1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/Linalg/Utils/Utils.h"
19 #include "mlir/Dialect/MemRef/IR/MemRef.h"
20 #include "mlir/Dialect/SCF/SCF.h"
21 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
22 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
23 #include "mlir/Dialect/StandardOps/IR/Ops.h"
24 #include "mlir/Dialect/Tensor/IR/Tensor.h"
25 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
26 #include "mlir/Transforms/DialectConversion.h"
27 
28 using namespace mlir;
29 using namespace mlir::sparse_tensor;
30 
31 namespace {
32 
33 //===----------------------------------------------------------------------===//
34 // Helper methods.
35 //===----------------------------------------------------------------------===//
36 
37 /// Generates a constant zero of the given type.
38 inline static Value constantZero(ConversionPatternRewriter &rewriter,
39                                  Location loc, Type t) {
40   return rewriter.create<arith::ConstantOp>(loc, t, rewriter.getZeroAttr(t));
41 }
42 
43 /// Generates a constant of `index` type.
44 inline static Value constantIndex(ConversionPatternRewriter &rewriter,
45                                   Location loc, int64_t i) {
46   return rewriter.create<arith::ConstantIndexOp>(loc, i);
47 }
48 
49 /// Generates a constant of `i32` type.
50 inline static Value constantI32(ConversionPatternRewriter &rewriter,
51                                 Location loc, int32_t i) {
52   return rewriter.create<arith::ConstantIntOp>(loc, i, 32);
53 }
54 
55 /// Generates a constant of `i8` type.
56 inline static Value constantI8(ConversionPatternRewriter &rewriter,
57                                Location loc, int8_t i) {
58   return rewriter.create<arith::ConstantIntOp>(loc, i, 8);
59 }
60 
61 /// Generates a constant of the given `Action`.
62 static Value constantAction(ConversionPatternRewriter &rewriter, Location loc,
63                             Action action) {
64   return constantI32(rewriter, loc, static_cast<uint32_t>(action));
65 }
66 
67 /// Generates a constant of the internal type encoding for overhead storage.
68 static Value constantOverheadTypeEncoding(ConversionPatternRewriter &rewriter,
69                                           Location loc, unsigned width) {
70   OverheadType sec;
71   switch (width) {
72   default:
73     sec = OverheadType::kU64;
74     break;
75   case 32:
76     sec = OverheadType::kU32;
77     break;
78   case 16:
79     sec = OverheadType::kU16;
80     break;
81   case 8:
82     sec = OverheadType::kU8;
83     break;
84   }
85   return constantI32(rewriter, loc, static_cast<uint32_t>(sec));
86 }
87 
88 /// Generates a constant of the internal type encoding for primary storage.
89 static Value constantPrimaryTypeEncoding(ConversionPatternRewriter &rewriter,
90                                          Location loc, Type tp) {
91   PrimaryType primary;
92   if (tp.isF64())
93     primary = PrimaryType::kF64;
94   else if (tp.isF32())
95     primary = PrimaryType::kF32;
96   else if (tp.isInteger(64))
97     primary = PrimaryType::kI64;
98   else if (tp.isInteger(32))
99     primary = PrimaryType::kI32;
100   else if (tp.isInteger(16))
101     primary = PrimaryType::kI16;
102   else if (tp.isInteger(8))
103     primary = PrimaryType::kI8;
104   else
105     llvm_unreachable("Unknown element type");
106   return constantI32(rewriter, loc, static_cast<uint32_t>(primary));
107 }
108 
109 /// Generates a constant of the internal dimension level type encoding.
110 static Value
111 constantDimLevelTypeEncoding(ConversionPatternRewriter &rewriter, Location loc,
112                              SparseTensorEncodingAttr::DimLevelType dlt) {
113   DimLevelType dlt2;
114   switch (dlt) {
115   case SparseTensorEncodingAttr::DimLevelType::Dense:
116     dlt2 = DimLevelType::kDense;
117     break;
118   case SparseTensorEncodingAttr::DimLevelType::Compressed:
119     dlt2 = DimLevelType::kCompressed;
120     break;
121   case SparseTensorEncodingAttr::DimLevelType::Singleton:
122     dlt2 = DimLevelType::kSingleton;
123     break;
124   }
125   return constantI8(rewriter, loc, static_cast<uint8_t>(dlt2));
126 }
127 
128 /// Returns a function reference (first hit also inserts into module). Sets
129 /// the "_emit_c_interface" on the function declaration when requested,
130 /// so that LLVM lowering generates a wrapper function that takes care
131 /// of ABI complications with passing in and returning MemRefs to C functions.
