1 //===- LoopPipelining.cpp - Code to perform loop software pipelining-------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements loop software pipelining 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 15 #include "mlir/Dialect/SCF/SCF.h" 16 #include "mlir/Dialect/SCF/Transforms.h" 17 #include "mlir/Dialect/SCF/Utils.h" 18 #include "mlir/Dialect/StandardOps/IR/Ops.h" 19 #include "mlir/IR/BlockAndValueMapping.h" 20 #include "mlir/IR/PatternMatch.h" 21 #include "mlir/Support/MathExtras.h" 22 23 using namespace mlir; 24 using namespace mlir::scf; 25 26 namespace { 27 28 /// Helper to keep internal information during pipelining transformation. 29 struct LoopPipelinerInternal { 30 /// Coarse liverange information for ops used across stages. 31 struct LiverangeInfo { 32 unsigned lastUseStage = 0; 33 unsigned defStage = 0; 34 }; 35 36 protected: 37 ForOp forOp; 38 unsigned maxStage = 0; 39 DenseMap<Operation *, unsigned> stages; 40 std::vector<Operation *> opOrder; 41 int64_t ub; 42 int64_t lb; 43 int64_t step; 44 45 // When peeling the kernel we generate several version of each value for 46 // different stage of the prologue. This map tracks the mapping between 47 // original Values in the loop and the different versions 48 // peeled from the loop. 49 DenseMap<Value, llvm::SmallVector<Value>> valueMapping; 50 51 /// Assign a value to `valueMapping`, this means `val` represents the version 52 /// `idx` of `key` in the epilogue. 53 void setValueMapping(Value key, Value el, int64_t idx); 54 55 public: 56 /// Initalize the information for the given `op`, return true if it 57 /// satisfies the pre-condition to apply pipelining. 58 bool initializeLoopInfo(ForOp op, const PipeliningOption &options); 59 /// Emits the prologue, this creates `maxStage - 1` part which will contain 60 /// operations from stages [0; i], where i is the part index. 61 void emitPrologue(PatternRewriter &rewriter); 62 /// Gather liverange information for Values that are used in a different stage 63 /// than its definition. 64 llvm::MapVector<Value, LiverangeInfo> analyzeCrossStageValues(); 65 scf::ForOp createKernelLoop( 66 const llvm::MapVector<Value, LiverangeInfo> &crossStageValues, 67 PatternRewriter &rewriter, 68 llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap); 69 /// Emits the pipelined kernel. This clones loop operations following user 70 /// order and remaps operands defined in a different stage as their use. 71 void createKernel( 72 scf::ForOp newForOp, 73 const llvm::MapVector<Value, LiverangeInfo> &crossStageValues, 74 const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap, 75 PatternRewriter &rewriter); 76 /// Emits the epilogue, this creates `maxStage - 1` part which will contain 77 /// operations from stages [i; maxStage], where i is the part index. 78 llvm::SmallVector<Value> emitEpilogue(PatternRewriter &rewriter); 79 }; 80 81 bool LoopPipelinerInternal::initializeLoopInfo( 82 ForOp op, const PipeliningOption &options) { 83 forOp = op; 84 auto upperBoundCst = 85 forOp.upperBound().getDefiningOp<arith::ConstantIndexOp>(); 86 auto lowerBoundCst = 87 forOp.lowerBound().getDefiningOp<arith::ConstantIndexOp>(); 88 auto stepCst = forOp.step().getDefiningOp<arith::ConstantIndexOp>(); 89 if (!upperBoundCst || !lowerBoundCst || !stepCst) 90 return false; 91 ub = upperBoundCst.value(); 92 lb = lowerBoundCst.value(); 93 step = stepCst.value(); 94 int64_t numIteration = ceilDiv(ub - lb, step); 95 std::vector<std::pair<Operation *, unsigned>> schedule; 96 options.getScheduleFn(forOp, schedule); 97 if (schedule.empty()) 98 return false; 99 100 opOrder.reserve(schedule.size()); 101 for (auto &opSchedule : schedule) { 102 maxStage = std::max(maxStage, opSchedule.second); 103 stages[opSchedule.first] = opSchedule.second; 104 opOrder.push_back(opSchedule.first); 105 } 106 if (numIteration <= maxStage) 107 return false; 108 109 // All operations need to have a stage. 