1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
18 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/MemRef/IR/MemRef.h"
21 #include "mlir/Dialect/SCF/SCF.h"
22 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
23 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
24 #include "mlir/Dialect/StandardOps/IR/Ops.h"
25 #include "mlir/Dialect/Tensor/IR/Tensor.h"
26 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
27 #include "mlir/Transforms/DialectConversion.h"
28 
29 using namespace mlir;
30 using namespace mlir::sparse_tensor;
31 
32 namespace {
33 
34 /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
35 /// `createFuncCall()`, and `replaceOpWithFuncCall()`.
36 enum class EmitCInterface : bool { Off = false, On = true };
37 
38 //===----------------------------------------------------------------------===//
39 // Helper methods.
40 //===----------------------------------------------------------------------===//
41 
42 /// Generates a constant zero of the given type.
43 inline static Value constantZero(ConversionPatternRewriter &rewriter,
44                                  Location loc, Type t) {
45   return rewriter.create<arith::ConstantOp>(loc, t, rewriter.getZeroAttr(t));
46 }
47 
48 /// Generates a constant of `index` type.
49 inline static Value constantIndex(ConversionPatternRewriter &rewriter,
50                                   Location loc, int64_t i) {
51   return rewriter.create<arith::ConstantIndexOp>(loc, i);
52 }
53 
54 /// Generates a constant of `i32` type.
55 inline static Value constantI32(ConversionPatternRewriter &rewriter,
56                                 Location loc, int32_t i) {
57   return rewriter.create<arith::ConstantIntOp>(loc, i, 32);
58 }
59 
60 /// Generates a constant of `i8` type.
61 inline static Value constantI8(ConversionPatternRewriter &rewriter,
62                                Location loc, int8_t i) {
63   return rewriter.create<arith::ConstantIntOp>(loc, i, 8);
64 }
65 
66 /// Generates a constant of the given `Action`.
67 static Value constantAction(ConversionPatternRewriter &rewriter, Location loc,
68                             Action action) {
69   return constantI32(rewriter, loc, static_cast<uint32_t>(action));
70 }
71 
72 /// Generates a constant of the internal type encoding for overhead storage.
73 static Value constantOverheadTypeEncoding(ConversionPatternRewriter &rewriter,
74                                           Location loc, unsigned width) {
75   OverheadType sec;
76   switch (width) {
77   default:
78     sec = OverheadType::kU64;
79     break;
80   case 32:
81     sec = OverheadType::kU32;
82     break;
83   case 16:
84     sec = OverheadType::kU16;
85     break;
86   case 8:
87     sec = OverheadType::kU8;
88     break;
89   }
90   return constantI32(rewriter, loc, static_cast<uint32_t>(sec));
91 }
92 
93 /// Generates a constant of the internal type encoding for pointer
94 /// overhead storage.
95 static Value constantPointerTypeEncoding(ConversionPatternRewriter &rewriter,
96                                          Location loc,
97                                          SparseTensorEncodingAttr &enc) {
98   return constantOverheadTypeEncoding(rewriter, loc, enc.getPointerBitWidth());
99 }
100 
101 /// Generates a constant of the internal type encoding for index overhead
102 /// storage.
103 static Value constantIndexTypeEncoding(ConversionPatternRewriter &rewriter,
104                                        Location loc,
105                                        SparseTensorEncodingAttr &enc) {
106   return constantOverheadTypeEncoding(rewriter, loc, enc.getIndexBitWidth());
107 }
108 
109 /// Generates a constant of the internal type encoding for primary storage.
110 static Value constantPrimaryTypeEncoding(ConversionPatternRewriter &rewriter,
111                                          Location loc, Type tp) {
112   PrimaryType primary;
113   if (tp.isF64())
114     primary = PrimaryType::kF64;
115   else if (tp.isF32())
116     primary = PrimaryType::kF32;
117   else if (tp.isInteger(64))
118     primary = PrimaryType::kI64;
119   else if (tp.isInteger(32))
120     primary = PrimaryType::kI32;
121   else if (tp.isInteger(16))
122     primary = PrimaryType::kI16;
123   else if (tp.isInteger(8))
124     primary = PrimaryType::kI8;
125   else
126     llvm_unreachable("Unknown element type");
127   return constantI32(rewriter, loc, static_cast<uint32_t>(primary));
128 }
129 
130 /// Generates a constant of the internal dimension level type encoding.