132 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
133                                  TypeRange resultType, ValueRange operands,
134                                  bool emitCInterface = false) {
135   MLIRContext *context = op->getContext();
136   auto module = op->getParentOfType<ModuleOp>();
137   auto result = SymbolRefAttr::get(context, name);
138   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
139   if (!func) {
140     OpBuilder moduleBuilder(module.getBodyRegion());
141     func = moduleBuilder.create<FuncOp>(
142         op->getLoc(), name,
143         FunctionType::get(context, operands.getTypes(), resultType));
144     func.setPrivate();
145     if (emitCInterface)
146       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
147   }
148   return result;
149 }
150 
151 /// Generates dimension size call.
152 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
153                             SparseTensorEncodingAttr &enc, Value src,
154                             int64_t idx) {
155   // Permute the index according to an optional dimension ordering.
156   if (AffineMap p = enc.getDimOrdering())
157     idx = p.getPermutedPosition(idx);
158   // Generate the call.
159   Location loc = op->getLoc();
160   StringRef name = "sparseDimSize";
161   SmallVector<Value, 2> params;
162   params.push_back(src);
163   params.push_back(constantIndex(rewriter, loc, idx));
164   Type iTp = rewriter.getIndexType();
165   auto fn = getFunc(op, name, iTp, params);
166   return rewriter.create<CallOp>(loc, iTp, fn, params).getResult(0);
167 }
168 
169 /// Generates a call into the "swiss army knife" method of the sparse runtime
170 /// support library for materializing sparse tensors into the computation.
171 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
172                         ArrayRef<Value> params) {
173   Location loc = op->getLoc();
174   StringRef name = "newSparseTensor";
175   Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
176   auto fn = getFunc(op, name, pTp, params, /*emitCInterface=*/true);
177   auto call = rewriter.create<CallOp>(loc, pTp, fn, params);
178   return call.getResult(0);
179 }
180 
181 /// Populates given sizes array from type.
182 static void sizesFromType(ConversionPatternRewriter &rewriter,
183                           SmallVector<Value, 4> &sizes, Location loc,
184                           ShapedType stp) {
185   auto shape = stp.getShape();
186   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
187     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
188     sizes.push_back(constantIndex(rewriter, loc, s));
189   }
190 }
191 
192 /// Populates given sizes array from source.
193 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
194                          SmallVector<Value, 4> &sizes, Location loc,
195                          Value src) {
196   ShapedType stp = src.getType().cast<ShapedType>();
197   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
198     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
199 }
200 
201 /// Populates given sizes array from type (for static sizes) and from
202 /// an already converted into opague pointer source (for dynamic sizes).
203 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
204                          SmallVector<Value, 4> &sizes, Operation *op,
205                          SparseTensorEncodingAttr &enc, ShapedType stp,
206                          Value src) {
207   auto shape = stp.getShape();
208   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
209     if (shape[i] == ShapedType::kDynamicSize)
210       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
211     else
212       sizes.push_back(constantIndex(rewriter, op->getLoc(), shape[i]));
213 }
214 
215 /// Generates an uninitialized temporary buffer of the given size and
216 /// type, but returns it as type `memref<? x $tp>` (rather than as type
217 /// `memref<$sz x $tp>`).
218 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
219                        unsigned sz, Type tp) {
220   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
221   Value a = constantIndex(rewriter, loc, sz);
222   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{a});
223 }
224 
225 /// Generates an uninitialized temporary buffer with room for one value
226 /// of the given type, and returns the `memref<$tp>`.
227 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
228                              Type tp) {
229   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
230 }
231 
232 /// Generates a temporary buffer of the given type and given contents.
