1319072f4SAart Bik //===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===//
2319072f4SAart Bik //
3319072f4SAart Bik // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4319072f4SAart Bik // See https://llvm.org/LICENSE.txt for license information.
5319072f4SAart Bik // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6319072f4SAart Bik //
7319072f4SAart Bik //===----------------------------------------------------------------------===//
8319072f4SAart Bik 
9a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
10319072f4SAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
1196a23911SAart Bik #include "mlir/Dialect/StandardOps/IR/Ops.h"
12319072f4SAart Bik #include "mlir/IR/Builders.h"
130a292199SAart Bik #include "mlir/IR/DialectImplementation.h"
14319072f4SAart Bik #include "mlir/IR/OpImplementation.h"
150a292199SAart Bik #include "llvm/ADT/TypeSwitch.h"
16319072f4SAart Bik 
17319072f4SAart Bik using namespace mlir;
18319072f4SAart Bik using namespace mlir::sparse_tensor;
19319072f4SAart Bik 
20485cc55eSStella Laurenzo #include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"
21485cc55eSStella Laurenzo 
220a292199SAart Bik //===----------------------------------------------------------------------===//
2396a23911SAart Bik // TensorDialect Attribute Methods.
240a292199SAart Bik //===----------------------------------------------------------------------===//
250a292199SAart Bik 
260a292199SAart Bik #define GET_ATTRDEF_CLASSES
270a292199SAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
280a292199SAart Bik 
290a292199SAart Bik static bool acceptBitWidth(unsigned bitWidth) {
300a292199SAart Bik   switch (bitWidth) {
310a292199SAart Bik   case 0:
320a292199SAart Bik   case 8:
330a292199SAart Bik   case 16:
340a292199SAart Bik   case 32:
350a292199SAart Bik   case 64:
360a292199SAart Bik     return true;
370a292199SAart Bik   default:
380a292199SAart Bik     return false;
390a292199SAart Bik   }
400a292199SAart Bik }
410a292199SAart Bik 
42*f97e72aaSMehdi Amini Attribute SparseTensorEncodingAttr::parse(AsmParser &parser, Type type) {
430a292199SAart Bik   if (failed(parser.parseLess()))
440a292199SAart Bik     return {};
450a292199SAart Bik   // Parse the data as a dictionary.
460a292199SAart Bik   DictionaryAttr dict;
470a292199SAart Bik   if (failed(parser.parseAttribute(dict)))
480a292199SAart Bik     return {};
490a292199SAart Bik   if (failed(parser.parseGreater()))
500a292199SAart Bik     return {};
510a292199SAart Bik   // Process the data from the parsed dictionary value into struct-like data.
520a292199SAart Bik   SmallVector<SparseTensorEncodingAttr::DimLevelType, 4> dlt;
530a292199SAart Bik   AffineMap map = {};
540a292199SAart Bik   unsigned ptr = 0;
550a292199SAart Bik   unsigned ind = 0;
560a292199SAart Bik   for (const NamedAttribute &attr : dict) {
570a292199SAart Bik     if (attr.first == "dimLevelType") {
580a292199SAart Bik       auto arrayAttr = attr.second.dyn_cast<ArrayAttr>();
590a292199SAart Bik       if (!arrayAttr) {
600a292199SAart Bik         parser.emitError(parser.getNameLoc(),
610a292199SAart Bik                          "expected an array for dimension level types");
620a292199SAart Bik         return {};
630a292199SAart Bik       }
640a292199SAart Bik       for (unsigned i = 0, e = arrayAttr.size(); i < e; i++) {
650a292199SAart Bik         auto strAttr = arrayAttr[i].dyn_cast<StringAttr>();
660a292199SAart Bik         if (!strAttr) {
670a292199SAart Bik           parser.emitError(parser.getNameLoc(),
680a292199SAart Bik                            "expected a string value in dimension level types");
690a292199SAart Bik           return {};
700a292199SAart Bik         }