110 if (forOp 111 .walk([this](Operation *op) { 112 if (op != forOp.getOperation() && !isa<scf::YieldOp>(op) && 113 stages.find(op) == stages.end()) 114 return WalkResult::interrupt(); 115 return WalkResult::advance(); 116 }) 117 .wasInterrupted()) 118 return false; 119 120 // Only support loop carried dependency with a distance of 1. This means the 121 // source of all the scf.yield operands needs to be defined by operations in 122 // the loop. 123 if (llvm::any_of(forOp.getBody()->getTerminator()->getOperands(), 124 [this](Value operand) { 125 Operation *def = operand.getDefiningOp(); 126 return !def || stages.find(def) == stages.end(); 127 })) 128 return false; 129 return true; 130 } 131 132 void LoopPipelinerInternal::emitPrologue(PatternRewriter &rewriter) { 133 // Initialize the iteration argument to the loop initiale values. 134 for (BlockArgument &arg : forOp.getRegionIterArgs()) { 135 OpOperand &operand = forOp.getOpOperandForRegionIterArg(arg); 136 setValueMapping(arg, operand.get(), 0); 137 } 138 auto yield = cast<scf::YieldOp>(forOp.getBody()->getTerminator()); 139 for (int64_t i = 0; i < maxStage; i++) { 140 // special handling for induction variable as the increment is implicit. 141 Value iv = rewriter.create<arith::ConstantIndexOp>(forOp.getLoc(), lb + i); 142 setValueMapping(forOp.getInductionVar(), iv, i); 143 for (Operation *op : opOrder) { 144 if (stages[op] > i) 145 continue; 146 Operation *newOp = rewriter.clone(*op); 147 for (unsigned opIdx = 0; opIdx < op->getNumOperands(); opIdx++) { 148 auto it = valueMapping.find(op->getOperand(opIdx)); 149 if (it != valueMapping.end()) 150 newOp->setOperand(opIdx, it->second[i - stages[op]]); 151 } 152 for (unsigned destId : llvm::seq(unsigned(0), op->getNumResults())) { 153 setValueMapping(op->getResult(destId), newOp->getResult(destId), 154 i - stages[op]); 155 // If the value is a loop carried dependency update the loop argument 156 // mapping. 157 for (OpOperand &operand : yield->getOpOperands()) { 158 if (operand.get() != op->getResult(destId)) 159 continue; 160 setValueMapping(forOp.getRegionIterArgs()[operand.getOperandNumber()], 161 newOp->getResult(destId), i - stages[op] + 1); 162 } 163 } 164 } 165 } 166 } 167 168 llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> 169 LoopPipelinerInternal::analyzeCrossStageValues() { 170 llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> crossStageValues; 171 for (Operation *op : opOrder) { 172 unsigned stage = stages[op]; 173 for (OpOperand &operand : op->getOpOperands()) { 174 Operation *def = operand.get().getDefiningOp(); 175 if (!def) 176 continue; 177 auto defStage = stages.find(def); 178 if (defStage == stages.end() || defStage->second == stage) 179 continue; 180 assert(stage > defStage->second); 181 LiverangeInfo &info = crossStageValues[operand.get()]; 182 info.defStage = defStage->second; 183 info.lastUseStage = std::max(info.lastUseStage, stage); 184 } 185 } 186 return crossStageValues; 187 } 188 189 scf::ForOp LoopPipelinerInternal::createKernelLoop( 190 const llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> 191 &crossStageValues, 192 PatternRewriter &rewriter, 193 llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap) { 194 // Creates the list of initial values associated to values used across 195 // stages. The initial values come from the prologue created above. 196 // Keep track of the kernel argument associated to each version of the 197 // values passed to the kernel. 198 llvm::SmallVector<Value> newLoopArg; 199 // For existing loop argument initialize them with the right version from the 200 // prologue. 