1 //===- LoopSpecialization.cpp - scf.parallel/SCR.for specialization -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Specializes parallel loops and for loops for easier unrolling and 10 // vectorization. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PassDetail.h" 15 #include "mlir/Analysis/AffineStructures.h" 16 #include "mlir/Dialect/Affine/IR/AffineOps.h" 17 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 18 #include "mlir/Dialect/SCF/Passes.h" 19 #include "mlir/Dialect/SCF/SCF.h" 20 #include "mlir/Dialect/SCF/Transforms.h" 21 #include "mlir/Dialect/StandardOps/IR/Ops.h" 22 #include "mlir/Dialect/Utils/StaticValueUtils.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 27 #include "llvm/ADT/DenseMap.h" 28 29 using namespace mlir; 30 using scf::ForOp; 31 using scf::ParallelOp; 32 33 /// Rewrite a parallel loop with bounds defined by an affine.min with a constant 34 /// into 2 loops after checking if the bounds are equal to that constant. This 35 /// is beneficial if the loop will almost always have the constant bound and 36 /// that version can be fully unrolled and vectorized. 37 static void specializeParallelLoopForUnrolling(ParallelOp op) { 38 SmallVector<int64_t, 2> constantIndices; 39 constantIndices.reserve(op.upperBound().size()); 40 for (auto bound : op.upperBound()) { 41 auto minOp = bound.getDefiningOp<AffineMinOp>(); 42 if (!minOp) 43 return; 44 int64_t minConstant = std::numeric_limits<int64_t>::max(); 45 for (AffineExpr expr : minOp.map().getResults()) { 46 if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>()) 47 minConstant = std::min(minConstant, constantIndex.getValue()); 48 } 49 if (minConstant == std::numeric_limits<int64_t>::max()) 50 return; 51 constantIndices.push_back(minConstant); 52 } 53 54 OpBuilder b(op); 55 BlockAndValueMapping map; 56 Value cond; 57 for (auto bound : llvm::zip(op.upperBound(), constantIndices)) { 58 Value constant = 59 b.create<arith::ConstantIndexOp>(op.getLoc(), std::get<1>(bound)); 60 Value cmp = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq, 61 std::get<0>(bound), constant); 62 cond = cond ? b.create<arith::AndIOp>(op.getLoc(), cond, cmp) : cmp; 63 map.map(std::get<0>(bound), constant); 64 } 65 auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true); 66 ifOp.getThenBodyBuilder().clone(*op.getOperation(), map); 67 ifOp.getElseBodyBuilder().clone(*op.getOperation()); 68 op.erase(); 69 } 70 71 /// Rewrite a for loop with bounds defined by an affine.min with a constant into 72 /// 2 loops after checking if the bounds are equal to that constant. This is 73 /// beneficial if the loop will almost always have the constant bound and that 74 /// version can be fully unrolled and vectorized. 75 static void specializeForLoopForUnrolling(ForOp op) { 76 auto bound = op.upperBound(); 77 auto minOp = bound.getDefiningOp<AffineMinOp>(); 78 if (!minOp) 79 return; 80 int64_t minConstant = std::numeric_limits<int64_t>::max(); 81 for (AffineExpr expr : minOp.map().getResults()) { 82 if (auto constantIndex = expr.dyn_cast<AffineConstantExpr>()) 83 minConstant = std::min(minConstant, constantIndex.getValue()); 84 } 85 if (minConstant == std::numeric_limits<int64_t>::max()) 86 return; 87 88 OpBuilder b(op); 89 BlockAndValueMapping map; 90 Value constant = b.create<arith::ConstantIndexOp>(op.getLoc(), minConstant); 91 Value cond = b.create<arith::CmpIOp>(op.getLoc(), arith::CmpIPredicate::eq, 92 bound, constant); 93 map.map(bound, constant); 94 auto ifOp = b.create<scf::IfOp>(op.getLoc(), cond, /*withElseRegion=*/true); 95 ifOp.getThenBodyBuilder().clone(*op.getOperation(), map); 96 ifOp.getElseBodyBuilder().clone(*op.getOperation()); 97 op.erase(); 98 } 99 100 /// Rewrite a for loop with bounds/step that potentially do not divide evenly 101 /// into a for loop where the step divides the iteration space evenly, followed 102 /// by an scf.if for the last (partial) iteration (if any). 