1 //===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Dialect/SCF/BufferizableOpInterfaceImpl.h"
10 
11 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
12 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
13 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
14 #include "mlir/Dialect/SCF/SCF.h"
15 #include "mlir/IR/Dialect.h"
16 #include "mlir/IR/Operation.h"
17 #include "mlir/IR/PatternMatch.h"
18 
19 using namespace mlir;
20 using namespace mlir::bufferization;
21 using namespace mlir::scf;
22 
23 namespace mlir {
24 namespace scf {
25 namespace {
26 
27 // bufferization.to_memref is not allowed to change the rank.
28 static void ensureToMemrefOpIsValid(Value tensor, Type memrefType) {
29 #ifndef NDEBUG
30   auto rankedTensorType = tensor.getType().dyn_cast<RankedTensorType>();
31   assert((!rankedTensorType || (memrefType.cast<MemRefType>().getRank() ==
32                                 rankedTensorType.getRank())) &&
33          "to_memref would be invalid: mismatching ranks");
34 #endif
35 }
36 
37 /// Bufferization of scf.execute_region. Can be analyzed, but bufferization not
38 /// fully implemented at the moment.
39 struct ExecuteRegionOpInterface
40     : public BufferizableOpInterface::ExternalModel<ExecuteRegionOpInterface,
41                                                     scf::ExecuteRegionOp> {
42   SmallVector<OpOperand *>
43   getAliasingOpOperand(Operation *op, OpResult opResult,
44                        const AnalysisState &state) const {
45     // ExecuteRegionOps do not have tensor OpOperands. The yielded value can be
46     // any SSA value that is in scope. To allow for use-def chain traversal
47     // through ExecuteRegionOps in the analysis, the corresponding yield value
48     // is considered to be aliasing with the result.
49     auto executeRegionOp = cast<scf::ExecuteRegionOp>(op);
50     size_t resultNum = std::distance(op->getOpResults().begin(),
51                                      llvm::find(op->getOpResults(), opResult));
52     // TODO: Support multiple blocks.
53     assert(executeRegionOp.getRegion().getBlocks().size() == 1 &&
54            "expected exactly 1 block");
55     auto yieldOp = dyn_cast<scf::YieldOp>(
56         executeRegionOp.getRegion().front().getTerminator());
57     assert(yieldOp && "expected scf.yield terminator in scf.execute_region");
58     return {&yieldOp->getOpOperand(resultNum)};
59   }
60 
61   // TODO: For better bufferization results, this could return `true` only if
62   // there is a memory write in the region.
63   bool isMemoryWrite(Operation *op, OpResult opResult,
64                      const AnalysisState &state) const {
65     // Similar to scf.if, results of this op are always considered memory writes
66     // in the analysis. This is a useful pattern for all ops that have tensor
67     // OpResults but no tensor OpOperands. By default, `isMemoryWrite` is
68     // implemented in terms of `bufferizesToMemoryWrite`, which does not work on
69     // ops without OpOperands.
70     return true;
71   }
72 
73   LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
74                           BufferizationState &state) const {
75     auto executeRegionOp = cast<scf::ExecuteRegionOp>(op);
76 
77     // Compute new result types.
78     SmallVector<Type> newResultTypes;
79     for (Type type : executeRegionOp->getResultTypes()) {
80       if (auto tensorType = type.dyn_cast<TensorType>()) {
81         newResultTypes.push_back(getMemRefType(tensorType, state.getOptions()));
82       } else {
83         newResultTypes.push_back(type);
84       }
85     }
86 
87     // Create new op and move over region.
88     auto newOp =
89         rewriter.create<scf::ExecuteRegionOp>(op->getLoc(), newResultTypes);
90     newOp.getRegion().takeBody(executeRegionOp.getRegion());
91 
92     // Update terminator.
93     assert(newOp.getRegion().getBlocks().size() == 1 &&
94            "only 1 block supported");
95     Block *newBlock = &newOp.getRegion().front();
96     auto yieldOp = cast<scf::YieldOp>(newBlock->getTerminator());
97     rewriter.setInsertionPoint(yieldOp);
98     SmallVector<Value> newYieldValues;
99     for (const auto &it : llvm::enumerate(yieldOp.getResults())) {
100       Value val = it.value();
101       if (val.getType().isa<TensorType>()) {
102         newYieldValues.push_back(rewriter.create<bufferization::ToMemrefOp>(
103             yieldOp.getLoc(), newResultTypes[it.index()], val));
104       } else {
105         newYieldValues.push_back(val);
106       }
107     }
108     rewriter.replaceOpWithNewOp<scf::YieldOp>(yieldOp, newYieldValues);
109 
110     // Update all uses of the old op.
