1 //===- SPIRVConversion.cpp - SPIR-V Conversion Utilities ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements utilities used to lower to SPIR-V dialect.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
14 #include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
15 #include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
16 #include "mlir/Transforms/DialectConversion.h"
17 #include "llvm/ADT/Sequence.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/Support/Debug.h"
20 
21 #include <functional>
22 
23 #define DEBUG_TYPE "mlir-spirv-conversion"
24 
25 using namespace mlir;
26 
27 //===----------------------------------------------------------------------===//
28 // Utility functions
29 //===----------------------------------------------------------------------===//
30 
31 /// Checks that `candidates` extension requirements are possible to be satisfied
32 /// with the given `targetEnv`.
33 ///
34 ///  `candidates` is a vector of vector for extension requirements following
35 /// ((Extension::A OR Extension::B) AND (Extension::C OR Extension::D))
36 /// convention.
37 template <typename LabelT>
38 static LogicalResult checkExtensionRequirements(
39     LabelT label, const spirv::TargetEnv &targetEnv,
40     const spirv::SPIRVType::ExtensionArrayRefVector &candidates) {
41   for (const auto &ors : candidates) {
42     if (targetEnv.allows(ors))
43       continue;
44 
45     LLVM_DEBUG({
46       SmallVector<StringRef> extStrings;
47       for (spirv::Extension ext : ors)
48         extStrings.push_back(spirv::stringifyExtension(ext));
49 
50       llvm::dbgs() << label << " illegal: requires at least one extension in ["
51                    << llvm::join(extStrings, ", ")
52                    << "] but none allowed in target environment\n";
53     });
54     return failure();
55   }
56   return success();
57 }
58 
59 /// Checks that `candidates`capability requirements are possible to be satisfied
60 /// with the given `isAllowedFn`.
61 ///
62 ///  `candidates` is a vector of vector for capability requirements following
63 /// ((Capability::A OR Capability::B) AND (Capability::C OR Capability::D))
64 /// convention.
65 template <typename LabelT>
66 static LogicalResult checkCapabilityRequirements(
67     LabelT label, const spirv::TargetEnv &targetEnv,
68     const spirv::SPIRVType::CapabilityArrayRefVector &candidates) {
69   for (const auto &ors : candidates) {
70     if (targetEnv.allows(ors))
71       continue;
72 
73     LLVM_DEBUG({
74       SmallVector<StringRef> capStrings;
75       for (spirv::Capability cap : ors)
76         capStrings.push_back(spirv::stringifyCapability(cap));
77 
78       llvm::dbgs() << label << " illegal: requires at least one capability in ["
79                    << llvm::join(capStrings, ", ")
80                    << "] but none allowed in target environment\n";
81     });
82     return failure();
83   }
84   return success();
85 }
86 
87 /// Returns true if the given `storageClass` needs explicit layout when used in
88 /// Shader environments.
89 static bool needsExplicitLayout(spirv::StorageClass storageClass) {
90   switch (storageClass) {
91   case spirv::StorageClass::PhysicalStorageBuffer:
92   case spirv::StorageClass::PushConstant:
93   case spirv::StorageClass::StorageBuffer:
94   case spirv::StorageClass::Uniform:
95     return true;
96   default:
97     return false;
98   }
99 }
100 
101 /// Wraps the given `elementType` in a struct and gets the pointer to the
102 /// struct. This is used to satisfy Vulkan interface requirements.
103 static spirv::PointerType
104 wrapInStructAndGetPointer(Type elementType, spirv::StorageClass storageClass) {
105   auto structType = needsExplicitLayout(storageClass)
106                         ? spirv::StructType::get(elementType, /*offsetInfo=*/0)
107                         : spirv::StructType::get(elementType);
108   return spirv::PointerType::get(structType, storageClass);
109 }
110 
111 //===----------------------------------------------------------------------===//
112 // Type Conversion
113 //===----------------------------------------------------------------------===//
114 
115 Type SPIRVTypeConverter::getIndexType(MLIRContext *context) {
116   // Convert to 32-bit integers for now. Might need a way to control this in
117   // future.
118   // TODO: It is probably better to make it 64-bit integers. To
119   // this some support is needed in SPIR-V dialect for Conversion
120   // instructions. The Vulkan spec requires the builtins like
121   // GlobalInvocationID, etc. to be 32-bit (unsigned) integers which should be
122   // SExtended to 64-bit for index computations.
123   return IntegerType::get(context, 32);
124 }
125 
126 /// Mapping between SPIR-V storage classes to memref memory spaces.
127 ///
128 /// Note: memref does not have a defined semantics for each memory space; it
129 /// depends on the context where it is used. There are no particular reasons
130 /// behind the number assignments; we try to follow NVVM conventions and largely
131 /// give common storage classes a smaller number. The hope is use symbolic
132 /// memory space representation eventually after memref supports it.