103 /// 104 /// This function rewrites the given scf.for loop in-place and creates a new 105 /// scf.if operation for the last iteration. It replaces all uses of the 106 /// unpeeled loop with the results of the newly generated scf.if. 107 /// 108 /// The newly generated scf.if operation is returned via `ifOp`. The boundary 109 /// at which the loop is split (new upper bound) is returned via `splitBound`. 110 /// The return value indicates whether the loop was rewritten or not. 111 static LogicalResult peelForLoop(RewriterBase &b, ForOp forOp, 112 ForOp &partialIteration, Value &splitBound) { 113 RewriterBase::InsertionGuard guard(b); 114 auto lbInt = getConstantIntValue(forOp.lowerBound()); 115 auto ubInt = getConstantIntValue(forOp.upperBound()); 116 auto stepInt = getConstantIntValue(forOp.step()); 117 118 // No specialization necessary if step already divides upper bound evenly. 119 if (lbInt && ubInt && stepInt && (*ubInt - *lbInt) % *stepInt == 0) 120 return failure(); 121 // No specialization necessary if step size is 1. 122 if (stepInt == static_cast<int64_t>(1)) 123 return failure(); 124 125 auto loc = forOp.getLoc(); 126 AffineExpr sym0, sym1, sym2; 127 bindSymbols(b.getContext(), sym0, sym1, sym2); 128 // New upper bound: %ub - (%ub - %lb) mod %step 129 auto modMap = AffineMap::get(0, 3, {sym1 - ((sym1 - sym0) % sym2)}); 130 b.setInsertionPoint(forOp); 131 splitBound = b.createOrFold<AffineApplyOp>( 132 loc, modMap, 133 ValueRange{forOp.lowerBound(), forOp.upperBound(), forOp.step()}); 134 135 // Create ForOp for partial iteration. 136 b.setInsertionPointAfter(forOp); 137 partialIteration = cast<ForOp>(b.clone(*forOp.getOperation())); 138 partialIteration.lowerBoundMutable().assign(splitBound); 139 forOp.replaceAllUsesWith(partialIteration->getResults()); 140 partialIteration.initArgsMutable().assign(forOp->getResults()); 141 142 // Set new upper loop bound. 143 b.updateRootInPlace(forOp, 144 [&]() { forOp.upperBoundMutable().assign(splitBound); }); 145 146 return success(); 147 } 148 149 static void unpackOptionalValues(ArrayRef<Optional<Value>> source, 150 SmallVector<Value> &target) { 151 target = llvm::to_vector<4>(llvm::map_range(source, [](Optional<Value> val) { 152 return val.hasValue() ? *val : Value(); 153 })); 154 } 155 156 /// Bound an identifier `pos` in a given FlatAffineValueConstraints with 157 /// constraints drawn from an affine map. Before adding the constraint, the 158 /// dimensions/symbols of the affine map are aligned with `constraints`. 159 /// `operands` are the SSA Value operands used with the affine map. 160 /// Note: This function adds a new symbol column to the `constraints` for each 161 /// dimension/symbol that exists in the affine map but not in `constraints`. 162 static LogicalResult alignAndAddBound(FlatAffineValueConstraints &constraints, 163 FlatAffineConstraints::BoundType type, 164 unsigned pos, AffineMap map, 165 ValueRange operands) { 166 SmallVector<Value> dims, syms, newSyms; 167 unpackOptionalValues(constraints.getMaybeDimValues(), dims); 168 unpackOptionalValues(constraints.getMaybeSymbolValues(), syms); 169 170 AffineMap alignedMap = 171 alignAffineMapWithValues(map, operands, dims, syms, &newSyms); 172 for (unsigned i = syms.size(); i < newSyms.size(); ++i) 173 constraints.appendSymbolId(newSyms[i]); 174 return constraints.addBound(type, pos, alignedMap); 175 } 176 177 /// This function tries to canonicalize min/max operations by proving that their 178 /// value is bounded by the same lower and upper bound. In that case, the 179 /// operation can be folded away. 180 /// 181 /// Bounds are computed by FlatAffineValueConstraints. Invariants required for 182 /// finding/proving bounds should be supplied via `constraints`. 183 /// 184 /// 1. Add dimensions for `op` and `opBound` (lower or upper bound of `op`). 