1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodegenUtils.h"
18 
19 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
20 #include "mlir/Dialect/Func/IR/FuncOps.h"
21 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
22 #include "mlir/Dialect/Linalg/Utils/Utils.h"
23 #include "mlir/Dialect/MemRef/IR/MemRef.h"
24 #include "mlir/Dialect/SCF/SCF.h"
25 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
27 #include "mlir/Dialect/Tensor/IR/Tensor.h"
28 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
29 #include "mlir/Transforms/DialectConversion.h"
30 
31 using namespace mlir;
32 using namespace mlir::sparse_tensor;
33 
34 namespace {
35 
36 /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
37 /// `createFuncCall()`, and `replaceOpWithFuncCall()`.
38 enum class EmitCInterface : bool { Off = false, On = true };
39 
40 //===----------------------------------------------------------------------===//
41 // Helper methods.
42 //===----------------------------------------------------------------------===//
43 
44 /// Returns the equivalent of `void*` for opaque arguments to the
45 /// execution engine.
46 static Type getOpaquePointerType(PatternRewriter &rewriter) {
47   return LLVM::LLVMPointerType::get(rewriter.getI8Type());
48 }
49 
50 /// Returns a function reference (first hit also inserts into module). Sets
51 /// the "_emit_c_interface" on the function declaration when requested,
52 /// so that LLVM lowering generates a wrapper function that takes care
53 /// of ABI complications with passing in and returning MemRefs to C functions.
54 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
55                                  TypeRange resultType, ValueRange operands,
56                                  EmitCInterface emitCInterface) {
57   MLIRContext *context = op->getContext();
58   auto module = op->getParentOfType<ModuleOp>();
59   auto result = SymbolRefAttr::get(context, name);
60   auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
61   if (!func) {
62     OpBuilder moduleBuilder(module.getBodyRegion());
63     func = moduleBuilder.create<func::FuncOp>(
64         op->getLoc(), name,
65         FunctionType::get(context, operands.getTypes(), resultType));
66     func.setPrivate();
67     if (static_cast<bool>(emitCInterface))
68       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
69   }
70   return result;
71 }
72 
73 /// Creates a `CallOp` to the function reference returned by `getFunc()`.
74 static func::CallOp createFuncCall(OpBuilder &builder, Operation *op,
75                                    StringRef name, TypeRange resultType,
76                                    ValueRange operands,
77                                    EmitCInterface emitCInterface) {
78   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
79   return builder.create<func::CallOp>(op->getLoc(), resultType, fn, operands);
80 }
81 
82 /// Replaces the `op` with  a `CallOp` to the function reference returned
83 /// by `getFunc()`.
84 static func::CallOp replaceOpWithFuncCall(PatternRewriter &rewriter,
85                                           Operation *op, StringRef name,
86                                           TypeRange resultType,
87                                           ValueRange operands,
88                                           EmitCInterface emitCInterface) {
89   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
90   return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn,
91                                                    operands);
92 }
93 
94 /// Generates dimension size call.
95 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
96                             SparseTensorEncodingAttr &enc, Value src,
97                             int64_t idx) {
98   // Permute the index according to an optional dimension ordering.
99   if (AffineMap p = enc.getDimOrdering())
100     idx = p.getPermutedPosition(idx);
101   // Generate the call.
102   StringRef name = "sparseDimSize";
103   SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)};
104   Type iTp = rewriter.getIndexType();
105   return createFuncCall(rewriter, op, name, iTp, params, EmitCInterface::Off)
106       .getResult(0);
107 }
108 
109 /// Generates a call into the "swiss army knife" method of the sparse runtime
110 /// support library for materializing sparse tensors into the computation.
111 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
112                         ArrayRef<Value> params) {
113   StringRef name = "newSparseTensor";
114   Type pTp = getOpaquePointerType(rewriter);
115   return createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On)
116       .getResult(0);
117 }
118 
119 /// Populates given sizes array from type.
