1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodegenUtils.h"
18 
19 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
20 #include "mlir/Dialect/Func/IR/FuncOps.h"
21 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
22 #include "mlir/Dialect/Linalg/Utils/Utils.h"
23 #include "mlir/Dialect/MemRef/IR/MemRef.h"
24 #include "mlir/Dialect/SCF/SCF.h"
25 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
27 #include "mlir/Dialect/Tensor/IR/Tensor.h"
28 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
29 #include "mlir/Transforms/DialectConversion.h"
30 
31 using namespace mlir;
32 using namespace mlir::sparse_tensor;
33 
34 namespace {
35 
36 /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
37 /// `createFuncCall()`, and `replaceOpWithFuncCall()`.
38 enum class EmitCInterface : bool { Off = false, On = true };
39 
40 //===----------------------------------------------------------------------===//
41 // Helper methods.
42 //===----------------------------------------------------------------------===//
43 
44 /// Returns the equivalent of `void*` for opaque arguments to the
45 /// execution engine.
46 static Type getOpaquePointerType(PatternRewriter &rewriter) {
47   return LLVM::LLVMPointerType::get(rewriter.getI8Type());
48 }
49 
50 /// Returns a function reference (first hit also inserts into module). Sets
51 /// the "_emit_c_interface" on the function declaration when requested,
52 /// so that LLVM lowering generates a wrapper function that takes care
53 /// of ABI complications with passing in and returning MemRefs to C functions.
54 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
55                                  TypeRange resultType, ValueRange operands,
56                                  EmitCInterface emitCInterface) {
57   MLIRContext *context = op->getContext();
58   auto module = op->getParentOfType<ModuleOp>();
59   auto result = SymbolRefAttr::get(context, name);
60   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
61   if (!func) {
62     OpBuilder moduleBuilder(module.getBodyRegion());
63     func = moduleBuilder.create<FuncOp>(
64         op->getLoc(), name,
65         FunctionType::get(context, operands.getTypes(), resultType));
66     func.setPrivate();
67     if (static_cast<bool>(emitCInterface))
68       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
69   }
70   return result;
71 }
72 
73 /// Creates a `CallOp` to the function reference returned by `getFunc()`.
74 static func::CallOp createFuncCall(OpBuilder &builder, Operation *op,
75                                    StringRef name, TypeRange resultType,
76                                    ValueRange operands,
77                                    EmitCInterface emitCInterface) {
78   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
79   return builder.create<func::CallOp>(op->getLoc(), resultType, fn, operands);
80 }
81 
82 /// Replaces the `op` with  a `CallOp` to the function reference returned
83 /// by `getFunc()`.
84 static func::CallOp replaceOpWithFuncCall(PatternRewriter &rewriter,
85                                           Operation *op, StringRef name,
86                                           TypeRange resultType,
87                                           ValueRange operands,
88                                           EmitCInterface emitCInterface) {
89   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
90   return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn,
91                                                    operands);
92 }
93 
94 /// Generates dimension size call.
95 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
96                             SparseTensorEncodingAttr &enc, Value src,
97                             int64_t idx) {
98   // Permute the index according to an optional dimension ordering.
99   if (AffineMap p = enc.getDimOrdering())
100     idx = p.getPermutedPosition(idx);
101   // Generate the call.
102   StringRef name = "sparseDimSize";
103   SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)};
104   Type iTp = rewriter.getIndexType();
105   return createFuncCall(rewriter, op, name, iTp, params, EmitCInterface::Off)
106       .getResult(0);
107 }
108 
109 /// Generates a call into the "swiss army knife" method of the sparse runtime
110 /// support library for materializing sparse tensors into the computation.
111 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
112                         ArrayRef<Value> params) {
113   StringRef name = "newSparseTensor";
114   Type pTp = getOpaquePointerType(rewriter);
115   return createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On)
116       .getResult(0);
117 }
118 
119 /// Populates given sizes array from type.
120 static void sizesFromType(ConversionPatternRewriter &rewriter,
121                           SmallVector<Value, 4> &sizes, Location loc,
122                           ShapedType stp) {
123   auto shape = stp.getShape();
124   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
125     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
126     sizes.push_back(constantIndex(rewriter, loc, s));
127   }
128 }
129 
130 /// Populates given sizes array from source.