201 for (auto retVal : 202 llvm::enumerate(forOp.getBody()->getTerminator()->getOperands())) { 203 Operation *def = retVal.value().getDefiningOp(); 204 assert(def && "Only support loop carried dependencies of distance 1"); 205 unsigned defStage = stages[def]; 206 Value valueVersion = valueMapping[forOp.getRegionIterArgs()[retVal.index()]] 207 [maxStage - defStage]; 208 assert(valueVersion); 209 newLoopArg.push_back(valueVersion); 210 } 211 for (auto escape : crossStageValues) { 212 LiverangeInfo &info = escape.second; 213 Value value = escape.first; 214 for (unsigned stageIdx = 0; stageIdx < info.lastUseStage - info.defStage; 215 stageIdx++) { 216 Value valueVersion = 217 valueMapping[value][maxStage - info.lastUseStage + stageIdx]; 218 assert(valueVersion); 219 newLoopArg.push_back(valueVersion); 220 loopArgMap[std::make_pair(value, info.lastUseStage - info.defStage - 221 stageIdx)] = newLoopArg.size() - 1; 222 } 223 } 224 225 // Create the new kernel loop. Since we need to peel `numStages - 1` 226 // iteration we change the upper bound to remove those iterations. 227 Value newUb = rewriter.create<arith::ConstantIndexOp>(forOp.getLoc(), 228 ub - maxStage * step); 229 auto newForOp = rewriter.create<scf::ForOp>( 230 forOp.getLoc(), forOp.lowerBound(), newUb, forOp.step(), newLoopArg); 231 return newForOp; 232 } 233 234 void LoopPipelinerInternal::createKernel( 235 scf::ForOp newForOp, 236 const llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> 237 &crossStageValues, 238 const llvm::DenseMap<std::pair<Value, unsigned>, unsigned> &loopArgMap, 239 PatternRewriter &rewriter) { 240 valueMapping.clear(); 241 242 // Create the kernel, we clone instruction based on the order given by 243 // user and remap operands coming from a previous stages. 244 rewriter.setInsertionPoint(newForOp.getBody(), newForOp.getBody()->begin()); 245 BlockAndValueMapping mapping; 246 mapping.map(forOp.getInductionVar(), newForOp.getInductionVar()); 247 for (auto arg : llvm::enumerate(forOp.getRegionIterArgs())) { 248 mapping.map(arg.value(), newForOp.getRegionIterArgs()[arg.index()]); 249 } 250 for (Operation *op : opOrder) { 251 int64_t useStage = stages[op]; 252 auto *newOp = rewriter.clone(*op, mapping); 253 for (OpOperand &operand : op->getOpOperands()) { 254 // Special case for the induction variable uses. We replace it with a 255 // version incremented based on the stage where it is used. 256 if (operand.get() == forOp.getInductionVar()) { 257 rewriter.setInsertionPoint(newOp); 258 Value offset = rewriter.create<arith::ConstantIndexOp>( 259 forOp.getLoc(), (maxStage - stages[op]) * step); 260 Value iv = rewriter.create<arith::AddIOp>( 261 forOp.getLoc(), newForOp.getInductionVar(), offset); 262 newOp->setOperand(operand.getOperandNumber(), iv); 263 rewriter.setInsertionPointAfter(newOp); 264 continue; 265 } 266 auto arg = operand.get().dyn_cast<BlockArgument>(); 267 if (arg && arg.getOwner() == forOp.getBody()) { 268 // If the value is a loop carried value coming from stage N + 1 remap, 269 // it will become a direct use. 270 Value ret = forOp.getBody()->getTerminator()->getOperand( 271 arg.getArgNumber() - 1); 272 Operation *dep = ret.getDefiningOp(); 273 if (!dep) 274 continue; 275 auto stageDep = stages.find(dep); 276 if (stageDep == stages.end() || stageDep->second == useStage) 277 continue; 278 assert(stageDep->second == useStage + 1); 279 newOp->setOperand(operand.getOperandNumber(), 280 mapping.lookupOrDefault(ret)); 281 continue; 282 } 283 // For operands defined in a previous stage we need to remap it to use 284 // the correct region argument. We look for the right version of the 285 // Value based on the stage where it is used. 286 Operation *def = operand.get().getDefiningOp(); 287 if (!def) 288 continue; 289 auto stageDef = stages.find(def); 290 if (stageDef == stages.end() || stageDef->second == useStage) 291 continue; 292 auto remap = loopArgMap.find( 293 std::make_pair(operand.get(), useStage - stageDef->second)); 294 assert(remap != loopArgMap.end()); 295 newOp->setOperand(operand.getOperandNumber(), 296 newForOp.getRegionIterArgs()[remap->second]); 297 } 298 } 299 300 // Collect the Values that need to be returned by the forOp. For each 301 // value we need to have `LastUseStage - DefStage` number of versions 302 // returned. 