131 static Value
132 constantDimLevelTypeEncoding(ConversionPatternRewriter &rewriter, Location loc,
133                              SparseTensorEncodingAttr::DimLevelType dlt) {
134   DimLevelType dlt2;
135   switch (dlt) {
136   case SparseTensorEncodingAttr::DimLevelType::Dense:
137     dlt2 = DimLevelType::kDense;
138     break;
139   case SparseTensorEncodingAttr::DimLevelType::Compressed:
140     dlt2 = DimLevelType::kCompressed;
141     break;
142   case SparseTensorEncodingAttr::DimLevelType::Singleton:
143     dlt2 = DimLevelType::kSingleton;
144     break;
145   }
146   return constantI8(rewriter, loc, static_cast<uint8_t>(dlt2));
147 }
148 
149 /// Returns the equivalent of `void*` for opaque arguments to the
150 /// execution engine.
151 static Type getOpaquePointerType(PatternRewriter &rewriter) {
152   return LLVM::LLVMPointerType::get(rewriter.getI8Type());
153 }
154 
155 /// Returns a function reference (first hit also inserts into module). Sets
156 /// the "_emit_c_interface" on the function declaration when requested,
157 /// so that LLVM lowering generates a wrapper function that takes care
158 /// of ABI complications with passing in and returning MemRefs to C functions.
159 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
160                                  TypeRange resultType, ValueRange operands,
161                                  EmitCInterface emitCInterface) {
162   MLIRContext *context = op->getContext();
163   auto module = op->getParentOfType<ModuleOp>();
164   auto result = SymbolRefAttr::get(context, name);
165   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
166   if (!func) {
167     OpBuilder moduleBuilder(module.getBodyRegion());
168     func = moduleBuilder.create<FuncOp>(
169         op->getLoc(), name,
170         FunctionType::get(context, operands.getTypes(), resultType));
171     func.setPrivate();
172     if (static_cast<bool>(emitCInterface))
173       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
174   }
175   return result;
176 }
177 
178 /// Creates a `CallOp` to the function reference returned by `getFunc()`.
179 static CallOp createFuncCall(OpBuilder &builder, Operation *op, StringRef name,
180                              TypeRange resultType, ValueRange operands,
181                              EmitCInterface emitCInterface) {
182   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
183   return builder.create<CallOp>(op->getLoc(), resultType, fn, operands);
184 }
185 
186 /// Replaces the `op` with  a `CallOp` to the function reference returned
187 /// by `getFunc()`.
188 static CallOp replaceOpWithFuncCall(PatternRewriter &rewriter, Operation *op,
189                                     StringRef name, TypeRange resultType,
190                                     ValueRange operands,
191                                     EmitCInterface emitCInterface) {
192   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
193   return rewriter.replaceOpWithNewOp<CallOp>(op, resultType, fn, operands);
194 }
195 
196 /// Generates dimension size call.
197 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
198                             SparseTensorEncodingAttr &enc, Value src,
199                             int64_t idx) {
200   // Permute the index according to an optional dimension ordering.
201   if (AffineMap p = enc.getDimOrdering())
202     idx = p.getPermutedPosition(idx);
203   // Generate the call.
204   StringRef name = "sparseDimSize";
205   SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)};
206   Type iTp = rewriter.getIndexType();
207   return createFuncCall(rewriter, op, name, iTp, params, EmitCInterface::Off)
208       .getResult(0);
209 }
210 
211 /// Generates a call into the "swiss army knife" method of the sparse runtime
212 /// support library for materializing sparse tensors into the computation.
213 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
214                         ArrayRef<Value> params) {
215   StringRef name = "newSparseTensor";
216   Type pTp = getOpaquePointerType(rewriter);
217   return createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On)
218       .getResult(0);
219 }
220 
221 /// Populates given sizes array from type.