710a292199SAart Bik         auto strVal = strAttr.getValue();
720a292199SAart Bik         if (strVal == "dense") {
730a292199SAart Bik           dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Dense);
740a292199SAart Bik         } else if (strVal == "compressed") {
750a292199SAart Bik           dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Compressed);
760a292199SAart Bik         } else if (strVal == "singleton") {
770a292199SAart Bik           dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Singleton);
780a292199SAart Bik         } else {
790a292199SAart Bik           parser.emitError(parser.getNameLoc(),
800a292199SAart Bik                            "unexpected dimension level type: ")
810a292199SAart Bik               << strVal;
820a292199SAart Bik           return {};
830a292199SAart Bik         }
840a292199SAart Bik       }
850a292199SAart Bik     } else if (attr.first == "dimOrdering") {
860a292199SAart Bik       auto affineAttr = attr.second.dyn_cast<AffineMapAttr>();
870a292199SAart Bik       if (!affineAttr) {
880a292199SAart Bik         parser.emitError(parser.getNameLoc(),
890a292199SAart Bik                          "expected an affine map for dimension ordering");
900a292199SAart Bik         return {};
910a292199SAart Bik       }
920a292199SAart Bik       map = affineAttr.getValue();
930a292199SAart Bik     } else if (attr.first == "pointerBitWidth") {
940a292199SAart Bik       auto intAttr = attr.second.dyn_cast<IntegerAttr>();
950a292199SAart Bik       if (!intAttr) {
960a292199SAart Bik         parser.emitError(parser.getNameLoc(),
970a292199SAart Bik                          "expected an integral pointer bitwidth");
980a292199SAart Bik         return {};
990a292199SAart Bik       }
1000a292199SAart Bik       ptr = intAttr.getInt();
1010a292199SAart Bik     } else if (attr.first == "indexBitWidth") {
1020a292199SAart Bik       auto intAttr = attr.second.dyn_cast<IntegerAttr>();
1030a292199SAart Bik       if (!intAttr) {
1040a292199SAart Bik         parser.emitError(parser.getNameLoc(),
1050a292199SAart Bik                          "expected an integral index bitwidth");
1060a292199SAart Bik         return {};
1070a292199SAart Bik       }
1080a292199SAart Bik       ind = intAttr.getInt();
1090a292199SAart Bik     } else {
1100a292199SAart Bik       parser.emitError(parser.getNameLoc(), "unexpected key: ")
1110a292199SAart Bik           << attr.first.str();
1120a292199SAart Bik       return {};
1130a292199SAart Bik     }
1140a292199SAart Bik   }
1150a292199SAart Bik   // Construct struct-like storage for attribute.
116fb093c83SChris Lattner   return parser.getChecked<SparseTensorEncodingAttr>(parser.getContext(), dlt,
117fb093c83SChris Lattner                                                      map, ptr, ind);
1180a292199SAart Bik }
1190a292199SAart Bik 
120*f97e72aaSMehdi Amini void SparseTensorEncodingAttr::print(AsmPrinter &printer) const {
1210a292199SAart Bik   // Print the struct-like storage in dictionary fashion.
122f30a8a6fSMehdi Amini   printer << "<{ dimLevelType = [ ";
1230a292199SAart Bik   for (unsigned i = 0, e = getDimLevelType().size(); i < e; i++) {
1240a292199SAart Bik     switch (getDimLevelType()[i]) {
1250a292199SAart Bik     case DimLevelType::Dense:
1260a292199SAart Bik       printer << "\"dense\"";
1270a292199SAart Bik       break;
1280a292199SAart Bik     case DimLevelType::Compressed:
1290a292199SAart Bik       printer << "\"compressed\"";
1300a292199SAart Bik       break;
1310a292199SAart Bik     case DimLevelType::Singleton:
1320a292199SAart Bik       printer << "\"singleton\"";
1330a292199SAart Bik       break;
1340a292199SAart Bik     }