133 // TODO: swap Generic and StorageBuffer assignment to be more akin
134 // to NVVM.
135 #define STORAGE_SPACE_MAP_LIST(MAP_FN)                                         \
136   MAP_FN(spirv::StorageClass::Generic, 1)                                      \
137   MAP_FN(spirv::StorageClass::StorageBuffer, 0)                                \
138   MAP_FN(spirv::StorageClass::Workgroup, 3)                                    \
139   MAP_FN(spirv::StorageClass::Uniform, 4)                                      \
140   MAP_FN(spirv::StorageClass::Private, 5)                                      \
141   MAP_FN(spirv::StorageClass::Function, 6)                                     \
142   MAP_FN(spirv::StorageClass::PushConstant, 7)                                 \
143   MAP_FN(spirv::StorageClass::UniformConstant, 8)                              \
144   MAP_FN(spirv::StorageClass::Input, 9)                                        \
145   MAP_FN(spirv::StorageClass::Output, 10)                                      \
146   MAP_FN(spirv::StorageClass::CrossWorkgroup, 11)                              \
147   MAP_FN(spirv::StorageClass::AtomicCounter, 12)                               \
148   MAP_FN(spirv::StorageClass::Image, 13)                                       \
149   MAP_FN(spirv::StorageClass::CallableDataNV, 14)                              \
150   MAP_FN(spirv::StorageClass::IncomingCallableDataNV, 15)                      \
151   MAP_FN(spirv::StorageClass::RayPayloadNV, 16)                                \
152   MAP_FN(spirv::StorageClass::HitAttributeNV, 17)                              \
153   MAP_FN(spirv::StorageClass::IncomingRayPayloadNV, 18)                        \
154   MAP_FN(spirv::StorageClass::ShaderRecordBufferNV, 19)                        \
155   MAP_FN(spirv::StorageClass::PhysicalStorageBuffer, 20)
156 
157 unsigned
158 SPIRVTypeConverter::getMemorySpaceForStorageClass(spirv::StorageClass storage) {
159 #define STORAGE_SPACE_MAP_FN(storage, space)                                   \
160   case storage:                                                                \
161     return space;
162 
163   switch (storage) { STORAGE_SPACE_MAP_LIST(STORAGE_SPACE_MAP_FN) }
164 #undef STORAGE_SPACE_MAP_FN
165   llvm_unreachable("unhandled storage class!");
166 }
167 
168 Optional<spirv::StorageClass>
169 SPIRVTypeConverter::getStorageClassForMemorySpace(unsigned space) {
170 #define STORAGE_SPACE_MAP_FN(storage, space)                                   \
171   case space:                                                                  \
172     return storage;
173 
174   switch (space) {
175     STORAGE_SPACE_MAP_LIST(STORAGE_SPACE_MAP_FN)
176   default:
177     return llvm::None;
178   }
179 #undef STORAGE_SPACE_MAP_FN
180 }
181 
182 const SPIRVTypeConverter::Options &SPIRVTypeConverter::getOptions() const {
183   return options;
184 }
185 
186 #undef STORAGE_SPACE_MAP_LIST
187 
188 // TODO: This is a utility function that should probably be exposed by the
189 // SPIR-V dialect. Keeping it local till the use case arises.
190 static Optional<int64_t>
191 getTypeNumBytes(const SPIRVTypeConverter::Options &options, Type type) {
192   if (type.isa<spirv::ScalarType>()) {
193     auto bitWidth = type.getIntOrFloatBitWidth();
194     // According to the SPIR-V spec:
195     // "There is no physical size or bit pattern defined for values with boolean
196     // type. If they are stored (in conjunction with OpVariable), they can only
197     // be used with logical addressing operations, not physical, and only with
198     // non-externally visible shader Storage Classes: Workgroup, CrossWorkgroup,
199     // Private, Function, Input, and Output."
200     if (bitWidth == 1)
201       return llvm::None;
202     return bitWidth / 8;
203   }
204 
205   if (auto vecType = type.dyn_cast<VectorType>()) {
206     auto elementSize = getTypeNumBytes(options, vecType.getElementType());
207     if (!elementSize)
208       return llvm::None;
209     return vecType.getNumElements() * elementSize.getValue();
210   }
211 
212   if (auto memRefType = type.dyn_cast<MemRefType>()) {
213     // TODO: Layout should also be controlled by the ABI attributes. For now
214     // using the layout from MemRef.
215     int64_t offset;
216     SmallVector<int64_t, 4> strides;
217     if (!memRefType.hasStaticShape() ||
218         failed(getStridesAndOffset(memRefType, strides, offset)))
219       return llvm::None;
220 
221     // To get the size of the memref object in memory, the total size is the
222     // max(stride * dimension-size) computed for all dimensions times the size
223     // of the element.