222 static void sizesFromType(ConversionPatternRewriter &rewriter,
223                           SmallVector<Value, 4> &sizes, Location loc,
224                           ShapedType stp) {
225   auto shape = stp.getShape();
226   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
227     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
228     sizes.push_back(constantIndex(rewriter, loc, s));
229   }
230 }
231 
232 /// Populates given sizes array from source.
233 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
234                          SmallVector<Value, 4> &sizes, Location loc,
235                          Value src) {
236   unsigned rank = src.getType().cast<ShapedType>().getRank();
237   for (unsigned i = 0; i < rank; i++)
238     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
239 }
240 
241 /// Populates given sizes array from type (for static sizes) and from
242 /// an already converted into opague pointer source (for dynamic sizes).
243 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
244                          SmallVector<Value, 4> &sizes, Operation *op,
245                          SparseTensorEncodingAttr &enc, ShapedType stp,
246                          Value src) {
247   Location loc = op->getLoc();
248   auto shape = stp.getShape();
249   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
250     if (shape[i] == ShapedType::kDynamicSize)
251       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
252     else
253       sizes.push_back(constantIndex(rewriter, loc, shape[i]));
254 }
255 
256 /// Generates an uninitialized temporary buffer of the given size and
257 /// type, but returns it as type `memref<? x $tp>` (rather than as type
258 /// `memref<$sz x $tp>`).
259 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
260                        unsigned sz, Type tp) {
261   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
262   Value a = constantIndex(rewriter, loc, sz);
263   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{a});
264 }
265 
266 /// Generates an uninitialized temporary buffer with room for one value
267 /// of the given type, and returns the `memref<$tp>`.
268 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
269                              Type tp) {
270   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
271 }
272 
273 /// Generates a temporary buffer of the given type and given contents.
274 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
275                        ArrayRef<Value> values) {
276   unsigned sz = values.size();
277   assert(sz >= 1);
278   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
279   for (unsigned i = 0; i < sz; i++) {
280     Value idx = constantIndex(rewriter, loc, i);
281     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
282   }
283   return buffer;
284 }
285 
286 /// Populates parameters required to call the "swiss army knife" method of the
287 /// sparse runtime support library for materializing sparse tensors into the
288 /// computation.
289 static void newParams(ConversionPatternRewriter &rewriter,
290                       SmallVector<Value, 8> &params, Operation *op,
291                       SparseTensorEncodingAttr &enc, Action action,
292                       ValueRange szs, Value ptr = Value()) {
293   Location loc = op->getLoc();
294   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
295   unsigned sz = dlt.size();
296   // Sparsity annotations.
297   SmallVector<Value, 4> attrs;
298   for (unsigned i = 0; i < sz; i++)
299     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
300   params.push_back(genBuffer(rewriter, loc, attrs));
301   // Dimension sizes array of the enveloping tensor. Useful for either
302   // verification of external data, or for construction of internal data.
303   SmallVector<Value, 4> sizes;
304   for (Value s : szs)
305     sizes.push_back(s);
306   params.push_back(genBuffer(rewriter, loc, sizes));
307   // Dimension order permutation array. This is the "identity" permutation by
308   // default, or otherwise the "reverse" permutation of a given ordering, so
309   // that indices can be mapped quickly to the right position.
310   SmallVector<Value, 4> rev(sz);
311   if (AffineMap p = enc.getDimOrdering()) {
312     for (unsigned i = 0; i < sz; i++)
313       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
314   } else {
315     for (unsigned i = 0; i < sz; i++)
316       rev[i] = constantIndex(rewriter, loc, i);
317   }
318   params.push_back(genBuffer(rewriter, loc, rev));
319   // Secondary and primary types encoding.
320   Type elemTp = op->getResult(0).getType().cast<ShapedType>().getElementType();
321   params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
322   params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
323   params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp));
324   // User action.
325   params.push_back(constantAction(rewriter, loc, action));
326   // Payload pointer.
327   if (!ptr)
328     ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter));
329   params.push_back(ptr);
330 }
331 
332 /// Generates the comparison `v != 0` where `v` is of numeric type `t`.
333 /// For floating types, we use the "unordered" comparator (i.e., returns
334 /// true if `v` is NaN).
