1 //===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Convert sparse tensor primitives to calls into a runtime support library. 10 // Note that this is a current implementation choice to keep the conversion 11 // simple. In principle, these primitives could also be converted to actual 12 // elaborate IR code that implements the primitives on the selected sparse 13 // tensor storage schemes. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodegenUtils.h" 18 19 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 20 #include "mlir/Dialect/Func/IR/FuncOps.h" 21 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 22 #include "mlir/Dialect/Linalg/Utils/Utils.h" 23 #include "mlir/Dialect/MemRef/IR/MemRef.h" 24 #include "mlir/Dialect/SCF/IR/SCF.h" 25 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 27 #include "mlir/Dialect/Tensor/IR/Tensor.h" 28 #include "mlir/ExecutionEngine/SparseTensorUtils.h" 29 #include "mlir/Transforms/DialectConversion.h" 30 31 using namespace mlir; 32 using namespace mlir::sparse_tensor; 33 34 namespace { 35 36 /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`, 37 /// `createFuncCall()`, and `replaceOpWithFuncCall()`. 38 enum class EmitCInterface : bool { Off = false, On = true }; 39 40 //===----------------------------------------------------------------------===// 41 // Helper methods. 42 //===----------------------------------------------------------------------===// 43 44 /// Returns the equivalent of `void*` for opaque arguments to the 45 /// execution engine. 46 static Type getOpaquePointerType(OpBuilder &builder) { 47 return LLVM::LLVMPointerType::get(builder.getI8Type()); 48 } 49 50 /// Returns a function reference (first hit also inserts into module). Sets 51 /// the "_emit_c_interface" on the function declaration when requested, 52 /// so that LLVM lowering generates a wrapper function that takes care 53 /// of ABI complications with passing in and returning MemRefs to C functions. 54 static FlatSymbolRefAttr getFunc(Operation *op, StringRef name, 55 TypeRange resultType, ValueRange operands, 56 EmitCInterface emitCInterface) { 57 MLIRContext *context = op->getContext(); 58 auto module = op->getParentOfType<ModuleOp>(); 59 auto result = SymbolRefAttr::get(context, name); 60 auto func = module.lookupSymbol<func::FuncOp>(result.getAttr()); 61 if (!func) { 62 OpBuilder moduleBuilder(module.getBodyRegion()); 63 func = moduleBuilder.create<func::FuncOp>( 64 op->getLoc(), name, 65 FunctionType::get(context, operands.getTypes(), resultType)); 66 func.setPrivate(); 67 if (static_cast<bool>(emitCInterface)) 68 func->setAttr(LLVM::LLVMDialect::getEmitCWrapperAttrName(), 69 UnitAttr::get(context)); 70 } 71 return result; 72 } 73 74 /// Creates a `CallOp` to the function reference returned by `getFunc()`. 75 static func::CallOp createFuncCall(OpBuilder &builder, Operation *op, 76 StringRef name, TypeRange resultType, 77 ValueRange operands, 78 EmitCInterface emitCInterface) { 79 auto fn = getFunc(op, name, resultType, operands, emitCInterface); 80 return builder.create<func::CallOp>(op->getLoc(), resultType, fn, operands); 81 } 82 83 /// Replaces the `op` with a `CallOp` to the function reference returned 84 /// by `getFunc()`. 85 static func::CallOp replaceOpWithFuncCall(RewriterBase &rewriter, Operation *op, 86 StringRef name, TypeRange resultType, 87 ValueRange operands, 88 EmitCInterface emitCInterface) { 89 auto fn = getFunc(op, name, resultType, operands, emitCInterface); 90 return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn, 91 operands); 92 } 93 94 /// Generates dimension size call. 95 static Value genDimSizeCall(OpBuilder &builder, Operation *op, 96 SparseTensorEncodingAttr &enc, Value src, 97 int64_t idx) { 98 // Permute the index according to an optional dimension ordering. 99 if (AffineMap p = enc.getDimOrdering()) 100 idx = p.getPermutedPosition(idx); 101 // Generate the call. 102 StringRef name = "sparseDimSize"; 103 SmallVector<Value, 2> params{src, constantIndex(builder, op->getLoc(), idx)}; 104 Type iTp = builder.getIndexType(); 105 return createFuncCall(builder, op, name, iTp, params, EmitCInterface::Off) 106 .getResult(0); 107 } 108 109 /// Generates a call into the "swiss army knife" method of the sparse runtime 110 /// support library for materializing sparse tensors into the computation. 111 static Value genNewCall(OpBuilder &builder, Operation *op, 112 ArrayRef<Value> params) { 113 StringRef name = "newSparseTensor"; 114 Type pTp = getOpaquePointerType(builder); 115 return createFuncCall(builder, op, name, pTp, params, EmitCInterface::On) 116 .getResult(0); 117 } 118 119 /// Populates given sizes array from type. 120 static void sizesFromType(OpBuilder &builder, SmallVector<Value, 4> &sizes, 121 Location loc, ShapedType stp) { 122 auto shape = stp.getShape(); 123 for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) { 124 uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i]; 125 sizes.push_back(constantIndex(builder, loc, s)); 126 } 127 } 128 129 /// Populates given sizes array from source. 