1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodegenUtils.h"
18 
19 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
20 #include "mlir/Dialect/Func/IR/FuncOps.h"
21 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
22 #include "mlir/Dialect/Linalg/Utils/Utils.h"
23 #include "mlir/Dialect/MemRef/IR/MemRef.h"
24 #include "mlir/Dialect/SCF/SCF.h"
25 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
27 #include "mlir/Dialect/Tensor/IR/Tensor.h"
28 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
29 #include "mlir/Transforms/DialectConversion.h"
30 
31 using namespace mlir;
32 using namespace mlir::sparse_tensor;
33 
34 namespace {
35 
36 /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
37 /// `createFuncCall()`, and `replaceOpWithFuncCall()`.
38 enum class EmitCInterface : bool { Off = false, On = true };
39 
40 //===----------------------------------------------------------------------===//
41 // Helper methods.
42 //===----------------------------------------------------------------------===//
43 
44 /// Returns the equivalent of `void*` for opaque arguments to the
45 /// execution engine.
46 static Type getOpaquePointerType(PatternRewriter &rewriter) {
47   return LLVM::LLVMPointerType::get(rewriter.getI8Type());
48 }
49 
50 /// Returns a function reference (first hit also inserts into module). Sets
51 /// the "_emit_c_interface" on the function declaration when requested,
52 /// so that LLVM lowering generates a wrapper function that takes care
53 /// of ABI complications with passing in and returning MemRefs to C functions.
54 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
55                                  TypeRange resultType, ValueRange operands,
56                                  EmitCInterface emitCInterface) {
57   MLIRContext *context = op->getContext();
58   auto module = op->getParentOfType<ModuleOp>();
59   auto result = SymbolRefAttr::get(context, name);
60   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
61   if (!func) {
62     OpBuilder moduleBuilder(module.getBodyRegion());
63     func = moduleBuilder.create<FuncOp>(
64         op->getLoc(), name,
65         FunctionType::get(context, operands.getTypes(), resultType));
66     func.setPrivate();
67     if (static_cast<bool>(emitCInterface))
68       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
69   }
70   return result;
71 }
72 
73 /// Creates a `CallOp` to the function reference returned by `getFunc()`.
74 static func::CallOp createFuncCall(OpBuilder &builder, Operation *op,
75                                    StringRef name, TypeRange resultType,
76                                    ValueRange operands,
77                                    EmitCInterface emitCInterface) {
78   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
79   return builder.create<func::CallOp>(op->getLoc(), resultType, fn, operands);
80 }
81 
82 /// Replaces the `op` with  a `CallOp` to the function reference returned
83 /// by `getFunc()`.
84 static func::CallOp replaceOpWithFuncCall(PatternRewriter &rewriter,
85                                           Operation *op, StringRef name,
86                                           TypeRange resultType,
87                                           ValueRange operands,
88                                           EmitCInterface emitCInterface) {
89   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
90   return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn,
91                                                    operands);
92 }
93 
94 /// Generates dimension size call.
95 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
96                             SparseTensorEncodingAttr &enc, Value src,
97                             int64_t idx) {
98   // Permute the index according to an optional dimension ordering.
99   if (AffineMap p = enc.getDimOrdering())
100     idx = p.getPermutedPosition(idx);
101   // Generate the call.
102   StringRef name = "sparseDimSize";
103   SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)};
104   Type iTp = rewriter.getIndexType();
105   return createFuncCall(rewriter, op, name, iTp, params, EmitCInterface::Off)
106       .getResult(0);
107 }
108 
109 /// Generates a call into the "swiss army knife" method of the sparse runtime
110 /// support library for materializing sparse tensors into the computation.
111 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
112                         ArrayRef<Value> params) {
113   StringRef name = "newSparseTensor";
114   Type pTp = getOpaquePointerType(rewriter);
115   return createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On)
116       .getResult(0);
117 }
118 
119 /// Populates given sizes array from type.