303 // We create a mapping between original values and the associated loop 304 // returned values that will be needed by the epilogue. 305 llvm::SmallVector<Value> yieldOperands; 306 for (Value retVal : forOp.getBody()->getTerminator()->getOperands()) { 307 yieldOperands.push_back(mapping.lookupOrDefault(retVal)); 308 } 309 for (auto &it : crossStageValues) { 310 int64_t version = maxStage - it.second.lastUseStage + 1; 311 unsigned numVersionReturned = it.second.lastUseStage - it.second.defStage; 312 // add the original verstion to yield ops. 313 // If there is a liverange spanning across more than 2 stages we need to add 314 // extra arg. 315 for (unsigned i = 1; i < numVersionReturned; i++) { 316 setValueMapping(it.first, newForOp->getResult(yieldOperands.size()), 317 version++); 318 yieldOperands.push_back( 319 newForOp.getBody()->getArguments()[yieldOperands.size() + 1 + 320 newForOp.getNumInductionVars()]); 321 } 322 setValueMapping(it.first, newForOp->getResult(yieldOperands.size()), 323 version++); 324 yieldOperands.push_back(mapping.lookupOrDefault(it.first)); 325 } 326 // Map the yield operand to the forOp returned value. 327 for (auto retVal : 328 llvm::enumerate(forOp.getBody()->getTerminator()->getOperands())) { 329 Operation *def = retVal.value().getDefiningOp(); 330 assert(def && "Only support loop carried dependencies of distance 1"); 331 unsigned defStage = stages[def]; 332 setValueMapping(forOp.getRegionIterArgs()[retVal.index()], 333 newForOp->getResult(retVal.index()), 334 maxStage - defStage + 1); 335 } 336 rewriter.create<scf::YieldOp>(forOp.getLoc(), yieldOperands); 337 } 338 339 llvm::SmallVector<Value> 340 LoopPipelinerInternal::emitEpilogue(PatternRewriter &rewriter) { 341 llvm::SmallVector<Value> returnValues(forOp->getNumResults()); 342 // Emit different versions of the induction variable. They will be 343 // removed by dead code if not used. 344 for (int64_t i = 0; i < maxStage; i++) { 345 Value newlastIter = rewriter.create<arith::ConstantIndexOp>( 346 forOp.getLoc(), lb + step * ((((ub - 1) - lb) / step) - i)); 347 setValueMapping(forOp.getInductionVar(), newlastIter, maxStage - i); 348 } 349 // Emit `maxStage - 1` epilogue part that includes operations fro stages 350 // [i; maxStage]. 351 for (int64_t i = 1; i <= maxStage; i++) { 352 for (Operation *op : opOrder) { 353 if (stages[op] < i) 354 continue; 355 Operation *newOp = rewriter.clone(*op); 356 for (unsigned opIdx = 0; opIdx < op->getNumOperands(); opIdx++) { 357 auto it = valueMapping.find(op->getOperand(opIdx)); 358 if (it != valueMapping.end()) { 359 Value v = it->second[maxStage - stages[op] + i]; 360 assert(v); 361 newOp->setOperand(opIdx, v); 362 } 363 } 364 for (unsigned destId : llvm::seq(unsigned(0), op->getNumResults())) { 365 setValueMapping(op->getResult(destId), newOp->getResult(destId), 366 maxStage - stages[op] + i); 367 // If the value is a loop carried dependency update the loop argument 368 // mapping and keep track of the last version to replace the original 369 // forOp uses. 370 for (OpOperand &operand : 371 forOp.getBody()->getTerminator()->getOpOperands()) { 372 if (operand.get() != op->getResult(destId)) 373 continue; 374 unsigned version = maxStage - stages[op] + i + 1; 375 // If the version is greater than maxStage it means it maps to the 376 // original forOp returned value. 