130 static void sizesFromSrc(OpBuilder &builder, SmallVector<Value, 4> &sizes, 131 Location loc, Value src) { 132 unsigned rank = src.getType().cast<ShapedType>().getRank(); 133 for (unsigned i = 0; i < rank; i++) 134 sizes.push_back(linalg::createOrFoldDimOp(builder, loc, src, i)); 135 } 136 137 /// Populates given sizes array from type (for static sizes) and from 138 /// an already converted into opague pointer source (for dynamic sizes). 139 static void sizesFromPtr(OpBuilder &builder, SmallVector<Value, 4> &sizes, 140 Operation *op, SparseTensorEncodingAttr &enc, 141 ShapedType stp, Value src) { 142 Location loc = op->getLoc(); 143 auto shape = stp.getShape(); 144 for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) 145 if (shape[i] == ShapedType::kDynamicSize) 146 sizes.push_back(genDimSizeCall(builder, op, enc, src, i)); 147 else 148 sizes.push_back(constantIndex(builder, loc, shape[i])); 149 } 150 151 /// Generates an uninitialized temporary buffer of the given size and 152 /// type, but returns it as type `memref<? x $tp>` (rather than as type 153 /// `memref<$sz x $tp>`). 154 static Value genAlloca(OpBuilder &builder, Location loc, Value sz, Type tp) { 155 auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp); 156 return builder.create<memref::AllocaOp>(loc, memTp, ValueRange{sz}); 157 } 158 159 /// Generates an uninitialized buffer of the given size and type, 160 /// but returns it as type `memref<? x $tp>` (rather than as type 161 /// `memref<$sz x $tp>`). Unlike temporary buffers on the stack, 162 /// this buffer must be explicitly deallocated by client. 163 static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) { 164 auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp); 165 return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz}); 166 } 167 168 /// Generates an uninitialized temporary buffer of the given size and 169 /// type, but returns it as type `memref<? x $tp>` (rather than as type 170 /// `memref<$sz x $tp>`). 171 static Value genAlloca(OpBuilder &builder, Location loc, unsigned sz, Type tp) { 172 return genAlloca(builder, loc, constantIndex(builder, loc, sz), tp); 173 } 174 175 /// Generates an uninitialized temporary buffer with room for one value 176 /// of the given type, and returns the `memref<$tp>`. 177 static Value genAllocaScalar(OpBuilder &builder, Location loc, Type tp) { 178 return builder.create<memref::AllocaOp>(loc, MemRefType::get({}, tp)); 179 } 180 181 /// Generates a temporary buffer of the given type and given contents. 182 static Value genBuffer(OpBuilder &builder, Location loc, ValueRange values) { 183 unsigned sz = values.size(); 184 assert(sz >= 1); 185 Value buffer = genAlloca(builder, loc, sz, values[0].getType()); 186 for (unsigned i = 0; i < sz; i++) { 187 Value idx = constantIndex(builder, loc, i); 188 builder.create<memref::StoreOp>(loc, values[i], buffer, idx); 189 } 190 return buffer; 191 } 192 193 /// Populates parameters required to call the "swiss army knife" method of the 194 /// sparse runtime support library for materializing sparse tensors into the 195 /// computation. 196 static void newParams(OpBuilder &builder, SmallVector<Value, 8> ¶ms, 197 Operation *op, ShapedType stp, 198 SparseTensorEncodingAttr &enc, Action action, 199 ValueRange szs, Value ptr = Value()) { 200 Location loc = op->getLoc(); 201 ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType(); 202 unsigned sz = dlt.size(); 203 // Sparsity annotations. 204 SmallVector<Value, 4> attrs; 205 for (unsigned i = 0; i < sz; i++) 206 attrs.push_back(constantDimLevelTypeEncoding(builder, loc, dlt[i])); 207 params.push_back(genBuffer(builder, loc, attrs)); 208 // Dimension sizes array of the enveloping tensor. Useful for either 209 // verification of external data, or for construction of internal data. 210 params.push_back(genBuffer(builder, loc, szs)); 211 // Dimension order permutation array. This is the "identity" permutation by 212 // default, or otherwise the "reverse" permutation of a given ordering, so 213 // that indices can be mapped quickly to the right position. 214 SmallVector<Value, 4> rev(sz); 215 if (AffineMap p = enc.getDimOrdering()) { 216 for (unsigned i = 0; i < sz; i++) 217 rev[p.getDimPosition(i)] = constantIndex(builder, loc, i); 218 } else { 219 for (unsigned i = 0; i < sz; i++) 220 rev[i] = constantIndex(builder, loc, i); 221 } 222 params.push_back(genBuffer(builder, loc, rev)); 223 // Secondary and primary types encoding. 224 Type elemTp = stp.getElementType(); 225 params.push_back(constantPointerTypeEncoding(builder, loc, enc)); 226 params.push_back(constantIndexTypeEncoding(builder, loc, enc)); 227 params.push_back(constantPrimaryTypeEncoding(builder, loc, elemTp)); 228 // User action. 229 params.push_back(constantAction(builder, loc, action)); 230 // Payload pointer. 