120 static void sizesFromType(ConversionPatternRewriter &rewriter,
121                           SmallVector<Value, 4> &sizes, Location loc,
122                           ShapedType stp) {
123   auto shape = stp.getShape();
124   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
125     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
126     sizes.push_back(constantIndex(rewriter, loc, s));
127   }
128 }
129 
130 /// Populates given sizes array from source.
131 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
132                          SmallVector<Value, 4> &sizes, Location loc,
133                          Value src) {
134   unsigned rank = src.getType().cast<ShapedType>().getRank();
135   for (unsigned i = 0; i < rank; i++)
136     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
137 }
138 
139 /// Populates given sizes array from type (for static sizes) and from
140 /// an already converted into opague pointer source (for dynamic sizes).
141 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
142                          SmallVector<Value, 4> &sizes, Operation *op,
143                          SparseTensorEncodingAttr &enc, ShapedType stp,
144                          Value src) {
145   Location loc = op->getLoc();
146   auto shape = stp.getShape();
147   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
148     if (shape[i] == ShapedType::kDynamicSize)
149       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
150     else
151       sizes.push_back(constantIndex(rewriter, loc, shape[i]));
152 }
153 
154 /// Generates an uninitialized temporary buffer of the given size and
155 /// type, but returns it as type `memref<? x $tp>` (rather than as type
156 /// `memref<$sz x $tp>`).
157 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
158                        Value sz, Type tp) {
159   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
160   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
161 }
162 
163 /// Generates an uninitialized temporary buffer of the given size and
164 /// type, but returns it as type `memref<? x $tp>` (rather than as type
165 /// `memref<$sz x $tp>`).
166 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
167                        unsigned sz, Type tp) {
168   return genAlloca(rewriter, loc, constantIndex(rewriter, loc, sz), tp);
169 }
170 
171 /// Generates an uninitialized temporary buffer with room for one value
172 /// of the given type, and returns the `memref<$tp>`.
173 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
174                              Type tp) {
175   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
176 }
177 
178 /// Generates a temporary buffer of the given type and given contents.
179 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
180                        ValueRange values) {
181   unsigned sz = values.size();
182   assert(sz >= 1);
183   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
184   for (unsigned i = 0; i < sz; i++) {
185     Value idx = constantIndex(rewriter, loc, i);
186     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
187   }
188   return buffer;
189 }
190 
191 /// Populates parameters required to call the "swiss army knife" method of the
192 /// sparse runtime support library for materializing sparse tensors into the
193 /// computation.
194 static void newParams(ConversionPatternRewriter &rewriter,
195                       SmallVector<Value, 8> &params, Operation *op,
196                       ShapedType stp, SparseTensorEncodingAttr &enc,
197                       Action action, ValueRange szs, Value ptr = Value()) {
198   Location loc = op->getLoc();
199   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
200   unsigned sz = dlt.size();
201   // Sparsity annotations.
202   SmallVector<Value, 4> attrs;
203   for (unsigned i = 0; i < sz; i++)
204     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
205   params.push_back(genBuffer(rewriter, loc, attrs));
206   // Dimension sizes array of the enveloping tensor. Useful for either
207   // verification of external data, or for construction of internal data.
208   params.push_back(genBuffer(rewriter, loc, szs));
209   // Dimension order permutation array. This is the "identity" permutation by
210   // default, or otherwise the "reverse" permutation of a given ordering, so
211   // that indices can be mapped quickly to the right position.
212   SmallVector<Value, 4> rev(sz);
213   if (AffineMap p = enc.getDimOrdering()) {
214     for (unsigned i = 0; i < sz; i++)
215       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
216   } else {
217     for (unsigned i = 0; i < sz; i++)
218       rev[i] = constantIndex(rewriter, loc, i);
219   }
220   params.push_back(genBuffer(rewriter, loc, rev));
221   // Secondary and primary types encoding.