224     auto elementSize = getTypeNumBytes(options, memRefType.getElementType());
225     if (!elementSize)
226       return llvm::None;
227 
228     if (memRefType.getRank() == 0)
229       return elementSize;
230 
231     auto dims = memRefType.getShape();
232     if (llvm::is_contained(dims, ShapedType::kDynamicSize) ||
233         offset == MemRefType::getDynamicStrideOrOffset() ||
234         llvm::is_contained(strides, MemRefType::getDynamicStrideOrOffset()))
235       return llvm::None;
236 
237     int64_t memrefSize = -1;
238     for (auto shape : enumerate(dims))
239       memrefSize = std::max(memrefSize, shape.value() * strides[shape.index()]);
240 
241     return (offset + memrefSize) * elementSize.getValue();
242   }
243 
244   if (auto tensorType = type.dyn_cast<TensorType>()) {
245     if (!tensorType.hasStaticShape())
246       return llvm::None;
247 
248     auto elementSize = getTypeNumBytes(options, tensorType.getElementType());
249     if (!elementSize)
250       return llvm::None;
251 
252     int64_t size = elementSize.getValue();
253     for (auto shape : tensorType.getShape())
254       size *= shape;
255 
256     return size;
257   }
258 
259   // TODO: Add size computation for other types.
260   return llvm::None;
261 }
262 
263 /// Converts a scalar `type` to a suitable type under the given `targetEnv`.
264 static Type convertScalarType(const spirv::TargetEnv &targetEnv,
265                               const SPIRVTypeConverter::Options &options,
266                               spirv::ScalarType type,
267                               Optional<spirv::StorageClass> storageClass = {}) {
268   // Get extension and capability requirements for the given type.
269   SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
270   SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
271   type.getExtensions(extensions, storageClass);
272   type.getCapabilities(capabilities, storageClass);
273 
274   // If all requirements are met, then we can accept this type as-is.
275   if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
276       succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
277     return type;
278 
279   // Otherwise we need to adjust the type, which really means adjusting the
280   // bitwidth given this is a scalar type.
281 
282   if (!options.emulateNon32BitScalarTypes)
283     return nullptr;
284 
285   if (auto floatType = type.dyn_cast<FloatType>()) {
286     LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
287     return Builder(targetEnv.getContext()).getF32Type();
288   }
289 
290   auto intType = type.cast<IntegerType>();
291   LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
292   return IntegerType::get(targetEnv.getContext(), /*width=*/32,
293                           intType.getSignedness());
294 }
295 
296 /// Converts a vector `type` to a suitable type under the given `targetEnv`.
297 static Type convertVectorType(const spirv::TargetEnv &targetEnv,
298                               const SPIRVTypeConverter::Options &options,
299                               VectorType type,
300                               Optional<spirv::StorageClass> storageClass = {}) {
301   if (type.getRank() == 1 && type.getNumElements() == 1)
302     return type.getElementType();
303 
304   if (!spirv::CompositeType::isValid(type)) {
305     // TODO: Vector types with more than four elements can be translated into
306     // array types.
307     LLVM_DEBUG(llvm::dbgs() << type << " illegal: > 4-element unimplemented\n");
308     return nullptr;
309   }
310 
311   // Get extension and capability requirements for the given type.
312   SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
313   SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
314   type.cast<spirv::CompositeType>().getExtensions(extensions, storageClass);
315   type.cast<spirv::CompositeType>().getCapabilities(capabilities, storageClass);
316 
317   // If all requirements are met, then we can accept this type as-is.
318   if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
319       succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
320     return type;
321 
322   auto elementType = convertScalarType(
323       targetEnv, options, type.getElementType().cast<spirv::ScalarType>(),
324       storageClass);
325   if (elementType)
326     return VectorType::get(type.getShape(), elementType);
327   return nullptr;
328 }
329 
330 /// Converts a tensor `type` to a suitable type under the given `targetEnv`.
331 ///
332 /// Note that this is mainly for lowering constant tensors. In SPIR-V one can
333 /// create composite constants with OpConstantComposite to embed relative large
334 /// constant values and use OpCompositeExtract and OpCompositeInsert to
335 /// manipulate, like what we do for vectors.
336 static Type convertTensorType(const spirv::TargetEnv &targetEnv,
337                               const SPIRVTypeConverter::Options &options,
338                               TensorType type) {
339   // TODO: Handle dynamic shapes.