131 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
132                          SmallVector<Value, 4> &sizes, Location loc,
133                          Value src) {
134   unsigned rank = src.getType().cast<ShapedType>().getRank();
135   for (unsigned i = 0; i < rank; i++)
136     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
137 }
138 
139 /// Populates given sizes array from type (for static sizes) and from
140 /// an already converted into opague pointer source (for dynamic sizes).
141 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
142                          SmallVector<Value, 4> &sizes, Operation *op,
143                          SparseTensorEncodingAttr &enc, ShapedType stp,
144                          Value src) {
145   Location loc = op->getLoc();
146   auto shape = stp.getShape();
147   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
148     if (shape[i] == ShapedType::kDynamicSize)
149       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
150     else
151       sizes.push_back(constantIndex(rewriter, loc, shape[i]));
152 }
153 
154 /// Generates an uninitialized temporary buffer of the given size and
155 /// type, but returns it as type `memref<? x $tp>` (rather than as type
156 /// `memref<$sz x $tp>`).
157 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
158                        Value sz, Type tp) {
159   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
160   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
161 }
162 
163 /// Generates an uninitialized temporary buffer of the given size and
164 /// type, but returns it as type `memref<? x $tp>` (rather than as type
165 /// `memref<$sz x $tp>`).
166 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
167                        unsigned sz, Type tp) {
168   return genAlloca(rewriter, loc, constantIndex(rewriter, loc, sz), tp);
169 }
170 
171 /// Generates an uninitialized temporary buffer with room for one value
172 /// of the given type, and returns the `memref<$tp>`.
173 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
174                              Type tp) {
175   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
176 }
177 
178 /// Generates a temporary buffer of the given type and given contents.
179 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
180                        ArrayRef<Value> values) {
181   unsigned sz = values.size();
182   assert(sz >= 1);
183   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
184   for (unsigned i = 0; i < sz; i++) {
185     Value idx = constantIndex(rewriter, loc, i);
186     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
187   }
188   return buffer;
189 }
190 
191 /// Populates parameters required to call the "swiss army knife" method of the
192 /// sparse runtime support library for materializing sparse tensors into the
193 /// computation.
194 static void newParams(ConversionPatternRewriter &rewriter,
195                       SmallVector<Value, 8> &params, Operation *op,
196                       ShapedType stp, SparseTensorEncodingAttr &enc,
197                       Action action, ValueRange szs, Value ptr = Value()) {
198   Location loc = op->getLoc();
199   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
200   unsigned sz = dlt.size();
201   // Sparsity annotations.
202   SmallVector<Value, 4> attrs;
203   for (unsigned i = 0; i < sz; i++)
204     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
205   params.push_back(genBuffer(rewriter, loc, attrs));
206   // Dimension sizes array of the enveloping tensor. Useful for either
207   // verification of external data, or for construction of internal data.
208   SmallVector<Value, 4> sizes;
209   for (Value s : szs)
210     sizes.push_back(s);
211   params.push_back(genBuffer(rewriter, loc, sizes));
212   // Dimension order permutation array. This is the "identity" permutation by
213   // default, or otherwise the "reverse" permutation of a given ordering, so
214   // that indices can be mapped quickly to the right position.
215   SmallVector<Value, 4> rev(sz);
216   if (AffineMap p = enc.getDimOrdering()) {
217     for (unsigned i = 0; i < sz; i++)
218       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
219   } else {
220     for (unsigned i = 0; i < sz; i++)
221       rev[i] = constantIndex(rewriter, loc, i);
222   }
223   params.push_back(genBuffer(rewriter, loc, rev));
224   // Secondary and primary types encoding.
225   Type elemTp = stp.getElementType();
226   params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
227   params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
228   params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp));
229   // User action.
230   params.push_back(constantAction(rewriter, loc, action));
231   // Payload pointer.
232   if (!ptr)
233     ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter));
234   params.push_back(ptr);
235 }
236 
237 /// Generates the code to read the value from tensor[ivs], and conditionally
238 /// stores the indices ivs to the memory in ind. The generated code looks like
239 /// the following and the insertion point after this routine is inside the
240 /// if-then branch behind the assignment to ind. This is to ensure that the
241 /// addEltX call generated after is inside the if-then branch.
