1 //===- LoopPipelining.cpp - Code to perform loop software pipelining-------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements loop software pipelining 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/SCF/SCF.h" 15 #include "mlir/Dialect/SCF/Transforms.h" 16 #include "mlir/Dialect/SCF/Utils.h" 17 #include "mlir/Dialect/StandardOps/IR/Ops.h" 18 #include "mlir/IR/BlockAndValueMapping.h" 19 #include "mlir/IR/PatternMatch.h" 20 #include "mlir/Support/MathExtras.h" 21 22 using namespace mlir; 23 using namespace mlir::scf; 24 25 namespace { 26 27 /// Helper to keep internal information during pipelining transformation. 28 struct LoopPipelinerInternal { 29 /// Coarse liverange information for ops used across stages. 30 struct LiverangeInfo { 31 unsigned lastUseStage = 0; 32 unsigned defStage = 0; 33 }; 34 35 protected: 36 ForOp forOp; 37 unsigned maxStage = 0; 38 DenseMap<Operation *, unsigned> stages; 39 std::vector<Operation *> opOrder; 40 int64_t ub; 41 int64_t lb; 42 int64_t step; 43 44 // When peeling the kernel we generate several version of each value for 45 // different stage of the prologue. This map tracks the mapping between 46 // original Values in the loop and the different versions 47 // peeled from the loop. 48 DenseMap<Value, llvm::SmallVector<Value>> valueMapping; 49 50 /// Assign a value to `valueMapping`, this means `val` represents the version 51 /// `idx` of `key` in the epilogue. 52 void setValueMapping(Value key, Value el, int64_t idx); 53 54 public: 55 /// Initalize the information for the given `op`, return true if it 56 /// satisfies the pre-condition to apply pipelining. 57 bool initializeLoopInfo(ForOp op, const PipeliningOption &options); 58 /// Emits the prologue, this creates `maxStage - 1` part which will contain 59 /// operations from stages [0; i], where i is the part index. 60 void emitPrologue(PatternRewriter &rewriter); 61 /// Gather liverange information for Values that are used in a different stage 62 /// than its definition. 63 llvm::MapVector<Value, LiverangeInfo> analyzeCrossStageValues(); 64 scf::ForOp createKernelLoop( 65 const llvm::MapVector<Value, LiverangeInfo> &crossStageValues, 66 PatternRewriter &rewriter, 67 llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap); 68 /// Emits the pipelined kernel. This clones loop operations following user 69 /// order and remaps operands defined in a different stage as their use. 70 void createKernel( 71 scf::ForOp newForOp, 72 const llvm::MapVector<Value, LiverangeInfo> &crossStageValues, 73 const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap, 74 PatternRewriter &rewriter); 75 /// Emits the epilogue, this creates `maxStage - 1` part which will contain 76 /// operations from stages [i; maxStage], where i is the part index. 77 void emitEpilogue(PatternRewriter &rewriter); 78 }; 79 80 bool LoopPipelinerInternal::initializeLoopInfo( 81 ForOp op, const PipeliningOption &options) { 82 forOp = op; 83 auto upperBoundCst = forOp.upperBound().getDefiningOp<ConstantIndexOp>(); 84 auto lowerBoundCst = forOp.lowerBound().getDefiningOp<ConstantIndexOp>(); 85 auto stepCst = forOp.step().getDefiningOp<ConstantIndexOp>(); 86 if (!upperBoundCst || !lowerBoundCst || !stepCst) 87 return false; 88 ub = upperBoundCst.getValue(); 89 lb = lowerBoundCst.getValue(); 90 step = stepCst.getValue(); 91 int64_t numIteration = ceilDiv(ub - lb, step); 92 std::vector<std::pair<Operation *, unsigned>> schedule; 93 options.getScheduleFn(forOp, schedule); 94 if (schedule.empty()) 95 return false; 96 97 opOrder.reserve(schedule.size()); 98 for (auto &opSchedule : schedule) { 99 maxStage = std::max(maxStage, opSchedule.second); 100 stages[opSchedule.first] = opSchedule.second; 101 opOrder.push_back(opSchedule.first); 102 } 103 if (numIteration <= maxStage) 104 return false; 105 106 // All operations need to have a stage. 