222   Type elemTp = stp.getElementType();
223   params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
224   params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
225   params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp));
226   // User action.
227   params.push_back(constantAction(rewriter, loc, action));
228   // Payload pointer.
229   if (!ptr)
230     ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter));
231   params.push_back(ptr);
232 }
233 
234 /// Generates the code to read the value from tensor[ivs], and conditionally
235 /// stores the indices ivs to the memory in ind. The generated code looks like
236 /// the following and the insertion point after this routine is inside the
237 /// if-then branch behind the assignment to ind. This is to ensure that the
238 /// addEltX call generated after is inside the if-then branch.
239 ///    if (tensor[ivs]!=0) {
240 ///      ind = ivs
241 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
242                                       Location loc, Value tensor, Value ind,
243                                       ValueRange ivs) {
244   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
245   Value cond = genIsNonzero(rewriter, loc, val);
246   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
247   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
248   unsigned i = 0;
249   for (auto iv : ivs) {
250     Value idx = constantIndex(rewriter, loc, i++);
251     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
252   }
253   return val;
254 }
255 
256 /// Generates a call to release/delete a `SparseTensorCOO`.
257 static void genDelCOOCall(OpBuilder &builder, Operation *op, Type elemTp,
258                           Value coo) {
259   SmallString<21> name{"delSparseTensorCOO", primaryTypeFunctionSuffix(elemTp)};
260   TypeRange noTp;
261   createFuncCall(builder, op, name, noTp, coo, EmitCInterface::Off);
262 }
263 
264 /// Generates a call that adds one element to a coordinate scheme.
265 /// In particular, this generates code like the following:
266 ///   val = a[i1,..,ik];
267 ///   if val != 0
268 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
269 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
270                           Type eltType, Value ptr, Value val, Value ind,
271                           Value perm) {
272   SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
273   SmallVector<Value, 4> params{ptr, val, ind, perm};
274   Type pTp = getOpaquePointerType(rewriter);
275   createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On);
276 }
277 
278 /// Generates a call to `iter->getNext()`.  If there is a next element,
279 /// then it is copied into the out-parameters `ind` and `elemPtr`,
280 /// and the return value is true.  If there isn't a next element, then
281 /// the memory for `iter` is freed and the return value is false.
282 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
283                             Value iter, Value ind, Value elemPtr) {
284   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
285   SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
286   SmallVector<Value, 3> params{iter, ind, elemPtr};
287   Type i1 = rewriter.getI1Type();
288   return createFuncCall(rewriter, op, name, i1, params, EmitCInterface::On)
289       .getResult(0);
290 }
291 
292 /// If the tensor is a sparse constant, generates and returns the pair of
293 /// the constants for the indices and the values.
294 static Optional<std::pair<Value, Value>>
295 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
296                        Value tensor) {
297   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
298     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
299       DenseElementsAttr indicesAttr = attr.getIndices();
300       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
301       DenseElementsAttr valuesAttr = attr.getValues();
302       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
303       return std::make_pair(indices, values);
304     }
305   }
306   return {};
307 }
308 
309 /// Generates the code to copy the index at indices[ivs] to ind, and return
310 /// the value at value[ivs].
311 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
312                                        Location loc, Value indices,
313                                        Value values, Value ind, ValueRange ivs,
314                                        unsigned rank) {
315   for (unsigned i = 0; i < rank; i++) {
316     Value idx = constantIndex(rewriter, loc, i);
317     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
318                                                    ValueRange{ivs[0], idx});
319     val =
320         rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), val);
321     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
322   }
323   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
324 }
325 
326 /// Generates code to allocate a tensor of the given type, and zero
327 /// initialize it.  If the tensor type has any dynamic sizes, then the
328 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
329 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
330 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
331                               RankedTensorType tensorTp, ValueRange sizes) {
332   Type elemTp = tensorTp.getElementType();
333   auto shape = tensorTp.getShape();
334   auto memTp = MemRefType::get(shape, elemTp);
335   SmallVector<Value> dynamicSizes;
336   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
337     if (shape[i] == ShapedType::kDynamicSize)
338       dynamicSizes.push_back(sizes[i]);
339   }
340   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
341   Value zero = constantZero(rewriter, loc, elemTp);
342   rewriter.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{mem});
343   return mem;
344 }
345 
346 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
347 /// the tensor created by allocDenseTensor().  The `rank` is the rank
348 /// of the `tensor` and the length of `ind`.