231 if (!ptr) 232 ptr = builder.create<LLVM::NullOp>(loc, getOpaquePointerType(builder)); 233 params.push_back(ptr); 234 } 235 236 /// Generates the code to read the value from tensor[ivs], and conditionally 237 /// stores the indices ivs to the memory in ind. The generated code looks like 238 /// the following and the insertion point after this routine is inside the 239 /// if-then branch behind the assignment to ind. This is to ensure that the 240 /// addEltX call generated after is inside the if-then branch. 241 /// if (tensor[ivs]!=0) { 242 /// ind = ivs 243 static Value genIndexAndValueForDense(OpBuilder &builder, Location loc, 244 Value tensor, Value ind, ValueRange ivs) { 245 Value val = builder.create<tensor::ExtractOp>(loc, tensor, ivs); 246 Value cond = genIsNonzero(builder, loc, val); 247 scf::IfOp ifOp = builder.create<scf::IfOp>(loc, cond, /*else*/ false); 248 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 249 unsigned i = 0; 250 for (auto iv : ivs) { 251 Value idx = constantIndex(builder, loc, i++); 252 builder.create<memref::StoreOp>(loc, iv, ind, idx); 253 } 254 return val; 255 } 256 257 /// Generates a call to release/delete a `SparseTensorCOO`. 258 static void genDelCOOCall(OpBuilder &builder, Operation *op, Type elemTp, 259 Value coo) { 260 SmallString<21> name{"delSparseTensorCOO", primaryTypeFunctionSuffix(elemTp)}; 261 TypeRange noTp; 262 createFuncCall(builder, op, name, noTp, coo, EmitCInterface::Off); 263 } 264 265 /// Generates a call that adds one element to a coordinate scheme. 266 /// In particular, this generates code like the following: 267 /// val = a[i1,..,ik]; 268 /// if val != 0 269 /// t->add(&val, [i1,..,ik], [p1,..,pk]); 270 static void genAddEltCall(OpBuilder &builder, Operation *op, Type eltType, 271 Value ptr, Value valPtr, Value ind, Value perm) { 272 SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)}; 273 SmallVector<Value, 4> params{ptr, valPtr, ind, perm}; 274 Type pTp = getOpaquePointerType(builder); 275 createFuncCall(builder, op, name, pTp, params, EmitCInterface::On); 276 } 277 278 /// Generates a call to `iter->getNext()`. If there is a next element, 279 /// then it is copied into the out-parameters `ind` and `elemPtr`, 280 /// and the return value is true. If there isn't a next element, then 281 /// the memory for `iter` is freed and the return value is false. 282 static Value genGetNextCall(OpBuilder &builder, Operation *op, Value iter, 283 Value ind, Value elemPtr) { 284 Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType(); 285 SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)}; 286 SmallVector<Value, 3> params{iter, ind, elemPtr}; 287 Type i1 = builder.getI1Type(); 288 return createFuncCall(builder, op, name, i1, params, EmitCInterface::On) 289 .getResult(0); 290 } 291 292 /// If the tensor is a sparse constant, generates and returns the pair of 293 /// the constants for the indices and the values. 294 static Optional<std::pair<Value, Value>> 295 genSplitSparseConstant(OpBuilder &builder, Location loc, Value tensor) { 296 if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) { 297 if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) { 298 DenseElementsAttr indicesAttr = attr.getIndices(); 299 Value indices = builder.create<arith::ConstantOp>(loc, indicesAttr); 300 DenseElementsAttr valuesAttr = attr.getValues(); 301 Value values = builder.create<arith::ConstantOp>(loc, valuesAttr); 302 return std::make_pair(indices, values); 303 } 304 } 305 return {}; 306 } 307 308 /// Generates the code to copy the index at indices[ivs] to ind, and return 309 /// the value at value[ivs]. 310 static Value genIndexAndValueForSparse(OpBuilder &builder, Location loc, 311 Value indices, Value values, Value ind, 312 ValueRange ivs, unsigned rank) { 313 for (unsigned i = 0; i < rank; i++) { 314 Value idx = constantIndex(builder, loc, i); 315 Value val = builder.create<tensor::ExtractOp>(loc, indices, 316 ValueRange{ivs[0], idx}); 317 val = builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), val); 318 builder.create<memref::StoreOp>(loc, val, ind, idx); 319 } 320 return builder.create<tensor::ExtractOp>(loc, values, ivs[0]); 321 } 322 323 /// Generates code to allocate a tensor of the given type, and zero 324 /// initialize it. If the tensor type has any dynamic sizes, then the 325 /// `sizes` parameter should be as filled by sizesFromPtr(); that way 326 /// we can reuse the genDimSizeCall() results generated by sizesFromPtr(). 327 static Value allocDenseTensor(OpBuilder &builder, Location loc, 328 RankedTensorType tensorTp, ValueRange sizes) { 329 Type elemTp = tensorTp.getElementType(); 330 auto shape = tensorTp.getShape(); 331 auto memTp = MemRefType::get(shape, elemTp); 332 SmallVector<Value> dynamicSizes; 333 for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) { 334 if (shape[i] == ShapedType::kDynamicSize) 335 dynamicSizes.push_back(sizes[i]); 336 } 337 Value mem = builder.create<memref::AllocOp>(loc, memTp, dynamicSizes); 338 Value zero = constantZero(builder, loc, elemTp); 339 builder.