340   if (!type.hasStaticShape()) {
341     LLVM_DEBUG(llvm::dbgs()
342                << type << " illegal: dynamic shape unimplemented\n");
343     return nullptr;
344   }
345 
346   auto scalarType = type.getElementType().dyn_cast<spirv::ScalarType>();
347   if (!scalarType) {
348     LLVM_DEBUG(llvm::dbgs()
349                << type << " illegal: cannot convert non-scalar element type\n");
350     return nullptr;
351   }
352 
353   Optional<int64_t> scalarSize = getTypeNumBytes(options, scalarType);
354   Optional<int64_t> tensorSize = getTypeNumBytes(options, type);
355   if (!scalarSize || !tensorSize) {
356     LLVM_DEBUG(llvm::dbgs()
357                << type << " illegal: cannot deduce element count\n");
358     return nullptr;
359   }
360 
361   auto arrayElemCount = *tensorSize / *scalarSize;
362   auto arrayElemType = convertScalarType(targetEnv, options, scalarType);
363   if (!arrayElemType)
364     return nullptr;
365   Optional<int64_t> arrayElemSize = getTypeNumBytes(options, arrayElemType);
366   if (!arrayElemSize) {
367     LLVM_DEBUG(llvm::dbgs()
368                << type << " illegal: cannot deduce converted element size\n");
369     return nullptr;
370   }
371 
372   return spirv::ArrayType::get(arrayElemType, arrayElemCount, *arrayElemSize);
373 }
374 
375 static Type convertBoolMemrefType(const spirv::TargetEnv &targetEnv,
376                                   const SPIRVTypeConverter::Options &options,
377                                   MemRefType type) {
378   Optional<spirv::StorageClass> storageClass =
379       SPIRVTypeConverter::getStorageClassForMemorySpace(
380           type.getMemorySpaceAsInt());
381   if (!storageClass) {
382     LLVM_DEBUG(llvm::dbgs()
383                << type << " illegal: cannot convert memory space\n");
384     return nullptr;
385   }
386 
387   unsigned numBoolBits = options.boolNumBits;
388   if (numBoolBits != 8) {
389     LLVM_DEBUG(llvm::dbgs()
390                << "using non-8-bit storage for bool types unimplemented");
391     return nullptr;
392   }
393   auto elementType = IntegerType::get(type.getContext(), numBoolBits)
394                          .dyn_cast<spirv::ScalarType>();
395   if (!elementType)
396     return nullptr;
397   Type arrayElemType =
398       convertScalarType(targetEnv, options, elementType, storageClass);
399   if (!arrayElemType)
400     return nullptr;
401   Optional<int64_t> arrayElemSize = getTypeNumBytes(options, arrayElemType);
402   if (!arrayElemSize) {
403     LLVM_DEBUG(llvm::dbgs()
404                << type << " illegal: cannot deduce converted element size\n");
405     return nullptr;
406   }
407 
408   if (!type.hasStaticShape()) {
409     auto arrayType =
410         spirv::RuntimeArrayType::get(arrayElemType, *arrayElemSize);
411     return wrapInStructAndGetPointer(arrayType, *storageClass);
412   }
413 
414   int64_t memrefSize = (type.getNumElements() * numBoolBits + 7) / 8;
415   auto arrayElemCount = (memrefSize + *arrayElemSize - 1) / *arrayElemSize;
416   auto arrayType =
417       spirv::ArrayType::get(arrayElemType, arrayElemCount, *arrayElemSize);
418 
419   return wrapInStructAndGetPointer(arrayType, *storageClass);
420 }
421 
422 static Type convertMemrefType(const spirv::TargetEnv &targetEnv,
423                               const SPIRVTypeConverter::Options &options,
424                               MemRefType type) {
425   if (type.getElementType().isa<IntegerType>() &&
426       type.getElementTypeBitWidth() == 1) {
427     return convertBoolMemrefType(targetEnv, options, type);
428   }
429 
430   Optional<spirv::StorageClass> storageClass =
431       SPIRVTypeConverter::getStorageClassForMemorySpace(
432           type.getMemorySpaceAsInt());
433   if (!storageClass) {
434     LLVM_DEBUG(llvm::dbgs()
435                << type << " illegal: cannot convert memory space\n");
436     return nullptr;
437   }
438 
439   Type arrayElemType;
440   Type elementType = type.getElementType();
441   if (auto vecType = elementType.dyn_cast<VectorType>()) {
442     arrayElemType =
443         convertVectorType(targetEnv, options, vecType, storageClass);
444   } else if (auto scalarType = elementType.dyn_cast<spirv::ScalarType>()) {
445     arrayElemType =
446         convertScalarType(targetEnv, options, scalarType, storageClass);
447   } else {
448     LLVM_DEBUG(
449         llvm::dbgs()
450         << type
451         << " unhandled: can only convert scalar or vector element type\n");
452     return nullptr;
453   }
454   if (!arrayElemType)
455     return nullptr;
456 
457   Optional<int64_t> elementSize = getTypeNumBytes(options, elementType);
458   if (!elementSize) {
459     LLVM_DEBUG(llvm::dbgs()
460                << type << " illegal: cannot deduce element size\n");
461     return nullptr;
462   }
463 
464   Optional<int64_t> arrayElemSize = getTypeNumBytes(options, arrayElemType);
465   if (!arrayElemSize) {
466     LLVM_DEBUG(llvm::dbgs()
467                << type << " illegal: cannot deduce converted element size\n");
468     return nullptr;
469   }
470 
471   if (!type.hasStaticShape()) {
472     auto arrayType =
473         spirv::RuntimeArrayType::get(arrayElemType, *arrayElemSize);
474     return wrapInStructAndGetPointer(arrayType, *storageClass);
475   }
476 
477   Optional<int64_t> memrefSize = getTypeNumBytes(options, type);
478   if (!memrefSize) {
479     LLVM_DEBUG(llvm::dbgs()
480                << type << " illegal: cannot deduce element count\n");
481     return nullptr;
482   }
483 
484   auto arrayElemCount = *memrefSize / *elementSize;
485 
486 
487   auto arrayType =
488       spirv::ArrayType::get(arrayElemType, arrayElemCount, *arrayElemSize);
489 
490   return wrapInStructAndGetPointer(arrayType, *storageClass);
491 }
492 
493 SPIRVTypeConverter::SPIRVTypeConverter(spirv::TargetEnvAttr targetAttr,
494                                        Options options)
495     : targetEnv(targetAttr), options(options) {
496   // Add conversions. The order matters here: later ones will be tried earlier.