349 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
350                                         Location loc, Value elemPtr,
351                                         Value tensor, unsigned rank,
352                                         Value ind) {
353   SmallVector<Value, 4> ivs;
354   ivs.reserve(rank);
355   for (unsigned i = 0; i < rank; i++) {
356     Value idx = constantIndex(rewriter, loc, i);
357     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
358   }
359   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
360   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
361 }
362 
363 //===----------------------------------------------------------------------===//
364 // Conversion rules.
365 //===----------------------------------------------------------------------===//
366 
367 /// Sparse conversion rule for returns.
368 class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
369 public:
370   using OpConversionPattern::OpConversionPattern;
371   LogicalResult
372   matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
373                   ConversionPatternRewriter &rewriter) const override {
374     rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
375     return success();
376   }
377 };
378 
379 /// Sparse conversion rule for dimension accesses.
380 class SparseTensorToDimSizeConverter
381     : public OpConversionPattern<tensor::DimOp> {
382 public:
383   using OpConversionPattern::OpConversionPattern;
384   LogicalResult
385   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
386                   ConversionPatternRewriter &rewriter) const override {
387     // Only rewrite annotated DimOp with constant index.
388     auto enc = getSparseTensorEncoding(op.source().getType());
389     if (!enc)
390       return failure();
391     Optional<int64_t> index = op.getConstantIndex();
392     if (!index.hasValue())
393       return failure();
394     // Generate the call.
395     Value src = adaptor.getOperands()[0];
396     int64_t idx = index.getValue();
397     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
398     return success();
399   }
400 };
401 
402 /// Sparse conversion rule for trivial tensor casts.
403 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
404   using OpConversionPattern::OpConversionPattern;
405   LogicalResult
406   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
407                   ConversionPatternRewriter &rewriter) const override {
408     // Only rewrite identically annotated source/dest.
409     auto encDst = getSparseTensorEncoding(op.getType());
410     auto encSrc = getSparseTensorEncoding(op.source().getType());
411     if (!encDst || encDst != encSrc)
412       return failure();
413     rewriter.replaceOp(op, adaptor.getOperands());
414     return success();
415   }
416 };
417 
418 /// Sparse conversion rule for the new operator.
419 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
420   using OpConversionPattern::OpConversionPattern;
421   LogicalResult
422   matchAndRewrite(NewOp op, OpAdaptor adaptor,
423                   ConversionPatternRewriter &rewriter) const override {
424     Type resType = op.getType();
425     auto enc = getSparseTensorEncoding(resType);
426     if (!enc)
427       return failure();
428     // Generate the call to construct tensor from ptr. The sizes are
429     // inferred from the result type of the new operator.
430     SmallVector<Value, 4> sizes;
431     SmallVector<Value, 8> params;
432     ShapedType stp = resType.cast<ShapedType>();
433     sizesFromType(rewriter, sizes, op.getLoc(), stp);
434     Value ptr = adaptor.getOperands()[0];
435     newParams(rewriter, params, op, stp, enc, Action::kFromFile, sizes, ptr);
436     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
437     return success();
438   }
439 };
440 
441 /// Sparse conversion rule for the init operator.
442 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
443   using OpConversionPattern::OpConversionPattern;
444   LogicalResult
445   matchAndRewrite(InitOp op, OpAdaptor adaptor,
446                   ConversionPatternRewriter &rewriter) const override {
447     Type resType = op.getType();
448     auto enc = getSparseTensorEncoding(resType);
449     if (!enc)
450       return failure();
451     // Generate the call to construct empty tensor. The sizes are
452     // explicitly defined by the arguments to the init operator.