233 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
234                        ArrayRef<Value> values) {
235   unsigned sz = values.size();
236   assert(sz >= 1);
237   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
238   for (unsigned i = 0; i < sz; i++) {
239     Value idx = constantIndex(rewriter, loc, i);
240     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
241   }
242   return buffer;
243 }
244 
245 /// Populates parameters required to call the "swiss army knife" method of the
246 /// sparse runtime support library for materializing sparse tensors into the
247 /// computation.
248 static void newParams(ConversionPatternRewriter &rewriter,
249                       SmallVector<Value, 8> &params, Operation *op,
250                       SparseTensorEncodingAttr &enc, Action action,
251                       ValueRange szs, Value ptr = Value()) {
252   Location loc = op->getLoc();
253   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
254   unsigned sz = dlt.size();
255   // Sparsity annotations.
256   SmallVector<Value, 4> attrs;
257   for (unsigned i = 0; i < sz; i++)
258     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
259   params.push_back(genBuffer(rewriter, loc, attrs));
260   // Dimension sizes array of the enveloping tensor. Useful for either
261   // verification of external data, or for construction of internal data.
262   SmallVector<Value, 4> sizes;
263   for (Value s : szs)
264     sizes.push_back(s);
265   params.push_back(genBuffer(rewriter, loc, sizes));
266   // Dimension order permutation array. This is the "identity" permutation by
267   // default, or otherwise the "reverse" permutation of a given ordering, so
268   // that indices can be mapped quickly to the right position.
269   SmallVector<Value, 4> rev(sz);
270   if (AffineMap p = enc.getDimOrdering()) {
271     for (unsigned i = 0; i < sz; i++)
272       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
273   } else {
274     for (unsigned i = 0; i < sz; i++)
275       rev[i] = constantIndex(rewriter, loc, i);
276   }
277   params.push_back(genBuffer(rewriter, loc, rev));
278   // Secondary and primary types encoding.
279   ShapedType resType = op->getResult(0).getType().cast<ShapedType>();
280   params.push_back(
281       constantOverheadTypeEncoding(rewriter, loc, enc.getPointerBitWidth()));
282   params.push_back(
283       constantOverheadTypeEncoding(rewriter, loc, enc.getIndexBitWidth()));
284   params.push_back(
285       constantPrimaryTypeEncoding(rewriter, loc, resType.getElementType()));
286   // User action and pointer.
287   Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
288   if (!ptr)
289     ptr = rewriter.create<LLVM::NullOp>(loc, pTp);
290   params.push_back(constantAction(rewriter, loc, action));
291   params.push_back(ptr);
292 }
293 
294 /// Generates the comparison `v != 0` where `v` is of numeric type `t`.
295 /// For floating types, we use the "unordered" comparator (i.e., returns
296 /// true if `v` is NaN).
297 static Value genIsNonzero(ConversionPatternRewriter &rewriter, Location loc,
298                           Value v) {
299   Type t = v.getType();
300   Value zero = constantZero(rewriter, loc, t);
301   if (t.isa<FloatType>())
302     return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNE, v,
303                                           zero);
304   if (t.isIntOrIndex())
305     return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, v,
306                                           zero);
307   llvm_unreachable("Unknown element type");
308 }
309 
310 /// Generates the code to read the value from tensor[ivs], and conditionally
311 /// stores the indices ivs to the memory in ind. The generated code looks like
312 /// the following and the insertion point after this routine is inside the
313 /// if-then branch behind the assignment to ind. This is to ensure that the
314 /// addEltX call generated after is inside the if-then branch.
315 ///    if (tensor[ivs]!=0) {
316 ///      ind = ivs
317 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
318                                       Location loc, Value tensor, Value ind,
319                                       ValueRange ivs) {
320   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
321   Value cond = genIsNonzero(rewriter, loc, val);
322   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
323   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
324   unsigned i = 0;
325   for (auto iv : ivs) {
326     Value idx = constantIndex(rewriter, loc, i++);
327     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
328   }
329   return val;
330 }
331 
332 /// Generates a call that adds one element to a coordinate scheme.