497 
498   // Allow all SPIR-V dialect specific types. This assumes all builtin types
499   // adopted in the SPIR-V dialect (i.e., IntegerType, FloatType, VectorType)
500   // were tried before.
501   //
502   // TODO: this assumes that the SPIR-V types are valid to use in
503   // the given target environment, which should be the case if the whole
504   // pipeline is driven by the same target environment. Still, we probably still
505   // want to validate and convert to be safe.
506   addConversion([](spirv::SPIRVType type) { return type; });
507 
508   addConversion([](IndexType indexType) {
509     return SPIRVTypeConverter::getIndexType(indexType.getContext());
510   });
511 
512   addConversion([this](IntegerType intType) -> Optional<Type> {
513     if (auto scalarType = intType.dyn_cast<spirv::ScalarType>())
514       return convertScalarType(this->targetEnv, this->options, scalarType);
515     return Type();
516   });
517 
518   addConversion([this](FloatType floatType) -> Optional<Type> {
519     if (auto scalarType = floatType.dyn_cast<spirv::ScalarType>())
520       return convertScalarType(this->targetEnv, this->options, scalarType);
521     return Type();
522   });
523 
524   addConversion([this](VectorType vectorType) {
525     return convertVectorType(this->targetEnv, this->options, vectorType);
526   });
527 
528   addConversion([this](TensorType tensorType) {
529     return convertTensorType(this->targetEnv, this->options, tensorType);
530   });
531 
532   addConversion([this](MemRefType memRefType) {
533     return convertMemrefType(this->targetEnv, this->options, memRefType);
534   });
535 }
536 
537 //===----------------------------------------------------------------------===//
538 // FuncOp Conversion Patterns
539 //===----------------------------------------------------------------------===//
540 
541 namespace {
542 /// A pattern for rewriting function signature to convert arguments of functions
543 /// to be of valid SPIR-V types.
544 class FuncOpConversion final : public OpConversionPattern<FuncOp> {
545 public:
546   using OpConversionPattern<FuncOp>::OpConversionPattern;
547 
548   LogicalResult
549   matchAndRewrite(FuncOp funcOp, ArrayRef<Value> operands,
550                   ConversionPatternRewriter &rewriter) const override;
551 };
552 } // namespace
553 
554 LogicalResult
555 FuncOpConversion::matchAndRewrite(FuncOp funcOp, ArrayRef<Value> operands,
556                                   ConversionPatternRewriter &rewriter) const {
557   auto fnType = funcOp.getType();
558   if (fnType.getNumResults() > 1)
559     return failure();
560 
561   TypeConverter::SignatureConversion signatureConverter(fnType.getNumInputs());
562   for (auto argType : enumerate(fnType.getInputs())) {
563     auto convertedType = getTypeConverter()->convertType(argType.value());
564     if (!convertedType)
565       return failure();
566     signatureConverter.addInputs(argType.index(), convertedType);
567   }
568 
569   Type resultType;
570   if (fnType.getNumResults() == 1) {
571     resultType = getTypeConverter()->convertType(fnType.getResult(0));
572     if (!resultType)
573       return failure();
574   }
575 
576   // Create the converted spv.func op.
577   auto newFuncOp = rewriter.create<spirv::FuncOp>(
578       funcOp.getLoc(), funcOp.getName(),
579       rewriter.getFunctionType(signatureConverter.getConvertedTypes(),
580                                resultType ? TypeRange(resultType)
581                                           : TypeRange()));
582 
583   // Copy over all attributes other than the function name and type.