242 ///    if (tensor[ivs]!=0) {
243 ///      ind = ivs
244 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
245                                       Location loc, Value tensor, Value ind,
246                                       ValueRange ivs) {
247   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
248   Value cond = genIsNonzero(rewriter, loc, val);
249   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
250   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
251   unsigned i = 0;
252   for (auto iv : ivs) {
253     Value idx = constantIndex(rewriter, loc, i++);
254     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
255   }
256   return val;
257 }
258 
259 /// Generates a call that adds one element to a coordinate scheme.
260 /// In particular, this generates code like the following:
261 ///   val = a[i1,..,ik];
262 ///   if val != 0
263 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
264 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
265                           Type eltType, Value ptr, Value val, Value ind,
266                           Value perm) {
267   SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
268   SmallVector<Value, 4> params{ptr, val, ind, perm};
269   Type pTp = getOpaquePointerType(rewriter);
270   createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On);
271 }
272 
273 /// Generates a call to `iter->getNext()`.  If there is a next element,
274 /// then it is copied into the out-parameters `ind` and `elemPtr`,
275 /// and the return value is true.  If there isn't a next element, then
276 /// the memory for `iter` is freed and the return value is false.
277 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
278                             Value iter, Value ind, Value elemPtr) {
279   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
280   SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
281   SmallVector<Value, 3> params{iter, ind, elemPtr};
282   Type i1 = rewriter.getI1Type();
283   return createFuncCall(rewriter, op, name, i1, params, EmitCInterface::On)
284       .getResult(0);
285 }
286 
287 /// If the tensor is a sparse constant, generates and returns the pair of
288 /// the constants for the indices and the values.
289 static Optional<std::pair<Value, Value>>
290 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
291                        Value tensor) {
292   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
293     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
294       DenseElementsAttr indicesAttr = attr.getIndices();
295       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
296       DenseElementsAttr valuesAttr = attr.getValues();
297       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
298       return std::make_pair(indices, values);
299     }
300   }
301   return {};
302 }
303 
304 /// Generates the code to copy the index at indices[ivs] to ind, and return
305 /// the value at value[ivs].
306 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
307                                        Location loc, Value indices,
308                                        Value values, Value ind, ValueRange ivs,
309                                        unsigned rank) {
310   for (unsigned i = 0; i < rank; i++) {
311     Value idx = constantIndex(rewriter, loc, i);
312     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
313                                                    ValueRange{ivs[0], idx});
314     val =
315         rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), val);
316     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
317   }
318   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
319 }
320 
321 /// Generates code to allocate a tensor of the given type, and zero
322 /// initialize it.  If the tensor type has any dynamic sizes, then the
323 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
324 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
325 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
326                               RankedTensorType tensorTp, ValueRange sizes) {
327   Type elemTp = tensorTp.getElementType();
328   auto shape = tensorTp.getShape();
329   auto memTp = MemRefType::get(shape, elemTp);
330   SmallVector<Value> dynamicSizes;
331   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
332     if (shape[i] == ShapedType::kDynamicSize)
333       dynamicSizes.push_back(sizes[i]);
334   }
335   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
336   Value zero = constantZero(rewriter, loc, elemTp);
337   rewriter.create<linalg::FillOp>(loc, zero, mem);
338   return mem;
339 }
340 
341 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
342 /// the tensor created by allocDenseTensor().  The `rank` is the rank
343 /// of the `tensor` and the length of `ind`.
344 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
345                                         Location loc, Value elemPtr,
346                                         Value tensor, unsigned rank,
347                                         Value ind) {
348   SmallVector<Value, 4> ivs;
349   ivs.reserve(rank);
350   for (unsigned i = 0; i < rank; i++) {
351     Value idx = constantIndex(rewriter, loc, i);
352     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
353   }
354   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
355   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
356 }
357 
358 //===----------------------------------------------------------------------===//
359 // Conversion rules.
360 //===----------------------------------------------------------------------===//
361 
362 /// Sparse conversion rule for returns.
363 class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
364 public:
365   using OpConversionPattern::OpConversionPattern;
366   LogicalResult
367   matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
368                   ConversionPatternRewriter &rewriter) const override {
369     rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
370     return success();
371   }
372 };
373 
374 /// Sparse conversion rule for dimension accesses.