120 static void sizesFromType(ConversionPatternRewriter &rewriter,
121                           SmallVector<Value, 4> &sizes, Location loc,
122                           ShapedType stp) {
123   auto shape = stp.getShape();
124   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
125     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
126     sizes.push_back(constantIndex(rewriter, loc, s));
127   }
128 }
129 
130 /// Populates given sizes array from source.
131 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
132                          SmallVector<Value, 4> &sizes, Location loc,
133                          Value src) {
134   unsigned rank = src.getType().cast<ShapedType>().getRank();
135   for (unsigned i = 0; i < rank; i++)
136     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
137 }
138 
139 /// Populates given sizes array from type (for static sizes) and from
140 /// an already converted into opague pointer source (for dynamic sizes).
141 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
142                          SmallVector<Value, 4> &sizes, Operation *op,
143                          SparseTensorEncodingAttr &enc, ShapedType stp,
144                          Value src) {
145   Location loc = op->getLoc();
146   auto shape = stp.getShape();
147   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
148     if (shape[i] == ShapedType::kDynamicSize)
149       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
150     else
151       sizes.push_back(constantIndex(rewriter, loc, shape[i]));
152 }
153 
154 /// Generates an uninitialized temporary buffer of the given size and
155 /// type, but returns it as type `memref<? x $tp>` (rather than as type
156 /// `memref<$sz x $tp>`).
157 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
158                        Value sz, Type tp) {
159   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
160   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
161 }
162 
163 /// Generates an uninitialized buffer of the given size and type,
164 /// but returns it as type `memref<? x $tp>` (rather than as type
165 /// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
166 /// this buffer must be explicitly deallocated by client.
167 static Value genAlloc(ConversionPatternRewriter &rewriter, Location loc,
168                       Value sz, Type tp) {
169   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
170   return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
171 }
172 
173 /// Generates an uninitialized temporary buffer of the given size and
174 /// type, but returns it as type `memref<? x $tp>` (rather than as type
175 /// `memref<$sz x $tp>`).
176 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
177                        unsigned sz, Type tp) {
178   return genAlloca(rewriter, loc, constantIndex(rewriter, loc, sz), tp);
179 }
180 
181 /// Generates an uninitialized temporary buffer with room for one value
182 /// of the given type, and returns the `memref<$tp>`.
183 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
184                              Type tp) {
185   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
186 }
187 
188 /// Generates a temporary buffer of the given type and given contents.
189 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
190                        ValueRange values) {
191   unsigned sz = values.size();
192   assert(sz >= 1);
193   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
194   for (unsigned i = 0; i < sz; i++) {
195     Value idx = constantIndex(rewriter, loc, i);
196     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
197   }
198   return buffer;
199 }
200 
201 /// Populates parameters required to call the "swiss army knife" method of the
202 /// sparse runtime support library for materializing sparse tensors into the
203 /// computation.
204 static void newParams(ConversionPatternRewriter &rewriter,
205                       SmallVector<Value, 8> &params, Operation *op,
206                       ShapedType stp, SparseTensorEncodingAttr &enc,
207                       Action action, ValueRange szs, Value ptr = Value()) {
208   Location loc = op->getLoc();
209   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
210   unsigned sz = dlt.size();
211   // Sparsity annotations.
212   SmallVector<Value, 4> attrs;
213   for (unsigned i = 0; i < sz; i++)
214     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
215   params.push_back(genBuffer(rewriter, loc, attrs));
216   // Dimension sizes array of the enveloping tensor. Useful for either
217   // verification of external data, or for construction of internal data.
218   params.push_back(genBuffer(rewriter, loc, szs));
219   // Dimension order permutation array. This is the "identity" permutation by
220   // default, or otherwise the "reverse" permutation of a given ordering, so
221   // that indices can be mapped quickly to the right position.
222   SmallVector<Value, 4> rev(sz);
223   if (AffineMap p = enc.getDimOrdering()) {
224     for (unsigned i = 0; i < sz; i++)
225       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
226   } else {
227     for (unsigned i = 0; i < sz; i++)
228       rev[i] = constantIndex(rewriter, loc, i);
229   }
230   params.push_back(genBuffer(rewriter, loc, rev));
231   // Secondary and primary types encoding.