1350a292199SAart Bik     if (i != e - 1)
1360a292199SAart Bik       printer << ", ";
1370a292199SAart Bik   }
1380a292199SAart Bik   printer << " ]";
1390a292199SAart Bik   if (getDimOrdering())
1400a292199SAart Bik     printer << ", dimOrdering = affine_map<" << getDimOrdering() << ">";
1410a292199SAart Bik   printer << ", pointerBitWidth = " << getPointerBitWidth()
1420a292199SAart Bik           << ", indexBitWidth = " << getIndexBitWidth() << " }>";
1430a292199SAart Bik }
1440a292199SAart Bik 
1450a292199SAart Bik LogicalResult SparseTensorEncodingAttr::verify(
1460a292199SAart Bik     function_ref<InFlightDiagnostic()> emitError,
1470a292199SAart Bik     ArrayRef<DimLevelType> dimLevelType, AffineMap dimOrdering,
1480a292199SAart Bik     unsigned pointerBitWidth, unsigned indexBitWidth) {
1490a292199SAart Bik   if (!acceptBitWidth(pointerBitWidth))
1500a292199SAart Bik     return emitError() << "unexpected pointer bitwidth: " << pointerBitWidth;
1510a292199SAart Bik   if (!acceptBitWidth(indexBitWidth))
1520a292199SAart Bik     return emitError() << "unexpected index bitwidth: " << indexBitWidth;
1530a292199SAart Bik   if (dimOrdering) {
1540a292199SAart Bik     if (!dimOrdering.isPermutation())
1550a292199SAart Bik       return emitError()
1560a292199SAart Bik              << "expected a permutation affine map for dimension ordering";
1570a292199SAart Bik     if (dimOrdering.getNumResults() != dimLevelType.size())
1580a292199SAart Bik       return emitError() << "unexpected mismatch in ordering and dimension "
1590a292199SAart Bik                             "level types size";
1600a292199SAart Bik   }
1610a292199SAart Bik   return success();
1620a292199SAart Bik }
1630a292199SAart Bik 
1640a292199SAart Bik LogicalResult SparseTensorEncodingAttr::verifyEncoding(
1650a292199SAart Bik     ArrayRef<int64_t> shape, Type elementType,
1660a292199SAart Bik     function_ref<InFlightDiagnostic()> emitError) const {
1670a292199SAart Bik   // Check structural integrity.
1680a292199SAart Bik   if (failed(verify(emitError, getDimLevelType(), getDimOrdering(),
1690a292199SAart Bik                     getPointerBitWidth(), getIndexBitWidth())))
1700a292199SAart Bik     return failure();
1710a292199SAart Bik   // Check integrity with tensor type specifics. Dimension ordering is optional,
1720a292199SAart Bik   // but we always should have dimension level types for the full rank.
1730a292199SAart Bik   unsigned size = shape.size();
1744aa9b398SAart Bik   if (size == 0)
1754aa9b398SAart Bik     return emitError() << "expected non-scalar sparse tensor";
1760a292199SAart Bik   if (getDimOrdering() && getDimOrdering().getNumResults() != size)
1770a292199SAart Bik     return emitError() << "expected an affine map of size " << size
1780a292199SAart Bik                        << " for dimension ordering";
1790a292199SAart Bik   if (getDimLevelType().size() != size)
1800a292199SAart Bik     return emitError() << "expected an array of size " << size
1810a292199SAart Bik                        << " for dimension level types";
1820a292199SAart Bik   return success();
1830a292199SAart Bik }
1840a292199SAart Bik 
18596a23911SAart Bik SparseTensorEncodingAttr
18696a23911SAart Bik mlir::sparse_tensor::getSparseTensorEncoding(Type type) {
18796a23911SAart Bik   if (auto ttp = type.dyn_cast<RankedTensorType>())
18896a23911SAart Bik     return ttp.getEncoding().dyn_cast_or_null<SparseTensorEncodingAttr>();
18996a23911SAart Bik   return nullptr;
19096a23911SAart Bik }
19196a23911SAart Bik 
1920a292199SAart Bik //===----------------------------------------------------------------------===//
19396a23911SAart Bik // TensorDialect Operations.