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{mem}); 340 return mem; 341 } 342 343 /// Inserts the element returned by genGetNextCall(_, ind, elemPtr) into 344 /// the tensor created by allocDenseTensor(). The `rank` is the rank 345 /// of the `tensor` and the length of `ind`. 346 static void insertScalarIntoDenseTensor(OpBuilder &builder, Location loc, 347 Value elemPtr, Value tensor, 348 unsigned rank, Value ind) { 349 SmallVector<Value, 4> ivs; 350 ivs.reserve(rank); 351 for (unsigned i = 0; i < rank; i++) { 352 Value idx = constantIndex(builder, loc, i); 353 ivs.push_back(builder.create<memref::LoadOp>(loc, ind, idx)); 354 } 355 Value elemV = builder.create<memref::LoadOp>(loc, elemPtr); 356 builder.create<memref::StoreOp>(loc, elemV, tensor, ivs); 357 } 358 359 /// Determine if the runtime library supports direct conversion to the 360 /// given target `dimTypes`. 361 static bool canUseDirectConversion( 362 ArrayRef<SparseTensorEncodingAttr::DimLevelType> dimTypes) { 363 bool alreadyCompressed = false; 364 for (uint64_t rank = dimTypes.size(), r = 0; r < rank; r++) { 365 switch (dimTypes[r]) { 366 case SparseTensorEncodingAttr::DimLevelType::Compressed: 367 if (alreadyCompressed) 368 return false; // Multiple compressed dimensions not yet supported. 369 alreadyCompressed = true; 370 break; 371 case SparseTensorEncodingAttr::DimLevelType::Dense: 372 if (alreadyCompressed) 373 return false; // Dense after Compressed not yet supported. 374 break; 375 case SparseTensorEncodingAttr::DimLevelType::Singleton: 376 // Although Singleton isn't generally supported yet, the direct 377 // conversion method doesn't have any particular problems with 378 // singleton after compressed. 379 break; 380 } 381 } 382 return true; 383 } 384 385 //===----------------------------------------------------------------------===// 386 // Conversion rules. 387 //===----------------------------------------------------------------------===// 388 389 /// Sparse conversion rule for returns. 390 class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> { 391 public: 392 using OpConversionPattern::OpConversionPattern; 393 LogicalResult 394 matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor, 395 ConversionPatternRewriter &rewriter) const override { 396 rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands()); 397 return success(); 398 } 399 }; 400 401 /// Sparse conversion rule for dimension accesses. 402 class SparseTensorToDimSizeConverter 403 : public OpConversionPattern<tensor::DimOp> { 404 public: 405 using OpConversionPattern::OpConversionPattern; 406 LogicalResult 407 matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor, 408 ConversionPatternRewriter &rewriter) const override { 409 // Only rewrite annotated DimOp with constant index. 410 auto enc = getSparseTensorEncoding(op.getSource().getType()); 411 if (!enc) 412 return failure(); 413 Optional<int64_t> index = op.getConstantIndex(); 414 if (!index) 415 return failure(); 416 // Generate the call. 417 Value src = adaptor.getOperands()[0]; 418 int64_t idx = index.getValue(); 419 rewriter.replaceOp(op, genDimSizeCall(rewriter, op, enc, src, idx)); 420 return success(); 421 } 422 }; 423 424 /// Sparse conversion rule for trivial tensor casts. 425 class SparseCastConverter : public OpConversionPattern<tensor::CastOp> { 426 using OpConversionPattern::OpConversionPattern; 427 LogicalResult 428 matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor, 429 ConversionPatternRewriter &rewriter) const override { 430 // Only rewrite identically annotated source/dest. 431 auto encDst = getSparseTensorEncoding(op.getType()); 432 auto encSrc = getSparseTensorEncoding(op.getSource().getType()); 433 if (!encDst || encDst != encSrc) 434 return failure(); 435 rewriter.replaceOp(op, adaptor.getOperands()); 436 return success(); 437 } 438 }; 439 440 /// Sparse conversion rule for the new operator. 441 class SparseTensorNewConverter : public OpConversionPattern<NewOp> { 442 using OpConversionPattern::OpConversionPattern; 443 LogicalResult 444 matchAndRewrite(NewOp op, OpAdaptor adaptor, 445 ConversionPatternRewriter &rewriter) const override { 446 Type resType = op.getType(); 447 auto enc = getSparseTensorEncoding(resType); 448 if (!enc) 449 return failure(); 450 // Generate the call to construct tensor from ptr. The sizes are 451 // inferred from the result type of the new operator. 452 SmallVector<Value, 4> sizes; 453 SmallVector<Value, 8> params; 454 ShapedType stp = resType.cast<ShapedType>(); 455 sizesFromType(rewriter, sizes, op.getLoc(), stp); 456 Value ptr = adaptor.getOperands()[0]; 457 newParams(rewriter, params, op, stp, enc, Action::kFromFile, sizes, ptr); 458 rewriter.replaceOp(op, genNewCall(rewriter, op, params)); 459 return success(); 460 } 461 }; 462 463 /// Sparse conversion rule for the alloc operator. 