335 static Value genIsNonzero(ConversionPatternRewriter &rewriter, Location loc,
336                           Value v) {
337   Type t = v.getType();
338   Value zero = constantZero(rewriter, loc, t);
339   if (t.isa<FloatType>())
340     return rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNE, v,
341                                           zero);
342   if (t.isIntOrIndex())
343     return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, v,
344                                           zero);
345   llvm_unreachable("Unknown element type");
346 }
347 
348 /// Generates the code to read the value from tensor[ivs], and conditionally
349 /// stores the indices ivs to the memory in ind. The generated code looks like
350 /// the following and the insertion point after this routine is inside the
351 /// if-then branch behind the assignment to ind. This is to ensure that the
352 /// addEltX call generated after is inside the if-then branch.
353 ///    if (tensor[ivs]!=0) {
354 ///      ind = ivs
355 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
356                                       Location loc, Value tensor, Value ind,
357                                       ValueRange ivs) {
358   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
359   Value cond = genIsNonzero(rewriter, loc, val);
360   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
361   rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
362   unsigned i = 0;
363   for (auto iv : ivs) {
364     Value idx = constantIndex(rewriter, loc, i++);
365     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
366   }
367   return val;
368 }
369 
370 /// Generates a call that adds one element to a coordinate scheme.
371 /// In particular, this generates code like the following:
372 ///   val = a[i1,..,ik];
373 ///   if val != 0
374 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
375 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
376                           Type eltType, Value ptr, Value val, Value ind,
377                           Value perm) {
378   StringRef name;
379   if (eltType.isF64())
380     name = "addEltF64";
381   else if (eltType.isF32())
382     name = "addEltF32";
383   else if (eltType.isInteger(64))
384     name = "addEltI64";
385   else if (eltType.isInteger(32))
386     name = "addEltI32";
387   else if (eltType.isInteger(16))
388     name = "addEltI16";
389   else if (eltType.isInteger(8))
390     name = "addEltI8";
391   else
392     llvm_unreachable("Unknown element type");
393   SmallVector<Value, 4> params{ptr, val, ind, perm};
394   Type pTp = getOpaquePointerType(rewriter);
395   createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On);
396 }
397 
398 /// Generates a call to `iter->getNext()`.  If there is a next element,
399 /// then it is copied into the out-parameters `ind` and `elemPtr`,
400 /// and the return value is true.  If there isn't a next element, then
401 /// the memory for `iter` is freed and the return value is false.
402 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
403                             Value iter, Value ind, Value elemPtr) {
404   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
405   StringRef name;
406   if (elemTp.isF64())
407     name = "getNextF64";
408   else if (elemTp.isF32())
409     name = "getNextF32";
410   else if (elemTp.isInteger(64))
411     name = "getNextI64";
412   else if (elemTp.isInteger(32))
413     name = "getNextI32";
414   else if (elemTp.isInteger(16))
415     name = "getNextI16";
416   else if (elemTp.isInteger(8))
417     name = "getNextI8";
418   else
419     llvm_unreachable("Unknown element type");
420   SmallVector<Value, 3> params{iter, ind, elemPtr};
421   Type i1 = rewriter.getI1Type();
422   return createFuncCall(rewriter, op, name, i1, params, EmitCInterface::On)
423       .getResult(0);
424 }
425 
426 /// If the tensor is a sparse constant, generates and returns the pair of
427 /// the constants for the indices and the values.
428 static Optional<std::pair<Value, Value>>
429 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
430                        Value tensor) {
431   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
432     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
433       DenseElementsAttr indicesAttr = attr.getIndices();
434       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
435       DenseElementsAttr valuesAttr = attr.getValues();
436       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
437       return std::make_pair(indices, values);
438     }
439   }
440   return {};
441 }
442 
443 /// Generates the code to copy the index at indices[ivs] to ind, and return
444 /// the value at value[ivs].
