1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Convert sparse tensor primitives to calls into a runtime support library.
10 // Note that this is a current implementation choice to keep the conversion
11 // simple. In principle, these primitives could also be converted to actual
12 // elaborate IR code that implements the primitives on the selected sparse
13 // tensor storage schemes.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodegenUtils.h"
18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
19 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/MemRef/IR/MemRef.h"
22 #include "mlir/Dialect/SCF/SCF.h"
23 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
24 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
25 #include "mlir/Dialect/StandardOps/IR/Ops.h"
26 #include "mlir/Dialect/Tensor/IR/Tensor.h"
27 #include "mlir/ExecutionEngine/SparseTensorUtils.h"
28 #include "mlir/Transforms/DialectConversion.h"
29 
30 using namespace mlir;
31 using namespace mlir::sparse_tensor;
32 
33 namespace {
34 
35 /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
36 /// `createFuncCall()`, and `replaceOpWithFuncCall()`.
37 enum class EmitCInterface : bool { Off = false, On = true };
38 
39 //===----------------------------------------------------------------------===//
40 // Helper methods.
41 //===----------------------------------------------------------------------===//
42 
43 /// Returns the equivalent of `void*` for opaque arguments to the
44 /// execution engine.
45 static Type getOpaquePointerType(PatternRewriter &rewriter) {
46   return LLVM::LLVMPointerType::get(rewriter.getI8Type());
47 }
48 
49 /// Returns a function reference (first hit also inserts into module). Sets
50 /// the "_emit_c_interface" on the function declaration when requested,
51 /// so that LLVM lowering generates a wrapper function that takes care
52 /// of ABI complications with passing in and returning MemRefs to C functions.
53 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name,
54                                  TypeRange resultType, ValueRange operands,
55                                  EmitCInterface emitCInterface) {
56   MLIRContext *context = op->getContext();
57   auto module = op->getParentOfType<ModuleOp>();
58   auto result = SymbolRefAttr::get(context, name);
59   auto func = module.lookupSymbol<FuncOp>(result.getAttr());
60   if (!func) {
61     OpBuilder moduleBuilder(module.getBodyRegion());
62     func = moduleBuilder.create<FuncOp>(
63         op->getLoc(), name,
64         FunctionType::get(context, operands.getTypes(), resultType));
65     func.setPrivate();
66     if (static_cast<bool>(emitCInterface))
67       func->setAttr("llvm.emit_c_interface", UnitAttr::get(context));
68   }
69   return result;
70 }
71 
72 /// Creates a `CallOp` to the function reference returned by `getFunc()`.
73 static CallOp createFuncCall(OpBuilder &builder, Operation *op, StringRef name,
74                              TypeRange resultType, ValueRange operands,
75                              EmitCInterface emitCInterface) {
76   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
77   return builder.create<CallOp>(op->getLoc(), resultType, fn, operands);
78 }
79 
80 /// Replaces the `op` with  a `CallOp` to the function reference returned
81 /// by `getFunc()`.
82 static CallOp replaceOpWithFuncCall(PatternRewriter &rewriter, Operation *op,
83                                     StringRef name, TypeRange resultType,
84                                     ValueRange operands,
85                                     EmitCInterface emitCInterface) {
86   auto fn = getFunc(op, name, resultType, operands, emitCInterface);
87   return rewriter.replaceOpWithNewOp<CallOp>(op, resultType, fn, operands);
88 }
89 
90 /// Generates dimension size call.
91 static Value genDimSizeCall(ConversionPatternRewriter &rewriter, Operation *op,
92                             SparseTensorEncodingAttr &enc, Value src,
93                             int64_t idx) {
94   // Permute the index according to an optional dimension ordering.
95   if (AffineMap p = enc.getDimOrdering())
96     idx = p.getPermutedPosition(idx);
97   // Generate the call.