232   Type elemTp = stp.getElementType();
233   params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
234   params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
235   params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp));
236   // User action.
237   params.push_back(constantAction(rewriter, loc, action));
238   // Payload pointer.
239   if (!ptr)
240     ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter));
241   params.push_back(ptr);
242 }
243 
244 /// Generates the code to read the value from tensor[ivs], and conditionally
245 /// stores the indices ivs to the memory in ind. The generated code looks like
246 /// the following and the insertion point after this routine is inside the
247 /// if-then branch behind the assignment to ind. This is to ensure that the
248 /// addEltX call generated after is inside the if-then branch.
249 ///    if (tensor[ivs]!=0) {
250 ///      ind = ivs
251 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
252                                       Location loc, Value tensor, Value ind,
253                                       ValueRange ivs) {
254   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
255   Value cond = genIsNonzero(rewriter, loc, val);
256   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
257   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
258   unsigned i = 0;
259   for (auto iv : ivs) {
260     Value idx = constantIndex(rewriter, loc, i++);
261     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
262   }
263   return val;
264 }
265 
266 /// Generates a call to release/delete a `SparseTensorCOO`.
267 static void genDelCOOCall(OpBuilder &builder, Operation *op, Type elemTp,
268                           Value coo) {
269   SmallString<21> name{"delSparseTensorCOO", primaryTypeFunctionSuffix(elemTp)};
270   TypeRange noTp;
271   createFuncCall(builder, op, name, noTp, coo, EmitCInterface::Off);
272 }
273 
274 /// Generates a call that adds one element to a coordinate scheme.
275 /// In particular, this generates code like the following:
276 ///   val = a[i1,..,ik];
277 ///   if val != 0
278 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
279 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
280                           Type eltType, Value ptr, Value val, Value ind,
281                           Value perm) {
282   SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
283   SmallVector<Value, 4> params{ptr, val, ind, perm};
284   Type pTp = getOpaquePointerType(rewriter);
285   createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On);
286 }
287 
288 /// Generates a call to `iter->getNext()`.  If there is a next element,
289 /// then it is copied into the out-parameters `ind` and `elemPtr`,
290 /// and the return value is true.  If there isn't a next element, then
291 /// the memory for `iter` is freed and the return value is false.
292 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
293                             Value iter, Value ind, Value elemPtr) {
294   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
295   SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
296   SmallVector<Value, 3> params{iter, ind, elemPtr};
297   Type i1 = rewriter.getI1Type();
298   return createFuncCall(rewriter, op, name, i1, params, EmitCInterface::On)
299       .getResult(0);
300 }
301 
302 /// If the tensor is a sparse constant, generates and returns the pair of
303 /// the constants for the indices and the values.
304 static Optional<std::pair<Value, Value>>
305 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
306                        Value tensor) {
307   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
308     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
309       DenseElementsAttr indicesAttr = attr.getIndices();
310       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
311       DenseElementsAttr valuesAttr = attr.getValues();
312       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
313       return std::make_pair(indices, values);
314     }
315   }
316   return {};
317 }
318 
319 /// Generates the code to copy the index at indices[ivs] to ind, and return
320 /// the value at value[ivs].
321 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
322                                        Location loc, Value indices,
323                                        Value values, Value ind, ValueRange ivs,
324                                        unsigned rank) {
325   for (unsigned i = 0; i < rank; i++) {
326     Value idx = constantIndex(rewriter, loc, i);
327     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
328                                                    ValueRange{ivs[0], idx});
329     val =
330         rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), val);
331     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
332   }
333   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
334 }
335 
336 /// Generates code to allocate a tensor of the given type, and zero
337 /// initialize it.  If the tensor type has any dynamic sizes, then the
338 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
339 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
340 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
341                               RankedTensorType tensorTp, ValueRange sizes) {
342   Type elemTp = tensorTp.getElementType();
343   auto shape = tensorTp.getShape();
344   auto memTp = MemRefType::get(shape, elemTp);
345   SmallVector<Value> dynamicSizes;
346   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
347     if (shape[i] == ShapedType::kDynamicSize)
348       dynamicSizes.push_back(sizes[i]);
349   }
350   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
351   Value zero = constantZero(rewriter, loc, elemTp);
352   rewriter.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{mem});
353   return mem;
354 }
355 
356 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
357 /// the tensor created by allocDenseTensor().  The `rank` is the rank
358 /// of the `tensor` and the length of `ind`.