464 class SparseTensorAllocConverter 465 : public OpConversionPattern<bufferization::AllocTensorOp> { 466 using OpConversionPattern::OpConversionPattern; 467 LogicalResult 468 matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor, 469 ConversionPatternRewriter &rewriter) const override { 470 RankedTensorType resType = op.getType(); 471 auto enc = getSparseTensorEncoding(resType); 472 if (!enc) 473 return failure(); 474 // Gather all dimension sizes as SSA values. 475 SmallVector<Value> sizes; 476 unsigned int operandCtr = 0; 477 for (int64_t i = 0; i < resType.getRank(); ++i) { 478 if (resType.isDynamicDim(i)) { 479 sizes.push_back(adaptor.getOperands()[operandCtr++]); 480 } else { 481 sizes.push_back(rewriter.create<arith::ConstantIndexOp>( 482 op.getLoc(), op.getStaticSize(i))); 483 } 484 } 485 // Generate the call to construct empty tensor. The sizes are 486 // explicitly defined by the arguments to the alloc operator. 487 SmallVector<Value, 8> params; 488 ShapedType stp = resType.cast<ShapedType>(); 489 newParams(rewriter, params, op, stp, enc, Action::kEmpty, sizes); 490 rewriter.replaceOp(op, genNewCall(rewriter, op, params)); 491 return success(); 492 } 493 }; 494 495 /// Sparse conversion rule for the convert operator. 496 class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> { 497 /// Options to control sparse code generation. 498 SparseTensorConversionOptions options; 499 500 public: 501 using OpConversionPattern::OpConversionPattern; 502 SparseTensorConvertConverter(MLIRContext *context, 503 SparseTensorConversionOptions o) 504 : OpConversionPattern<ConvertOp>(context), options(o) {} 505 SparseTensorConvertConverter(TypeConverter &typeConv, MLIRContext *context, 506 SparseTensorConversionOptions o) 507 : OpConversionPattern<ConvertOp>(typeConv, context), options(o) {} 508 509 LogicalResult 510 matchAndRewrite(ConvertOp op, OpAdaptor adaptor, 511 ConversionPatternRewriter &rewriter) const override { 512 Location loc = op->getLoc(); 513 Type resType = op.getType(); 514 Type srcType = op.getSource().getType(); 515 auto encDst = getSparseTensorEncoding(resType); 516 auto encSrc = getSparseTensorEncoding(srcType); 517 Value src = adaptor.getOperands()[0]; 518 if (encDst && encSrc) { 519 // This is a sparse => sparse conversion, which is handled as follows: 520 // t = src->toCOO(); ; src to COO in dst order 521 // dst = newSparseTensor(t) 522 // Using the coordinate scheme as an intermediate does not always 523 // yield the fastest conversion but avoids the need for a full 524 // O(N^2) conversion matrix. 525 if (encDst == encSrc) { 526 rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast 527 return success(); 528 } 529 SmallVector<Value, 4> sizes; 530 SmallVector<Value, 8> params; 531 ShapedType stp = srcType.cast<ShapedType>(); 532 sizesFromPtr(rewriter, sizes, op, encSrc, stp, src); 533 bool useDirectConversion; 534 switch (options.sparseToSparseStrategy) { 535 case SparseToSparseConversionStrategy::kViaCOO: 536 useDirectConversion = false; 537 break; 538 case SparseToSparseConversionStrategy::kDirect: 539 useDirectConversion = true; 540 assert(canUseDirectConversion(encDst.getDimLevelType()) && 541 "Unsupported target for direct sparse-to-sparse conversion"); 542 break; 543 case SparseToSparseConversionStrategy::kAuto: 544 useDirectConversion = canUseDirectConversion(encDst.getDimLevelType()); 545 break; 546 } 547 if (useDirectConversion) { 548 newParams(rewriter, params, op, stp, encDst, Action::kSparseToSparse, 549 sizes, src); 550 rewriter.replaceOp(op, genNewCall(rewriter, op, params)); 551 } else { // use via-COO conversion. 552 // Set up encoding with right mix of src and dst so that the two 553 // method calls can share most parameters, while still providing 554 // the correct sparsity information to either of them. 555 auto enc = SparseTensorEncodingAttr::get( 556 op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(), 557 encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth()); 558 newParams(rewriter, params, op, stp, enc, Action::kToCOO, sizes, src); 559 Value coo = genNewCall(rewriter, op, params); 560 params[3] = constantPointerTypeEncoding(rewriter, loc, encDst); 561 params[4] = constantIndexTypeEncoding(rewriter, loc, encDst); 562 params[6] = constantAction(rewriter, loc, Action::kFromCOO); 563 params[7] = coo; 564 Value dst = genNewCall(rewriter, op, params); 565 genDelCOOCall(rewriter, op, stp.getElementType(), coo); 566 rewriter.replaceOp(op, dst); 567 } 568 return success(); 569 } 570 if (!encDst && encSrc) { 571 // This is sparse => dense conversion, which is handled as follows: 572 // dst = new Tensor(0); 573 // iter = src->toCOO(); 574 // iter->startIterator(); 575 // while (elem = iter->getNext()) { 576 // dst[elem.indices] = elem.value; 577 // } 578 RankedTensorType dstTensorTp = resType.cast<RankedTensorType>(); 579 RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>(); 580 unsigned rank = dstTensorTp.getRank(); 581 Type elemTp = dstTensorTp.getElementType(); 582 // Fabricate a no-permutation encoding for newParams(). 