19496a23911SAart Bik //===----------------------------------------------------------------------===//
19596a23911SAart Bik 
19696a23911SAart Bik static LogicalResult isInBounds(Value dim, Value tensor) {
197a54f4eaeSMogball   if (auto constantOp = dim.getDefiningOp<arith::ConstantOp>()) {
198cfb72fd3SJacques Pienaar     unsigned d = constantOp.getValue().cast<IntegerAttr>().getInt();
19996a23911SAart Bik     if (d >= tensor.getType().cast<RankedTensorType>().getRank())
20096a23911SAart Bik       return failure();
20196a23911SAart Bik   }
20296a23911SAart Bik   return success(); // in bounds, or symbolic
20396a23911SAart Bik }
20496a23911SAart Bik 
20596a23911SAart Bik static LogicalResult isMatchingWidth(Value result, unsigned width) {
20696a23911SAart Bik   Type etp = result.getType().cast<MemRefType>().getElementType();
20796a23911SAart Bik   if ((width == 0 && etp.isIndex()) || (width > 0 && etp.isInteger(width)))
20896a23911SAart Bik     return success();
20996a23911SAart Bik   return failure();
21096a23911SAart Bik }
21196a23911SAart Bik 
21296a23911SAart Bik static LogicalResult verify(NewOp op) {
213697ea09dSAart Bik   if (!getSparseTensorEncoding(op.result().getType()))
21496a23911SAart Bik     return op.emitError("expected a sparse tensor result");
21596a23911SAart Bik   return success();
21696a23911SAart Bik }
21796a23911SAart Bik 
21835517a25SAart Bik static LogicalResult verify(InitOp op) {
21935517a25SAart Bik   if (!getSparseTensorEncoding(op.result().getType()))
22035517a25SAart Bik     return op.emitError("expected a sparse tensor result");
22135517a25SAart Bik   RankedTensorType ttp = op.getType().cast<RankedTensorType>();
22235517a25SAart Bik   unsigned rank = ttp.getRank();
22335517a25SAart Bik   if (rank != op.sizes().size())
22435517a25SAart Bik     return op.emitError("unexpected mismatch between tensor rank and sizes: ")
22535517a25SAart Bik            << rank << " vs. " << op.sizes().size();
22635517a25SAart Bik   auto shape = ttp.getShape();
22735517a25SAart Bik   for (unsigned i = 0; i < rank; i++) {
22835517a25SAart Bik     if (shape[i] == ShapedType::kDynamicSize)
22935517a25SAart Bik       continue;
230a652e5b5SAart Bik     auto constantOp = op.sizes()[i].getDefiningOp<arith::ConstantOp>();
23135517a25SAart Bik     if (!constantOp ||
232cfb72fd3SJacques Pienaar         constantOp.getValue().cast<IntegerAttr>().getInt() != shape[i])
23335517a25SAart Bik       return op.emitError("unexpected mismatch with static dimension size ")
23435517a25SAart Bik              << shape[i];
23535517a25SAart Bik   }
23635517a25SAart Bik   return success();
23735517a25SAart Bik }
23835517a25SAart Bik 
239697ea09dSAart Bik static LogicalResult verify(ConvertOp op) {
240697ea09dSAart Bik   if (auto tp1 = op.source().getType().dyn_cast<RankedTensorType>()) {
241697ea09dSAart Bik     if (auto tp2 = op.dest().getType().dyn_cast<RankedTensorType>()) {
2421e6ef0cfSAart Bik       if (tp1.getRank() != tp2.getRank())
2431e6ef0cfSAart Bik         return op.emitError("unexpected conversion mismatch in rank");
244697ea09dSAart Bik       auto shape1 = tp1.getShape();
245697ea09dSAart Bik       auto shape2 = tp2.getShape();
2469d1db3d4SAart Bik       // Accept size matches between the source and the destination type
2479d1db3d4SAart Bik       // (e.g. 10 vs. 10, 10 vs. ?, or ? vs. ?), but reject direct mismatches or
2489d1db3d4SAart Bik       // matches that would need a runtime assert (e.g. 10 vs. 20 or ? vs. 10).
24905c7f450SAart Bik       for (unsigned d = 0, rank = tp1.getRank(); d < rank; d++) {
2509d1db3d4SAart Bik         if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamicSize)
25135517a25SAart Bik           return op.emitError("unexpected conversion mismatch in dimension ")
25235517a25SAart Bik                  << d;
25305c7f450SAart Bik       }
254697ea09dSAart Bik       return success();
255697ea09dSAart Bik     }
256697ea09dSAart Bik   }
257697ea09dSAart Bik   return op.emitError("unexpected type in convert");
258697ea09dSAart Bik }
259697ea09dSAart Bik 
260066d786cSAart Bik OpFoldResult ConvertOp::fold(ArrayRef<Attribute> operands) {
261066d786cSAart Bik   if (getType() == source().getType())
262066d786cSAart Bik     return source();
263066d786cSAart Bik   return {};
264066d786cSAart Bik }
265066d786cSAart Bik 
26616b8f4ddSAart Bik static LogicalResult verify(ReleaseOp op) {
26716b8f4ddSAart Bik   if (!getSparseTensorEncoding(op.tensor().getType()))
