1 //===- SparseTensorLowering.cpp - Sparse tensor primitives conversion -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Convert sparse tensor primitives to calls into a runtime support library. 10 // Note that this is a current implementation choice to keep the conversion 11 // simple. In principle, these primitives could also be converted to actual 12 // elaborate IR code that implements the primitives on the selected sparse 13 // tensor storage schemes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/Linalg/Utils/Utils.h" 19 #include "mlir/Dialect/MemRef/IR/MemRef.h" 20 #include "mlir/Dialect/SCF/SCF.h" 21 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 22 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 23 #include "mlir/Dialect/StandardOps/IR/Ops.h" 24 #include "mlir/Dialect/Tensor/IR/Tensor.h" 25 #include "mlir/Transforms/DialectConversion.h" 26 27 using namespace mlir; 28 using namespace mlir::sparse_tensor; 29 30 namespace { 31 32 //===----------------------------------------------------------------------===// 33 // Helper methods. 34 //===----------------------------------------------------------------------===// 35 36 /// Returns internal type encoding for primary storage. Keep these 37 /// values consistent with the sparse runtime support library. 38 static unsigned getPrimaryTypeEncoding(Type tp) { 39 if (tp.isF64()) 40 return 1; 41 if (tp.isF32()) 42 return 2; 43 if (tp.isInteger(64)) 44 return 3; 45 if (tp.isInteger(32)) 46 return 4; 47 if (tp.isInteger(16)) 48 return 5; 49 if (tp.isInteger(8)) 50 return 6; 51 return 0; 52 } 53 54 /// Returns internal type encoding for overhead storage. Keep these 55 /// values consistent with the sparse runtime support library. 56 static unsigned getOverheadTypeEncoding(unsigned width) { 57 switch (width) { 58 default: 59 return 1; 60 case 32: 61 return 2; 62 case 16: 63 return 3; 64 case 8: 65 return 4; 66 } 67 } 68 69 /// Returns internal dimension level type encoding. Keep these 70 /// values consistent with the sparse runtime support library. 71 static unsigned 72 getDimLevelTypeEncoding(SparseTensorEncodingAttr::DimLevelType dlt) { 73 switch (dlt) { 74 case SparseTensorEncodingAttr::DimLevelType::Dense: 75 return 0; 76 case SparseTensorEncodingAttr::DimLevelType::Compressed: 77 return 1; 78 case SparseTensorEncodingAttr::DimLevelType::Singleton: 79 return 2; 80 } 81 llvm_unreachable("Unknown SparseTensorEncodingAttr::DimLevelType"); 82 } 83 84 /// Returns integers of given width and values as a constant tensor. 85 /// We cast the static shape into a dynamic shape to ensure that the 86 /// method signature remains uniform across different tensor dimensions. 87 static Value getTensor(ConversionPatternRewriter &rewriter, unsigned width, 88 Location loc, ArrayRef<APInt> values) { 89 Type etp = rewriter.getIntegerType(width); 90 unsigned sz = values.size(); 91 RankedTensorType tt1 = RankedTensorType::get({sz}, etp); 92 RankedTensorType tt2 = RankedTensorType::get({ShapedType::kDynamicSize}, etp); 93 auto elts = 94 rewriter.create<ConstantOp>(loc, DenseElementsAttr::get(tt1, values)); 95 return rewriter.create<tensor::CastOp>(loc, tt2, elts); 96 } 97 98 /// Returns a function reference (first hit also inserts into module). Sets 99 /// the "_emit_c_interface" on the function declaration when requested, 100 /// so that LLVM lowering generates a wrapper function that takes care 101 /// of ABI complications with passing in and returning MemRefs to C functions. 