333 /// In particular, this generates code like the following:
334 ///   val = a[i1,..,ik];
335 ///   if val != 0
336 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
337 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
338                           Type eltType, Value ptr, Value val, Value ind,
339                           Value perm) {
340   Location loc = op->getLoc();
341   StringRef name;
342   if (eltType.isF64())
343     name = "addEltF64";
344   else if (eltType.isF32())
345     name = "addEltF32";
346   else if (eltType.isInteger(64))
347     name = "addEltI64";
348   else if (eltType.isInteger(32))
349     name = "addEltI32";
350   else if (eltType.isInteger(16))
351     name = "addEltI16";
352   else if (eltType.isInteger(8))
353     name = "addEltI8";
354   else
355     llvm_unreachable("Unknown element type");
356   SmallVector<Value, 8> params;
357   params.push_back(ptr);
358   params.push_back(val);
359   params.push_back(ind);
360   params.push_back(perm);
361   Type pTp = LLVM::LLVMPointerType::get(rewriter.getI8Type());
362   auto fn = getFunc(op, name, pTp, params, /*emitCInterface=*/true);
363   rewriter.create<CallOp>(loc, pTp, fn, params);
364 }
365 
366 /// Generates a call to `iter->getNext()`.  If there is a next element,
367 /// then it is copied into the out-parameters `ind` and `elemPtr`,
368 /// and the return value is true.  If there isn't a next element, then
369 /// the memory for `iter` is freed and the return value is false.
370 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
371                             Value iter, Value ind, Value elemPtr) {
372   Location loc = op->getLoc();
373   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
374   StringRef name;
375   if (elemTp.isF64())
376     name = "getNextF64";
377   else if (elemTp.isF32())
378     name = "getNextF32";
379   else if (elemTp.isInteger(64))
380     name = "getNextI64";
381   else if (elemTp.isInteger(32))
382     name = "getNextI32";
383   else if (elemTp.isInteger(16))
384     name = "getNextI16";
385   else if (elemTp.isInteger(8))
386     name = "getNextI8";
387   else
388     llvm_unreachable("Unknown element type");
389   SmallVector<Value, 3> params;
390   params.push_back(iter);
391   params.push_back(ind);
392   params.push_back(elemPtr);
393   Type i1 = rewriter.getI1Type();
394   auto fn = getFunc(op, name, i1, params, /*emitCInterface=*/true);
395   auto call = rewriter.create<CallOp>(loc, i1, fn, params);
396   return call.getResult(0);
397 }
398 
399 /// If the tensor is a sparse constant, generates and returns the pair of
400 /// the constants for the indices and the values.
401 static Optional<std::pair<Value, Value>>
402 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
403                        Value tensor) {
404   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
405     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
406       DenseElementsAttr indicesAttr = attr.getIndices();
407       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
408       DenseElementsAttr valuesAttr = attr.getValues();
409       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
410       return std::make_pair(indices, values);
411     }
412   }
413   return {};
414 }
415 
416 /// Generates the code to copy the index at indices[ivs] to ind, and return
417 /// the value at value[ivs].
418 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
419                                        Location loc, Value indices,
420                                        Value values, Value ind, ValueRange ivs,
421                                        unsigned rank) {
422   for (unsigned i = 0; i < rank; i++) {
423     Value idx = constantIndex(rewriter, loc, i);
424     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
425                                                    ValueRange{ivs[0], idx});
426     val =
427         rewriter.create<arith::IndexCastOp>(loc, val, rewriter.getIndexType());
428     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
429   }
430   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
431 }
432 
433 /// Generates code to allocate a tensor of the given type, and zero
434 /// initialize it.  If the tensor type has any dynamic sizes, then the
435 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
436 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
437 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
438                               RankedTensorType tensorTp, ValueRange sizes) {
439   Type elemTp = tensorTp.getElementType();
440   auto shape = tensorTp.getShape();
441   auto memTp = MemRefType::get(shape, elemTp);
442   SmallVector<Value> dynamicSizes;
443   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
444     if (shape[i] == ShapedType::kDynamicSize)
445       dynamicSizes.push_back(sizes[i]);
446   }
447   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
448   Value zero = constantZero(rewriter, loc, elemTp);
449   rewriter.create<linalg::FillOp>(loc, zero, mem).result();
450   return mem;
451 }
452 
453 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
454 /// the tensor created by allocDenseTensor().  The `rank` is the rank
455 /// of the `tensor` and the length of `ind`.