98   StringRef name = "sparseDimSize";
99   SmallVector<Value, 2> params{src, constantIndex(rewriter, op->getLoc(), idx)};
100   Type iTp = rewriter.getIndexType();
101   return createFuncCall(rewriter, op, name, iTp, params, EmitCInterface::Off)
102       .getResult(0);
103 }
104 
105 /// Generates a call into the "swiss army knife" method of the sparse runtime
106 /// support library for materializing sparse tensors into the computation.
107 static Value genNewCall(ConversionPatternRewriter &rewriter, Operation *op,
108                         ArrayRef<Value> params) {
109   StringRef name = "newSparseTensor";
110   Type pTp = getOpaquePointerType(rewriter);
111   return createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On)
112       .getResult(0);
113 }
114 
115 /// Populates given sizes array from type.
116 static void sizesFromType(ConversionPatternRewriter &rewriter,
117                           SmallVector<Value, 4> &sizes, Location loc,
118                           ShapedType stp) {
119   auto shape = stp.getShape();
120   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
121     uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
122     sizes.push_back(constantIndex(rewriter, loc, s));
123   }
124 }
125 
126 /// Populates given sizes array from source.
127 static void sizesFromSrc(ConversionPatternRewriter &rewriter,
128                          SmallVector<Value, 4> &sizes, Location loc,
129                          Value src) {
130   unsigned rank = src.getType().cast<ShapedType>().getRank();
131   for (unsigned i = 0; i < rank; i++)
132     sizes.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
133 }
134 
135 /// Populates given sizes array from type (for static sizes) and from
136 /// an already converted into opague pointer source (for dynamic sizes).
137 static void sizesFromPtr(ConversionPatternRewriter &rewriter,
138                          SmallVector<Value, 4> &sizes, Operation *op,
139                          SparseTensorEncodingAttr &enc, ShapedType stp,
140                          Value src) {
141   Location loc = op->getLoc();
142   auto shape = stp.getShape();
143   for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
144     if (shape[i] == ShapedType::kDynamicSize)
145       sizes.push_back(genDimSizeCall(rewriter, op, enc, src, i));
146     else
147       sizes.push_back(constantIndex(rewriter, loc, shape[i]));
148 }
149 
150 /// Generates an uninitialized temporary buffer of the given size and
151 /// type, but returns it as type `memref<? x $tp>` (rather than as type
152 /// `memref<$sz x $tp>`).
153 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
154                        Value sz, Type tp) {
155   auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
156   return rewriter.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
157 }
158 
159 /// Generates an uninitialized temporary buffer of the given size and
160 /// type, but returns it as type `memref<? x $tp>` (rather than as type
161 /// `memref<$sz x $tp>`).
162 static Value genAlloca(ConversionPatternRewriter &rewriter, Location loc,
163                        unsigned sz, Type tp) {
164   return genAlloca(rewriter, loc, constantIndex(rewriter, loc, sz), tp);
165 }
166 
167 /// Generates an uninitialized temporary buffer with room for one value
168 /// of the given type, and returns the `memref<$tp>`.
169 static Value genAllocaScalar(ConversionPatternRewriter &rewriter, Location loc,
170                              Type tp) {
171   return rewriter.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
172 }
173 
174 /// Generates a temporary buffer of the given type and given contents.
175 static Value genBuffer(ConversionPatternRewriter &rewriter, Location loc,
176                        ArrayRef<Value> values) {
177   unsigned sz = values.size();
178   assert(sz >= 1);
179   Value buffer = genAlloca(rewriter, loc, sz, values[0].getType());
180   for (unsigned i = 0; i < sz; i++) {
181     Value idx = constantIndex(rewriter, loc, i);
182     rewriter.create<memref::StoreOp>(loc, values[i], buffer, idx);
183   }
184   return buffer;
185 }
186 
187 /// Populates parameters required to call the "swiss army knife" method of the
188 /// sparse runtime support library for materializing sparse tensors into the
189 /// computation.
190 static void newParams(ConversionPatternRewriter &rewriter,
191                       SmallVector<Value, 8> &params, Operation *op,
192                       SparseTensorEncodingAttr &enc, Action action,
193                       ValueRange szs, Value ptr = Value()) {
194   Location loc = op->getLoc();
195   ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
196   unsigned sz = dlt.size();
197   // Sparsity annotations.