102 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name, Type resultType, 103 ValueRange operands, 104 bool emitCInterface = false) { 105 MLIRContext *context = op->getContext(); 106 auto module = op->getParentOfType<ModuleOp>(); 107 auto result = SymbolRefAttr::get(context, name); 108 auto func = module.lookupSymbol<FuncOp>(result.getAttr()); 109 if (!func) { 110 OpBuilder moduleBuilder(module.getBodyRegion()); 111 func = moduleBuilder.create<FuncOp>( 112 op->getLoc(), name, 113 FunctionType::get(context, operands.getTypes(), resultType)); 114 func.setPrivate(); 115 if (emitCInterface) 116 func->setAttr("llvm.emit_c_interface", UnitAttr::get(context)); 117 } 118 return result; 119 } 120 121 /// Generates a call into the "swiss army knife" method of the sparse runtime 122 /// support library for materializing sparse tensors into the computation. The 123 /// method returns the call value and assigns the permutation to 'perm'. 124 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op, 125 SparseTensorEncodingAttr &enc, uint32_t action, 126 Value &perm, Value ptr = Value()) { 127 Location loc = op->getLoc(); 128 ShapedType resType = op->getResult(0).getType().cast<ShapedType>(); 129 SmallVector<Value, 8> params; 130 // Sparsity annotations in tensor constant form. 131 SmallVector<APInt, 4> attrs; 132 unsigned sz = enc.getDimLevelType().size(); 133 for (unsigned i = 0; i < sz; i++) 134 attrs.push_back( 135 APInt(8, getDimLevelTypeEncoding(enc.getDimLevelType()[i]))); 136 params.push_back(getTensor(rewriter, 8, loc, attrs)); 137 // Dimension sizes array of the enveloping *dense* tensor. Useful for either 138 // verification of external data, or for construction of internal data. 139 auto shape = resType.getShape(); 140 SmallVector<APInt, 4> sizes; 141 for (unsigned i = 0; i < sz; i++) { 142 uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i]; 143 sizes.push_back(APInt(64, s)); 144 } 145 params.push_back(getTensor(rewriter, 64, loc, sizes)); 146 // Dimension order permutation array. This is the "identity" permutation by 147 // default, or otherwise the "reverse" permutation of a given ordering, so 148 // that indices can be mapped quickly to the right position. 149 SmallVector<APInt, 4> rev(sz); 150 if (AffineMap p = enc.getDimOrdering()) { 151 for (unsigned i = 0; i < sz; i++) 152 rev[p.getDimPosition(i)] = APInt(64, i); 153 } else { 154 for (unsigned i = 0; i < sz; i++) 155 rev[i] = APInt(64, i); 156 } 157 perm = getTensor(rewriter, 64, loc, rev); 158 params.push_back(perm); 159 // Secondary and primary types encoding. 160 unsigned secPtr = getOverheadTypeEncoding(enc.getPointerBitWidth()); 161 unsigned secInd = getOverheadTypeEncoding(enc.getIndexBitWidth()); 162 unsigned primary = getPrimaryTypeEncoding(resType.getElementType()); 163 assert(primary); 164 params.push_back( 165 rewriter.create<ConstantOp>(loc, rewriter.getI64IntegerAttr(secPtr))); 166 params.push_back( 167 rewriter.create<ConstantOp>(loc, rewriter.getI64IntegerAttr(secInd))); 168 params.push_back( 169 rewriter.create<ConstantOp>(loc, rewriter.getI64IntegerAttr(primary))); 170 // User action and pointer. 171 Type pTp = LLVM::LLVMPointerType::get(IntegerType::get(op->getContext(), 8)); 172 if (!ptr) 173 ptr = rewriter.create<LLVM::NullOp>(loc, pTp); 174 params.push_back( 175 rewriter.create<ConstantOp>(loc, rewriter.getI32IntegerAttr(action))); 176 params.push_back(ptr); 177 // Generate the call to create new tensor. 178 StringRef name = "newSparseTensor"; 179 auto call = rewriter.create<CallOp>( 180 loc, pTp, getFunc(op, name, pTp, params, /*emitCInterface=*/true), 181 params); 182 return call.getResult(0); 183 } 184 185 /// Generates the comparison `v != 0` where `v` is of numeric type `t`. 186 /// For floating types, we use the "unordered" comparator (i.e., returns 187 /// true if `v` is NaN). 188 static Value genIsNonzero(ConversionPatternRewriter &rewriter, Location loc, 189 Type t, Value v) { 190 Value zero = rewriter.create<ConstantOp>(loc, rewriter.getZeroAttr(t)); 191 if (t.isa<FloatType>()) 192 return rewriter.create<CmpFOp>(loc, CmpFPredicate::UNE, v, zero); 193 if (t.isIntOrIndex()) 194 return rewriter.create<CmpIOp>(loc, CmpIPredicate::ne, v, zero); 195 llvm_unreachable("Unknown element type"); 196 } 197 198 /// Generates a call that adds one element to a coordinate scheme. 