445 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
446                                        Location loc, Value indices,
447                                        Value values, Value ind, ValueRange ivs,
448                                        unsigned rank) {
449   for (unsigned i = 0; i < rank; i++) {
450     Value idx = constantIndex(rewriter, loc, i);
451     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
452                                                    ValueRange{ivs[0], idx});
453     val =
454         rewriter.create<arith::IndexCastOp>(loc, val, rewriter.getIndexType());
455     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
456   }
457   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
458 }
459 
460 /// Generates code to allocate a tensor of the given type, and zero
461 /// initialize it.  If the tensor type has any dynamic sizes, then the
462 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
463 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
464 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
465                               RankedTensorType tensorTp, ValueRange sizes) {
466   Type elemTp = tensorTp.getElementType();
467   auto shape = tensorTp.getShape();
468   auto memTp = MemRefType::get(shape, elemTp);
469   SmallVector<Value> dynamicSizes;
470   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
471     if (shape[i] == ShapedType::kDynamicSize)
472       dynamicSizes.push_back(sizes[i]);
473   }
474   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
475   Value zero = constantZero(rewriter, loc, elemTp);
476   rewriter.create<linalg::FillOp>(loc, zero, mem);
477   return mem;
478 }
479 
480 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
481 /// the tensor created by allocDenseTensor().  The `rank` is the rank
482 /// of the `tensor` and the length of `ind`.
483 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
484                                         Location loc, Value elemPtr,
485                                         Value tensor, unsigned rank,
486                                         Value ind) {
487   SmallVector<Value, 4> ivs;
488   ivs.reserve(rank);
489   for (unsigned i = 0; i < rank; i++) {
490     Value idx = constantIndex(rewriter, loc, i);
491     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
492   }
493   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
494   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
495 }
496 
497 //===----------------------------------------------------------------------===//
498 // Conversion rules.
499 //===----------------------------------------------------------------------===//
500 
501 /// Sparse conversion rule for returns.
502 class SparseReturnConverter : public OpConversionPattern<ReturnOp> {
503 public:
504   using OpConversionPattern::OpConversionPattern;
505   LogicalResult
506   matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
507                   ConversionPatternRewriter &rewriter) const override {
508     rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands());
509     return success();
510   }
511 };
512 
513 /// Sparse conversion rule for dimension accesses.
514 class SparseTensorToDimSizeConverter
515     : public OpConversionPattern<tensor::DimOp> {
516 public:
517   using OpConversionPattern::OpConversionPattern;
518   LogicalResult
519   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
520                   ConversionPatternRewriter &rewriter) const override {
521     // Only rewrite annotated DimOp with constant index.
522     auto enc = getSparseTensorEncoding(op.source().getType());
523     if (!enc)
524       return failure();
525     Optional<int64_t> index = op.getConstantIndex();
526     if (!index.hasValue())
527       return failure();
528     // Generate the call.
529     Value src = adaptor.getOperands()[0];
530     int64_t idx = index.getValue();
531     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
532     return success();
533   }
534 };
535 
536 /// Sparse conversion rule for trivial tensor casts.
537 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
538   using OpConversionPattern::OpConversionPattern;
539   LogicalResult
540   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
541                   ConversionPatternRewriter &rewriter) const override {
542     // Only rewrite identically annotated source/dest.
543     auto encDst = getSparseTensorEncoding(op.getType());
544     auto encSrc = getSparseTensorEncoding(op.source().getType());
545     if (!encDst || encDst != encSrc)
546       return failure();
547     rewriter.replaceOp(op, adaptor.getOperands());
548     return success();
549   }
550 };
551 
552 /// Sparse conversion rule for the new operator.
553 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
554   using OpConversionPattern::OpConversionPattern;
555   LogicalResult
556   matchAndRewrite(NewOp op, OpAdaptor adaptor,
557                   ConversionPatternRewriter &rewriter) const override {
558     Type resType = op.getType();
559     auto enc = getSparseTensorEncoding(resType);
560     if (!enc)
561       return failure();
562     // Generate the call to construct tensor from ptr. The sizes are
563     // inferred from the result type of the new operator.
564     SmallVector<Value, 4> sizes;
565     SmallVector<Value, 8> params;
566     sizesFromType(rewriter, sizes, op.getLoc(), resType.cast<ShapedType>());
567     Value ptr = adaptor.getOperands()[0];
568     newParams(rewriter, params, op, enc, Action::kFromFile, sizes, ptr);
569     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
570     return success();
571   }
572 };
573 
574 /// Sparse conversion rule for the init operator.