26816b8f4ddSAart Bik     return op.emitError("expected a sparse tensor to release");
26916b8f4ddSAart Bik   return success();
27016b8f4ddSAart Bik }
27116b8f4ddSAart Bik 
27296a23911SAart Bik static LogicalResult verify(ToPointersOp op) {
273c2415d67SAart Bik   if (auto e = getSparseTensorEncoding(op.tensor().getType())) {
27496a23911SAart Bik     if (failed(isInBounds(op.dim(), op.tensor())))
27596a23911SAart Bik       return op.emitError("requested pointers dimension out of bounds");
27696a23911SAart Bik     if (failed(isMatchingWidth(op.result(), e.getPointerBitWidth())))
27796a23911SAart Bik       return op.emitError("unexpected type for pointers");
27896a23911SAart Bik     return success();
27996a23911SAart Bik   }
28096a23911SAart Bik   return op.emitError("expected a sparse tensor to get pointers");
28196a23911SAart Bik }
28296a23911SAart Bik 
28396a23911SAart Bik static LogicalResult verify(ToIndicesOp op) {
284c2415d67SAart Bik   if (auto e = getSparseTensorEncoding(op.tensor().getType())) {
28596a23911SAart Bik     if (failed(isInBounds(op.dim(), op.tensor())))
28696a23911SAart Bik       return op.emitError("requested indices dimension out of bounds");
28796a23911SAart Bik     if (failed(isMatchingWidth(op.result(), e.getIndexBitWidth())))
28896a23911SAart Bik       return op.emitError("unexpected type for indices");
28996a23911SAart Bik     return success();
29096a23911SAart Bik   }
29196a23911SAart Bik   return op.emitError("expected a sparse tensor to get indices");
29296a23911SAart Bik }
29396a23911SAart Bik 
29496a23911SAart Bik static LogicalResult verify(ToValuesOp op) {
29596a23911SAart Bik   if (!getSparseTensorEncoding(op.tensor().getType()))
29696a23911SAart Bik     return op.emitError("expected a sparse tensor to get values");
29796a23911SAart Bik   RankedTensorType ttp = op.tensor().getType().cast<RankedTensorType>();
29896a23911SAart Bik   MemRefType mtp = op.result().getType().cast<MemRefType>();
29996a23911SAart Bik   if (ttp.getElementType() != mtp.getElementType())
30096a23911SAart Bik     return op.emitError("unexpected mismatch in element types");
30196a23911SAart Bik   return success();
30296a23911SAart Bik }
30396a23911SAart Bik 
304727a63e0SAart Bik static LogicalResult verify(ToTensorOp op) {
30536b66ab9SAart Bik   if (!getSparseTensorEncoding(op.result().getType()))
30635517a25SAart Bik     return op.emitError("expected a sparse tensor result");
30736b66ab9SAart Bik   return success();
308727a63e0SAart Bik }
309727a63e0SAart Bik 
31096a23911SAart Bik //===----------------------------------------------------------------------===//
31196a23911SAart Bik // TensorDialect Methods.
3120a292199SAart Bik //===----------------------------------------------------------------------===//
3130a292199SAart Bik 
314319072f4SAart Bik void SparseTensorDialect::initialize() {
3150a292199SAart Bik   addAttributes<
3160a292199SAart Bik #define GET_ATTRDEF_LIST
3170a292199SAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
3180a292199SAart Bik       >();
319319072f4SAart Bik   addOperations<
320319072f4SAart Bik #define GET_OP_LIST
321319072f4SAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
322319072f4SAart Bik       >();
323319072f4SAart Bik }
324319072f4SAart Bik 
325319072f4SAart Bik #define GET_OP_CLASSES
326319072f4SAart Bik #include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
3270a292199SAart Bik 
3280a292199SAart Bik Attribute SparseTensorDialect::parseAttribute(DialectAsmParser &parser,
3290a292199SAart Bik                                               Type type) const {
3300a292199SAart Bik   StringRef attrTag;
3310a292199SAart Bik   if (failed(parser.parseKeyword(&attrTag)))
3320a292199SAart Bik     return Attribute();
3330a292199SAart Bik   Attribute attr;
334fb093c83SChris Lattner   auto parseResult = generatedAttributeParser(parser, attrTag, type, attr);
3350a292199SAart Bik   if (parseResult.hasValue())
3360a292199SAart Bik     return attr;
3370a292199SAart Bik   parser.emitError(parser.getNameLoc(), "unknown sparse tensor attribute");
3380a292199SAart Bik   return Attribute();
3390a292199SAart Bik }
3400a292199SAart Bik 
3410a292199SAart Bik void SparseTensorDialect::printAttribute(Attribute attr,
3420a292199SAart Bik                                          DialectAsmPrinter &printer) const {
3430a292199SAart Bik   if (succeeded(generatedAttributePrinter(attr, printer)))
3440a292199SAart Bik     return;
3450a292199SAart Bik }
346