199 /// In particular, this generates code like the following: 200 /// val = a[i1,..,ik]; 201 /// if val != 0 202 /// t->add(val, [i1,..,ik], [p1,..,pk]); 203 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op, 204 Value ptr, Value tensor, Value ind, Value perm, 205 ValueRange ivs) { 206 StringRef name; 207 Type eltType = tensor.getType().cast<ShapedType>().getElementType(); 208 if (eltType.isF64()) 209 name = "addEltF64"; 210 else if (eltType.isF32()) 211 name = "addEltF32"; 212 else if (eltType.isInteger(64)) 213 name = "addEltI64"; 214 else if (eltType.isInteger(32)) 215 name = "addEltI32"; 216 else if (eltType.isInteger(16)) 217 name = "addEltI16"; 218 else if (eltType.isInteger(8)) 219 name = "addEltI8"; 220 else 221 llvm_unreachable("Unknown element type"); 222 Location loc = op->getLoc(); 223 Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs); 224 Value cond = genIsNonzero(rewriter, loc, eltType, val); 225 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false); 226 rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 227 unsigned i = 0; 228 for (auto iv : ivs) { 229 Value idx = rewriter.create<ConstantOp>(loc, rewriter.getIndexAttr(i++)); 230 rewriter.create<memref::StoreOp>(loc, iv, ind, idx); 231 } 232 SmallVector<Value, 8> params; 233 params.push_back(ptr); 234 params.push_back(val); 235 params.push_back(ind); 236 params.push_back(perm); 237 Type pTp = LLVM::LLVMPointerType::get(IntegerType::get(op->getContext(), 8)); 238 rewriter.create<CallOp>( 239 loc, pTp, getFunc(op, name, pTp, params, /*emitCInterface=*/true), 240 params); 241 } 242 243 //===----------------------------------------------------------------------===// 244 // Conversion rules. 245 //===----------------------------------------------------------------------===// 246 247 /// Sparse conversion rule for returns. 248 class SparseReturnConverter : public OpConversionPattern<ReturnOp> { 249 public: 250 using OpConversionPattern::OpConversionPattern; 251 LogicalResult 252 matchAndRewrite(ReturnOp op, OpAdaptor adaptor, 253 ConversionPatternRewriter &rewriter) const override { 254 rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands()); 255 return success(); 256 } 257 }; 258 259 /// Sparse conversion rule for dimension accesses. 260 class SparseTensorToDimSizeConverter 261 : public OpConversionPattern<tensor::DimOp> { 262 public: 263 using OpConversionPattern::OpConversionPattern; 264 LogicalResult 265 matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor, 266 ConversionPatternRewriter &rewriter) const override { 267 Type resType = op.getType(); 268 auto enc = getSparseTensorEncoding(op.source().getType()); 269 if (!enc) 270 return failure(); 271 // Permute the dim index. 272 Optional<int64_t> index = op.getConstantIndex(); 273 if (!index.hasValue()) 274 return failure(); 275 int64_t idx = index.getValue(); 276 if (AffineMap p = enc.getDimOrdering()) 277 idx = p.getPermutedPosition(idx); 278 // Generate the call. 279 StringRef name = "sparseDimSize"; 280 SmallVector<Value, 2> params; 281 params.push_back(adaptor.getOperands()[0]); 282 params.push_back( 283 rewriter.create<ConstantOp>(op.getLoc(), rewriter.getIndexAttr(idx))); 284 rewriter.replaceOpWithNewOp<CallOp>( 285 op, resType, getFunc(op, name, resType, params), params); 286 return success(); 287 } 288 }; 289 290 /// Sparse conversion rule for the new operator. 291 class SparseTensorNewConverter : public OpConversionPattern<NewOp> { 292 using OpConversionPattern::OpConversionPattern; 293 LogicalResult 294 matchAndRewrite(NewOp op, OpAdaptor adaptor, 295 ConversionPatternRewriter &rewriter) const override { 296 Type resType = op.getType(); 297 auto enc = getSparseTensorEncoding(resType); 298 if (!enc) 299 return failure(); 300 Value perm; 301 rewriter.replaceOp( 302 op, genNewCall(rewriter, op, enc, 0, perm, adaptor.getOperands()[0])); 303 return success(); 304 } 305 }; 306 307 /// Sparse conversion rule for the convert operator. 