConversionPattern;
506   LogicalResult
507   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
508                   ConversionPatternRewriter &rewriter) const override {
509     // Only rewrite annotated DimOp with constant index.
510     auto enc = getSparseTensorEncoding(op.source().getType());
511     if (!enc)
512       return failure();
513     Optional<int64_t> index = op.getConstantIndex();
514     if (!index.hasValue())
515       return failure();
516     // Generate the call.
517     Value src = adaptor.getOperands()[0];
518     int64_t idx = index.getValue();
519     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
520     return success();
521   }
522 };
523 
524 /// Sparse conversion rule for trivial tensor casts.
525 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
526   using OpConversionPattern::OpConversionPattern;
527   LogicalResult
528   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
529                   ConversionPatternRewriter &rewriter) const override {
530     // Only rewrite identically annotated source/dest.
531     auto encDst = getSparseTensorEncoding(op.getType());
532     auto encSrc = getSparseTensorEncoding(op.source().getType());
533     if (!encDst || encDst != encSrc)
534       return failure();
535     rewriter.replaceOp(op, adaptor.getOperands());
536     return success();
537   }
538 };
539 
540 /// Sparse conversion rule for the new operator.
541 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
542   using OpConversionPattern::OpConversionPattern;
543   LogicalResult
544   matchAndRewrite(NewOp op, OpAdaptor adaptor,
545                   ConversionPatternRewriter &rewriter) const override {
546     Type resType = op.getType();
547     auto enc = getSparseTensorEncoding(resType);
548     if (!enc)
549       return failure();
550     // Generate the call to construct tensor from ptr. The sizes are
551     // inferred from the result type of the new operator.
552     SmallVector<Value, 4> sizes;
553     SmallVector<Value, 8> params;
554     sizesFromType(rewriter, sizes, op.getLoc(), resType.cast<ShapedType>());
555     Value ptr = adaptor.getOperands()[0];
556     newParams(rewriter, params, op, enc, Action::kFromFile, sizes, ptr);
557     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
558     return success();
559   }
560 };
561 
562 /// Sparse conversion rule for the init operator.
563 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
564   using OpConversionPattern::OpConversionPattern;
565   LogicalResult
566   matchAndRewrite(InitOp op, OpAdaptor adaptor,
567                   ConversionPatternRewriter &rewriter) const override {
568     Type resType = op.getType();
569     auto enc = getSparseTensorEncoding(resType);
570     if (!enc)
571       return failure();
572     // Generate the call to construct empty tensor. The sizes are
573     // explicitly defined by the arguments to the init operator.
574     SmallVector<Value, 8> params;
575     newParams(rewriter, params, op, enc, Action::kEmpty, adaptor.getOperands());
576     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
577     return success();
578   }
579 };
580 
581 /// Sparse conversion rule for the convert operator.
582 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
583   using OpConversionPattern::OpConversionPattern;
584   LogicalResult
585   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
586                   ConversionPatternRewriter &rewriter) const override {
587     Location loc = op->getLoc();
588     Type resType = op.getType();
589     Type srcType = op.source().getType();
590     auto encDst = getSparseTensorEncoding(resType);
591     auto encSrc = getSparseTensorEncoding(srcType);
592     Value src = adaptor.getOperands()[0];
593     if (encDst && encSrc) {
594       // This is a sparse => sparse conversion, which is handled as follows:
595       //   t = src->toCOO();         ; src to COO in dst order
596       //   dst = newSparseTensor(t)
597       // Using the coordinate scheme as an intermediate does not always
598       // yield the fastest conversion but avoids the need for a full
599       // O(N^2) conversion matrix.
600       if (encDst == encSrc) {
601         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
602         return success();
603       }
604       SmallVector<Value, 4> sizes;
605       SmallVector<Value, 8> params;
606       sizesFromPtr(rewriter, sizes, op, encSrc, srcType.cast<ShapedType>(),
607                    src);
608       // Set up encoding with right mix of src and dst so that the two
609       // method calls can share most parameters, while still providing
610       // the correct sparsity information to either of them.
611       auto enc = SparseTensorEncodingAttr::get(
612           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
613           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
614       newParams(rewriter, params, op, enc, Action::kToCOO, sizes, src);
615       Value coo = genNewCall(rewriter, op, params);
616       params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
617       params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
618       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
619       params[7] = coo;
620       rewriter.replaceOp(op, genNewCall(rewriter, op, params));
621       return success();
622     }
623     if (!encDst && encSrc) {
624       // This is sparse => dense conversion, which is handled as follows:
625       //   dst = new Tensor(0);
626       //   iter = src->toCOO();
627       //   iter->startIterator();
628       //   while (elem = iter->getNext()) {
629       //     dst[elem.indices] = elem.value;
630       //   }
631       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
632       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
633       unsigned rank = dstTensorTp.getRank();
634       Type elemTp = dstTensorTp.getElementType();
635       // Fabricate a no-permutation encoding for newParams().
636       // The pointer/index types must be those of `src`.