185 /// 2. Compute an upper bound of `op` (in case of `isMin`) or a lower bound (in 186 /// case of `!isMin`) and bind it to `opBound`. SSA values that are used in 187 /// `op` but are not part of `constraints`, are added as extra symbols. 188 /// 3. For each result of `op`: Add result as a dimension `r_i`. Prove that: 189 /// * If `isMin`: r_i >= opBound 190 /// * If `isMax`: r_i <= opBound 191 /// If this is the case, ub(op) == lb(op). 192 /// 4. Replace `op` with `opBound`. 193 /// 194 /// In summary, the following constraints are added throughout this function. 195 /// Note: `invar` are dimensions added by the caller to express the invariants. 196 /// (Showing only the case where `isMin`.) 197 /// 198 /// invar | op | opBound | r_i | extra syms... | const | eq/ineq 199 /// ------+-------+---------+-----+---------------+-------+------------------- 200 /// (various eq./ineq. constraining `invar`, added by the caller) 201 /// ... | 0 | 0 | 0 | 0 | ... | ... 202 /// ------+-------+---------+-----+---------------+-------+------------------- 203 /// (various ineq. constraining `op` in terms of `op` operands (`invar` and 204 /// extra `op` operands "extra syms" that are not in `invar`)). 205 /// ... | -1 | 0 | 0 | ... | ... | >= 0 206 /// ------+-------+---------+-----+---------------+-------+------------------- 207 /// (set `opBound` to `op` upper bound in terms of `invar` and "extra syms") 208 /// ... | 0 | -1 | 0 | ... | ... | = 0 209 /// ------+-------+---------+-----+---------------+-------+------------------- 210 /// (for each `op` map result r_i: set r_i to corresponding map result, 211 /// prove that r_i >= minOpUb via contradiction) 212 /// ... | 0 | 0 | -1 | ... | ... | = 0 213 /// 0 | 0 | 1 | -1 | 0 | -1 | >= 0 214 /// 215 static LogicalResult 216 canonicalizeMinMaxOp(RewriterBase &rewriter, Operation *op, AffineMap map, 217 ValueRange operands, bool isMin, 218 FlatAffineValueConstraints constraints) { 219 RewriterBase::InsertionGuard guard(rewriter); 220 unsigned numResults = map.getNumResults(); 221 222 // Add a few extra dimensions. 223 unsigned dimOp = constraints.appendDimId(); // `op` 224 unsigned dimOpBound = constraints.appendDimId(); // `op` lower/upper bound 225 unsigned resultDimStart = constraints.appendDimId(/*num=*/numResults); 226 227 // Add an inequality for each result expr_i of map: 228 // isMin: op <= expr_i, !isMin: op >= expr_i 229 auto boundType = 230 isMin ? FlatAffineConstraints::UB : FlatAffineConstraints::LB; 231 if (failed(alignAndAddBound(constraints, boundType, dimOp, map, operands))) 232 return failure(); 233 234 // Try to compute a lower/upper bound for op, expressed in terms of the other 235 // `dims` and extra symbols. 236 SmallVector<AffineMap> opLb(1), opUb(1); 237 constraints.getSliceBounds(dimOp, 1, rewriter.getContext(), &opLb, &opUb); 238 AffineMap boundMap = isMin ? opUb[0] : opLb[0]; 239 // TODO: `getSliceBounds` may return multiple bounds at the moment. This is 240 // a TODO of `getSliceBounds` and not handled here. 241 if (!boundMap || boundMap.getNumResults() != 1) 242 return failure(); // No or multiple bounds found. 243 244 // Add an equality: Set dimOpBound to computed bound. 245 // Add back dimension for op. (Was removed by `getSliceBounds`.) 246 AffineMap alignedBoundMap = boundMap.shiftDims(/*shift=*/1, /*offset=*/dimOp); 247 if (failed(constraints.addBound(FlatAffineConstraints::EQ, dimOpBound, 248 alignedBoundMap))) 249 return failure(); 250 251 // If the constraint system is empty, there is an inconsistency. (E.g., this 252 // can happen if loop lb > ub.) 253 if (constraints.isEmpty()) 254 return failure(); 255 256 // In the case of `isMin` (`!isMin` is inversed): 257 // Prove that each result of `map` has a lower bound that is equal to (or 258 // greater than) the upper bound of `op` (`dimOpBound`). In that case, `op` 259 // can be replaced with the bound. I.e., prove that for each result 260 // expr_i (represented by dimension r_i): 261 // 262 // r_i >= opBound 263 // 264 // To prove this inequality, add its negation to the constraint set and prove 265 // that the constraint set is empty. 