584   for (const auto &namedAttr : funcOp->getAttrs()) {
585     if (namedAttr.first != impl::getTypeAttrName() &&
586         namedAttr.first != SymbolTable::getSymbolAttrName())
587       newFuncOp->setAttr(namedAttr.first, namedAttr.second);
588   }
589 
590   rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
591                               newFuncOp.end());
592   if (failed(rewriter.convertRegionTypes(
593           &newFuncOp.getBody(), *getTypeConverter(), &signatureConverter)))
594     return failure();
595   rewriter.eraseOp(funcOp);
596   return success();
597 }
598 
599 void mlir::populateBuiltinFuncToSPIRVPatterns(SPIRVTypeConverter &typeConverter,
600                                               RewritePatternSet &patterns) {
601   patterns.add<FuncOpConversion>(typeConverter, patterns.getContext());
602 }
603 
604 //===----------------------------------------------------------------------===//
605 // Builtin Variables
606 //===----------------------------------------------------------------------===//
607 
608 static spirv::GlobalVariableOp getBuiltinVariable(Block &body,
609                                                   spirv::BuiltIn builtin) {
610   // Look through all global variables in the given `body` block and check if
611   // there is a spv.GlobalVariable that has the same `builtin` attribute.
612   for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
613     if (auto builtinAttr = varOp->getAttrOfType<StringAttr>(
614             spirv::SPIRVDialect::getAttributeName(
615                 spirv::Decoration::BuiltIn))) {
616       auto varBuiltIn = spirv::symbolizeBuiltIn(builtinAttr.getValue());
617       if (varBuiltIn && varBuiltIn.getValue() == builtin) {
618         return varOp;
619       }
620     }
621   }
622   return nullptr;
623 }
624 
625 /// Gets name of global variable for a builtin.
626 static std::string getBuiltinVarName(spirv::BuiltIn builtin) {
627   return std::string("__builtin_var_") + stringifyBuiltIn(builtin).str() + "__";
628 }
629 
630 /// Gets or inserts a global variable for a builtin within `body` block.
631 static spirv::GlobalVariableOp
632 getOrInsertBuiltinVariable(Block &body, Location loc, spirv::BuiltIn builtin,
633                            OpBuilder &builder) {
634   if (auto varOp = getBuiltinVariable(body, builtin))
635     return varOp;
636 
637   OpBuilder::InsertionGuard guard(builder);
638   builder.setInsertionPointToStart(&body);
639 
640   spirv::GlobalVariableOp newVarOp;
641   switch (builtin) {
642   case spirv::BuiltIn::NumWorkgroups:
643   case spirv::BuiltIn::WorkgroupSize:
644   case spirv::BuiltIn::WorkgroupId:
645   case spirv::BuiltIn::LocalInvocationId:
646   case spirv::BuiltIn::GlobalInvocationId: {
647     auto ptrType = spirv::PointerType::get(
648         VectorType::get({3}, builder.getIntegerType(32)),
649         spirv::StorageClass::Input);
650     std::string name = getBuiltinVarName(builtin);
651     newVarOp =
652         builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
653     break;
654   }
655   case spirv::BuiltIn::SubgroupId:
656   case spirv::BuiltIn::NumSubgroups:
657   case spirv::BuiltIn::SubgroupSize: {
658     auto ptrType = spirv::PointerType::get(builder.getIntegerType(32),
659                                            spirv::StorageClass::Input);
660     std::string name = getBuiltinVarName(builtin);
661     newVarOp =
662         builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
663     break;
664   }
665   default:
666     emitError(loc, "unimplemented builtin variable generation for ")
667         << stringifyBuiltIn(builtin);
668   }
669   return newVarOp;
670 }
671 
672 Value mlir::spirv::getBuiltinVariableValue(Operation *op,
673                                            spirv::BuiltIn builtin,
674                                            OpBuilder &builder) {
675   Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
676   if (!parent) {
677     op->emitError("expected operation to be within a module-like op");
678     return nullptr;
679   }
680 
681   spirv::GlobalVariableOp varOp = getOrInsertBuiltinVariable(
682       *parent->getRegion(0).begin(), op->getLoc(), builtin, builder);
683   Value ptr = builder.create<spirv::AddressOfOp>(op->getLoc(), varOp);
684   return builder.create<spirv::LoadOp>(op->getLoc(), ptr);
685 }
686 
687 //===----------------------------------------------------------------------===//
688 // Push constant storage
689 //===----------------------------------------------------------------------===//
690 
691 /// Returns the pointer type for the push constant storage containing
692 /// `elementCount` 32-bit integer values.