359 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
360                                         Location loc, Value elemPtr,
361                                         Value tensor, unsigned rank,
362                                         Value ind) {
363   SmallVector<Value, 4> ivs;
364   ivs.reserve(rank);
365   for (unsigned i = 0; i < rank; i++) {
366     Value idx = constantIndex(rewriter, loc, i);
367     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
368   }
369   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
370   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
371 }
372 
373 //===----------------------------------------------------------------------===//
374 // Conversion rules.
375 //===----------------------------------------------------------------------===//
376 
377 /// Sparse conversion rule for returns.
378 class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
379 public:
380   using OpConversionPattern::OpConversionPattern;
381   LogicalResult
382   matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
383                   ConversionPatternRewriter &rewriter) const override {
384     rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
385     return success();
386   }
387 };
388 
389 /// Sparse conversion rule for dimension accesses.
390 class SparseTensorToDimSizeConverter
391     : public OpConversionPattern<tensor::DimOp> {
392 public:
393   using OpConversionPattern::OpConversionPattern;
394   LogicalResult
395   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
396                   ConversionPatternRewriter &rewriter) const override {
397     // Only rewrite annotated DimOp with constant index.
398     auto enc = getSparseTensorEncoding(op.source().getType());
399     if (!enc)
400       return failure();
401     Optional<int64_t> index = op.getConstantIndex();
402     if (!index.hasValue())
403       return failure();
404     // Generate the call.
405     Value src = adaptor.getOperands()[0];
406     int64_t idx = index.getValue();
407     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
408     return success();
409   }
410 };
411 
412 /// Sparse conversion rule for trivial tensor casts.
413 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
414   using OpConversionPattern::OpConversionPattern;
415   LogicalResult
416   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
417                   ConversionPatternRewriter &rewriter) const override {
418     // Only rewrite identically annotated source/dest.
419     auto encDst = getSparseTensorEncoding(op.getType());
420     auto encSrc = getSparseTensorEncoding(op.source().getType());
421     if (!encDst || encDst != encSrc)
422       return failure();
423     rewriter.replaceOp(op, adaptor.getOperands());
424     return success();
425   }
426 };
427 
428 /// Sparse conversion rule for the new operator.
429 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
430   using OpConversionPattern::OpConversionPattern;
431   LogicalResult
432   matchAndRewrite(NewOp op, OpAdaptor adaptor,
433                   ConversionPatternRewriter &rewriter) const override {
434     Type resType = op.getType();
435     auto enc = getSparseTensorEncoding(resType);
436     if (!enc)
437       return failure();
438     // Generate the call to construct tensor from ptr. The sizes are
439     // inferred from the result type of the new operator.
440     SmallVector<Value, 4> sizes;
441     SmallVector<Value, 8> params;
442     ShapedType stp = resType.cast<ShapedType>();
443     sizesFromType(rewriter, sizes, op.getLoc(), stp);
444     Value ptr = adaptor.getOperands()[0];
445     newParams(rewriter, params, op, stp, enc, Action::kFromFile, sizes, ptr);
446     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
447     return success();
448   }
449 };
450 
451 /// Sparse conversion rule for the init operator.
452 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
453   using OpConversionPattern::OpConversionPattern;
454   LogicalResult
455   matchAndRewrite(InitOp op, OpAdaptor adaptor,
456                   ConversionPatternRewriter &rewriter) const override {
457     Type resType = op.getType();
458     auto enc = getSparseTensorEncoding(resType);
459     if (!enc)
460       return failure();
461     // Generate the call to construct empty tensor. The sizes are
462     // explicitly defined by the arguments to the init operator.