266 for (unsigned i = resultDimStart; i < resultDimStart + numResults; ++i) { 267 FlatAffineValueConstraints newConstr(constraints); 268 269 // Add an equality: r_i = expr_i 270 // Note: These equalities could have been added earlier and used to express 271 // minOp <= expr_i. However, then we run the risk that `getSliceBounds` 272 // computes minOpUb in terms of r_i dims, which is not desired. 273 if (failed(alignAndAddBound(newConstr, FlatAffineConstraints::EQ, i, 274 map.getSubMap({i - resultDimStart}), operands))) 275 return failure(); 276 277 // If `isMin`: Add inequality: r_i < opBound 278 // equiv.: opBound - r_i - 1 >= 0 279 // If `!isMin`: Add inequality: r_i > opBound 280 // equiv.: -opBound + r_i - 1 >= 0 281 SmallVector<int64_t> ineq(newConstr.getNumCols(), 0); 282 ineq[dimOpBound] = isMin ? 1 : -1; 283 ineq[i] = isMin ? -1 : 1; 284 ineq[newConstr.getNumCols() - 1] = -1; 285 newConstr.addInequality(ineq); 286 if (!newConstr.isEmpty()) 287 return failure(); 288 } 289 290 // Lower and upper bound of `op` are equal. Replace `minOp` with its bound. 291 AffineMap newMap = alignedBoundMap; 292 SmallVector<Value> newOperands; 293 unpackOptionalValues(constraints.getMaybeDimAndSymbolValues(), newOperands); 294 mlir::canonicalizeMapAndOperands(&newMap, &newOperands); 295 rewriter.setInsertionPoint(op); 296 rewriter.replaceOpWithNewOp<AffineApplyOp>(op, newMap, newOperands); 297 return success(); 298 } 299 300 /// Try to simplify a min/max operation `op` after loop peeling. This function 301 /// can simplify min/max operations such as (ub is the previous upper bound of 302 /// the unpeeled loop): 303 /// ``` 304 /// #map = affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)> 305 /// %r = affine.min #affine.min #map(%iv)[%step, %ub] 306 /// ``` 307 /// and rewrites them into (in the case the peeled loop): 308 /// ``` 309 /// %r = %step 310 /// ``` 311 /// min/max operations inside the partial iteration are rewritten in a similar 312 /// way. 313 /// 314 /// This function builds up a set of constraints, capable of proving that: 315 /// * Inside the peeled loop: min(step, ub - iv) == step 316 /// * Inside the partial iteration: min(step, ub - iv) == ub - iv 317 /// 318 /// Returns `success` if the given operation was replaced by a new operation; 319 /// `failure` otherwise. 320 /// 321 /// Note: `ub` is the previous upper bound of the loop (before peeling). 322 /// `insideLoop` must be true for min/max ops inside the loop and false for 323 /// affine.min ops inside the partial iteration. For an explanation of the other 324 /// parameters, see comment of `canonicalizeMinMaxOpInLoop`. 325 LogicalResult mlir::scf::rewritePeeledMinMaxOp(RewriterBase &rewriter, 326 Operation *op, AffineMap map, 327 ValueRange operands, bool isMin, 328 Value iv, Value ub, Value step, 329 bool insideLoop) { 330 FlatAffineValueConstraints constraints; 331 constraints.appendDimId({iv, ub, step}); 332 if (auto constUb = getConstantIntValue(ub)) 333 constraints.addBound(FlatAffineConstraints::EQ, 1, *constUb); 334 if (auto constStep = getConstantIntValue(step)) 335 constraints.addBound(FlatAffineConstraints::EQ, 2, *constStep); 336 337 // Add loop peeling invariant. This is the main piece of knowledge that 338 // enables AffineMinOp simplification. 339 if (insideLoop) { 340 // ub - iv >= step (equiv.: -iv + ub - step + 0 >= 0) 341 // Intuitively: Inside the peeled loop, every iteration is a "full" 342 // iteration, i.e., step divides the iteration space `ub - lb` evenly. 343 constraints.addInequality({-1, 1, -1, 0}); 344 } else { 345 // ub - iv < step (equiv.: iv + -ub + step - 1 >= 0) 346 // Intuitively: `iv` is the split bound here, i.e., the iteration variable 347 // value of the very last iteration (in the unpeeled loop). At that point, 348 // there are less than `step` elements remaining. (Otherwise, the peeled 349 // loop would run for at least one more iteration.) 