453     SmallVector<Value, 8> params;
454     ShapedType stp = resType.cast<ShapedType>();
455     newParams(rewriter, params, op, stp, enc, Action::kEmpty,
456               adaptor.getOperands());
457     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
458     return success();
459   }
460 };
461 
462 /// Sparse conversion rule for the convert operator.
463 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
464   /// Options to control sparse code generation.
465   SparseTensorConversionOptions options;
466 
467 public:
468   using OpConversionPattern::OpConversionPattern;
469   SparseTensorConvertConverter(MLIRContext *context,
470                                SparseTensorConversionOptions o)
471       : OpConversionPattern<ConvertOp>(context), options(o) {}
472   SparseTensorConvertConverter(TypeConverter &typeConv, MLIRContext *context,
473                                SparseTensorConversionOptions o)
474       : OpConversionPattern<ConvertOp>(typeConv, context), options(o) {}
475 
476   LogicalResult
477   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
478                   ConversionPatternRewriter &rewriter) const override {
479     Location loc = op->getLoc();
480     Type resType = op.getType();
481     Type srcType = op.source().getType();
482     auto encDst = getSparseTensorEncoding(resType);
483     auto encSrc = getSparseTensorEncoding(srcType);
484     Value src = adaptor.getOperands()[0];
485     if (encDst && encSrc) {
486       // This is a sparse => sparse conversion, which is handled as follows:
487       //   t = src->toCOO();         ; src to COO in dst order
488       //   dst = newSparseTensor(t)
489       // Using the coordinate scheme as an intermediate does not always
490       // yield the fastest conversion but avoids the need for a full
491       // O(N^2) conversion matrix.
492       if (encDst == encSrc) {
493         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
494         return success();
495       }
496       SmallVector<Value, 4> sizes;
497       SmallVector<Value, 8> params;
498       ShapedType stp = srcType.cast<ShapedType>();
499       sizesFromPtr(rewriter, sizes, op, encSrc, stp, src);
500       // Set up encoding with right mix of src and dst so that the two
501       // method calls can share most parameters, while still providing
502       // the correct sparsity information to either of them.
503       auto enc = SparseTensorEncodingAttr::get(
504           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
505           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
506       newParams(rewriter, params, op, stp, enc, Action::kToCOO, sizes, src);
507       Value coo = genNewCall(rewriter, op, params);
508       params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
509       params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
510       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
511       params[7] = coo;
512       Value dst = genNewCall(rewriter, op, params);
513       genDelCOOCall(rewriter, op, stp.getElementType(), coo);
514       rewriter.replaceOp(op, dst);
515       return success();
516     }
517     if (!encDst && encSrc) {
518       // This is sparse => dense conversion, which is handled as follows:
519       //   dst = new Tensor(0);
520       //   iter = src->toCOO();
521       //   iter->startIterator();
522       //   while (elem = iter->getNext()) {
523       //     dst[elem.indices] = elem.value;
524       //   }
525       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
526       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
527       unsigned rank = dstTensorTp.getRank();
528       Type elemTp = dstTensorTp.getElementType();
529       // Fabricate a no-permutation encoding for newParams().
530       // The pointer/index types must be those of `src`.
531       // The dimLevelTypes aren't actually used by Action::kToIterator.