463     SmallVector<Value, 8> params;
464     ShapedType stp = resType.cast<ShapedType>();
465     newParams(rewriter, params, op, stp, enc, Action::kEmpty,
466               adaptor.getOperands());
467     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
468     return success();
469   }
470 };
471 
472 /// Sparse conversion rule for the convert operator.
473 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
474   /// Options to control sparse code generation.
475   SparseTensorConversionOptions options;
476 
477 public:
478   using OpConversionPattern::OpConversionPattern;
479   SparseTensorConvertConverter(MLIRContext *context,
480                                SparseTensorConversionOptions o)
481       : OpConversionPattern<ConvertOp>(context), options(o) {}
482   SparseTensorConvertConverter(TypeConverter &typeConv, MLIRContext *context,
483                                SparseTensorConversionOptions o)
484       : OpConversionPattern<ConvertOp>(typeConv, context), options(o) {}
485 
486   LogicalResult
487   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
488                   ConversionPatternRewriter &rewriter) const override {
489     Location loc = op->getLoc();
490     Type resType = op.getType();
491     Type srcType = op.source().getType();
492     auto encDst = getSparseTensorEncoding(resType);
493     auto encSrc = getSparseTensorEncoding(srcType);
494     Value src = adaptor.getOperands()[0];
495     if (encDst && encSrc) {
496       // This is a sparse => sparse conversion, which is handled as follows:
497       //   t = src->toCOO();         ; src to COO in dst order
498       //   dst = newSparseTensor(t)
499       // Using the coordinate scheme as an intermediate does not always
500       // yield the fastest conversion but avoids the need for a full
501       // O(N^2) conversion matrix.
502       if (encDst == encSrc) {
503         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
504         return success();
505       }
506       SmallVector<Value, 4> sizes;
507       SmallVector<Value, 8> params;
508       ShapedType stp = srcType.cast<ShapedType>();
509       sizesFromPtr(rewriter, sizes, op, encSrc, stp, src);
510       // Set up encoding with right mix of src and dst so that the two
511       // method calls can share most parameters, while still providing
512       // the correct sparsity information to either of them.
513       auto enc = SparseTensorEncodingAttr::get(
514           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
515           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
516       newParams(rewriter, params, op, stp, enc, Action::kToCOO, sizes, src);
517       Value coo = genNewCall(rewriter, op, params);
518       params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
519       params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
520       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
521       params[7] = coo;
522       Value dst = genNewCall(rewriter, op, params);
523       genDelCOOCall(rewriter, op, stp.getElementType(), coo);
524       rewriter.replaceOp(op, dst);
525       return success();
526     }
527     if (!encDst && encSrc) {
528       // This is sparse => dense conversion, which is handled as follows:
529       //   dst = new Tensor(0);
530       //   iter = src->toCOO();
531       //   iter->startIterator();
532       //   while (elem = iter->getNext()) {
533       //     dst[elem.indices] = elem.value;
534       //   }
535       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
536       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
537       unsigned rank = dstTensorTp.getRank();
538       Type elemTp = dstTensorTp.getElementType();
539       // Fabricate a no-permutation encoding for newParams().
540       // The pointer/index types must be those of `src`.
541       // The dimLevelTypes aren't actually used by Action::kToIterator.
542       encDst = SparseTensorEncodingAttr::get(
543           op->getContext(),
544           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
545               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
546           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
547       SmallVector<Value, 4> sizes;
548       SmallVector<Value, 8> params;
549       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
550       newParams(rewriter, params, op, dstTensorTp, encDst, Action::kToIterator,
551                 sizes, src);
552       Value iter = genNewCall(rewriter, op, params);
553       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
554       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
555       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
556       SmallVector<Value> noArgs;
557       SmallVector<Type> noTypes;
558       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
559       Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
560       rewriter.setInsertionPointToEnd(before);
561       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
562       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
563       Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
564       rewriter.setInsertionPointToStart(after);
565       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
566       rewriter.create<scf::YieldOp>(loc);
567       rewriter.setInsertionPointAfter(whileOp);
568       genDelCOOCall(rewriter, op, elemTp, iter);
569       rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
570       return success();
571     }
572     if (!encDst && !encSrc) {
573       // dense => dense
574       return failure();
575     }
576     // This is a dense => sparse conversion or a sparse constant in COO =>
577     // sparse conversion, which is handled as follows:
578     //   t = newSparseCOO()
579     //   ...code to fill the COO tensor t...