198   SmallVector<Value, 4> attrs;
199   for (unsigned i = 0; i < sz; i++)
200     attrs.push_back(constantDimLevelTypeEncoding(rewriter, loc, dlt[i]));
201   params.push_back(genBuffer(rewriter, loc, attrs));
202   // Dimension sizes array of the enveloping tensor. Useful for either
203   // verification of external data, or for construction of internal data.
204   SmallVector<Value, 4> sizes;
205   for (Value s : szs)
206     sizes.push_back(s);
207   params.push_back(genBuffer(rewriter, loc, sizes));
208   // Dimension order permutation array. This is the "identity" permutation by
209   // default, or otherwise the "reverse" permutation of a given ordering, so
210   // that indices can be mapped quickly to the right position.
211   SmallVector<Value, 4> rev(sz);
212   if (AffineMap p = enc.getDimOrdering()) {
213     for (unsigned i = 0; i < sz; i++)
214       rev[p.getDimPosition(i)] = constantIndex(rewriter, loc, i);
215   } else {
216     for (unsigned i = 0; i < sz; i++)
217       rev[i] = constantIndex(rewriter, loc, i);
218   }
219   params.push_back(genBuffer(rewriter, loc, rev));
220   // Secondary and primary types encoding.
221   Type elemTp = op->getResult(0).getType().cast<ShapedType>().getElementType();
222   params.push_back(constantPointerTypeEncoding(rewriter, loc, enc));
223   params.push_back(constantIndexTypeEncoding(rewriter, loc, enc));
224   params.push_back(constantPrimaryTypeEncoding(rewriter, loc, elemTp));
225   // User action.
226   params.push_back(constantAction(rewriter, loc, action));
227   // Payload pointer.
228   if (!ptr)
229     ptr = rewriter.create<LLVM::NullOp>(loc, getOpaquePointerType(rewriter));
230   params.push_back(ptr);
231 }
232 
233 /// Generates the code to read the value from tensor[ivs], and conditionally
234 /// stores the indices ivs to the memory in ind. The generated code looks like
235 /// the following and the insertion point after this routine is inside the
236 /// if-then branch behind the assignment to ind. This is to ensure that the
237 /// addEltX call generated after is inside the if-then branch.
238 ///    if (tensor[ivs]!=0) {
239 ///      ind = ivs
240 static Value genIndexAndValueForDense(ConversionPatternRewriter &rewriter,
241                                       Location loc, Value tensor, Value ind,
242                                       ValueRange ivs) {
243   Value val = rewriter.create<tensor::ExtractOp>(loc, tensor, ivs);
244   Value cond = genIsNonzero(rewriter, loc, val);
245   scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, cond, /*else*/ false);
246   rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
247   unsigned i = 0;
248   for (auto iv : ivs) {
249     Value idx = constantIndex(rewriter, loc, i++);
250     rewriter.create<memref::StoreOp>(loc, iv, ind, idx);
251   }
252   return val;
253 }
254 
255 /// Generates a call that adds one element to a coordinate scheme.
256 /// In particular, this generates code like the following:
257 ///   val = a[i1,..,ik];
258 ///   if val != 0
259 ///     t->add(val, [i1,..,ik], [p1,..,pk]);
260 static void genAddEltCall(ConversionPatternRewriter &rewriter, Operation *op,
261                           Type eltType, Value ptr, Value val, Value ind,
262                           Value perm) {
263   SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
264   SmallVector<Value, 4> params{ptr, val, ind, perm};
265   Type pTp = getOpaquePointerType(rewriter);
266   createFuncCall(rewriter, op, name, pTp, params, EmitCInterface::On);
267 }
268 
269 /// Generates a call to `iter->getNext()`.  If there is a next element,
270 /// then it is copied into the out-parameters `ind` and `elemPtr`,
271 /// and the return value is true.  If there isn't a next element, then
272 /// the memory for `iter` is freed and the return value is false.