532       encDst = SparseTensorEncodingAttr::get(
533           op->getContext(),
534           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
535               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
536           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
537       SmallVector<Value, 4> sizes;
538       SmallVector<Value, 8> params;
539       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
540       newParams(rewriter, params, op, dstTensorTp, encDst, Action::kToIterator,
541                 sizes, src);
542       Value iter = genNewCall(rewriter, op, params);
543       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
544       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
545       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
546       SmallVector<Value> noArgs;
547       SmallVector<Type> noTypes;
548       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
549       Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
550       rewriter.setInsertionPointToEnd(before);
551       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
552       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
553       Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
554       rewriter.setInsertionPointToStart(after);
555       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
556       rewriter.create<scf::YieldOp>(loc);
557       rewriter.setInsertionPointAfter(whileOp);
558       genDelCOOCall(rewriter, op, elemTp, iter);
559       rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
560       return success();
561     }
562     if (!encDst && !encSrc) {
563       // dense => dense
564       return failure();
565     }
566     // This is a dense => sparse conversion or a sparse constant in COO =>
567     // sparse conversion, which is handled as follows:
568     //   t = newSparseCOO()
569     //   ...code to fill the COO tensor t...
570     //   s = newSparseTensor(t)
571     //
572     // To fill the COO tensor from a dense tensor:
573     //   for i1 in dim1
574     //    ..
575     //     for ik in dimk
576     //       val = a[i1,..,ik]
577     //       if val != 0
578     //         t->add(val, [i1,..,ik], [p1,..,pk])
579     //
580     // To fill the COO tensor from a sparse constant in COO format:
581     //   for i in range(NNZ)
582     //     val = values[i]
583     //     [i1,..,ik] = indices[i]
584     //     t->add(val, [i1,..,ik], [p1,..,pk])
585     //
586     // Note that the dense tensor traversal code is actually implemented
587     // using MLIR IR to avoid having to expose too much low-level
588     // memref traversal details to the runtime support library.
589     // Also note that the code below only generates the "new" ops and
590     // the loop-nest per se; whereas the entire body of the innermost
591     // loop is generated by genAddElt().
592     ShapedType stp = resType.cast<ShapedType>();
593     unsigned rank = stp.getRank();
594     SmallVector<Value, 4> sizes;
595     SmallVector<Value, 8> params;
596     sizesFromSrc(rewriter, sizes, loc, src);
597     newParams(rewriter, params, op, stp, encDst, Action::kEmptyCOO, sizes);
598     Value coo = genNewCall(rewriter, op, params);
599     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
600     Value perm = params[2];
601     SmallVector<Value> lo;
602     SmallVector<Value> hi;
603     SmallVector<Value> st;
604     Value zero = constantIndex(rewriter, loc, 0);
605     Value one = constantIndex(rewriter, loc, 1);
606     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
607     bool isCOOConstant = indicesValues.hasValue();
608     Value indices;
609     Value values;
610     if (isCOOConstant) {
611       indices = indicesValues->first;
612       values = indicesValues->second;
613       lo.push_back(zero);
614       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
615       st.push_back(one);
616     } else {
617       for (unsigned i = 0; i < rank; i++) {
618         lo.push_back(zero);
619         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
620         st.push_back(one);
621       }
622     }
623     Type eltType = stp.getElementType();
624     scf::buildLoopNest(
625         rewriter, op.getLoc(), lo, hi, st, {},
626         [&](OpBuilder &builder, Location loc, ValueRange ivs,
627             ValueRange args) -> scf::ValueVector {
628           Value val;
629           if (isCOOConstant)
630             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
631                                             ivs, rank);
632           else
633             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
634           genAddEltCall(rewriter, op, eltType, coo, val, ind, perm);
635           return {};
636         });
637     // Final call to construct sparse tensor storage.
638     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
639     params[7] = coo;
640     Value dst = genNewCall(rewriter, op, params);
641     genDelCOOCall(rewriter, op, eltType, coo);
642     rewriter.replaceOp(op, dst);
643     return success();
644   }
645 };
646 
647 /// Sparse conversion rule for the release operator.
648 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
649 public:
650   using OpConversionPattern::OpConversionPattern;
651   LogicalResult
652   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
653                   ConversionPatternRewriter &rewriter) const override {
654     StringRef name = "delSparseTensor";
655     TypeRange noTp;
656     createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
657                    EmitCInterface::Off);
658     rewriter.eraseOp(op);
659     return success();
660   }
661 };
662 
663 /// Sparse conversion rule for pointer accesses.