456 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
457                                         Location loc, Value elemPtr,
458                                         Value tensor, unsigned rank,
459                                         Value ind) {
460   SmallVector<Value, 4> ivs;
461   ivs.reserve(rank);
462   for (unsigned i = 0; i < rank; i++) {
463     Value idx = constantIndex(rewriter, loc, i);
464     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
465   }
466   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
467   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
468 }
469 
470 //===----------------------------------------------------------------------===//
471 // Conversion rules.
472 //===----------------------------------------------------------------------===//
473 
474 /// Sparse conversion rule for returns.
475 class SparseReturnConverter : public OpConversionPattern<ReturnOp> {
476 public:
477   using OpConversionPattern::OpConversionPattern;
478   LogicalResult
479   matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
480                   ConversionPatternRewriter &rewriter) const override {
481     rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands());
482     return success();
483   }
484 };
485 
486 /// Sparse conversion rule for dimension accesses.
487 class SparseTensorToDimSizeConverter
488     : public OpConversionPattern<tensor::DimOp> {
489 public:
490   using OpConversionPattern::OpConversionPattern;
491   LogicalResult
492   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
493                   ConversionPatternRewriter &rewriter) const override {
494     // Only rewrite annotated DimOp with constant index.
495     auto enc = getSparseTensorEncoding(op.source().getType());
496     if (!enc)
497       return failure();
498     Optional<int64_t> index = op.getConstantIndex();
499     if (!index.hasValue())
500       return failure();
501     // Generate the call.
502     Value src = adaptor.getOperands()[0];
503     int64_t idx = index.getValue();
504     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
505     return success();
506   }
507 };
508 
509 /// Sparse conversion rule for trivial tensor casts.
510 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
511   using OpConversionPattern::OpConversionPattern;
512   LogicalResult
513   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
514                   ConversionPatternRewriter &rewriter) const override {
515     // Only rewrite identically annotated source/dest.
516     auto encDst = getSparseTensorEncoding(op.getType());
517     auto encSrc = getSparseTensorEncoding(op.source().getType());
518     if (!encDst || encDst != encSrc)
519       return failure();
520     rewriter.replaceOp(op, adaptor.getOperands());
521     return success();
522   }
523 };
524 
525 /// Sparse conversion rule for the new operator.
526 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
527   using OpConversionPattern::OpConversionPattern;
528   LogicalResult
529   matchAndRewrite(NewOp op, OpAdaptor adaptor,
530                   ConversionPatternRewriter &rewriter) const override {
531     Type resType = op.getType();
532     auto enc = getSparseTensorEncoding(resType);
533     if (!enc)
534       return failure();
535     // Generate the call to construct tensor from ptr. The sizes are
536     // inferred from the result type of the new operator.
537     SmallVector<Value, 4> sizes;
538     SmallVector<Value, 8> params;
539     sizesFromType(rewriter, sizes, op.getLoc(), resType.cast<ShapedType>());
540     Value ptr = adaptor.getOperands()[0];
541     newParams(rewriter, params, op, enc, Action::kFromFile, sizes, ptr);
542     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
543     return success();
544   }
545 };
546 
547 /// Sparse conversion rule for the init operator.
548 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
549   using OpConversionPattern::OpConversionPattern;
550   LogicalResult
551   matchAndRewrite(InitOp op, OpAdaptor adaptor,
552                   ConversionPatternRewriter &rewriter) const override {
553     Type resType = op.getType();
554     auto enc = getSparseTensorEncoding(resType);
555     if (!enc)
556       return failure();
557     // Generate the call to construct empty tensor. The sizes are
558     // explicitly defined by the arguments to the init operator.
559     SmallVector<Value, 8> params;
560     newParams(rewriter, params, op, enc, Action::kEmpty, adaptor.getOperands());
561     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
562     return success();
563   }
564 };
565 
566 /// Sparse conversion rule for the convert operator.