637       // The dimLevelTypes aren't actually used by Action::kToIterator.
638       encDst = SparseTensorEncodingAttr::get(
639           op->getContext(),
640           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
641               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
642           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
643       SmallVector<Value, 4> sizes;
644       SmallVector<Value, 8> params;
645       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
646       newParams(rewriter, params, op, encDst, Action::kToIterator, sizes, src);
647       Value iter = genNewCall(rewriter, op, params);
648       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
649       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
650       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
651       SmallVector<Value> noArgs;
652       SmallVector<Type> noTypes;
653       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
654       Block *before = rewriter.createBlock(&whileOp.before(), {}, noTypes);
655       rewriter.setInsertionPointToEnd(before);
656       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
657       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
658       Block *after = rewriter.createBlock(&whileOp.after(), {}, noTypes);
659       rewriter.setInsertionPointToStart(after);
660       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
661       rewriter.create<scf::YieldOp>(loc);
662       rewriter.setInsertionPointAfter(whileOp);
663       rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
664       return success();
665     }
666     if (!encDst && !encSrc) {
667       // dense => dense
668       return failure();
669     }
670     // This is a dense => sparse conversion or a sparse constant in COO =>
671     // sparse conversion, which is handled as follows:
672     //   t = newSparseCOO()
673     //   ...code to fill the COO tensor t...
674     //   s = newSparseTensor(t)
675     //
676     // To fill the COO tensor from a dense tensor:
677     //   for i1 in dim1
678     //    ..
679     //     for ik in dimk
680     //       val = a[i1,..,ik]
681     //       if val != 0
682     //         t->add(val, [i1,..,ik], [p1,..,pk])
683     //
684     // To fill the COO tensor from a sparse constant in COO format:
685     //   for i in range(NNZ)
686     //     val = values[i]
687     //     [i1,..,ik] = indices[i]
688     //     t->add(val, [i1,..,ik], [p1,..,pk])
689     //
690     // Note that the dense tensor traversal code is actually implemented
691     // using MLIR IR to avoid having to expose too much low-level
692     // memref traversal details to the runtime support library.
693     // Also note that the code below only generates the "new" ops and
694     // the loop-nest per se; whereas the entire body of the innermost
695     // loop is generated by genAddElt().
696     ShapedType stp = resType.cast<ShapedType>();
697     unsigned rank = stp.getRank();
698     SmallVector<Value, 4> sizes;
699     SmallVector<Value, 8> params;
700     sizesFromSrc(rewriter, sizes, loc, src);
701     newParams(rewriter, params, op, encDst, Action::kEmptyCOO, sizes);
702     Value ptr = genNewCall(rewriter, op, params);
703     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
704     Value perm = params[2];
705     SmallVector<Value> lo;
706     SmallVector<Value> hi;
707     SmallVector<Value> st;
708     Value zero = constantIndex(rewriter, loc, 0);
709     Value one = constantIndex(rewriter, loc, 1);
710     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
711     bool isCOOConstant = indicesValues.hasValue();
712     Value indices;
713     Value values;
714     if (isCOOConstant) {
715       indices = indicesValues->first;
716       values = indicesValues->second;
717       lo.push_back(zero);
718       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
719       st.push_back(one);
720     } else {
721       for (unsigned i = 0; i < rank; i++) {
722         lo.push_back(zero);
723         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
724         st.push_back(one);
725       }
726     }
727     Type eltType = stp.getElementType();
728     scf::buildLoopNest(
729         rewriter, op.getLoc(), lo, hi, st, {},
730         [&](OpBuilder &builder, Location loc, ValueRange ivs,
731             ValueRange args) -> scf::ValueVector {
732           Value val;
733           if (isCOOConstant)
734             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
735                                             ivs, rank);
736           else
737             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
738           genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
739           return {};
740         });
741     // Final call to construct sparse tensor storage.
742     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
743     params[7] = ptr;
744     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
745     return success();
746   }
747 };
748 
749 /// Sparse conversion rule for the release operator.
750 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
751 public:
752   using OpConversionPattern::OpConversionPattern;
753   LogicalResult
754   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
755                   ConversionPatternRewriter &rewriter) const override {
756     StringRef name = "delSparseTensor";
757     TypeRange none;
758     auto fn = getFunc(op, name, none, adaptor.getOperands());
759     rewriter.create<CallOp>(op.getLoc(), none, fn, adaptor.getOperands());
760     rewriter.eraseOp(op);
761     return success();
762   }
763 };
764 
765 /// Sparse conversion rule for pointer accesses.