107 if (forOp 108 .walk([this](Operation *op) { 109 if (op != forOp.getOperation() && !isa<scf::YieldOp>(op) && 110 stages.find(op) == stages.end()) 111 return WalkResult::interrupt(); 112 return WalkResult::advance(); 113 }) 114 .wasInterrupted()) 115 return false; 116 117 // TODO: Add support for loop with operands. 118 if (forOp.getNumIterOperands() > 0) 119 return false; 120 121 return true; 122 } 123 124 void LoopPipelinerInternal::emitPrologue(PatternRewriter &rewriter) { 125 for (int64_t i = 0; i < maxStage; i++) { 126 // special handling for induction variable as the increment is implicit. 127 Value iv = rewriter.create<ConstantIndexOp>(forOp.getLoc(), lb + i); 128 setValueMapping(forOp.getInductionVar(), iv, i); 129 for (Operation *op : opOrder) { 130 if (stages[op] > i) 131 continue; 132 Operation *newOp = rewriter.clone(*op); 133 for (unsigned opIdx = 0; opIdx < op->getNumOperands(); opIdx++) { 134 auto it = valueMapping.find(op->getOperand(opIdx)); 135 if (it != valueMapping.end()) 136 newOp->setOperand(opIdx, it->second[i - stages[op]]); 137 } 138 for (unsigned destId : llvm::seq(unsigned(0), op->getNumResults())) { 139 setValueMapping(op->getResult(destId), newOp->getResult(destId), 140 i - stages[op]); 141 } 142 } 143 } 144 } 145 146 llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> 147 LoopPipelinerInternal::analyzeCrossStageValues() { 148 llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> crossStageValues; 149 for (Operation *op : opOrder) { 150 unsigned stage = stages[op]; 151 for (OpOperand &operand : op->getOpOperands()) { 152 Operation *def = operand.get().getDefiningOp(); 153 if (!def) 154 continue; 155 auto defStage = stages.find(def); 156 if (defStage == stages.end() || defStage->second == stage) 157 continue; 158 assert(stage > defStage->second); 159 LiverangeInfo &info = crossStageValues[operand.get()]; 160 info.defStage = defStage->second; 161 info.lastUseStage = std::max(info.lastUseStage, stage); 162 } 163 } 164 return crossStageValues; 165 } 166 167 scf::ForOp LoopPipelinerInternal::createKernelLoop( 168 const llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> 169 &crossStageValues, 170 PatternRewriter &rewriter, 171 llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap) { 172 // Creates the list of initial values associated to values used across 173 // stages. The initial values come from the prologue created above. 174 // Keep track of the kernel argument associated to each version of the 175 // values passed to the kernel. 176 auto newLoopArg = llvm::to_vector<8>(forOp.getIterOperands()); 177 for (auto escape : crossStageValues) { 178 LiverangeInfo &info = escape.second; 179 Value value = escape.first; 180 for (unsigned stageIdx = 0; stageIdx < info.lastUseStage - info.defStage; 181 stageIdx++) { 182 Value valueVersion = 183 valueMapping[value][maxStage - info.lastUseStage + stageIdx]; 184 assert(valueVersion); 185 newLoopArg.push_back(valueVersion); 186 loopArgMap[std::make_pair(value, info.lastUseStage - info.defStage - 187 stageIdx)] = newLoopArg.size() - 1; 188 } 189 } 190 191 // Create the new kernel loop. Since we need to peel `numStages - 1` 192 // iteration we change the upper bound to remove those iterations. 193 Value newUb = 194 rewriter.create<ConstantIndexOp>(forOp.getLoc(), ub - maxStage * step); 195 auto newForOp = rewriter.create<scf::ForOp>( 196 forOp.getLoc(), forOp.lowerBound(), newUb, forOp.step(), newLoopArg); 197 return newForOp; 198 } 199 200 void LoopPipelinerInternal::createKernel( 201 scf::ForOp newForOp, 202 const llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> 203 &crossStageValues, 204 const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap, 205 PatternRewriter &rewriter) { 206 valueMapping.clear(); 207 208 // Create the kernel, we clone instruction based on the order given by 209 // user and remap operands coming from a previous stages. 