583 // The pointer/index types must be those of `src`. 584 // The dimLevelTypes aren't actually used by Action::kToIterator. 585 encDst = SparseTensorEncodingAttr::get( 586 op->getContext(), 587 SmallVector<SparseTensorEncodingAttr::DimLevelType>( 588 rank, SparseTensorEncodingAttr::DimLevelType::Dense), 589 AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth()); 590 SmallVector<Value, 4> sizes; 591 SmallVector<Value, 8> params; 592 sizesFromPtr(rewriter, sizes, op, encSrc, srcTensorTp, src); 593 newParams(rewriter, params, op, dstTensorTp, encDst, Action::kToIterator, 594 sizes, src); 595 Value iter = genNewCall(rewriter, op, params); 596 Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType()); 597 Value elemPtr = genAllocaScalar(rewriter, loc, elemTp); 598 Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes); 599 SmallVector<Value> noArgs; 600 SmallVector<Type> noTypes; 601 auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs); 602 Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes); 603 rewriter.setInsertionPointToEnd(before); 604 Value cond = genGetNextCall(rewriter, op, iter, ind, elemPtr); 605 rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments()); 606 Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes); 607 rewriter.setInsertionPointToStart(after); 608 insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, rank, ind); 609 rewriter.create<scf::YieldOp>(loc); 610 rewriter.setInsertionPointAfter(whileOp); 611 genDelCOOCall(rewriter, op, elemTp, iter); 612 rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst); 613 return success(); 614 } 615 if (!encDst && !encSrc) { 616 // dense => dense 617 return failure(); 618 } 619 // This is a dense => sparse conversion or a sparse constant in COO => 620 // sparse conversion, which is handled as follows: 621 // t = newSparseCOO() 622 // ...code to fill the COO tensor t... 623 // s = newSparseTensor(t) 624 // 625 // To fill the COO tensor from a dense tensor: 626 // for i1 in dim1 627 // .. 628 // for ik in dimk 629 // val = a[i1,..,ik] 630 // if val != 0 631 // t->add(val, [i1,..,ik], [p1,..,pk]) 632 // 633 // To fill the COO tensor from a sparse constant in COO format: 634 // for i in range(NNZ) 635 // val = values[i] 636 // [i1,..,ik] = indices[i] 637 // t->add(val, [i1,..,ik], [p1,..,pk]) 638 // 639 // Note that the dense tensor traversal code is actually implemented 640 // using MLIR IR to avoid having to expose too much low-level 641 // memref traversal details to the runtime support library. 642 // Also note that the code below only generates the "new" ops and 643 // the loop-nest per se; whereas the entire body of the innermost 644 // loop is generated by genAddElt(). 645 ShapedType stp = resType.cast<ShapedType>(); 646 unsigned rank = stp.getRank(); 647 SmallVector<Value, 4> sizes; 648 SmallVector<Value, 8> params; 649 sizesFromSrc(rewriter, sizes, loc, src); 650 newParams(rewriter, params, op, stp, encDst, Action::kEmptyCOO, sizes); 651 Value coo = genNewCall(rewriter, op, params); 652 Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType()); 653 Value perm = params[2]; 654 SmallVector<Value> lo; 655 SmallVector<Value> hi; 656 SmallVector<Value> st; 657 Value zero = constantIndex(rewriter, loc, 0); 658 Value one = constantIndex(rewriter, loc, 1); 659 auto indicesValues = genSplitSparseConstant(rewriter, loc, src); 660 bool isCOOConstant = indicesValues.hasValue(); 661 Value indices; 662 Value values; 663 if (isCOOConstant) { 664 indices = indicesValues->first; 665 values = indicesValues->second; 666 lo.push_back(zero); 667 hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0)); 668 st.push_back(one); 669 } else { 670 for (unsigned i = 0; i < rank; i++) { 671 lo.push_back(zero); 672 hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i)); 673 st.push_back(one); 674 } 675 } 676 Type eltType = stp.getElementType(); 677 Value elemPtr = genAllocaScalar(rewriter, loc, eltType); 678 scf::buildLoopNest( 679 rewriter, op.getLoc(), lo, hi, st, {}, 680 [&](OpBuilder &builder, Location loc, ValueRange ivs, 681 ValueRange args) -> scf::ValueVector { 682 Value val; 683 if (isCOOConstant) 684 val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind, 685 ivs, rank); 686 else 687 val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs); 688 builder.create<memref::StoreOp>(loc, val, elemPtr); 689 genAddEltCall(rewriter, op, eltType, coo, elemPtr, ind, perm); 690 return {}; 691 }); 692 // Final call to construct sparse tensor storage. 693 params[6] = constantAction(rewriter, loc, Action::kFromCOO); 694 params[7] = coo; 695 Value dst = genNewCall(rewriter, op, params); 696 genDelCOOCall(rewriter, op, eltType, coo); 697 rewriter.replaceOp(op, dst); 698 return success(); 699 } 700 }; 701 702 /// Sparse conversion rule for the release operator. 