567 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
568   using OpConversionPattern::OpConversionPattern;
569   LogicalResult
570   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
571                   ConversionPatternRewriter &rewriter) const override {
572     Location loc = op->getLoc();
573     Type resType = op.getType();
574     Type srcType = op.source().getType();
575     auto encDst = getSparseTensorEncoding(resType);
576     auto encSrc = getSparseTensorEncoding(srcType);
577     Value src = adaptor.getOperands()[0];
578     if (encDst && encSrc) {
579       // This is a sparse => sparse conversion, which is handled as follows:
580       //   t = src->toCOO();         ; src to COO in dst order
581       //   dst = newSparseTensor(t)
582       // Using the coordinate scheme as an intermediate does not always
583       // yield the fastest conversion but avoids the need for a full
584       // O(N^2) conversion matrix.
585       if (encDst == encSrc) {
586         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
587         return success();
588       }
589       SmallVector<Value, 4> sizes;
590       SmallVector<Value, 8> params;
591       sizesFromPtr(rewriter, sizes, op, encSrc, srcType.cast<ShapedType>(),
592                    src);
593       // Set up encoding with right mix of src and dst so that the two
594       // method calls can share most parameters, while still providing
595       // the correct sparsity information to either of them.
596       auto enc = SparseTensorEncodingAttr::get(
597           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
598           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
599       newParams(rewriter, params, op, enc, Action::kToCOO, sizes, src);
600       Value coo = genNewCall(rewriter, op, params);
601       params[3] = constantOverheadTypeEncoding(rewriter, loc,
602                                                encDst.getPointerBitWidth());
603       params[4] = constantOverheadTypeEncoding(rewriter, loc,
604                                                encDst.getIndexBitWidth());
605       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
606       params[7] = coo;
607       rewriter.replaceOp(op, genNewCall(rewriter, op, params));
608       return success();
609     }
610     if (!encDst && encSrc) {
611       // This is sparse => dense conversion, which is handled as follows:
612       //   dst = new Tensor(0);
613       //   iter = src->toCOO();
614       //   iter->startIterator();
615       //   while (elem = iter->getNext()) {
616       //     dst[elem.indices] = elem.value;
617       //   }
618       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
619       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
620       unsigned rank = dstTensorTp.getRank();
621       Type elemTp = dstTensorTp.getElementType();
622       // Fabricate a no-permutation encoding for newParams().
623       // The pointer/index types must be those of `src`.
624       // The dimLevelTypes aren't actually used by Action::kToIterator.
625       encDst = SparseTensorEncodingAttr::get(
626           op->getContext(),
627           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
628               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
629           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
630       SmallVector<Value, 4> sizes;
631       SmallVector<Value, 8> params;
632       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
633       newParams(rewriter, params, op, encDst, Action::kToIterator, sizes, src);
634       Value iter = genNewCall(rewriter, op, params);
635       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
636       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
637       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
638       SmallVector<Value> noArgs;
639       SmallVector<Type> noTypes;
640       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
641       Block *before = rewriter.createBlock(&whileOp.before(), {}, noTypes);
642       rewriter.setInsertionPointToEnd(before);
643       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
644       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
645       Block *after = rewriter.createBlock(&whileOp.after(), {}, noTypes);
646       rewriter.setInsertionPointToStart(after);
647       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
648       rewriter.create<scf::YieldOp>(loc);
649       rewriter.setInsertionPointAfter(whileOp);
650       rewriter.replaceOpWithNewOp<memref::TensorLoadOp>(op, resType, dst);
651       return success();
652     }
653     if (!encDst && !encSrc) {
654       // dense => dense
655       return failure();
656     }
657     // This is a dense => sparse conversion or a sparse constant in COO =>
658     // sparse conversion, which is handled as follows:
659     //   t = newSparseCOO()
660     //   ...code to fill the COO tensor t...
661     //   s = newSparseTensor(t)
662     //
663     // To fill the COO tensor from a dense tensor:
664     //   for i1 in dim1
665     //    ..
666     //     for ik in dimk
667     //       val = a[i1,..,ik]
668     //       if val != 0
669     //         t->add(val, [i1,..,ik], [p1,..,pk])
670     //
671     // To fill the COO tensor from a sparse constant in COO format:
672     //   for i in range(NNZ)
673     //     val = values[i]
674     //     [i1,..,ik] = indices[i]
675     //     t->add(val, [i1,..,ik], [p1,..,pk])
676     //
677     // Note that the dense tensor traversal code is actually implemented
678     // using MLIR IR to avoid having to expose too much low-level
679     // memref traversal details to the runtime support library.