308 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> { 309 using OpConversionPattern::OpConversionPattern; 310 LogicalResult 311 matchAndRewrite(ConvertOp op, OpAdaptor adaptor, 312 ConversionPatternRewriter &rewriter) const override { 313 Type resType = op.getType(); 314 auto encDst = getSparseTensorEncoding(resType); 315 auto encSrc = getSparseTensorEncoding(op.source().getType()); 316 if (encDst && encSrc) { 317 // This is a sparse => sparse conversion, which is handled as follows: 318 // t = src->asCOO(); ; src to COO in dst order 319 // dst = newSparseTensor(t) 320 // Using the coordinate scheme as an intermediate does not always 321 // yield the fastest conversion but avoids the need for a full 322 // O(N^2) conversion matrix. 323 Value perm; 324 Value coo = 325 genNewCall(rewriter, op, encDst, 3, perm, adaptor.getOperands()[0]); 326 rewriter.replaceOp(op, genNewCall(rewriter, op, encDst, 1, perm, coo)); 327 return success(); 328 } 329 if (!encDst || encSrc) { 330 // TODO: sparse => dense 331 return failure(); 332 } 333 // This is a dense => sparse conversion, which is handled as follows: 334 // t = newSparseCOO() 335 // for i1 in dim1 336 // .. 337 // for ik in dimk 338 // val = a[i1,..,ik] 339 // if val != 0 340 // t->add(val, [i1,..,ik], [p1,..,pk]) 341 // s = newSparseTensor(t) 342 // Note that the dense tensor traversal code is actually implemented 343 // using MLIR IR to avoid having to expose too much low-level 344 // memref traversal details to the runtime support library. 345 // Also note that the code below only generates the "new" ops and 346 // the loop-nest per se; whereas the entire body of the innermost 347 // loop is generated by genAddElt(). 348 Location loc = op->getLoc(); 349 ShapedType shape = resType.cast<ShapedType>(); 350 auto memTp = 351 MemRefType::get({ShapedType::kDynamicSize}, rewriter.getIndexType()); 352 Value perm; 353 Value ptr = genNewCall(rewriter, op, encDst, 2, perm); 354 Value tensor = adaptor.getOperands()[0]; 355 Value arg = rewriter.create<ConstantOp>( 356 loc, rewriter.getIndexAttr(shape.getRank())); 357 Value ind = rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{arg}); 358 SmallVector<Value> lo; 359 SmallVector<Value> hi; 360 SmallVector<Value> st; 361 Value zero = rewriter.create<ConstantOp>(loc, rewriter.getIndexAttr(0)); 362 Value one = rewriter.create<ConstantOp>(loc, rewriter.getIndexAttr(1)); 363 for (unsigned i = 0, rank = shape.getRank(); i < rank; i++) { 364 lo.push_back(zero); 365 hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, tensor, i)); 366 st.push_back(one); 367 } 368 scf::buildLoopNest(rewriter, op.getLoc(), lo, hi, st, {}, 369 [&](OpBuilder &builder, Location loc, ValueRange ivs, 370 ValueRange args) -> scf::ValueVector { 371 genAddEltCall(rewriter, op, ptr, tensor, ind, perm, 372 ivs); 373 return {}; 374 }); 375 rewriter.replaceOp(op, genNewCall(rewriter, op, encDst, 1, perm, ptr)); 376 return success(); 377 } 378 }; 379 380 /// Sparse conversion rule for pointer accesses. 381 class SparseTensorToPointersConverter 382 : public OpConversionPattern<ToPointersOp> { 383 public: 384 using OpConversionPattern::OpConversionPattern; 385 LogicalResult 386 matchAndRewrite(ToPointersOp op, OpAdaptor adaptor, 387 ConversionPatternRewriter &rewriter) const override { 388 Type resType = op.getType(); 389 Type eltType = resType.cast<ShapedType>().getElementType(); 390 StringRef name; 391 if (eltType.isIndex()) 392 name = "sparsePointers"; 393 else if (eltType.isInteger(64)) 394 name = "sparsePointers64"; 395 else if (eltType.isInteger(32)) 396 name = "sparsePointers32"; 397 else if (eltType.isInteger(16)) 398 name = "sparsePointers16"; 399 else if (eltType.isInteger(8)) 400 name = "sparsePointers8"; 401 else 402 return failure(); 403 rewriter.replaceOpWithNewOp<CallOp>(op, resType, 404 getFunc(op, name, resType, 405 adaptor.getOperands(), 406 /*emitCInterface=*/true), 407 adaptor.getOperands()); 408 return success(); 409 } 410 }; 411 412 /// Sparse conversion rule for index accesses. 