273 static Value genGetNextCall(ConversionPatternRewriter &rewriter, Operation *op,
274                             Value iter, Value ind, Value elemPtr) {
275   Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
276   SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
277   SmallVector<Value, 3> params{iter, ind, elemPtr};
278   Type i1 = rewriter.getI1Type();
279   return createFuncCall(rewriter, op, name, i1, params, EmitCInterface::On)
280       .getResult(0);
281 }
282 
283 /// If the tensor is a sparse constant, generates and returns the pair of
284 /// the constants for the indices and the values.
285 static Optional<std::pair<Value, Value>>
286 genSplitSparseConstant(ConversionPatternRewriter &rewriter, Location loc,
287                        Value tensor) {
288   if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
289     if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
290       DenseElementsAttr indicesAttr = attr.getIndices();
291       Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
292       DenseElementsAttr valuesAttr = attr.getValues();
293       Value values = rewriter.create<arith::ConstantOp>(loc, valuesAttr);
294       return std::make_pair(indices, values);
295     }
296   }
297   return {};
298 }
299 
300 /// Generates the code to copy the index at indices[ivs] to ind, and return
301 /// the value at value[ivs].
302 static Value genIndexAndValueForSparse(ConversionPatternRewriter &rewriter,
303                                        Location loc, Value indices,
304                                        Value values, Value ind, ValueRange ivs,
305                                        unsigned rank) {
306   for (unsigned i = 0; i < rank; i++) {
307     Value idx = constantIndex(rewriter, loc, i);
308     Value val = rewriter.create<tensor::ExtractOp>(loc, indices,
309                                                    ValueRange{ivs[0], idx});
310     val =
311         rewriter.create<arith::IndexCastOp>(loc, val, rewriter.getIndexType());
312     rewriter.create<memref::StoreOp>(loc, val, ind, idx);
313   }
314   return rewriter.create<tensor::ExtractOp>(loc, values, ivs[0]);
315 }
316 
317 /// Generates code to allocate a tensor of the given type, and zero
318 /// initialize it.  If the tensor type has any dynamic sizes, then the
319 /// `sizes` parameter should be as filled by sizesFromPtr(); that way
320 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
321 static Value allocDenseTensor(ConversionPatternRewriter &rewriter, Location loc,
322                               RankedTensorType tensorTp, ValueRange sizes) {
323   Type elemTp = tensorTp.getElementType();
324   auto shape = tensorTp.getShape();
325   auto memTp = MemRefType::get(shape, elemTp);
326   SmallVector<Value> dynamicSizes;
327   for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
328     if (shape[i] == ShapedType::kDynamicSize)
329       dynamicSizes.push_back(sizes[i]);
330   }
331   Value mem = rewriter.create<memref::AllocOp>(loc, memTp, dynamicSizes);
332   Value zero = constantZero(rewriter, loc, elemTp);
333   rewriter.create<linalg::FillOp>(loc, zero, mem);
334   return mem;
335 }
336 
337 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into
338 /// the tensor created by allocDenseTensor().  The `rank` is the rank
339 /// of the `tensor` and the length of `ind`.
340 static void insertScalarIntoDenseTensor(ConversionPatternRewriter &rewriter,
341                                         Location loc, Value elemPtr,
342                                         Value tensor, unsigned rank,
343                                         Value ind) {
344   SmallVector<Value, 4> ivs;
345   ivs.reserve(rank);
346   for (unsigned i = 0; i < rank; i++) {
347     Value idx = constantIndex(rewriter, loc, i);
348     ivs.push_back(rewriter.create<memref::LoadOp>(loc, ind, idx));
349   }
350   Value elemV = rewriter.create<memref::LoadOp>(loc, elemPtr);
351   rewriter.create<memref::StoreOp>(loc, elemV, tensor, ivs);
352 }
353 
354 //===----------------------------------------------------------------------===//
355 // Conversion rules.
356 //===----------------------------------------------------------------------===//
357 
358 /// Sparse conversion rule for returns.