575 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
576   using OpConversionPattern::OpConversionPattern;
577   LogicalResult
578   matchAndRewrite(InitOp op, OpAdaptor adaptor,
579                   ConversionPatternRewriter &rewriter) const override {
580     Type resType = op.getType();
581     auto enc = getSparseTensorEncoding(resType);
582     if (!enc)
583       return failure();
584     // Generate the call to construct empty tensor. The sizes are
585     // explicitly defined by the arguments to the init operator.
586     SmallVector<Value, 8> params;
587     newParams(rewriter, params, op, enc, Action::kEmpty, adaptor.getOperands());
588     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
589     return success();
590   }
591 };
592 
593 /// Sparse conversion rule for the convert operator.
594 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
595   using OpConversionPattern::OpConversionPattern;
596   LogicalResult
597   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
598                   ConversionPatternRewriter &rewriter) const override {
599     Location loc = op->getLoc();
600     Type resType = op.getType();
601     Type srcType = op.source().getType();
602     auto encDst = getSparseTensorEncoding(resType);
603     auto encSrc = getSparseTensorEncoding(srcType);
604     Value src = adaptor.getOperands()[0];
605     if (encDst && encSrc) {
606       // This is a sparse => sparse conversion, which is handled as follows:
607       //   t = src->toCOO();         ; src to COO in dst order
608       //   dst = newSparseTensor(t)
609       // Using the coordinate scheme as an intermediate does not always
610       // yield the fastest conversion but avoids the need for a full
611       // O(N^2) conversion matrix.
612       if (encDst == encSrc) {
613         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
614         return success();
615       }
616       SmallVector<Value, 4> sizes;
617       SmallVector<Value, 8> params;
618       sizesFromPtr(rewriter, sizes, op, encSrc, srcType.cast<ShapedType>(),
619                    src);
620       // Set up encoding with right mix of src and dst so that the two
621       // method calls can share most parameters, while still providing
622       // the correct sparsity information to either of them.
623       auto enc = SparseTensorEncodingAttr::get(
624           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
625           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
626       newParams(rewriter, params, op, enc, Action::kToCOO, sizes, src);
627       Value coo = genNewCall(rewriter, op, params);
628       params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
629       params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
630       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
631       params[7] = coo;
632       rewriter.replaceOp(op, genNewCall(rewriter, op, params));
633       return success();
634     }
635     if (!encDst && encSrc) {
636       // This is sparse => dense conversion, which is handled as follows:
637       //   dst = new Tensor(0);
638       //   iter = src->toCOO();
639       //   iter->startIterator();
640       //   while (elem = iter->getNext()) {
641       //     dst[elem.indices] = elem.value;
642       //   }
643       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
644       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
645       unsigned rank = dstTensorTp.getRank();
646       Type elemTp = dstTensorTp.getElementType();
647       // Fabricate a no-permutation encoding for newParams().
648       // The pointer/index types must be those of `src`.
649       // The dimLevelTypes aren't actually used by Action::kToIterator.
650       encDst = SparseTensorEncodingAttr::get(
651           op->getContext(),
652           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
653               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
654           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
655       SmallVector<Value, 4> sizes;
656       SmallVector<Value, 8> params;
657       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
658       newParams(rewriter, params, op, encDst, Action::kToIterator, sizes, src);
659       Value iter = genNewCall(rewriter, op, params);
660       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
661       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
662       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
663       SmallVector<Value> noArgs;
664       SmallVector<Type> noTypes;
665       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
666       Block *before = rewriter.createBlock(&whileOp.before(), {}, noTypes);
667       rewriter.setInsertionPointToEnd(before);
668       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
669       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
670       Block *after = rewriter.createBlock(&whileOp.after(), {}, noTypes);
671       rewriter.setInsertionPointToStart(after);
672       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
673       rewriter.create<scf::YieldOp>(loc);
674       rewriter.setInsertionPointAfter(whileOp);
675       rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
676       return success();
677     }
678     if (!encDst && !encSrc) {
679       // dense => dense
680       return failure();
681     }
682     // This is a dense => sparse conversion or a sparse constant in COO =>
683     // sparse conversion, which is handled as follows:
684     //   t = newSparseCOO()
685     //   ...code to fill the COO tensor t...