766 class SparseTensorToPointersConverter
767     : public OpConversionPattern<ToPointersOp> {
768 public:
769   using OpConversionPattern::OpConversionPattern;
770   LogicalResult
771   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
772                   ConversionPatternRewriter &rewriter) const override {
773     Type resType = op.getType();
774     Type eltType = resType.cast<ShapedType>().getElementType();
775     StringRef name;
776     if (eltType.isIndex())
777       name = "sparsePointers";
778     else if (eltType.isInteger(64))
779       name = "sparsePointers64";
780     else if (eltType.isInteger(32))
781       name = "sparsePointers32";
782     else if (eltType.isInteger(16))
783       name = "sparsePointers16";
784     else if (eltType.isInteger(8))
785       name = "sparsePointers8";
786     else
787       return failure();
788     auto fn = getFunc(op, name, resType, adaptor.getOperands(),
789                       /*emitCInterface=*/true);
790     rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
791     return success();
792   }
793 };
794 
795 /// Sparse conversion rule for index accesses.
796 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
797 public:
798   using OpConversionPattern::OpConversionPattern;
799   LogicalResult
800   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
801                   ConversionPatternRewriter &rewriter) const override {
802     Type resType = op.getType();
803     Type eltType = resType.cast<ShapedType>().getElementType();
804     StringRef name;
805     if (eltType.isIndex())
806       name = "sparseIndices";
807     else if (eltType.isInteger(64))
808       name = "sparseIndices64";
809     else if (eltType.isInteger(32))
810       name = "sparseIndices32";
811     else if (eltType.isInteger(16))
812       name = "sparseIndices16";
813     else if (eltType.isInteger(8))
814       name = "sparseIndices8";
815     else
816       return failure();
817     auto fn = getFunc(op, name, resType, adaptor.getOperands(),
818                       /*emitCInterface=*/true);
819     rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
820     return success();
821   }
822 };
823 
824 /// Sparse conversion rule for value accesses.
825 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
826 public:
827   using OpConversionPattern::OpConversionPattern;
828   LogicalResult
829   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
830                   ConversionPatternRewriter &rewriter) const override {
831     Type resType = op.getType();
832     Type eltType = resType.cast<ShapedType>().getElementType();
833     StringRef name;
834     if (eltType.isF64())
835       name = "sparseValuesF64";
836     else if (eltType.isF32())
837       name = "sparseValuesF32";
838     else if (eltType.isInteger(64))
839       name = "sparseValuesI64";
840     else if (eltType.isInteger(32))
841       name = "sparseValuesI32";
842     else if (eltType.isInteger(16))
843       name = "sparseValuesI16";
844     else if (eltType.isInteger(8))
845       name = "sparseValuesI8";
846     else
847       return failure();
848     auto fn = getFunc(op, name, resType, adaptor.getOperands(),
849                       /*emitCInterface=*/true);
850     rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
851     return success();
852   }
853 };
854 
855 /// Sparse conversion rule for tensor rematerialization.
856 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
857 public:
858   using OpConversionPattern::OpConversionPattern;
859   LogicalResult
860   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
861                   ConversionPatternRewriter &rewriter) const override {
862     if (op.hasInserts()) {
863       // Finalize any pending insertions.
864       StringRef name = "endInsert";
865       TypeRange noTp;
866       auto fn = getFunc(op, name, noTp, adaptor.getOperands());
867       rewriter.create<CallOp>(op.getLoc(), noTp, fn, adaptor.getOperands());
868     }
869     rewriter.replaceOp(op, adaptor.getOperands());
870     return success();
871   }
872 };
873 
874 /// Sparse conversion rule for inserting in lexicographic index order.
875 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
876 public:
877   using OpConversionPattern::OpConversionPattern;
878   LogicalResult
879   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
880                   ConversionPatternRewriter &rewriter) const override {
881     Type srcType = op.tensor().getType();
882     Type eltType = srcType.cast<ShapedType>().getElementType();
883     StringRef name;
884     if (eltType.isF64())
885       name = "lexInsertF64";
886     else if (eltType.isF32())
887       name = "lexInsertF32";
888     else if (eltType.isInteger(64))
889       name = "lexInsertI64";
890     else if (eltType.isInteger(32))
891       name = "lexInsertI32";
892     else if (eltType.isInteger(16))
893       name = "lexInsertI16";
894     else if (eltType.isInteger(8))
895       name = "lexInsertI8";
896     else
897       llvm_unreachable("Unknown element type");
898     TypeRange noTp;
899     auto fn =
900         getFunc(op, name, noTp, adaptor.getOperands(), /*emitCInterface=*/true);
901     rewriter.replaceOpWithNewOp<CallOp>(op, noTp, fn, adaptor.getOperands());
902     return success();
903   }
904 };
905 
906 } // namespace
907 
908 //===----------------------------------------------------------------------===//
909 // Public method for populating conversion rules.
910 //===----------------------------------------------------------------------===//
911 
912 /// Populates the given patterns list with conversion rules required for
913 /// the sparsification of linear algebra operations.
914 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
915                                                   RewritePatternSet &patterns) {
916   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
917                SparseCastConverter, SparseTensorNewConverter,
918                SparseTensorInitConverter, SparseTensorConvertConverter,
919                SparseTensorReleaseConverter, SparseTensorToPointersConverter,
920                SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
921                SparseTensorLoadConverter, SparseTensorLexInsertConverter>(
922       typeConverter, patterns.getContext());
923 }
924