693 static spirv::PointerType getPushConstantStorageType(unsigned elementCount,
694                                                      Builder &builder) {
695   auto arrayType = spirv::ArrayType::get(
696       SPIRVTypeConverter::getIndexType(builder.getContext()), elementCount,
697       /*stride=*/4);
698   auto structType = spirv::StructType::get({arrayType}, /*offsetInfo=*/0);
699   return spirv::PointerType::get(structType, spirv::StorageClass::PushConstant);
700 }
701 
702 /// Returns the push constant varible containing `elementCount` 32-bit integer
703 /// values in `body`. Returns null op if such an op does not exit.
704 static spirv::GlobalVariableOp getPushConstantVariable(Block &body,
705                                                        unsigned elementCount) {
706   for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
707     auto ptrType = varOp.type().cast<spirv::PointerType>();
708     // Note that Vulkan requires "There must be no more than one push constant
709     // block statically used per shader entry point." So we should always reuse
710     // the existing one.
711     if (ptrType.getStorageClass() == spirv::StorageClass::PushConstant) {
712       auto numElements = ptrType.getPointeeType()
713                              .cast<spirv::StructType>()
714                              .getElementType(0)
715                              .cast<spirv::ArrayType>()
716                              .getNumElements();
717       if (numElements == elementCount)
718         return varOp;
719     }
720   }
721   return nullptr;
722 }
723 
724 /// Gets or inserts a global variable for push constant storage containing
725 /// `elementCount` 32-bit integer values in `block`.
726 static spirv::GlobalVariableOp
727 getOrInsertPushConstantVariable(Location loc, Block &block,
728                                 unsigned elementCount, OpBuilder &b) {
729   if (auto varOp = getPushConstantVariable(block, elementCount))
730     return varOp;
731 
732   auto builder = OpBuilder::atBlockBegin(&block, b.getListener());
733   auto type = getPushConstantStorageType(elementCount, builder);
734   const char *name = "__push_constant_var__";
735   return builder.create<spirv::GlobalVariableOp>(loc, type, name,
736                                                  /*initializer=*/nullptr);
737 }
738 
739 Value spirv::getPushConstantValue(Operation *op, unsigned elementCount,
740                                   unsigned offset, OpBuilder &builder) {
741   Location loc = op->getLoc();
742   Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
743   if (!parent) {
744     op->emitError("expected operation to be within a module-like op");
745     return nullptr;
746   }
747 
748   spirv::GlobalVariableOp varOp = getOrInsertPushConstantVariable(
749       loc, parent->getRegion(0).front(), elementCount, builder);
750 
751   auto i32Type = SPIRVTypeConverter::getIndexType(builder.getContext());
752   Value zeroOp = spirv::ConstantOp::getZero(i32Type, loc, builder);
753   Value offsetOp = builder.create<spirv::ConstantOp>(
754       loc, i32Type, builder.getI32IntegerAttr(offset));
755   auto addrOp = builder.create<spirv::AddressOfOp>(loc, varOp);
756   auto acOp = builder.create<spirv::AccessChainOp>(
757       loc, addrOp, llvm::makeArrayRef({zeroOp, offsetOp}));
758   return builder.create<spirv::LoadOp>(loc, acOp);
759 }
760 
761 //===----------------------------------------------------------------------===//
762 // Index calculation
763 //===----------------------------------------------------------------------===//
764 
765 Value mlir::spirv::linearizeIndex(ValueRange indices, ArrayRef<int64_t> strides,
766                                   int64_t offset, Location loc,
767                                   OpBuilder &builder) {
768   assert(indices.size() == strides.size() &&
769          "must provide indices for all dimensions");
770 
771   auto indexType = SPIRVTypeConverter::getIndexType(builder.getContext());
772 
773   // TODO: Consider moving to use affine.apply and patterns converting
774   // affine.apply to standard ops. This needs converting to SPIR-V passes to be
775   // broken down into progressive small steps so we can have intermediate steps
776   // using other dialects. At the moment SPIR-V is the final sink.
777 
778   Value linearizedIndex = builder.create<spirv::ConstantOp>(
779       loc, indexType, IntegerAttr::get(indexType, offset));
780   for (auto index : llvm::enumerate(indices)) {
781     Value strideVal = builder.create<spirv::ConstantOp>(
782         loc, indexType, IntegerAttr::get(indexType, strides[index.index()]));
783     Value update = builder.create<spirv::IMulOp>(loc, strideVal, index.value());
784     linearizedIndex =
785         builder.create<spirv::IAddOp>(loc, linearizedIndex, update);
786   }
787   return linearizedIndex;
788 }
789 
790 spirv::AccessChainOp mlir::spirv::getElementPtr(
791     SPIRVTypeConverter &typeConverter, MemRefType baseType, Value basePtr,
792     ValueRange indices, Location loc, OpBuilder &builder) {
793   // Get base and offset of the MemRefType and verify they are static.