111     rewriter.setInsertionPointAfter(newOp);
112     SmallVector<Value> newResults;
113     for (const auto &it : llvm::enumerate(executeRegionOp->getResultTypes())) {
114       if (it.value().isa<TensorType>()) {
115         newResults.push_back(rewriter.create<bufferization::ToTensorOp>(
116             executeRegionOp.getLoc(), newOp->getResult(it.index())));
117       } else {
118         newResults.push_back(newOp->getResult(it.index()));
119       }
120     }
121 
122     // Replace old op.
123     rewriter.replaceOp(executeRegionOp, newResults);
124 
125     return success();
126   }
127 
128   BufferRelation bufferRelation(Operation *op, OpResult opResult,
129                                 const AnalysisState &state) const {
130     return BufferRelation::Equivalent;
131   }
132 };
133 
134 /// Bufferization of scf.if. Replace with a new scf.if that yields memrefs.
135 struct IfOpInterface
136     : public BufferizableOpInterface::ExternalModel<IfOpInterface, scf::IfOp> {
137   SmallVector<OpOperand *>
138   getAliasingOpOperand(Operation *op, OpResult opResult,
139                        const AnalysisState &state) const {
140     // IfOps do not have tensor OpOperands. The yielded value can be any SSA
141     // value that is in scope. To allow for use-def chain traversal through
142     // IfOps in the analysis, both corresponding yield values from the then/else
143     // branches are considered to be aliasing with the result.
144     auto ifOp = cast<scf::IfOp>(op);
145     size_t resultNum = std::distance(op->getOpResults().begin(),
146                                      llvm::find(op->getOpResults(), opResult));
147     return {&ifOp.thenYield()->getOpOperand(resultNum),
148             &ifOp.elseYield()->getOpOperand(resultNum)};
149   }
150 
151   // TODO: For better bufferization results, this could return `true` only if
152   // there is a memory write in one (or both) of the branches. Since this is not
153   // allowed at the moment, we should never encounter scf.ifs that yield
154   // unmodified tensors. Such scf.yield ops could just fold away.
155   bool isMemoryWrite(Operation *op, OpResult opResult,
156                      const AnalysisState &state) const {
157     // IfOp results are always considered memory writes in the analysis. This
158     // design decision simplifies the analysis considerably. E.g., consider the
159     // following test case:
160     //
161     // %0 = "some_writing_op" : tensor<?xf32>
162     // %r = scf.if %c -> (tensor<?xf32>) {
163     //   scf.yield %0
164     // } else {
165     //   %1 = "another_writing_op"(%0) : tensor<?xf32>
166     // }
167     // "some_reading_op"(%r)
168     //
169     // "another_writing_op" in the above example should be able to bufferize
170     // inplace in the absence of another read of %0. However, if the scf.if op
171     // would not be considered a "write", the analysis would detect the
172     // following conflict:
173     //
174     // * read = some_reading_op
175     // * lastWrite = %0  (Note: The last write of %r would be a set: {%0, %1}.)
176     // * conflictingWrite = %1
177     //
178     // For more details, check the "scf.IfOp" section of the design document.
179     return true;
180   }
181 
182   LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
183                           BufferizationState &state) const {
184     auto ifOp = cast<scf::IfOp>(op);
185 
186     // Compute new types of the bufferized scf.if op.
187     SmallVector<Type> newTypes;
188     for (Type returnType : ifOp->getResultTypes()) {
189       if (auto tensorType = returnType.dyn_cast<TensorType>()) {
190         newTypes.push_back(getMemRefType(tensorType, state.getOptions()));
191       } else {
192         newTypes.push_back(returnType);
193       }
194     }
195 
196     // Create new op.
197     auto newIfOp =
198         rewriter.create<scf::IfOp>(ifOp.getLoc(), newTypes, ifOp.getCondition(),
199                                    /*withElseRegion=*/true);
200 
201     // Remove terminators.
202     if (!newIfOp.thenBlock()->empty()) {
203       rewriter.eraseOp(newIfOp.thenBlock()->getTerminator());
204       rewriter.eraseOp(newIfOp.elseBlock()->getTerminator());
205     }
206 
207     // Move over then/else blocks.
208     rewriter.mergeBlocks(ifOp.thenBlock(), newIfOp.thenBlock());
209     rewriter.mergeBlocks(ifOp.elseBlock(), newIfOp.elseBlock());
210 
211     // Update scf.yield of new then-block.