375 class SparseTensorToDimSizeConverter
376     : public OpConversionPattern<tensor::DimOp> {
377 public:
378   using OpConversionPattern::OpConversionPattern;
379   LogicalResult
380   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
381                   ConversionPatternRewriter &rewriter) const override {
382     // Only rewrite annotated DimOp with constant index.
383     auto enc = getSparseTensorEncoding(op.source().getType());
384     if (!enc)
385       return failure();
386     Optional<int64_t> index = op.getConstantIndex();
387     if (!index.hasValue())
388       return failure();
389     // Generate the call.
390     Value src = adaptor.getOperands()[0];
391     int64_t idx = index.getValue();
392     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
393     return success();
394   }
395 };
396 
397 /// Sparse conversion rule for trivial tensor casts.
398 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
399   using OpConversionPattern::OpConversionPattern;
400   LogicalResult
401   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
402                   ConversionPatternRewriter &rewriter) const override {
403     // Only rewrite identically annotated source/dest.
404     auto encDst = getSparseTensorEncoding(op.getType());
405     auto encSrc = getSparseTensorEncoding(op.source().getType());
406     if (!encDst || encDst != encSrc)
407       return failure();
408     rewriter.replaceOp(op, adaptor.getOperands());
409     return success();
410   }
411 };
412 
413 /// Sparse conversion rule for the new operator.
414 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
415   using OpConversionPattern::OpConversionPattern;
416   LogicalResult
417   matchAndRewrite(NewOp op, OpAdaptor adaptor,
418                   ConversionPatternRewriter &rewriter) const override {
419     Type resType = op.getType();
420     auto enc = getSparseTensorEncoding(resType);
421     if (!enc)
422       return failure();
423     // Generate the call to construct tensor from ptr. The sizes are
424     // inferred from the result type of the new operator.
425     SmallVector<Value, 4> sizes;
426     SmallVector<Value, 8> params;
427     ShapedType stp = resType.cast<ShapedType>();
428     sizesFromType(rewriter, sizes, op.getLoc(), stp);
429     Value ptr = adaptor.getOperands()[0];
430     newParams(rewriter, params, op, stp, enc, Action::kFromFile, sizes, ptr);
431     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
432     return success();
433   }
434 };
435 
436 /// Sparse conversion rule for the init operator.
437 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
438   using OpConversionPattern::OpConversionPattern;
439   LogicalResult
440   matchAndRewrite(InitOp op, OpAdaptor adaptor,
441                   ConversionPatternRewriter &rewriter) const override {
442     Type resType = op.getType();
443     auto enc = getSparseTensorEncoding(resType);
444     if (!enc)
445       return failure();
446     // Generate the call to construct empty tensor. The sizes are
447     // explicitly defined by the arguments to the init operator.
448     SmallVector<Value, 8> params;
449     ShapedType stp = resType.cast<ShapedType>();
450     newParams(rewriter, params, op, stp, enc, Action::kEmpty,
451               adaptor.getOperands());
452     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
453     return success();
454   }
455 };
456 
457 /// Sparse conversion rule for the convert operator.
458 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
459   using OpConversionPattern::OpConversionPattern;
460   LogicalResult
461   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
462                   ConversionPatternRewriter &rewriter) const override {
463     Location loc = op->getLoc();
464     Type resType = op.getType();
465     Type srcType = op.source().getType();
466     auto encDst = getSparseTensorEncoding(resType);
467     auto encSrc = getSparseTensorEncoding(srcType);
468     Value src = adaptor.getOperands()[0];
469     if (encDst && encSrc) {
470       // This is a sparse => sparse conversion, which is handled as follows:
471       //   t = src->toCOO();         ; src to COO in dst order
472       //   dst = newSparseTensor(t)
473       // Using the coordinate scheme as an intermediate does not always
474       // yield the fastest conversion but avoids the need for a full
475       // O(N^2) conversion matrix.
476       if (encDst == encSrc) {
477         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
478         return success();
479       }
480       SmallVector<Value, 4> sizes;
481       SmallVector<Value, 8> params;
482       ShapedType stp = srcType.cast<ShapedType>();
483       sizesFromPtr(rewriter, sizes, op, encSrc, stp, src);
484       // Set up encoding with right mix of src and dst so that the two
485       // method calls can share most parameters, while still providing
486       // the correct sparsity information to either of them.