580     //   s = newSparseTensor(t)
581     //
582     // To fill the COO tensor from a dense tensor:
583     //   for i1 in dim1
584     //    ..
585     //     for ik in dimk
586     //       val = a[i1,..,ik]
587     //       if val != 0
588     //         t->add(val, [i1,..,ik], [p1,..,pk])
589     //
590     // To fill the COO tensor from a sparse constant in COO format:
591     //   for i in range(NNZ)
592     //     val = values[i]
593     //     [i1,..,ik] = indices[i]
594     //     t->add(val, [i1,..,ik], [p1,..,pk])
595     //
596     // Note that the dense tensor traversal code is actually implemented
597     // using MLIR IR to avoid having to expose too much low-level
598     // memref traversal details to the runtime support library.
599     // Also note that the code below only generates the "new" ops and
600     // the loop-nest per se; whereas the entire body of the innermost
601     // loop is generated by genAddElt().
602     ShapedType stp = resType.cast<ShapedType>();
603     unsigned rank = stp.getRank();
604     SmallVector<Value, 4> sizes;
605     SmallVector<Value, 8> params;
606     sizesFromSrc(rewriter, sizes, loc, src);
607     newParams(rewriter, params, op, stp, encDst, Action::kEmptyCOO, sizes);
608     Value coo = genNewCall(rewriter, op, params);
609     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
610     Value perm = params[2];
611     SmallVector<Value> lo;
612     SmallVector<Value> hi;
613     SmallVector<Value> st;
614     Value zero = constantIndex(rewriter, loc, 0);
615     Value one = constantIndex(rewriter, loc, 1);
616     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
617     bool isCOOConstant = indicesValues.hasValue();
618     Value indices;
619     Value values;
620     if (isCOOConstant) {
621       indices = indicesValues->first;
622       values = indicesValues->second;
623       lo.push_back(zero);
624       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
625       st.push_back(one);
626     } else {
627       for (unsigned i = 0; i < rank; i++) {
628         lo.push_back(zero);
629         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
630         st.push_back(one);
631       }
632     }
633     Type eltType = stp.getElementType();
634     scf::buildLoopNest(
635         rewriter, op.getLoc(), lo, hi, st, {},
636         [&](OpBuilder &builder, Location loc, ValueRange ivs,
637             ValueRange args) -> scf::ValueVector {
638           Value val;
639           if (isCOOConstant)
640             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
641                                             ivs, rank);
642           else
643             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
644           genAddEltCall(rewriter, op, eltType, coo, val, ind, perm);
645           return {};
646         });
647     // Final call to construct sparse tensor storage.
648     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
649     params[7] = coo;
650     Value dst = genNewCall(rewriter, op, params);
651     genDelCOOCall(rewriter, op, eltType, coo);
652     rewriter.replaceOp(op, dst);
653     return success();
654   }
655 };
656 
657 /// Sparse conversion rule for the release operator.
658 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
659 public:
660   using OpConversionPattern::OpConversionPattern;
661   LogicalResult
662   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
663                   ConversionPatternRewriter &rewriter) const override {
664     StringRef name = "delSparseTensor";
665     TypeRange noTp;
666     createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
667                    EmitCInterface::Off);
668     rewriter.eraseOp(op);
669     return success();
670   }
671 };
672 
673 /// Sparse conversion rule for pointer accesses.
674 class SparseTensorToPointersConverter
675     : public OpConversionPattern<ToPointersOp> {
676 public:
677   using OpConversionPattern::OpConversionPattern;
678   LogicalResult
679   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
680                   ConversionPatternRewriter &rewriter) const override {
681     Type resType = op.getType();
682     Type ptrType = resType.cast<ShapedType>().getElementType();
683     SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)};
684     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
685                           EmitCInterface::On);
686     return success();
687   }
688 };
689 
690 /// Sparse conversion rule for index accesses.