350 constraints.addInequality({1, -1, 1, -1}); 351 } 352 353 return canonicalizeMinMaxOp(rewriter, op, map, operands, isMin, constraints); 354 } 355 356 template <typename OpTy, bool IsMin> 357 static void rewriteAffineOpAfterPeeling(RewriterBase &rewriter, ForOp forOp, 358 ForOp partialIteration, 359 Value previousUb) { 360 Value mainIv = forOp.getInductionVar(); 361 Value partialIv = partialIteration.getInductionVar(); 362 assert(forOp.step() == partialIteration.step() && 363 "expected same step in main and partial loop"); 364 Value step = forOp.step(); 365 366 forOp.walk([&](OpTy affineOp) { 367 AffineMap map = affineOp.getAffineMap(); 368 (void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map, 369 affineOp.operands(), IsMin, mainIv, 370 previousUb, step, 371 /*insideLoop=*/true); 372 }); 373 partialIteration.walk([&](OpTy affineOp) { 374 AffineMap map = affineOp.getAffineMap(); 375 (void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map, 376 affineOp.operands(), IsMin, partialIv, 377 previousUb, step, /*insideLoop=*/false); 378 }); 379 } 380 381 LogicalResult mlir::scf::peelAndCanonicalizeForLoop(RewriterBase &rewriter, 382 ForOp forOp, 383 ForOp &partialIteration) { 384 Value previousUb = forOp.upperBound(); 385 Value splitBound; 386 if (failed(peelForLoop(rewriter, forOp, partialIteration, splitBound))) 387 return failure(); 388 389 // Rewrite affine.min and affine.max ops. 390 rewriteAffineOpAfterPeeling<AffineMinOp, /*IsMin=*/true>( 391 rewriter, forOp, partialIteration, previousUb); 392 rewriteAffineOpAfterPeeling<AffineMaxOp, /*IsMin=*/false>( 393 rewriter, forOp, partialIteration, previousUb); 394 395 return success(); 396 } 397 398 /// Canonicalize min/max operations in the context of for loops with a known 399 /// range. Call `canonicalizeMinMaxOp` and add the following constraints to 400 /// the constraint system (along with the missing dimensions): 401 /// 402 /// * iv >= lb 403 /// * iv < lb + step * ((ub - lb - 1) floorDiv step) + 1 404 /// 405 /// Note: Due to limitations of FlatAffineConstraints, only constant step sizes 406 /// are currently supported. 407 LogicalResult 408 mlir::scf::canonicalizeMinMaxOpInLoop(RewriterBase &rewriter, Operation *op, 409 AffineMap map, ValueRange operands, 410 bool isMin, LoopMatcherFn loopMatcher) { 411 FlatAffineValueConstraints constraints; 412 DenseSet<Value> allIvs; 413 414 // Find all iteration variables among `minOp`'s operands add constrain them. 415 for (Value operand : operands) { 416 // Skip duplicate ivs. 417 if (llvm::find(allIvs, operand) != allIvs.end()) 418 continue; 419 420 // If `operand` is an iteration variable: Find corresponding loop 421 // bounds and step. 422 Value iv = operand; 423 Value lb, ub, step; 424 if (failed(loopMatcher(operand, lb, ub, step))) 425 continue; 426 allIvs.insert(iv); 427 428 // FlatAffineConstraints does not support semi-affine expressions. 429 // Therefore, only constant step values are supported. 430 auto stepInt = getConstantIntValue(step); 431 if (!stepInt) 432 continue; 433 434 unsigned dimIv = constraints.appendDimId(iv); 435 unsigned dimLb = constraints.appendDimId(lb); 436 unsigned dimUb = constraints.appendDimId(ub); 437 438 // If loop lower/upper bounds are constant: Add EQ constraint. 