377 if (version > maxStage) { 378 returnValues[operand.getOperandNumber()] = newOp->getResult(destId); 379 continue; 380 } 381 setValueMapping(forOp.getRegionIterArgs()[operand.getOperandNumber()], 382 newOp->getResult(destId), version); 383 } 384 } 385 } 386 } 387 return returnValues; 388 } 389 390 void LoopPipelinerInternal::setValueMapping(Value key, Value el, int64_t idx) { 391 auto it = valueMapping.find(key); 392 // If the value is not in the map yet add a vector big enough to store all 393 // versions. 394 if (it == valueMapping.end()) 395 it = 396 valueMapping 397 .insert(std::make_pair(key, llvm::SmallVector<Value>(maxStage + 1))) 398 .first; 399 it->second[idx] = el; 400 } 401 402 /// Generate a pipelined version of the scf.for loop based on the schedule given 403 /// as option. This applies the mechanical transformation of changing the loop 404 /// and generating the prologue/epilogue for the pipelining and doesn't make any 405 /// decision regarding the schedule. 406 /// Based on the option the loop is split into several stages. 407 /// The transformation assumes that the scheduling given by user is valid. 408 /// For example if we break a loop into 3 stages named S0, S1, S2 we would 409 /// generate the following code with the number in parenthesis the iteration 410 /// index: 411 /// S0(0) // Prologue 412 /// S0(1) S1(0) // Prologue 413 /// scf.for %I = %C0 to %N - 2 { 414 /// S0(I+2) S1(I+1) S2(I) // Pipelined kernel 415 /// } 416 /// S1(N) S2(N-1) // Epilogue 417 /// S2(N) // Epilogue 418 struct ForLoopPipelining : public OpRewritePattern<ForOp> { 419 ForLoopPipelining(const PipeliningOption &options, MLIRContext *context) 420 : OpRewritePattern<ForOp>(context), options(options) {} 421 LogicalResult matchAndRewrite(ForOp forOp, 422 PatternRewriter &rewriter) const override { 423 424 LoopPipelinerInternal pipeliner; 425 if (!pipeliner.initializeLoopInfo(forOp, options)) 426 return failure(); 427 428 // 1. Emit prologue. 429 pipeliner.emitPrologue(rewriter); 430 431 // 2. Track values used across stages. When a value cross stages it will 432 // need to be passed as loop iteration arguments. 433 // We first collect the values that are used in a different stage than where 434 // they are defined. 435 llvm::MapVector<Value, LoopPipelinerInternal::LiverangeInfo> 436 crossStageValues = pipeliner.analyzeCrossStageValues(); 437 438 // Mapping between original loop values used cross stage and the block 439 // arguments associated after pipelining. A Value may map to several 440 // arguments if its liverange spans across more than 2 stages. 441 llvm::DenseMap<std::pair<Value, unsigned>, unsigned> loopArgMap; 442 // 3. Create the new kernel loop and return the block arguments mapping. 443 ForOp newForOp = 444 pipeliner.createKernelLoop(crossStageValues, rewriter, loopArgMap); 445 // Create the kernel block, order ops based on user choice and remap 446 // operands. 447 pipeliner.createKernel(newForOp, crossStageValues, loopArgMap, rewriter); 448 449 // 4. Emit the epilogue after the new forOp. 450 rewriter.setInsertionPointAfter(newForOp); 451 llvm::SmallVector<Value> returnValues = pipeliner.emitEpilogue(rewriter); 452 453 // 5. Erase the original loop and replace the uses with the epilogue output. 454 if (forOp->getNumResults() > 0) 455 rewriter.replaceOp(forOp, returnValues); 456 else 457 rewriter.eraseOp(forOp); 458 459 return success(); 460 } 461 462 protected: 463 PipeliningOption options; 464 }; 465 466 } // namespace 467 468 void mlir::scf::populateSCFLoopPipeliningPatterns( 469 RewritePatternSet &patterns, const PipeliningOption &options) { 470 patterns.add<ForLoopPipelining>(options, patterns.getContext()); 471 } 472