680     // Also note that the code below only generates the "new" ops and
681     // the loop-nest per se; whereas the entire body of the innermost
682     // loop is generated by genAddElt().
683     ShapedType stp = resType.cast<ShapedType>();
684     unsigned rank = stp.getRank();
685     SmallVector<Value, 4> sizes;
686     SmallVector<Value, 8> params;
687     sizesFromSrc(rewriter, sizes, loc, src);
688     newParams(rewriter, params, op, encDst, Action::kEmptyCOO, sizes);
689     Value ptr = genNewCall(rewriter, op, params);
690     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
691     Value perm = params[2];
692     SmallVector<Value> lo;
693     SmallVector<Value> hi;
694     SmallVector<Value> st;
695     Value zero = constantIndex(rewriter, loc, 0);
696     Value one = constantIndex(rewriter, loc, 1);
697     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
698     bool isCOOConstant = indicesValues.hasValue();
699     Value indices;
700     Value values;
701     if (isCOOConstant) {
702       indices = indicesValues->first;
703       values = indicesValues->second;
704       lo.push_back(zero);
705       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
706       st.push_back(one);
707     } else {
708       for (unsigned i = 0; i < rank; i++) {
709         lo.push_back(zero);
710         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
711         st.push_back(one);
712       }
713     }
714     Type eltType = stp.getElementType();
715     scf::buildLoopNest(
716         rewriter, op.getLoc(), lo, hi, st, {},
717         [&](OpBuilder &builder, Location loc, ValueRange ivs,
718             ValueRange args) -> scf::ValueVector {
719           Value val;
720           if (isCOOConstant)
721             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
722                                             ivs, rank);
723           else
724             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
725           genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
726           return {};
727         });
728     // Final call to construct sparse tensor storage.
729     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
730     params[7] = ptr;
731     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
732     return success();
733   }
734 };
735 
736 /// Sparse conversion rule for the release operator.
737 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
738 public:
739   using OpConversionPattern::OpConversionPattern;
740   LogicalResult
741   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
742                   ConversionPatternRewriter &rewriter) const override {
743     StringRef name = "delSparseTensor";
744     TypeRange none;
745     auto fn = getFunc(op, name, none, adaptor.getOperands());
746     rewriter.create<CallOp>(op.getLoc(), none, fn, adaptor.getOperands());
747     rewriter.eraseOp(op);
748     return success();
749   }
750 };
751 
752 /// Sparse conversion rule for pointer accesses.
753 class SparseTensorToPointersConverter
754     : public OpConversionPattern<ToPointersOp> {
755 public:
756   using OpConversionPattern::OpConversionPattern;
757   LogicalResult
758   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
759                   ConversionPatternRewriter &rewriter) const override {
760     Type resType = op.getType();
761     Type eltType = resType.cast<ShapedType>().getElementType();
762     StringRef name;
763     if (eltType.isIndex())
764       name = "sparsePointers";
765     else if (eltType.isInteger(64))
766       name = "sparsePointers64";
767     else if (eltType.isInteger(32))
768       name = "sparsePointers32";
769     else if (eltType.isInteger(16))
770       name = "sparsePointers16";
771     else if (eltType.isInteger(8))
772       name = "sparsePointers8";
773     else
774       return failure();
775     auto fn = getFunc(op, name, resType, adaptor.getOperands(),
776                       /*emitCInterface=*/true);
777     rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
778     return success();
779   }
780 };
781 
782 /// Sparse conversion rule for index accesses.