359 class SparseReturnConverter : public OpConversionPattern<ReturnOp> {
360 public:
361   using OpConversionPattern::OpConversionPattern;
362   LogicalResult
363   matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
364                   ConversionPatternRewriter &rewriter) const override {
365     rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands());
366     return success();
367   }
368 };
369 
370 /// Sparse conversion rule for dimension accesses.
371 class SparseTensorToDimSizeConverter
372     : public OpConversionPattern<tensor::DimOp> {
373 public:
374   using OpConversionPattern::OpConversionPattern;
375   LogicalResult
376   matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
377                   ConversionPatternRewriter &rewriter) const override {
378     // Only rewrite annotated DimOp with constant index.
379     auto enc = getSparseTensorEncoding(op.source().getType());
380     if (!enc)
381       return failure();
382     Optional<int64_t> index = op.getConstantIndex();
383     if (!index.hasValue())
384       return failure();
385     // Generate the call.
386     Value src = adaptor.getOperands()[0];
387     int64_t idx = index.getValue();
388     rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx));
389     return success();
390   }
391 };
392 
393 /// Sparse conversion rule for trivial tensor casts.
394 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
395   using OpConversionPattern::OpConversionPattern;
396   LogicalResult
397   matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
398                   ConversionPatternRewriter &rewriter) const override {
399     // Only rewrite identically annotated source/dest.
400     auto encDst = getSparseTensorEncoding(op.getType());
401     auto encSrc = getSparseTensorEncoding(op.source().getType());
402     if (!encDst || encDst != encSrc)
403       return failure();
404     rewriter.replaceOp(op, adaptor.getOperands());
405     return success();
406   }
407 };
408 
409 /// Sparse conversion rule for the new operator.
410 class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
411   using OpConversionPattern::OpConversionPattern;
412   LogicalResult
413   matchAndRewrite(NewOp op, OpAdaptor adaptor,
414                   ConversionPatternRewriter &rewriter) const override {
415     Type resType = op.getType();
416     auto enc = getSparseTensorEncoding(resType);
417     if (!enc)
418       return failure();
419     // Generate the call to construct tensor from ptr. The sizes are
420     // inferred from the result type of the new operator.
421     SmallVector<Value, 4> sizes;
422     SmallVector<Value, 8> params;
423     sizesFromType(rewriter, sizes, op.getLoc(), resType.cast<ShapedType>());
424     Value ptr = adaptor.getOperands()[0];
425     newParams(rewriter, params, op, enc, Action::kFromFile, sizes, ptr);
426     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
427     return success();
428   }
429 };
430 
431 /// Sparse conversion rule for the init operator.
432 class SparseTensorInitConverter : public OpConversionPattern<InitOp> {
433   using OpConversionPattern::OpConversionPattern;
434   LogicalResult
435   matchAndRewrite(InitOp op, OpAdaptor adaptor,
436                   ConversionPatternRewriter &rewriter) const override {
437     Type resType = op.getType();
438     auto enc = getSparseTensorEncoding(resType);
439     if (!enc)
440       return failure();
441     // Generate the call to construct empty tensor. The sizes are
442     // explicitly defined by the arguments to the init operator.
443     SmallVector<Value, 8> params;
444     newParams(rewriter, params, op, enc, Action::kEmpty, adaptor.getOperands());
445     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
446     return success();
447   }
448 };
449 
450 /// Sparse conversion rule for the convert operator.
451 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
452   using OpConversionPattern::OpConversionPattern;
453   LogicalResult
454   matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
455                   ConversionPatternRewriter &rewriter) const override {
456     Location loc = op->getLoc();
457     Type resType = op.getType();
458     Type srcType = op.source().getType();
459     auto encDst = getSparseTensorEncoding(resType);
460     auto encSrc = getSparseTensorEncoding(srcType);
461     Value src = adaptor.getOperands()[0];
462     if (encDst && encSrc) {
463       // This is a sparse => sparse conversion, which is handled as follows:
464       //   t = src->toCOO();         ; src to COO in dst order
465       //   dst = newSparseTensor(t)
466       // Using the coordinate scheme as an intermediate does not always
467       // yield the fastest conversion but avoids the need for a full
468       // O(N^2) conversion matrix.