691 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
692 public:
693   using OpConversionPattern::OpConversionPattern;
694   LogicalResult
695   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
696                   ConversionPatternRewriter &rewriter) const override {
697     Type resType = op.getType();
698     Type indType = resType.cast<ShapedType>().getElementType();
699     SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)};
700     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
701                           EmitCInterface::On);
702     return success();
703   }
704 };
705 
706 /// Sparse conversion rule for value accesses.
707 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
708 public:
709   using OpConversionPattern::OpConversionPattern;
710   LogicalResult
711   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
712                   ConversionPatternRewriter &rewriter) const override {
713     Type resType = op.getType();
714     Type eltType = resType.cast<ShapedType>().getElementType();
715     SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltType)};
716     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
717                           EmitCInterface::On);
718     return success();
719   }
720 };
721 
722 /// Sparse conversion rule for tensor rematerialization.
723 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
724 public:
725   using OpConversionPattern::OpConversionPattern;
726   LogicalResult
727   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
728                   ConversionPatternRewriter &rewriter) const override {
729     if (op.hasInserts()) {
730       // Finalize any pending insertions.
731       StringRef name = "endInsert";
732       TypeRange noTp;
733       createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
734                      EmitCInterface::Off);
735     }
736     rewriter.replaceOp(op, adaptor.getOperands());
737     return success();
738   }
739 };
740 
741 /// Sparse conversion rule for inserting in lexicographic index order.
742 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
743 public:
744   using OpConversionPattern::OpConversionPattern;
745   LogicalResult
746   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
747                   ConversionPatternRewriter &rewriter) const override {
748     Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
749     SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
750     TypeRange noTp;
751     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
752                           EmitCInterface::On);
753     return success();
754   }
755 };
756 
757 class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
758 public:
759   using OpConversionPattern::OpConversionPattern;
760   LogicalResult
761   matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
762                   ConversionPatternRewriter &rewriter) const override {
763     Location loc = op->getLoc();
764     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
765     Type eltType = srcType.getElementType();
766     Type boolType = rewriter.getIntegerType(1);
767     Type idxType = rewriter.getIndexType();
768     // All initialization should be done on entry of the loop nest.
769     rewriter.setInsertionPointAfter(op.tensor().getDefiningOp());
770     // Determine the size for access expansion.
771     auto enc = getSparseTensorEncoding(srcType);
772     Value src = adaptor.getOperands()[0];
773     Value sz = genDimSizeCall(rewriter, op, enc, src, srcType.getRank() - 1);
774     // Allocate temporary buffers for values, filled-switch, and indices.
775     // We do not use stack buffers for this, since the expanded size may
776     // be rather large (as it envelops a single expanded dense dimension).
777     Value values = genAlloc(rewriter, loc, sz, eltType);
778     Value filled = genAlloc(rewriter, loc, sz, boolType);
779     Value indices = genAlloc(rewriter, loc, sz, idxType);
780     Value zero = constantZero(rewriter, loc, idxType);
781     // Reset the values/filled-switch to all-zero/false. Note that this
782     // introduces an O(N) operation into the computation, but this reset
783     // operation is amortized over the innermost loops for the access
784     // pattern expansion. As noted in the operation doc, we would like
785     // to amortize this setup cost even between kernels.
786     rewriter.create<linalg::FillOp>(
787         loc, ValueRange{constantZero(rewriter, loc, eltType)},
788         ValueRange{values});
789     rewriter.create<linalg::FillOp>(
790         loc, ValueRange{constantZero(rewriter, loc, boolType)},
791         ValueRange{filled});
792     // Replace expansion op with these buffers and initial index.
793     assert(op.getNumResults() == 4);
794     rewriter.replaceOp(op, {values, filled, indices, zero});
795     return success();
796   }
797 };
798 
799 class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
800 public:
801   using OpConversionPattern::OpConversionPattern;
802   LogicalResult
803   matchAndRewrite(CompressOp op, OpAdaptor adaptor,
804                   ConversionPatternRewriter &rewriter) const override {
805     Location loc = op->getLoc();
806     // Note that this method call resets the values/filled-switch back to
807     // all-zero/false by only iterating over the set elements, so the
808     // complexity remains proportional to the sparsity of the expanded
809     // access pattern.