783 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
784 public:
785   using OpConversionPattern::OpConversionPattern;
786   LogicalResult
787   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
788                   ConversionPatternRewriter &rewriter) const override {
789     Type resType = op.getType();
790     Type eltType = resType.cast<ShapedType>().getElementType();
791     StringRef name;
792     if (eltType.isIndex())
793       name = "sparseIndices";
794     else if (eltType.isInteger(64))
795       name = "sparseIndices64";
796     else if (eltType.isInteger(32))
797       name = "sparseIndices32";
798     else if (eltType.isInteger(16))
799       name = "sparseIndices16";
800     else if (eltType.isInteger(8))
801       name = "sparseIndices8";
802     else
803       return failure();
804     auto fn = getFunc(op, name, resType, adaptor.getOperands(),
805                       /*emitCInterface=*/true);
806     rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
807     return success();
808   }
809 };
810 
811 /// Sparse conversion rule for value accesses.
812 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
813 public:
814   using OpConversionPattern::OpConversionPattern;
815   LogicalResult
816   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
817                   ConversionPatternRewriter &rewriter) const override {
818     Type resType = op.getType();
819     Type eltType = resType.cast<ShapedType>().getElementType();
820     StringRef name;
821     if (eltType.isF64())
822       name = "sparseValuesF64";
823     else if (eltType.isF32())
824       name = "sparseValuesF32";
825     else if (eltType.isInteger(64))
826       name = "sparseValuesI64";
827     else if (eltType.isInteger(32))
828       name = "sparseValuesI32";
829     else if (eltType.isInteger(16))
830       name = "sparseValuesI16";
831     else if (eltType.isInteger(8))
832       name = "sparseValuesI8";
833     else
834       return failure();
835     auto fn = getFunc(op, name, resType, adaptor.getOperands(),
836                       /*emitCInterface=*/true);
837     rewriter.replaceOpWithNewOp<CallOp>(op, resType, fn, adaptor.getOperands());
838     return success();
839   }
840 };
841 
842 /// Sparse conversion rule for tensor rematerialization.
843 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
844 public:
845   using OpConversionPattern::OpConversionPattern;
846   LogicalResult
847   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
848                   ConversionPatternRewriter &rewriter) const override {
849     if (op.hasInserts()) {
850       // Finalize any pending insertions.
851       StringRef name = "endInsert";
852       TypeRange noTp;
853       auto fn = getFunc(op, name, noTp, adaptor.getOperands());
854       rewriter.create<CallOp>(op.getLoc(), noTp, fn, adaptor.getOperands());
855     }
856     rewriter.replaceOp(op, adaptor.getOperands());
857     return success();
858   }
859 };
860 
861 /// Sparse conversion rule for inserting in lexicographic index order.
862 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
863 public:
864   using OpConversionPattern::OpConversionPattern;
865   LogicalResult
866   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
867                   ConversionPatternRewriter &rewriter) const override {
868     Type srcType = op.tensor().getType();
869     Type eltType = srcType.cast<ShapedType>().getElementType();
870     StringRef name;
871     if (eltType.isF64())
872       name = "lexInsertF64";
873     else if (eltType.isF32())
874       name = "lexInsertF32";
875     else if (eltType.isInteger(64))
876       name = "lexInsertI64";
877     else if (eltType.isInteger(32))
878       name = "lexInsertI32";
879     else if (eltType.isInteger(16))
880       name = "lexInsertI16";
881     else if (eltType.isInteger(8))
882       name = "lexInsertI8";
883     else
884       llvm_unreachable("Unknown element type");
885     TypeRange noTp;
886     auto fn =
887         getFunc(op, name, noTp, adaptor.getOperands(), /*emitCInterface=*/true);
888     rewriter.replaceOpWithNewOp<CallOp>(op, noTp, fn, adaptor.getOperands());
889     return success();
890   }
891 };
892 
893 } // namespace
894 
895 //===----------------------------------------------------------------------===//
896 // Public method for populating conversion rules.
897 //===----------------------------------------------------------------------===//
898 
899 /// Populates the given patterns list with conversion rules required for
900 /// the sparsification of linear algebra operations.
901 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
902                                                   RewritePatternSet &patterns) {
903   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
904                SparseCastConverter, SparseTensorNewConverter,
905                SparseTensorInitConverter, SparseTensorConvertConverter,
906                SparseTensorReleaseConverter, SparseTensorToPointersConverter,
907                SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
908                SparseTensorLoadConverter, SparseTensorLexInsertConverter>(
909       typeConverter, patterns.getContext());
910 }
911