469       if (encDst == encSrc) {
470         rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
471         return success();
472       }
473       SmallVector<Value, 4> sizes;
474       SmallVector<Value, 8> params;
475       sizesFromPtr(rewriter, sizes, op, encSrc, srcType.cast<ShapedType>(),
476                    src);
477       // Set up encoding with right mix of src and dst so that the two
478       // method calls can share most parameters, while still providing
479       // the correct sparsity information to either of them.
480       auto enc = SparseTensorEncodingAttr::get(
481           op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
482           encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
483       newParams(rewriter, params, op, enc, Action::kToCOO, sizes, src);
484       Value coo = genNewCall(rewriter, op, params);
485       params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
486       params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
487       params[6] = constantAction(rewriter, loc, Action::kFromCOO);
488       params[7] = coo;
489       rewriter.replaceOp(op, genNewCall(rewriter, op, params));
490       return success();
491     }
492     if (!encDst && encSrc) {
493       // This is sparse => dense conversion, which is handled as follows:
494       //   dst = new Tensor(0);
495       //   iter = src->toCOO();
496       //   iter->startIterator();
497       //   while (elem = iter->getNext()) {
498       //     dst[elem.indices] = elem.value;
499       //   }
500       RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
501       RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
502       unsigned rank = dstTensorTp.getRank();
503       Type elemTp = dstTensorTp.getElementType();
504       // Fabricate a no-permutation encoding for newParams().
505       // The pointer/index types must be those of `src`.
506       // The dimLevelTypes aren't actually used by Action::kToIterator.
507       encDst = SparseTensorEncodingAttr::get(
508           op->getContext(),
509           SmallVector<SparseTensorEncodingAttr::DimLevelType>(
510               rank, SparseTensorEncodingAttr::DimLevelType::Dense),
511           AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
512       SmallVector<Value, 4> sizes;
513       SmallVector<Value, 8> params;
514       sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src);
515       newParams(rewriter, params, op, encDst, Action::kToIterator, sizes, src);
516       Value iter = genNewCall(rewriter, op, params);
517       Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
518       Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
519       Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
520       SmallVector<Value> noArgs;
521       SmallVector<Type> noTypes;
522       auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
523       Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
524       rewriter.setInsertionPointToEnd(before);
525       Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr);
526       rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
527       Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
528       rewriter.setInsertionPointToStart(after);
529       insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind);
530       rewriter.create<scf::YieldOp>(loc);
531       rewriter.setInsertionPointAfter(whileOp);
532       rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
533       return success();
534     }
535     if (!encDst && !encSrc) {
536       // dense => dense
537       return failure();
538     }
539     // This is a dense => sparse conversion or a sparse constant in COO =>
540     // sparse conversion, which is handled as follows:
541     //   t = newSparseCOO()
542     //   ...code to fill the COO tensor t...
543     //   s = newSparseTensor(t)
544     //
545     // To fill the COO tensor from a dense tensor:
546     //   for i1 in dim1
547     //    ..
548     //     for ik in dimk
549     //       val = a[i1,..,ik]
550     //       if val != 0
551     //         t->add(val, [i1,..,ik], [p1,..,pk])
552     //
553     // To fill the COO tensor from a sparse constant in COO format:
554     //   for i in range(NNZ)
555     //     val = values[i]
556     //     [i1,..,ik] = indices[i]
557     //     t->add(val, [i1,..,ik], [p1,..,pk])
558     //
559     // Note that the dense tensor traversal code is actually implemented
560     // using MLIR IR to avoid having to expose too much low-level
561     // memref traversal details to the runtime support library.
562     // Also note that the code below only generates the "new" ops and
563     // the loop-nest per se; whereas the entire body of the innermost
564     // loop is generated by genAddElt().