210 rewriter.setInsertionPoint(newForOp.getBody(), newForOp.getBody()->begin()); 211 BlockAndValueMapping mapping; 212 mapping.map(forOp.getInductionVar(), newForOp.getInductionVar()); 213 for (Operation *op : opOrder) { 214 int64_t useStage = stages[op]; 215 auto *newOp = rewriter.clone(*op, mapping); 216 for (OpOperand &operand : op->getOpOperands()) { 217 // Special case for the induction variable uses. We replace it with a 218 // version incremented based on the stage where it is used. 219 if (operand.get() == forOp.getInductionVar()) { 220 rewriter.setInsertionPoint(newOp); 221 Value offset = rewriter.create<ConstantIndexOp>( 222 forOp.getLoc(), (maxStage - stages[op]) * step); 223 Value iv = rewriter.create<AddIOp>(forOp.getLoc(), 224 newForOp.getInductionVar(), offset); 225 newOp->setOperand(operand.getOperandNumber(), iv); 226 rewriter.setInsertionPointAfter(newOp); 227 continue; 228 } 229 // For operands defined in a previous stage we need to remap it to use 230 // the correct region argument. We look for the right version of the 231 // Value based on the stage where it is used. 232 Operation *def = operand.get().getDefiningOp(); 233 if (!def) 234 continue; 235 auto stageDef = stages.find(def); 236 if (stageDef == stages.end() || stageDef->second == useStage) 237 continue; 238 auto remap = loopArgMap.find( 239 std::make_pair(operand.get(), useStage - stageDef->second)); 240 assert(remap != loopArgMap.end()); 241 newOp->setOperand(operand.getOperandNumber(), 242 newForOp.getRegionIterArgs()[remap->second]); 243 } 244 } 245 246 // Collect the Values that need to be returned by the forOp. For each 247 // value we need to have `LastUseStage - DefStage` number of versions 248 // returned. 249 // We create a mapping between original values and the associated loop 250 // returned values that will be needed by the epilogue. 251 llvm::SmallVector<Value> yieldOperands; 252 for (auto &it : crossStageValues) { 253 int64_t version = maxStage - it.second.lastUseStage + 1; 254 unsigned numVersionReturned = it.second.lastUseStage - it.second.defStage; 255 // add the original verstion to yield ops. 256 // If there is a liverange spanning across more than 2 stages we need to add 257 // extra arg. 258 for (unsigned i = 1; i < numVersionReturned; i++) { 259 setValueMapping(it.first, newForOp->getResult(yieldOperands.size()), 260 version++); 261 yieldOperands.push_back( 262 newForOp.getBody()->getArguments()[yieldOperands.size() + 1 + 263 newForOp.getNumInductionVars()]); 264 } 265 setValueMapping(it.first, newForOp->getResult(yieldOperands.size()), 266 version++); 267 yieldOperands.push_back(mapping.lookupOrDefault(it.first)); 268 } 269 rewriter.create<scf::YieldOp>(forOp.getLoc(), yieldOperands); 270 } 271 272 void LoopPipelinerInternal::emitEpilogue(PatternRewriter &rewriter) { 273 // Emit different versions of the induction variable. They will be 274 // removed by dead code if not used. 275 for (int64_t i = 0; i < maxStage; i++) { 276 Value newlastIter = rewriter.create<ConstantIndexOp>( 277 forOp.getLoc(), lb + step * ((((ub - 1) - lb) / step) - i)); 278 setValueMapping(forOp.getInductionVar(), newlastIter, maxStage - i); 279 } 280 // Emit `maxStage - 1` epilogue part that includes operations fro stages 281 // [i; maxStage]. 