212     auto thenYieldOp = cast<scf::YieldOp>(newIfOp.thenBlock()->getTerminator());
213     rewriter.setInsertionPoint(thenYieldOp);
214     SmallVector<Value> thenYieldValues;
215     for (OpOperand &operand : thenYieldOp->getOpOperands()) {
216       if (operand.get().getType().isa<TensorType>()) {
217         ensureToMemrefOpIsValid(operand.get(),
218                                 newTypes[operand.getOperandNumber()]);
219         Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
220             operand.get().getLoc(), newTypes[operand.getOperandNumber()],
221             operand.get());
222         operand.set(toMemrefOp);
223       }
224     }
225 
226     // Update scf.yield of new else-block.
227     auto elseYieldOp = cast<scf::YieldOp>(newIfOp.elseBlock()->getTerminator());
228     rewriter.setInsertionPoint(elseYieldOp);
229     SmallVector<Value> elseYieldValues;
230     for (OpOperand &operand : elseYieldOp->getOpOperands()) {
231       if (operand.get().getType().isa<TensorType>()) {
232         ensureToMemrefOpIsValid(operand.get(),
233                                 newTypes[operand.getOperandNumber()]);
234         Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
235             operand.get().getLoc(), newTypes[operand.getOperandNumber()],
236             operand.get());
237         operand.set(toMemrefOp);
238       }
239     }
240 
241     // Replace op results.
242     replaceOpWithBufferizedValues(rewriter, op, newIfOp->getResults());
243 
244     return success();
245   }
246 
247   BufferRelation bufferRelation(Operation *op, OpResult opResult,
248                                 const AnalysisState &state) const {
249     // IfOp results are equivalent to their corresponding yield values if both
250     // yield values are equivalent to each other.
251     auto bufferizableOp = cast<BufferizableOpInterface>(op);
252     SmallVector<OpOperand *> yieldValues =
253         bufferizableOp.getAliasingOpOperand(opResult, state);
254     assert(yieldValues.size() == 2 && "expected 2 yield values");
255     bool equivalentYields = state.areEquivalentBufferizedValues(
256         yieldValues[0]->get(), yieldValues[1]->get());
257     return equivalentYields ? BufferRelation::Equivalent : BufferRelation::None;
258   }
259 };
260 
261 /// Bufferization of scf.for. Replace with a new scf.for that operates on
262 /// memrefs.
263 struct ForOpInterface
264     : public BufferizableOpInterface::ExternalModel<ForOpInterface,
265                                                     scf::ForOp> {
266   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
267                               const AnalysisState &state) const {
268     // scf::ForOp alone doesn't bufferize to a memory read, one of the uses of
269     // its matching bbArg may.
270     auto forOp = cast<scf::ForOp>(op);
271     return state.isValueRead(forOp.getRegionIterArgForOpOperand(opOperand));
272   }
273 
274   bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
275                                const AnalysisState &state) const {
276     // Tensor iter_args of scf::ForOps are always considered as a write.
277     return true;
278   }
279 
280   SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
281                                             const AnalysisState &state) const {
282     auto forOp = cast<scf::ForOp>(op);
283     return {forOp.getResultForOpOperand(opOperand)};
284   }
285 
286   BufferRelation bufferRelation(Operation *op, OpResult opResult,
287                                 const AnalysisState &state) const {
288     // ForOp results are equivalent to their corresponding init_args if the
289     // corresponding iter_args and yield values are equivalent.
290     auto forOp = cast<scf::ForOp>(op);
291     OpOperand &forOperand = forOp.getOpOperandForResult(opResult);
292     auto bbArg = forOp.getRegionIterArgForOpOperand(forOperand);
293     auto yieldOp =
294         cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator());
295     bool equivalentYield = state.areEquivalentBufferizedValues(
296         bbArg, yieldOp->getOperand(opResult.getResultNumber()));
297     return equivalentYield ? BufferRelation::Equivalent : BufferRelation::None;
298   }
299 
300   bool isWritable(Operation *op, Value value,
301                   const AnalysisState &state) const {
302     // Interestingly, scf::ForOp's bbArg can **always** be viewed
303     // inplace from the perspective of ops nested under:
304     //   1. Either the matching iter operand is not bufferized inplace and an
305     //      alloc + optional copy makes the bbArg itself inplaceable.
306     //   2. Or the matching iter operand is bufferized inplace and bbArg just
307     //      bufferizes to that too.