487       auto enc = SparseTensorEncodingAttr::get(
488           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
489           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
490       newParams(rewriter, params, op, stp, enc, Action::kToCOO, sizes, src);
491       Value coo = genNewCall(rewriter, op, params);
492       params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
493       params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
494       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
495       params[7] = coo;
496       rewriter.replaceOp(op, genNewCall(rewriter, op, params));
497       return success();
498     }
499     if (!encDst && encSrc) {
500       // This is sparse => dense conversion, which is handled as follows:
501       //   dst = new Tensor(0);
502       //   iter = src->toCOO();
503       //   iter->startIterator();
504       //   while (elem = iter->getNext()) {
505       //     dst[elem.indices] = elem.value;
506       //   }
507       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
508       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
509       unsigned rank = dstTensorTp.getRank();
510       Type elemTp = dstTensorTp.getElementType();
511       // Fabricate a no-permutation encoding for newParams().
512       // The pointer/index types must be those of `src`.
513       // The dimLevelTypes aren't actually used by Action::kToIterator.
514       encDst = SparseTensorEncodingAttr::get(
515           op->getContext(),
516           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
517               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
518           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
519       SmallVector<Value, 4> sizes;
520       SmallVector<Value, 8> params;
521       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
522       newParams(rewriter, params, op, dstTensorTp, encDst, Action::kToIterator,
523                 sizes, src);
524       Value iter = genNewCall(rewriter, op, params);
525       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
526       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
527       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
528       SmallVector<Value> noArgs;
529       SmallVector<Type> noTypes;
530       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
531       Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
532       rewriter.setInsertionPointToEnd(before);
533       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
534       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
535       Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
536       rewriter.setInsertionPointToStart(after);
537       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
538       rewriter.create<scf::YieldOp>(loc);
539       rewriter.setInsertionPointAfter(whileOp);
540       rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
541       return success();
542     }
543     if (!encDst && !encSrc) {
544       // dense => dense
545       return failure();
546     }
547     // This is a dense => sparse conversion or a sparse constant in COO =>
548     // sparse conversion, which is handled as follows:
549     //   t = newSparseCOO()
550     //   ...code to fill the COO tensor t...
551     //   s = newSparseTensor(t)
552     //
553     // To fill the COO tensor from a dense tensor:
554     //   for i1 in dim1
555     //    ..
556     //     for ik in dimk
557     //       val = a[i1,..,ik]
558     //       if val != 0
559     //         t->add(val, [i1,..,ik], [p1,..,pk])
560     //
561     // To fill the COO tensor from a sparse constant in COO format:
562     //   for i in range(NNZ)
563     //     val = values[i]
564     //     [i1,..,ik] = indices[i]
565     //     t->add(val, [i1,..,ik], [p1,..,pk])
566     //
567     // Note that the dense tensor traversal code is actually implemented
568     // using MLIR IR to avoid having to expose too much low-level
569     // memref traversal details to the runtime support library.
570     // Also note that the code below only generates the "new" ops and
571     // the loop-nest per se; whereas the entire body of the innermost
572     // loop is generated by genAddElt().
573     ShapedType stp = resType.cast<ShapedType>();
574     unsigned rank = stp.getRank();
575     SmallVector<Value, 4> sizes;
576     SmallVector<Value, 8> params;
577     sizesFromSrc(rewriter, sizes, loc, src);
578     newParams(rewriter, params, op, stp, encDst, Action::kEmptyCOO, sizes);
579     Value ptr = genNewCall(rewriter, op, params);
580     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
581     Value perm = params[2];
582     SmallVector<Value> lo;
583     SmallVector<Value> hi;
584     SmallVector<Value> st;
585     Value zero = constantIndex(rewriter, loc, 0);
586     Value one = constantIndex(rewriter, loc, 1);
587     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
588     bool isCOOConstant = indicesValues.hasValue();
589     Value indices;
590     Value values;
591     if (isCOOConstant) {
592       indices = indicesValues->first;
593       values = indicesValues->second;
594       lo.push_back(zero);
595       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
596       st.push_back(one);
597     } else {
598       for (unsigned i = 0; i < rank; i++) {
599         lo.push_back(zero);
600         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
601         st.push_back(one);
602       }
603     }
604     Type eltType = stp.getElementType();
605     scf::buildLoopNest(
606         rewriter, op.getLoc(), lo, hi, st, {},
607         [&](OpBuilder &builder, Location loc, ValueRange ivs,
608             ValueRange args) -> scf::ValueVector {
609           Value val;
610           if (isCOOConstant)
611             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
612                                             ivs, rank);
613           else
614             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
615           genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
616           return {};
617         });
618     // Final call to construct sparse tensor storage.