282 for (int64_t i = 1; i <= maxStage; i++) { 283 for (Operation *op : opOrder) { 284 if (stages[op] < i) 285 continue; 286 Operation *newOp = rewriter.clone(*op); 287 for (unsigned opIdx = 0; opIdx < op->getNumOperands(); opIdx++) { 288 auto it = valueMapping.find(op->getOperand(opIdx)); 289 if (it != valueMapping.end()) { 290 Value v = it->second[maxStage - stages[op] + i]; 291 assert(v); 292 newOp->setOperand(opIdx, v); 293 } 294 } 295 for (unsigned destId : llvm::seq(unsigned(0), op->getNumResults())) { 296 setValueMapping(op->getResult(destId), newOp->getResult(destId), 297 maxStage - stages[op] + i); 298 } 299 } 300 } 301 } 302 303 void LoopPipelinerInternal::setValueMapping(Value key, Value el, int64_t idx) { 304 auto it = valueMapping.find(key); 305 // If the value is not in the map yet add a vector big enough to store all 306 // versions. 307 if (it == valueMapping.end()) 308 it = 309 valueMapping 310 .insert(std::make_pair(key, llvm::SmallVector<Value>(maxStage + 1))) 311 .first; 312 it->second[idx] = el; 313 } 314 315 /// Generate a pipelined version of the scf.for loop based on the schedule given 316 /// as option. This applies the mechanical transformation of changing the loop 317 /// and generating the prologue/epilogue for the pipelining and doesn't make any 318 /// decision regarding the schedule. 319 /// Based on the option the loop is split into several stages. 320 /// The transformation assumes that the scheduling given by user is valid. 321 /// For example if we break a loop into 3 stages named S0, S1, S2 we would 322 /// generate the following code with the number in parenthesis the iteration 323 /// index: 324 /// S0(0) // Prologue 325 /// S0(1) S1(0) // Prologue 326 /// scf.for %I = %C0 to %N - 2 { 327 /// S0(I+2) S1(I+1) S2(I) // Pipelined kernel 328 /// } 329 /// S1(N) S2(N-1) // Epilogue 330 /// S2(N) // Epilogue 331 struct ForLoopPipelining : public OpRewritePattern<ForOp> { 332 ForLoopPipelining(const PipeliningOption &options, MLIRContext *context) 333 : OpRewritePattern<ForOp>(context), options(options) {} 334 LogicalResult matchAndRewrite(ForOp forOp, 335 PatternRewriter &rewriter) const override { 336 337 LoopPipelinerInternal pipeliner; 338 if (!pipeliner.initializeLoopInfo(forOp, options)) 339 return failure(); 340 341 // 1. Emit prologue. 342 pipeliner.emitPrologue(rewriter); 343 344 // 2. Track values used across stages. When a value cross stages it will 345 // need to be passed as loop iteration arguments. 346 // We first collect the values that are used in a different stage than where 347 // they are defined. 348 llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> 349 crossStageValues = pipeliner.analyzeCrossStageValues(); 350 351 // Mapping between original loop values used cross stage and the block 352 // arguments associated after pipelining. A Value may map to several 353 // arguments if its liverange spans across more than 2 stages. 354 llvm::DenseMap<std::pair<Value, unsigned>, unsigned> loopArgMap; 355 // 3. Create the new kernel loop and return the block arguments mapping. 356 ForOp newForOp = 357 pipeliner.createKernelLoop(crossStageValues, rewriter, loopArgMap); 358 // Create the kernel block, order ops based on user choice and remap 359 // operands. 360 pipeliner.createKernel(newForOp, crossStageValues, loopArgMap, rewriter); 361 362 // 4. Emit the epilogue after the new forOp. 363 rewriter.setInsertionPointAfter(newForOp); 364 pipeliner.emitEpilogue(rewriter); 365 366 // 5. Erase the original loop and replace the uses with the epilogue output. 367 if (forOp->getNumResults() > 0) 368 rewriter.replaceOp( 369 forOp, newForOp.getResults().take_front(forOp->getNumResults())); 370 else 371 rewriter.eraseOp(forOp); 372 373 return success(); 374 } 375 376 protected: 377 PipeliningOption options; 378 }; 379 380 } // namespace 381 382 void mlir::scf::populateSCFLoopPipeliningPatterns( 383 RewritePatternSet &patterns, const PipeliningOption &options) { 384 patterns.add<ForLoopPipelining>(options, patterns.getContext()); 385 } 386