439 Optional<int64_t> lbInt = getConstantIntValue(lb); 440 Optional<int64_t> ubInt = getConstantIntValue(ub); 441 if (lbInt) 442 constraints.addBound(FlatAffineConstraints::EQ, dimLb, *lbInt); 443 if (ubInt) 444 constraints.addBound(FlatAffineConstraints::EQ, dimUb, *ubInt); 445 446 // iv >= lb (equiv.: iv - lb >= 0) 447 SmallVector<int64_t> ineqLb(constraints.getNumCols(), 0); 448 ineqLb[dimIv] = 1; 449 ineqLb[dimLb] = -1; 450 constraints.addInequality(ineqLb); 451 452 // iv < lb + step * ((ub - lb - 1) floorDiv step) + 1 453 AffineExpr exprLb = lbInt ? rewriter.getAffineConstantExpr(*lbInt) 454 : rewriter.getAffineDimExpr(dimLb); 455 AffineExpr exprUb = ubInt ? rewriter.getAffineConstantExpr(*ubInt) 456 : rewriter.getAffineDimExpr(dimUb); 457 AffineExpr ivUb = 458 exprLb + 1 + (*stepInt * ((exprUb - exprLb - 1).floorDiv(*stepInt))); 459 auto map = AffineMap::get( 460 /*dimCount=*/constraints.getNumDimIds(), 461 /*symbolCount=*/constraints.getNumSymbolIds(), /*result=*/ivUb); 462 463 if (failed(constraints.addBound(FlatAffineConstraints::UB, dimIv, map))) 464 return failure(); 465 } 466 467 return canonicalizeMinMaxOp(rewriter, op, map, operands, isMin, constraints); 468 } 469 470 static constexpr char kPeeledLoopLabel[] = "__peeled_loop__"; 471 static constexpr char kPartialIterationLabel[] = "__partial_iteration__"; 472 473 namespace { 474 struct ForLoopPeelingPattern : public OpRewritePattern<ForOp> { 475 ForLoopPeelingPattern(MLIRContext *ctx, bool skipPartial) 476 : OpRewritePattern<ForOp>(ctx), skipPartial(skipPartial) {} 477 478 LogicalResult matchAndRewrite(ForOp forOp, 479 PatternRewriter &rewriter) const override { 480 // Do not peel already peeled loops. 481 if (forOp->hasAttr(kPeeledLoopLabel)) 482 return failure(); 483 if (skipPartial) { 484 // No peeling of loops inside the partial iteration of another peeled 485 // loop. 486 Operation *op = forOp.getOperation(); 487 while ((op = op->getParentOfType<scf::ForOp>())) { 488 if (op->hasAttr(kPartialIterationLabel)) 489 return failure(); 490 } 491 } 492 // Apply loop peeling. 493 scf::ForOp partialIteration; 494 if (failed(peelAndCanonicalizeForLoop(rewriter, forOp, partialIteration))) 495 return failure(); 496 // Apply label, so that the same loop is not rewritten a second time. 497 partialIteration->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr()); 498 rewriter.updateRootInPlace(forOp, [&]() { 499 forOp->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr()); 500 }); 501 partialIteration->setAttr(kPartialIterationLabel, rewriter.getUnitAttr()); 502 return success(); 503 } 504 505 /// If set to true, loops inside partial iterations of another peeled loop 506 /// are not peeled. This reduces the size of the generated code. Partial 507 /// iterations are not usually performance critical. 508 /// Note: Takes into account the entire chain of parent operations, not just 509 /// the direct parent. 510 bool skipPartial; 511 }; 512 } // namespace 513 514 namespace { 515 struct ParallelLoopSpecialization 516 : public SCFParallelLoopSpecializationBase<ParallelLoopSpecialization> { 517 void runOnFunction() override { 518 getFunction().walk( 519 [](ParallelOp op) { specializeParallelLoopForUnrolling(op); }); 520 } 521 }; 522 523 struct ForLoopSpecialization 524 : public SCFForLoopSpecializationBase<ForLoopSpecialization> { 525 void runOnFunction() override { 526 getFunction().walk([](ForOp op) { specializeForLoopForUnrolling(op); }); 527 } 528 }; 529 530 struct ForLoopPeeling : public SCFForLoopPeelingBase<ForLoopPeeling> { 531 void runOnFunction() override { 532 FuncOp funcOp = getFunction(); 533 MLIRContext *ctx = funcOp.getContext(); 534 RewritePatternSet patterns(ctx); 535 patterns.add<ForLoopPeelingPattern>(ctx, skipPartial); 536 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 537 538 // Drop the markers. 539 funcOp.walk([](Operation *op) { 540 op->removeAttr(kPeeledLoopLabel); 541 op->removeAttr(kPartialIterationLabel); 542 }); 543 } 544 }; 545 } // namespace 546 547 std::unique_ptr<Pass> mlir::createParallelLoopSpecializationPass() { 548 return std::make_unique<ParallelLoopSpecialization>(); 549 } 550 551 std::unique_ptr<Pass> mlir::createForLoopSpecializationPass() { 552 return std::make_unique<ForLoopSpecialization>(); 553 } 554 555 std::unique_ptr<Pass> mlir::createForLoopPeelingPass() { 556 return std::make_unique<ForLoopPeeling>(); 557 } 558