703 class SparseTensorReleaseConverter : public OpConversionPattern<ReleaseOp> { 704 public: 705 using OpConversionPattern::OpConversionPattern; 706 LogicalResult 707 matchAndRewrite(ReleaseOp op, OpAdaptor adaptor, 708 ConversionPatternRewriter &rewriter) const override { 709 StringRef name = "delSparseTensor"; 710 TypeRange noTp; 711 createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(), 712 EmitCInterface::Off); 713 rewriter.eraseOp(op); 714 return success(); 715 } 716 }; 717 718 /// Sparse conversion rule for pointer accesses. 719 class SparseTensorToPointersConverter 720 : public OpConversionPattern<ToPointersOp> { 721 public: 722 using OpConversionPattern::OpConversionPattern; 723 LogicalResult 724 matchAndRewrite(ToPointersOp op, OpAdaptor adaptor, 725 ConversionPatternRewriter &rewriter) const override { 726 Type resType = op.getType(); 727 Type ptrType = resType.cast<ShapedType>().getElementType(); 728 SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)}; 729 replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(), 730 EmitCInterface::On); 731 return success(); 732 } 733 }; 734 735 /// Sparse conversion rule for index accesses. 736 class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> { 737 public: 738 using OpConversionPattern::OpConversionPattern; 739 LogicalResult 740 matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor, 741 ConversionPatternRewriter &rewriter) const override { 742 Type resType = op.getType(); 743 Type indType = resType.cast<ShapedType>().getElementType(); 744 SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)}; 745 replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(), 746 EmitCInterface::On); 747 return success(); 748 } 749 }; 750 751 /// Sparse conversion rule for value accesses. 752 class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> { 753 public: 754 using OpConversionPattern::OpConversionPattern; 755 LogicalResult 756 matchAndRewrite(ToValuesOp op, OpAdaptor adaptor, 757 ConversionPatternRewriter &rewriter) const override { 758 Type resType = op.getType(); 759 Type eltType = resType.cast<ShapedType>().getElementType(); 760 SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltType)}; 761 replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(), 762 EmitCInterface::On); 763 return success(); 764 } 765 }; 766 767 /// Sparse conversion rule for tensor rematerialization. 768 class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> { 769 public: 770 using OpConversionPattern::OpConversionPattern; 771 LogicalResult 772 matchAndRewrite(LoadOp op, OpAdaptor adaptor, 773 ConversionPatternRewriter &rewriter) const override { 774 if (op.getHasInserts()) { 775 // Finalize any pending insertions. 776 StringRef name = "endInsert"; 777 TypeRange noTp; 778 createFuncCall(rewriter, op, name, noTp, adaptor.getOperands(), 779 EmitCInterface::Off); 780 } 781 rewriter.replaceOp(op, adaptor.getOperands()); 782 return success(); 783 } 784 }; 785 786 /// Sparse conversion rule for inserting in lexicographic index order. 787 class SparseTensorLexInsertConverter : public OpConversionPattern<LexInsertOp> { 788 public: 789 using OpConversionPattern::OpConversionPattern; 790 LogicalResult 791 matchAndRewrite(LexInsertOp op, OpAdaptor adaptor, 792 ConversionPatternRewriter &rewriter) const override { 793 Type elemTp = op.getTensor().getType().cast<ShapedType>().getElementType(); 794 SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)}; 795 TypeRange noTp; 796 replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(), 797 EmitCInterface::On); 798 return success(); 799 } 800 }; 801 802 class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> { 803 public: 804 using OpConversionPattern::OpConversionPattern; 805 LogicalResult 806 matchAndRewrite(ExpandOp op, OpAdaptor adaptor, 807 ConversionPatternRewriter &rewriter) const override { 808 Location loc = op->getLoc(); 809 ShapedType srcType = op.getTensor().getType().cast<ShapedType>(); 810 Type eltType = srcType.getElementType(); 811 Type boolType = rewriter.getIntegerType(1); 812 Type idxType = rewriter.getIndexType(); 813 // All initialization should be done on entry of the loop nest. 814 rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp()); 815 // Determine the size for access expansion. 816 auto enc = getSparseTensorEncoding(srcType); 817 Value src = adaptor.getOperands()[0]; 818 Value sz = genDimSizeCall(rewriter, op, enc, src, srcType.getRank() - 1); 819 // Allocate temporary buffers for values, filled-switch, and indices. 820 // We do not use stack buffers for this, since the expanded size may 821 // be rather large (as it envelops a single expanded dense dimension). 822 Value values = genAlloc(rewriter, loc, sz, eltType); 823 Value filled = genAlloc(rewriter, loc, sz, boolType); 824 Value indices = genAlloc(rewriter, loc, sz, idxType); 825 Value zero = constantZero(rewriter, loc, idxType); 826 // Reset the values/filled-switch to all-zero/false. Note that this 827 // introduces an O(N) operation into the computation, but this reset 828 // operation is amortized over the innermost loops for the access 829 // pattern expansion. As noted in the operation doc, we would like 830 // to amortize this setup cost even between kernels. 