810     Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
811     SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
812     TypeRange noTp;
813     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
814                           EmitCInterface::On);
815     // Deallocate the buffers on exit of the loop nest.
816     Operation *parent = op;
817     for (; isa<scf::ForOp>(parent->getParentOp()) ||
818            isa<scf::WhileOp>(parent->getParentOp()) ||
819            isa<scf::ParallelOp>(parent->getParentOp()) ||
820            isa<scf::IfOp>(parent->getParentOp());
821          parent = parent->getParentOp())
822       ;
823     rewriter.setInsertionPointAfter(parent);
824     rewriter.create<memref::DeallocOp>(loc, adaptor.getOperands()[2]);
825     rewriter.create<memref::DeallocOp>(loc, adaptor.getOperands()[3]);
826     rewriter.create<memref::DeallocOp>(loc, adaptor.getOperands()[4]);
827     return success();
828   }
829 };
830 
831 class SparseTensorOutConverter : public OpConversionPattern<OutOp> {
832 public:
833   using OpConversionPattern::OpConversionPattern;
834   LogicalResult
835   matchAndRewrite(OutOp op, OpAdaptor adaptor,
836                   ConversionPatternRewriter &rewriter) const override {
837     Location loc = op->getLoc();
838     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
839     // Convert to default permuted COO.
840     Value src = adaptor.getOperands()[0];
841     auto encSrc = getSparseTensorEncoding(srcType);
842     SmallVector<Value, 4> sizes;
843     SmallVector<Value, 8> params;
844     sizesFromPtr(rewriter, sizes, op, encSrc, srcType, src);
845     auto enc = SparseTensorEncodingAttr::get(
846         op->getContext(), encSrc.getDimLevelType(), AffineMap(),
847         encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
848     newParams(rewriter, params, op, srcType, enc, Action::kToCOO, sizes, src);
849     Value coo = genNewCall(rewriter, op, params);
850     // Then output the tensor to external file with indices in the externally
851     // visible lexicographic index order. A sort is required if the source was
852     // not in that order yet (note that the sort can be dropped altogether if
853     // external format does not care about the order at all, but here we assume
854     // it does).
855     bool sort =
856         encSrc.getDimOrdering() && !encSrc.getDimOrdering().isIdentity();
857     params.clear();
858     params.push_back(coo);
859     params.push_back(adaptor.getOperands()[1]);
860     params.push_back(constantI1(rewriter, loc, sort));
861     Type eltType = srcType.getElementType();
862     SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(eltType)};
863     TypeRange noTp;
864     createFuncCall(rewriter, op, name, noTp, params, EmitCInterface::Off);
865     genDelCOOCall(rewriter, op, eltType, coo);
866     rewriter.eraseOp(op);
867     return success();
868   }
869 };
870 
871 } // namespace
872 
873 //===----------------------------------------------------------------------===//
874 // Public method for populating conversion rules.
875 //===----------------------------------------------------------------------===//
876 
877 /// Populates the given patterns list with conversion rules required for
878 /// the sparsification of linear algebra operations.
879 void mlir::populateSparseTensorConversionPatterns(
880     TypeConverter &typeConverter, RewritePatternSet &patterns,
881     const SparseTensorConversionOptions &options) {
882   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
883                SparseCastConverter, SparseTensorNewConverter,
884                SparseTensorInitConverter, SparseTensorReleaseConverter,
885                SparseTensorToPointersConverter, SparseTensorToIndicesConverter,
886                SparseTensorToValuesConverter, SparseTensorLoadConverter,
887                SparseTensorLexInsertConverter, SparseTensorExpandConverter,
888                SparseTensorCompressConverter, SparseTensorOutConverter>(
889       typeConverter, patterns.getContext());
890   patterns.add<SparseTensorConvertConverter>(typeConverter,
891                                              patterns.getContext(), options);
892 }
893