413 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> { 414 public: 415 using OpConversionPattern::OpConversionPattern; 416 LogicalResult 417 matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor, 418 ConversionPatternRewriter &rewriter) const override { 419 Type resType = op.getType(); 420 Type eltType = resType.cast<ShapedType>().getElementType(); 421 StringRef name; 422 if (eltType.isIndex()) 423 name = "sparseIndices"; 424 else if (eltType.isInteger(64)) 425 name = "sparseIndices64"; 426 else if (eltType.isInteger(32)) 427 name = "sparseIndices32"; 428 else if (eltType.isInteger(16)) 429 name = "sparseIndices16"; 430 else if (eltType.isInteger(8)) 431 name = "sparseIndices8"; 432 else 433 return failure(); 434 rewriter.replaceOpWithNewOp<CallOp>(op, resType, 435 getFunc(op, name, resType, 436 adaptor.getOperands(), 437 /*emitCInterface=*/true), 438 adaptor.getOperands()); 439 return success(); 440 } 441 }; 442 443 /// Sparse conversion rule for value accesses. 444 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> { 445 public: 446 using OpConversionPattern::OpConversionPattern; 447 LogicalResult 448 matchAndRewrite(ToValuesOp op, OpAdaptor adaptor, 449 ConversionPatternRewriter &rewriter) const override { 450 Type resType = op.getType(); 451 Type eltType = resType.cast<ShapedType>().getElementType(); 452 StringRef name; 453 if (eltType.isF64()) 454 name = "sparseValuesF64"; 455 else if (eltType.isF32()) 456 name = "sparseValuesF32"; 457 else if (eltType.isInteger(64)) 458 name = "sparseValuesI64"; 459 else if (eltType.isInteger(32)) 460 name = "sparseValuesI32"; 461 else if (eltType.isInteger(16)) 462 name = "sparseValuesI16"; 463 else if (eltType.isInteger(8)) 464 name = "sparseValuesI8"; 465 else 466 return failure(); 467 rewriter.replaceOpWithNewOp<CallOp>(op, resType, 468 getFunc(op, name, resType, 469 adaptor.getOperands(), 470 /*emitCInterface=*/true), 471 adaptor.getOperands()); 472 return success(); 473 } 474 }; 475 476 /// Sparse conversion rule for tensor reconstruction. 477 class SparseTensorToTensorConverter : public OpConversionPattern<ToTensorOp> { 478 public: 479 using OpConversionPattern::OpConversionPattern; 480 LogicalResult 481 // Simply fold the operator into the pointer to the sparse storage scheme. 482 matchAndRewrite(ToTensorOp op, OpAdaptor adaptor, 483 ConversionPatternRewriter &rewriter) const override { 484 // Check that all arguments of the tensor reconstruction operators are calls 485 // into the support library that query exactly the same opaque pointer. 486 Value ptr; 487 for (Value op : adaptor.getOperands()) { 488 if (auto call = op.getDefiningOp<CallOp>()) { 489 Value arg = call.getOperand(0); 490 if (!arg.getType().isa<LLVM::LLVMPointerType>()) 491 return failure(); 492 if (!ptr) 493 ptr = arg; 494 else if (arg != ptr) 495 return failure(); 496 } 497 } 498 // If a single opaque pointer is found, perform the folding. 499 if (!ptr) 500 return failure(); 501 rewriter.replaceOp(op, ptr); 502 return success(); 503 } 504 }; 505 506 } // namespace 507 508 //===----------------------------------------------------------------------===// 509 // Public method for populating conversion rules. 510 //===----------------------------------------------------------------------===// 511 512 /// Populates the given patterns list with conversion rules required for 513 /// the sparsification of linear algebra operations. 514 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter, 515 RewritePatternSet &patterns) { 516 patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter, 517 SparseTensorNewConverter, SparseTensorConvertConverter, 518 SparseTensorToPointersConverter, SparseTensorToIndicesConverter, 519 SparseTensorToValuesConverter, SparseTensorToTensorConverter>( 520 typeConverter, patterns.getContext()); 521 } 522