619     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
620     params[7] = ptr;
621     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
622     return success();
623   }
624 };
625 
626 /// Sparse conversion rule for the release operator.
627 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
628 public:
629   using OpConversionPattern::OpConversionPattern;
630   LogicalResult
631   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
632                   ConversionPatternRewriter &rewriter) const override {
633     StringRef name = "delSparseTensor";
634     TypeRange noTp;
635     createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
636                    EmitCInterface::Off);
637     rewriter.eraseOp(op);
638     return success();
639   }
640 };
641 
642 /// Sparse conversion rule for pointer accesses.
643 class SparseTensorToPointersConverter
644     : public OpConversionPattern<ToPointersOp> {
645 public:
646   using OpConversionPattern::OpConversionPattern;
647   LogicalResult
648   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
649                   ConversionPatternRewriter &rewriter) const override {
650     Type resType = op.getType();
651     Type ptrType = resType.cast<ShapedType>().getElementType();
652     SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)};
653     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
654                           EmitCInterface::On);
655     return success();
656   }
657 };
658 
659 /// Sparse conversion rule for index accesses.
660 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
661 public:
662   using OpConversionPattern::OpConversionPattern;
663   LogicalResult
664   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
665                   ConversionPatternRewriter &rewriter) const override {
666     Type resType = op.getType();
667     Type indType = resType.cast<ShapedType>().getElementType();
668     SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)};
669     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
670                           EmitCInterface::On);
671     return success();
672   }
673 };
674 
675 /// Sparse conversion rule for value accesses.
676 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
677 public:
678   using OpConversionPattern::OpConversionPattern;
679   LogicalResult
680   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
681                   ConversionPatternRewriter &rewriter) const override {
682     Type resType = op.getType();
683     Type eltType = resType.cast<ShapedType>().getElementType();
684     SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltType)};
685     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
686                           EmitCInterface::On);
687     return success();
688   }
689 };
690 
691 /// Sparse conversion rule for tensor rematerialization.
692 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
693 public:
694   using OpConversionPattern::OpConversionPattern;
695   LogicalResult
696   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
697                   ConversionPatternRewriter &rewriter) const override {
698     if (op.hasInserts()) {
699       // Finalize any pending insertions.
700       StringRef name = "endInsert";
701       TypeRange noTp;
702       createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
703                      EmitCInterface::Off);
704     }
705     rewriter.replaceOp(op, adaptor.getOperands());
706     return success();
707   }
708 };
709 
710 /// Sparse conversion rule for inserting in lexicographic index order.
711 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
712 public:
713   using OpConversionPattern::OpConversionPattern;
714   LogicalResult
715   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
716                   ConversionPatternRewriter &rewriter) const override {
717     Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
718     SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
719     TypeRange noTp;
720     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
721                           EmitCInterface::On);
722     return success();
723   }
724 };
725 
726 class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
727 public:
728   using OpConversionPattern::OpConversionPattern;
729   LogicalResult
730   matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
731                   ConversionPatternRewriter &rewriter) const override {
732     Location loc = op->getLoc();
733     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
734     Type eltType = srcType.getElementType();
735     Type boolType = rewriter.getIntegerType(1);
736     Type idxType = rewriter.getIndexType();
737     // All initialization should be done on entry of the loop nest.
738     rewriter.setInsertionPointAfter(op.tensor().getDefiningOp());
739     // Determine the size for access expansion.
740     auto enc = getSparseTensorEncoding(srcType);
741     Value src = adaptor.getOperands()[0];
742     Value sz = genDimSizeCall(rewriter, op, enc, src, srcType.getRank() - 1);
743     // Allocate temporary stack buffers for values, filled-switch, and indices.