686     //   s = newSparseTensor(t)
687     //
688     // To fill the COO tensor from a dense tensor:
689     //   for i1 in dim1
690     //    ..
691     //     for ik in dimk
692     //       val = a[i1,..,ik]
693     //       if val != 0
694     //         t->add(val, [i1,..,ik], [p1,..,pk])
695     //
696     // To fill the COO tensor from a sparse constant in COO format:
697     //   for i in range(NNZ)
698     //     val = values[i]
699     //     [i1,..,ik] = indices[i]
700     //     t->add(val, [i1,..,ik], [p1,..,pk])
701     //
702     // Note that the dense tensor traversal code is actually implemented
703     // using MLIR IR to avoid having to expose too much low-level
704     // memref traversal details to the runtime support library.
705     // Also note that the code below only generates the "new" ops and
706     // the loop-nest per se; whereas the entire body of the innermost
707     // loop is generated by genAddElt().
708     ShapedType stp = resType.cast<ShapedType>();
709     unsigned rank = stp.getRank();
710     SmallVector<Value, 4> sizes;
711     SmallVector<Value, 8> params;
712     sizesFromSrc(rewriter, sizes, loc, src);
713     newParams(rewriter, params, op, encDst, Action::kEmptyCOO, sizes);
714     Value ptr = genNewCall(rewriter, op, params);
715     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
716     Value perm = params[2];
717     SmallVector<Value> lo;
718     SmallVector<Value> hi;
719     SmallVector<Value> st;
720     Value zero = constantIndex(rewriter, loc, 0);
721     Value one = constantIndex(rewriter, loc, 1);
722     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
723     bool isCOOConstant = indicesValues.hasValue();
724     Value indices;
725     Value values;
726     if (isCOOConstant) {
727       indices = indicesValues->first;
728       values = indicesValues->second;
729       lo.push_back(zero);
730       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
731       st.push_back(one);
732     } else {
733       for (unsigned i = 0; i < rank; i++) {
734         lo.push_back(zero);
735         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
736         st.push_back(one);
737       }
738     }
739     Type eltType = stp.getElementType();
740     scf::buildLoopNest(
741         rewriter, op.getLoc(), lo, hi, st, {},
742         [&](OpBuilder &builder, Location loc, ValueRange ivs,
743             ValueRange args) -> scf::ValueVector {
744           Value val;
745           if (isCOOConstant)
746             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
747                                             ivs, rank);
748           else
749             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
750           genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
751           return {};
752         });
753     // Final call to construct sparse tensor storage.
754     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
755     params[7] = ptr;
756     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
757     return success();
758   }
759 };
760 
761 /// Sparse conversion rule for the release operator.
762 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
763 public:
764   using OpConversionPattern::OpConversionPattern;
765   LogicalResult
766   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
767                   ConversionPatternRewriter &rewriter) const override {
768     StringRef name = "delSparseTensor";
769     TypeRange noTp;
770     createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
771                    EmitCInterface::Off);
772     rewriter.eraseOp(op);
773     return success();
774   }
775 };
776 
777 /// Sparse conversion rule for pointer accesses.
778 class SparseTensorToPointersConverter
779     : public OpConversionPattern<ToPointersOp> {
780 public:
781   using OpConversionPattern::OpConversionPattern;
782   LogicalResult
783   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
784                   ConversionPatternRewriter &rewriter) const override {
785     Type resType = op.getType();
786     Type eltType = resType.cast<ShapedType>().getElementType();
787     StringRef name;
788     if (eltType.isIndex())
789       name = "sparsePointers";
790     else if (eltType.isInteger(64))
791       name = "sparsePointers64";
792     else if (eltType.isInteger(32))
793       name = "sparsePointers32";
794     else if (eltType.isInteger(16))
795       name = "sparsePointers16";
796     else if (eltType.isInteger(8))
797       name = "sparsePointers8";
798     else
799       return failure();
800     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
801                           EmitCInterface::On);
802     return success();
803   }
804 };
805 
806 /// Sparse conversion rule for index accesses.