831 rewriter.create<linalg::FillOp>( 832 loc, ValueRange{constantZero(rewriter, loc, eltType)}, 833 ValueRange{values}); 834 rewriter.create<linalg::FillOp>( 835 loc, ValueRange{constantZero(rewriter, loc, boolType)}, 836 ValueRange{filled}); 837 // Replace expansion op with these buffers and initial index. 838 assert(op.getNumResults() == 4); 839 rewriter.replaceOp(op, {values, filled, indices, zero}); 840 return success(); 841 } 842 }; 843 844 class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> { 845 public: 846 using OpConversionPattern::OpConversionPattern; 847 LogicalResult 848 matchAndRewrite(CompressOp op, OpAdaptor adaptor, 849 ConversionPatternRewriter &rewriter) const override { 850 Location loc = op->getLoc(); 851 // Note that this method call resets the values/filled-switch back to 852 // all-zero/false by only iterating over the set elements, so the 853 // complexity remains proportional to the sparsity of the expanded 854 // access pattern. 855 Type elemTp = op.getTensor().getType().cast<ShapedType>().getElementType(); 856 SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)}; 857 TypeRange noTp; 858 replaceOpWithFuncCall(rewriter, op, name, noTp, adaptor.getOperands(), 859 EmitCInterface::On); 860 // Deallocate the buffers on exit of the loop nest. 861 Operation *parent = op; 862 for (; isa<scf::ForOp>(parent->getParentOp()) || 863 isa<scf::WhileOp>(parent->getParentOp()) || 864 isa<scf::ParallelOp>(parent->getParentOp()) || 865 isa<scf::IfOp>(parent->getParentOp()); 866 parent = parent->getParentOp()) 867 ; 868 rewriter.setInsertionPointAfter(parent); 869 rewriter.create<memref::DeallocOp>(loc, adaptor.getOperands()[2]); 870 rewriter.create<memref::DeallocOp>(loc, adaptor.getOperands()[3]); 871 rewriter.create<memref::DeallocOp>(loc, adaptor.getOperands()[4]); 872 return success(); 873 } 874 }; 875 876 class SparseTensorOutConverter : public OpConversionPattern<OutOp> { 877 public: 878 using OpConversionPattern::OpConversionPattern; 879 LogicalResult 880 matchAndRewrite(OutOp op, OpAdaptor adaptor, 881 ConversionPatternRewriter &rewriter) const override { 882 Location loc = op->getLoc(); 883 ShapedType srcType = op.getTensor().getType().cast<ShapedType>(); 884 // Convert to default permuted COO. 885 Value src = adaptor.getOperands()[0]; 886 auto encSrc = getSparseTensorEncoding(srcType); 887 SmallVector<Value, 4> sizes; 888 SmallVector<Value, 8> params; 889 sizesFromPtr(rewriter, sizes, op, encSrc, srcType, src); 890 auto enc = SparseTensorEncodingAttr::get( 891 op->getContext(), encSrc.getDimLevelType(), AffineMap(), 892 encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth()); 893 newParams(rewriter, params, op, srcType, enc, Action::kToCOO, sizes, src); 894 Value coo = genNewCall(rewriter, op, params); 895 // Then output the tensor to external file with indices in the externally 896 // visible lexicographic index order. A sort is required if the source was 897 // not in that order yet (note that the sort can be dropped altogether if 898 // external format does not care about the order at all, but here we assume 899 // it does). 900 bool sort = 901 encSrc.getDimOrdering() && !encSrc.getDimOrdering().isIdentity(); 902 params.clear(); 903 params.push_back(coo); 904 params.push_back(adaptor.getOperands()[1]); 905 params.push_back(constantI1(rewriter, loc, sort)); 906 Type eltType = srcType.getElementType(); 907 SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(eltType)}; 908 TypeRange noTp; 909 createFuncCall(rewriter, op, name, noTp, params, EmitCInterface::Off); 910 genDelCOOCall(rewriter, op, eltType, coo); 911 rewriter.eraseOp(op); 912 return success(); 913 } 914 }; 915 916 } // namespace 917 918 //===----------------------------------------------------------------------===// 919 // Public method for populating conversion rules. 920 //===----------------------------------------------------------------------===// 921 922 /// Populates the given patterns list with conversion rules required for 923 /// the sparsification of linear algebra operations. 924 void mlir::populateSparseTensorConversionPatterns( 925 TypeConverter &typeConverter, RewritePatternSet &patterns, 926 const SparseTensorConversionOptions &options) { 927 patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter, 928 SparseCastConverter, SparseTensorNewConverter, 929 SparseTensorAllocConverter, SparseTensorReleaseConverter, 930 SparseTensorToPointersConverter, SparseTensorToIndicesConverter, 931 SparseTensorToValuesConverter, SparseTensorLoadConverter, 932 SparseTensorLexInsertConverter, SparseTensorExpandConverter, 933 SparseTensorCompressConverter, SparseTensorOutConverter>( 934 typeConverter, patterns.getContext()); 935 patterns.add<SparseTensorConvertConverter>(typeConverter, 936 patterns.getContext(), options); 937 } 938