744     Value values = genAlloca(rewriter, loc, sz, eltType);
745     Value filled = genAlloca(rewriter, loc, sz, boolType);
746     Value indices = genAlloca(rewriter, loc, sz, idxType);
747     Value zero = constantZero(rewriter, loc, idxType);
748     // Reset the values/filled-switch to all-zero/false. Note that this
749     // introduces an O(N) operation into the computation, but this reset
750     // operation is amortized over the innermost loops for the access
751     // pattern expansion.
752     rewriter.create<linalg::FillOp>(loc, constantZero(rewriter, loc, eltType),
753                                     values);
754     rewriter.create<linalg::FillOp>(loc, constantZero(rewriter, loc, boolType),
755                                     filled);
756     // Replace expansion op with these buffers and initial index.
757     assert(op.getNumResults() == 4);
758     rewriter.replaceOp(op, {values, filled, indices, zero});
759     return success();
760   }
761 };
762 
763 class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
764 public:
765   using OpConversionPattern::OpConversionPattern;
766   LogicalResult
767   matchAndRewrite(CompressOp op, OpAdaptor adaptor,
768                   ConversionPatternRewriter &rewriter) const override {
769     // Note that this method call resets the values/filled-switch back to
770     // all-zero/false by only iterating over the set elements, so the
771     // complexity remains proportional to the sparsity of the expanded
772     // access pattern.
773     Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
774     SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
775     TypeRange noTp;
776     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
777                           EmitCInterface::On);
778     return success();
779   }
780 };
781 
782 class SparseTensorOutConverter : public OpConversionPattern<OutOp> {
783 public:
784   using OpConversionPattern::OpConversionPattern;
785   LogicalResult
786   matchAndRewrite(OutOp op, OpAdaptor adaptor,
787                   ConversionPatternRewriter &rewriter) const override {
788     Location loc = op->getLoc();
789     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
790     // Convert to default permuted COO.
791     Value src = adaptor.getOperands()[0];
792     auto encSrc = getSparseTensorEncoding(srcType);
793     SmallVector<Value, 4> sizes;
794     SmallVector<Value, 8> params;
795     sizesFromPtr(rewriter, sizes, op, encSrc, srcType, src);
796     auto enc = SparseTensorEncodingAttr::get(
797         op->getContext(), encSrc.getDimLevelType(), AffineMap(),
798         encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
799     newParams(rewriter, params, op, srcType, enc, Action::kToCOO, sizes, src);
800     Value coo = genNewCall(rewriter, op, params);
801     // Then output the tensor to external file with indices in the externally
802     // visible lexicographic index order. A sort is required if the source was
803     // not in that order yet (note that the sort can be dropped altogether if
804     // external format does not care about the order at all, but here we assume
805     // it does).
806     bool sort =
807         encSrc.getDimOrdering() && !encSrc.getDimOrdering().isIdentity();
808     params.clear();
809     params.push_back(coo);
810     params.push_back(adaptor.getOperands()[1]);
811     params.push_back(constantI1(rewriter, loc, sort));
812     Type eltType = srcType.getElementType();
813     SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(eltType)};
814     TypeRange noTp;
815     replaceOpWithFuncCall(rewriter, op, name, noTp, params,
816                           EmitCInterface::Off);
817     return success();
818   }
819 };
820 
821 } // namespace
822 
823 //===----------------------------------------------------------------------===//
824 // Public method for populating conversion rules.
825 //===----------------------------------------------------------------------===//
826 
827 /// Populates the given patterns list with conversion rules required for
828 /// the sparsification of linear algebra operations.
829 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
830                                                   RewritePatternSet &patterns) {
831   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
832                SparseCastConverter, SparseTensorNewConverter,
833                SparseTensorInitConverter, SparseTensorConvertConverter,
834                SparseTensorReleaseConverter, SparseTensorToPointersConverter,
835                SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
836                SparseTensorLoadConverter, SparseTensorLexInsertConverter,
837                SparseTensorExpandConverter, SparseTensorCompressConverter,
838                SparseTensorOutConverter>(typeConverter, patterns.getContext());
839 }
840