664 class SparseTensorToPointersConverter
665     : public OpConversionPattern<ToPointersOp> {
666 public:
667   using OpConversionPattern::OpConversionPattern;
668   LogicalResult
669   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
670                   ConversionPatternRewriter &rewriter) const override {
671     Type resType = op.getType();
672     Type ptrType = resType.cast<ShapedType>().getElementType();
673     SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)};
674     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
675                           EmitCInterface::On);
676     return success();
677   }
678 };
679 
680 /// Sparse conversion rule for index accesses.
681 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
682 public:
683   using OpConversionPattern::OpConversionPattern;
684   LogicalResult
685   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
686                   ConversionPatternRewriter &rewriter) const override {
687     Type resType = op.getType();
688     Type indType = resType.cast<ShapedType>().getElementType();
689     SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)};
690     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
691                           EmitCInterface::On);
692     return success();
693   }
694 };
695 
696 /// Sparse conversion rule for value accesses.
697 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
698 public:
699   using OpConversionPattern::OpConversionPattern;
700   LogicalResult
701   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
702                   ConversionPatternRewriter &rewriter) const override {
703     Type resType = op.getType();
704     Type eltType = resType.cast<ShapedType>().getElementType();
705     SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltType)};
706     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
707                           EmitCInterface::On);
708     return success();
709   }
710 };
711 
712 /// Sparse conversion rule for tensor rematerialization.
713 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
714 public:
715   using OpConversionPattern::OpConversionPattern;
716   LogicalResult
717   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
718                   ConversionPatternRewriter &rewriter) const override {
719     if (op.hasInserts()) {
720       // Finalize any pending insertions.
721       StringRef name = "endInsert";
722       TypeRange noTp;
723       createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
724                      EmitCInterface::Off);
725     }
726     rewriter.replaceOp(op, adaptor.getOperands());
727     return success();
728   }
729 };
730 
731 /// Sparse conversion rule for inserting in lexicographic index order.
732 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
733 public:
734   using OpConversionPattern::OpConversionPattern;
735   LogicalResult
736   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
737                   ConversionPatternRewriter &rewriter) const override {
738     Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
739     SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
740     TypeRange noTp;
741     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
742                           EmitCInterface::On);
743     return success();
744   }
745 };
746 
747 class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
748 public:
749   using OpConversionPattern::OpConversionPattern;
750   LogicalResult
751   matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
752                   ConversionPatternRewriter &rewriter) const override {
753     Location loc = op->getLoc();
754     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
755     Type eltType = srcType.getElementType();
756     Type boolType = rewriter.getIntegerType(1);
757     Type idxType = rewriter.getIndexType();
758     // All initialization should be done on entry of the loop nest.
759     rewriter.setInsertionPointAfter(op.tensor().getDefiningOp());
760     // Determine the size for access expansion.
761     auto enc = getSparseTensorEncoding(srcType);
762     Value src = adaptor.getOperands()[0];
763     Value sz = genDimSizeCall(rewriter, op, enc, src, srcType.getRank() - 1);
764     // Allocate temporary stack buffers for values, filled-switch, and indices.
765     Value values = genAlloca(rewriter, loc, sz, eltType);
766     Value filled = genAlloca(rewriter, loc, sz, boolType);
767     Value indices = genAlloca(rewriter, loc, sz, idxType);
768     Value zero = constantZero(rewriter, loc, idxType);
769     // Reset the values/filled-switch to all-zero/false. Note that this
770     // introduces an O(N) operation into the computation, but this reset
771     // operation is amortized over the innermost loops for the access
772     // pattern expansion.