794 
795   int64_t offset;
796   SmallVector<int64_t, 4> strides;
797   if (failed(getStridesAndOffset(baseType, strides, offset)) ||
798       llvm::is_contained(strides, MemRefType::getDynamicStrideOrOffset()) ||
799       offset == MemRefType::getDynamicStrideOrOffset()) {
800     return nullptr;
801   }
802 
803   auto indexType = typeConverter.getIndexType(builder.getContext());
804 
805   SmallVector<Value, 2> linearizedIndices;
806   auto zero = spirv::ConstantOp::getZero(indexType, loc, builder);
807 
808   // Add a '0' at the start to index into the struct.
809   linearizedIndices.push_back(zero);
810 
811   if (baseType.getRank() == 0) {
812     linearizedIndices.push_back(zero);
813   } else {
814     linearizedIndices.push_back(
815         linearizeIndex(indices, strides, offset, loc, builder));
816   }
817   return builder.create<spirv::AccessChainOp>(loc, basePtr, linearizedIndices);
818 }
819 
820 //===----------------------------------------------------------------------===//
821 // SPIR-V ConversionTarget
822 //===----------------------------------------------------------------------===//
823 
824 std::unique_ptr<SPIRVConversionTarget>
825 SPIRVConversionTarget::get(spirv::TargetEnvAttr targetAttr) {
826   std::unique_ptr<SPIRVConversionTarget> target(
827       // std::make_unique does not work here because the constructor is private.
828       new SPIRVConversionTarget(targetAttr));
829   SPIRVConversionTarget *targetPtr = target.get();
830   target->addDynamicallyLegalDialect<spirv::SPIRVDialect>(
831       // We need to capture the raw pointer here because it is stable:
832       // target will be destroyed once this function is returned.
833       [targetPtr](Operation *op) { return targetPtr->isLegalOp(op); });
834   return target;
835 }
836 
837 SPIRVConversionTarget::SPIRVConversionTarget(spirv::TargetEnvAttr targetAttr)
838     : ConversionTarget(*targetAttr.getContext()), targetEnv(targetAttr) {}
839 
840 bool SPIRVConversionTarget::isLegalOp(Operation *op) {
841   // Make sure this op is available at the given version. Ops not implementing
842   // QueryMinVersionInterface/QueryMaxVersionInterface are available to all
843   // SPIR-V versions.
844   if (auto minVersion = dyn_cast<spirv::QueryMinVersionInterface>(op))
845     if (minVersion.getMinVersion() > this->targetEnv.getVersion()) {
846       LLVM_DEBUG(llvm::dbgs()
847                  << op->getName() << " illegal: requiring min version "
848                  << spirv::stringifyVersion(minVersion.getMinVersion())
849                  << "\n");
850       return false;
851     }
852   if (auto maxVersion = dyn_cast<spirv::QueryMaxVersionInterface>(op))
853     if (maxVersion.getMaxVersion() < this->targetEnv.getVersion()) {
854       LLVM_DEBUG(llvm::dbgs()
855                  << op->getName() << " illegal: requiring max version "
856                  << spirv::stringifyVersion(maxVersion.getMaxVersion())
857                  << "\n");
858       return false;
859     }
860 
861   // Make sure this op's required extensions are allowed to use. Ops not
862   // implementing QueryExtensionInterface do not require extensions to be
863   // available.
864   if (auto extensions = dyn_cast<spirv::QueryExtensionInterface>(op))
865     if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
866                                           extensions.getExtensions())))
867       return false;
868 
869   // Make sure this op's required extensions are allowed to use. Ops not
870   // implementing QueryCapabilityInterface do not require capabilities to be
871   // available.
872   if (auto capabilities = dyn_cast<spirv::QueryCapabilityInterface>(op))
873     if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
874                                            capabilities.getCapabilities())))
875       return false;
876 
877   SmallVector<Type, 4> valueTypes;
878   valueTypes.append(op->operand_type_begin(), op->operand_type_end());
879   valueTypes.append(op->result_type_begin(), op->result_type_end());
880 
881   // Special treatment for global variables, whose type requirements are
882   // conveyed by type attributes.
883   if (auto globalVar = dyn_cast<spirv::GlobalVariableOp>(op))
884     valueTypes.push_back(globalVar.type());
885 
886   // Make sure the op's operands/results use types that are allowed by the
887   // target environment.
888   SmallVector<ArrayRef<spirv::Extension>, 4> typeExtensions;
889   SmallVector<ArrayRef<spirv::Capability>, 8> typeCapabilities;
890   for (Type valueType : valueTypes) {
891     typeExtensions.clear();
892     valueType.cast<spirv::SPIRVType>().getExtensions(typeExtensions);
893     if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
894                                           typeExtensions)))
895       return false;
896 
897     typeCapabilities.clear();
898     valueType.cast<spirv::SPIRVType>().getCapabilities(typeCapabilities);
899     if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
900                                            typeCapabilities)))
901       return false;
902   }
903 
904   return true;
905 }
906