565     ShapedType stp = resType.cast<ShapedType>();
566     unsigned rank = stp.getRank();
567     SmallVector<Value, 4> sizes;
568     SmallVector<Value, 8> params;
569     sizesFromSrc(rewriter, sizes, loc, src);
570     newParams(rewriter, params, op, encDst, Action::kEmptyCOO, sizes);
571     Value ptr = genNewCall(rewriter, op, params);
572     Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
573     Value perm = params[2];
574     SmallVector<Value> lo;
575     SmallVector<Value> hi;
576     SmallVector<Value> st;
577     Value zero = constantIndex(rewriter, loc, 0);
578     Value one = constantIndex(rewriter, loc, 1);
579     auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
580     bool isCOOConstant = indicesValues.hasValue();
581     Value indices;
582     Value values;
583     if (isCOOConstant) {
584       indices = indicesValues->first;
585       values = indicesValues->second;
586       lo.push_back(zero);
587       hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
588       st.push_back(one);
589     } else {
590       for (unsigned i = 0; i < rank; i++) {
591         lo.push_back(zero);
592         hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
593         st.push_back(one);
594       }
595     }
596     Type eltType = stp.getElementType();
597     scf::buildLoopNest(
598         rewriter, op.getLoc(), lo, hi, st, {},
599         [&](OpBuilder &builder, Location loc, ValueRange ivs,
600             ValueRange args) -> scf::ValueVector {
601           Value val;
602           if (isCOOConstant)
603             val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
604                                             ivs, rank);
605           else
606             val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
607           genAddEltCall(rewriter, op, eltType, ptr, val, ind, perm);
608           return {};
609         });
610     // Final call to construct sparse tensor storage.
611     params[6] = constantAction(rewriter, loc, Action::kFromCOO);
612     params[7] = ptr;
613     rewriter.replaceOp(op, genNewCall(rewriter, op, params));
614     return success();
615   }
616 };
617 
618 /// Sparse conversion rule for the release operator.
619 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> {
620 public:
621   using OpConversionPattern::OpConversionPattern;
622   LogicalResult
623   matchAndRewrite(ReleaseOp op, OpAdaptor adaptor,
624                   ConversionPatternRewriter &rewriter) const override {
625     StringRef name = "delSparseTensor";
626     TypeRange noTp;
627     createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
628                    EmitCInterface::Off);
629     rewriter.eraseOp(op);
630     return success();
631   }
632 };
633 
634 /// Sparse conversion rule for pointer accesses.
635 class SparseTensorToPointersConverter
636     : public OpConversionPattern<ToPointersOp> {
637 public:
638   using OpConversionPattern::OpConversionPattern;
639   LogicalResult
640   matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
641                   ConversionPatternRewriter &rewriter) const override {
642     Type resType = op.getType();
643     Type ptrType = resType.cast<ShapedType>().getElementType();
644     SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)};
645     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
646                           EmitCInterface::On);
647     return success();
648   }
649 };
650 
651 /// Sparse conversion rule for index accesses.
652 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
653 public:
654   using OpConversionPattern::OpConversionPattern;
655   LogicalResult
656   matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
657                   ConversionPatternRewriter &rewriter) const override {
658     Type resType = op.getType();
659     Type indType = resType.cast<ShapedType>().getElementType();
660     SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)};
661     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
662                           EmitCInterface::On);
663     return success();
664   }
665 };
666 
667 /// Sparse conversion rule for value accesses.
668 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
669 public:
670   using OpConversionPattern::OpConversionPattern;
671   LogicalResult
672   matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
673                   ConversionPatternRewriter &rewriter) const override {
674     Type resType = op.getType();
675     Type eltType = resType.cast<ShapedType>().getElementType();
676     SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltType)};
677     replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
678                           EmitCInterface::On);
679     return success();
680   }
681 };
682 
683 /// Sparse conversion rule for tensor rematerialization.
684 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
685 public:
686   using OpConversionPattern::OpConversionPattern;
687   LogicalResult
688   matchAndRewrite(LoadOp op, OpAdaptor adaptor,
689                   ConversionPatternRewriter &rewriter) const override {
690     if (op.hasInserts()) {
691       // Finalize any pending insertions.