773     rewriter.create<linalg::FillOp>(
774         loc, ValueRange{constantZero(rewriter, loc, eltType)},
775         ValueRange{values});
776     rewriter.create<linalg::FillOp>(
777         loc, ValueRange{constantZero(rewriter, loc, boolType)},
778         ValueRange{filled});
779     // Replace expansion op with these buffers and initial index.
780     assert(op.getNumResults() == 4);
781     rewriter.replaceOp(op, {values, filled, indices, zero});
782     return success();
783   }
784 };
785 
786 class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
787 public:
788   using OpConversionPattern::OpConversionPattern;
789   LogicalResult
790   matchAndRewrite(CompressOp op, OpAdaptor adaptor,
791                   ConversionPatternRewriter &rewriter) const override {
792     // Note that this method call resets the values/filled-switch back to
793     // all-zero/false by only iterating over the set elements, so the
794     // complexity remains proportional to the sparsity of the expanded
795     // access pattern.
796     Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
797     SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
798     TypeRange noTp;
799     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
800                           EmitCInterface::On);
801     return success();
802   }
803 };
804 
805 class SparseTensorOutConverter : public OpConversionPattern<OutOp> {
806 public:
807   using OpConversionPattern::OpConversionPattern;
808   LogicalResult
809   matchAndRewrite(OutOp op, OpAdaptor adaptor,
810                   ConversionPatternRewriter &rewriter) const override {
811     Location loc = op->getLoc();
812     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
813     // Convert to default permuted COO.
814     Value src = adaptor.getOperands()[0];
815     auto encSrc = getSparseTensorEncoding(srcType);
816     SmallVector<Value, 4> sizes;
817     SmallVector<Value, 8> params;
818     sizesFromPtr(rewriter, sizes, op, encSrc, srcType, src);
819     auto enc = SparseTensorEncodingAttr::get(
820         op->getContext(), encSrc.getDimLevelType(), AffineMap(),
821         encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
822     newParams(rewriter, params, op, srcType, enc, Action::kToCOO, sizes, src);
823     Value coo = genNewCall(rewriter, op, params);
824     // Then output the tensor to external file with indices in the externally
825     // visible lexicographic index order. A sort is required if the source was
826     // not in that order yet (note that the sort can be dropped altogether if
827     // external format does not care about the order at all, but here we assume
828     // it does).
829     bool sort =
830         encSrc.getDimOrdering() && !encSrc.getDimOrdering().isIdentity();
831     params.clear();
832     params.push_back(coo);
833     params.push_back(adaptor.getOperands()[1]);
834     params.push_back(constantI1(rewriter, loc, sort));
835     Type eltType = srcType.getElementType();
836     SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(eltType)};
837     TypeRange noTp;
838     createFuncCall(rewriter, op, name, noTp, params, EmitCInterface::Off);
839     genDelCOOCall(rewriter, op, eltType, coo);
840     rewriter.eraseOp(op);
841     return success();
842   }
843 };
844 
845 } // namespace
846 
847 //===----------------------------------------------------------------------===//
848 // Public method for populating conversion rules.
849 //===----------------------------------------------------------------------===//
850 
851 /// Populates the given patterns list with conversion rules required for
852 /// the sparsification of linear algebra operations.
853 void mlir::populateSparseTensorConversionPatterns(
854     TypeConverter &typeConverter, RewritePatternSet &patterns,
855     const SparseTensorConversionOptions &options) {
856   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
857                SparseCastConverter, SparseTensorNewConverter,
858                SparseTensorInitConverter, SparseTensorReleaseConverter,
859                SparseTensorToPointersConverter, SparseTensorToIndicesConverter,
860                SparseTensorToValuesConverter, SparseTensorLoadConverter,
861                SparseTensorLexInsertConverter, SparseTensorExpandConverter,
862                SparseTensorCompressConverter, SparseTensorOutConverter>(
863       typeConverter, patterns.getContext());
864   patterns.add<SparseTensorConvertConverter>(typeConverter,
865                                              patterns.getContext(), options);
866 }
867