807 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
808 public:
809   using OpConversionPattern::OpConversionPattern;
810   LogicalResult
811   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
812                   ConversionPatternRewriter &rewriter) const override {
813     Type resType = op.getType();
814     Type eltType = resType.cast<ShapedType>().getElementType();
815     StringRef name;
816     if (eltType.isIndex())
817       name = "sparseIndices";
818     else if (eltType.isInteger(64))
819       name = "sparseIndices64";
820     else if (eltType.isInteger(32))
821       name = "sparseIndices32";
822     else if (eltType.isInteger(16))
823       name = "sparseIndices16";
824     else if (eltType.isInteger(8))
825       name = "sparseIndices8";
826     else
827       return failure();
828     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
829                           EmitCInterface::On);
830     return success();
831   }
832 };
833 
834 /// Sparse conversion rule for value accesses.
835 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
836 public:
837   using OpConversionPattern::OpConversionPattern;
838   LogicalResult
839   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
840                   ConversionPatternRewriter &rewriter) const override {
841     Type resType = op.getType();
842     Type eltType = resType.cast<ShapedType>().getElementType();
843     StringRef name;
844     if (eltType.isF64())
845       name = "sparseValuesF64";
846     else if (eltType.isF32())
847       name = "sparseValuesF32";
848     else if (eltType.isInteger(64))
849       name = "sparseValuesI64";
850     else if (eltType.isInteger(32))
851       name = "sparseValuesI32";
852     else if (eltType.isInteger(16))
853       name = "sparseValuesI16";
854     else if (eltType.isInteger(8))
855       name = "sparseValuesI8";
856     else
857       return failure();
858     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
859                           EmitCInterface::On);
860     return success();
861   }
862 };
863 
864 /// Sparse conversion rule for tensor rematerialization.
865 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
866 public:
867   using OpConversionPattern::OpConversionPattern;
868   LogicalResult
869   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
870                   ConversionPatternRewriter &rewriter) const override {
871     if (op.hasInserts()) {
872       // Finalize any pending insertions.
873       StringRef name = "endInsert";
874       TypeRange noTp;
875       createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
876                      EmitCInterface::Off);
877     }
878     rewriter.replaceOp(op, adaptor.getOperands());
879     return success();
880   }
881 };
882 
883 /// Sparse conversion rule for inserting in lexicographic index order.
884 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
885 public:
886   using OpConversionPattern::OpConversionPattern;
887   LogicalResult
888   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
889                   ConversionPatternRewriter &rewriter) const override {
890     Type srcType = op.tensor().getType();
891     Type eltType = srcType.cast<ShapedType>().getElementType();
892     StringRef name;
893     if (eltType.isF64())
894       name = "lexInsertF64";
895     else if (eltType.isF32())
896       name = "lexInsertF32";
897     else if (eltType.isInteger(64))
898       name = "lexInsertI64";
899     else if (eltType.isInteger(32))
900       name = "lexInsertI32";
901     else if (eltType.isInteger(16))
902       name = "lexInsertI16";
903     else if (eltType.isInteger(8))
904       name = "lexInsertI8";
905     else
906       llvm_unreachable("Unknown element type");
907     TypeRange noTp;
908     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
909                           EmitCInterface::On);
910     return success();
911   }
912 };
913 
914 } // namespace
915 
916 //===----------------------------------------------------------------------===//
917 // Public method for populating conversion rules.
918 //===----------------------------------------------------------------------===//
919 
920 /// Populates the given patterns list with conversion rules required for
921 /// the sparsification of linear algebra operations.
922 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
923                                                   RewritePatternSet &patterns) {
924   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
925                SparseCastConverter, SparseTensorNewConverter,
926                SparseTensorInitConverter, SparseTensorConvertConverter,
927                SparseTensorReleaseConverter, SparseTensorToPointersConverter,
928                SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
929                SparseTensorLoadConverter, SparseTensorLexInsertConverter>(
930       typeConverter, patterns.getContext());
931 }
932