692       StringRef name = "endInsert";
693       TypeRange noTp;
694       createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
695                      EmitCInterface::Off);
696     }
697     rewriter.replaceOp(op, adaptor.getOperands());
698     return success();
699   }
700 };
701 
702 /// Sparse conversion rule for inserting in lexicographic index order.
703 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> {
704 public:
705   using OpConversionPattern::OpConversionPattern;
706   LogicalResult
707   matchAndRewrite(LexInsertOp op, OpAdaptor adaptor,
708                   ConversionPatternRewriter &rewriter) const override {
709     Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
710     SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
711     TypeRange noTp;
712     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
713                           EmitCInterface::On);
714     return success();
715   }
716 };
717 
718 class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
719 public:
720   using OpConversionPattern::OpConversionPattern;
721   LogicalResult
722   matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
723                   ConversionPatternRewriter &rewriter) const override {
724     Location loc = op->getLoc();
725     ShapedType srcType = op.tensor().getType().cast<ShapedType>();
726     Type eltType = srcType.getElementType();
727     Type boolType = rewriter.getIntegerType(1);
728     Type idxType = rewriter.getIndexType();
729     // All initialization should be done on entry of the loop nest.
730     rewriter.setInsertionPointAfter(op.tensor().getDefiningOp());
731     // Determine the size for access expansion.
732     auto enc = getSparseTensorEncoding(srcType);
733     Value src = adaptor.getOperands()[0];
734     Value sz = genDimSizeCall(rewriter, op, enc, src, srcType.getRank() - 1);
735     // Allocate temporary stack buffers for values, filled-switch, and indices.
736     Value values = genAlloca(rewriter, loc, sz, eltType);
737     Value filled = genAlloca(rewriter, loc, sz, boolType);
738     Value indices = genAlloca(rewriter, loc, sz, idxType);
739     Value zero = constantZero(rewriter, loc, idxType);
740     // Reset the values/filled-switch to all-zero/false. Note that this
741     // introduces an O(N) operation into the computation, but this reset
742     // operation is amortized over the innermost loops for the access
743     // pattern expansion.
744     rewriter.create<linalg::FillOp>(loc, constantZero(rewriter, loc, eltType),
745                                     values);
746     rewriter.create<linalg::FillOp>(loc, constantZero(rewriter, loc, boolType),
747                                     filled);
748     // Replace expansion op with these buffers and initial index.
749     assert(op.getNumResults() == 4);
750     rewriter.replaceOp(op, {values, filled, indices, zero});
751     return success();
752   }
753 };
754 
755 class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
756 public:
757   using OpConversionPattern::OpConversionPattern;
758   LogicalResult
759   matchAndRewrite(CompressOp op, OpAdaptor adaptor,
760                   ConversionPatternRewriter &rewriter) const override {
761     // Note that this method call resets the values/filled-switch back to
762     // all-zero/false by only iterating over the set elements, so the
763     // complexity remains proportional to the sparsity of the expanded
764     // access pattern.
765     Type elemTp = op.tensor().getType().cast<ShapedType>().getElementType();
766     SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
767     TypeRange noTp;
768     replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(),
769                           EmitCInterface::On);
770     return success();
771   }
772 };
773 
774 } // namespace
775 
776 //===----------------------------------------------------------------------===//
777 // Public method for populating conversion rules.
778 //===----------------------------------------------------------------------===//
779 
780 /// Populates the given patterns list with conversion rules required for
781 /// the sparsification of linear algebra operations.
782 void mlir::populateSparseTensorConversionPatterns(TypeConverter &typeConverter,
783                                                   RewritePatternSet &patterns) {
784   patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
785                SparseCastConverter, SparseTensorNewConverter,
786                SparseTensorInitConverter, SparseTensorConvertConverter,
787                SparseTensorReleaseConverter, SparseTensorToPointersConverter,
788                SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
789                SparseTensorLoadConverter, SparseTensorLexInsertConverter,
790                SparseTensorExpandConverter, SparseTensorCompressConverter>(
791       typeConverter, patterns.getContext());
792 }
793