308     return true;
309   }
310 
311   LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
312                           BufferizationState &state) const {
313     auto forOp = cast<scf::ForOp>(op);
314     auto bufferizableOp = cast<BufferizableOpInterface>(op);
315     Block *oldLoopBody = &forOp.getLoopBody().front();
316 
317     // Indices of all iter_args that have tensor type. These are the ones that
318     // are bufferized.
319     DenseSet<int64_t> indices;
320     // For every yielded value, is the value equivalent to its corresponding
321     // bbArg?
322     SmallVector<bool> equivalentYields;
323     for (const auto &it : llvm::enumerate(forOp.getInitArgs())) {
324       if (it.value().getType().isa<TensorType>()) {
325         indices.insert(it.index());
326         BufferRelation relation = bufferizableOp.bufferRelation(
327             forOp->getResult(it.index()), state.getAnalysisState());
328         equivalentYields.push_back(relation == BufferRelation::Equivalent);
329       } else {
330         equivalentYields.push_back(false);
331       }
332     }
333 
334     // Given a range of values, apply `func` to those marked in `indices`.
335     // Otherwise, store the unmodified value in the result vector.
336     auto convert = [&](ValueRange values,
337                        llvm::function_ref<Value(Value, int64_t)> func) {
338       SmallVector<Value> result;
339       for (const auto &it : llvm::enumerate(values)) {
340         size_t idx = it.index();
341         Value val = it.value();
342         result.push_back(indices.contains(idx) ? func(val, idx) : val);
343       }
344       return result;
345     };
346 
347     // Construct a new scf.for op with memref instead of tensor values.
348     SmallVector<Value> initArgs;
349     for (OpOperand &opOperand : forOp.getIterOpOperands()) {
350       if (opOperand.get().getType().isa<TensorType>()) {
351         FailureOr<Value> resultBuffer = state.getBuffer(rewriter, opOperand);
352         if (failed(resultBuffer))
353           return failure();
354         initArgs.push_back(*resultBuffer);
355       } else {
356         initArgs.push_back(opOperand.get());
357       }
358     }
359     auto newForOp = rewriter.create<scf::ForOp>(
360         forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
361         forOp.getStep(), initArgs);
362     Block *loopBody = &newForOp.getLoopBody().front();
363 
364     // Set up new iter_args. The loop body uses tensors, so wrap the (memref)
365     // iter_args of the new loop in ToTensorOps.
366     rewriter.setInsertionPointToStart(loopBody);
367     SmallVector<Value> iterArgs =
368         convert(newForOp.getRegionIterArgs(), [&](Value val, int64_t index) {
369           return rewriter.create<bufferization::ToTensorOp>(val.getLoc(), val);
370         });
371     iterArgs.insert(iterArgs.begin(), newForOp.getInductionVar());
372 
373     // Erase terminator if present.
374     if (iterArgs.size() == 1)
375       rewriter.eraseOp(loopBody->getTerminator());
376 
377     // Move loop body to new loop.
378     rewriter.mergeBlocks(oldLoopBody, loopBody, iterArgs);
379 
380     // Update scf.yield of new loop.
381     auto yieldOp = cast<scf::YieldOp>(loopBody->getTerminator());
382     rewriter.setInsertionPoint(yieldOp);
383     SmallVector<Value> yieldValues =
384         convert(yieldOp.getResults(), [&](Value val, int64_t index) {
385           ensureToMemrefOpIsValid(val, initArgs[index].getType());
386           Value yieldedVal = rewriter.create<bufferization::ToMemrefOp>(
387               val.getLoc(), initArgs[index].getType(), val);
388 
389           if (equivalentYields[index])
390             // Yielded value is equivalent to the corresponding iter_arg bbArg.
391             // Yield the value directly. Most IR should be like that. Everything
392             // else must be resolved with copies and is potentially inefficient.
393             // By default, such problematic IR would already have been rejected
394             // during `verifyAnalysis`, unless `allow-return-allocs`.
395             return yieldedVal;
396 
397           // It is not certain that the yielded value and the iter_arg bbArg
398           // have the same buffer. Allocate a new buffer and copy. The yielded
399           // buffer will get deallocated by `deallocateBuffers`.
400 
401           // TODO: There are cases in which it is not neccessary to return a new
402           // buffer allocation. E.g., when equivalent values are yielded in a
403           // different order. This could be resolved with copies.
404           Optional<Value> yieldedAlloc = state.createAlloc(
405               rewriter, val.getLoc(), yieldedVal, /*deallocMemref=*/false);
406           // TODO: We should rollback, but for now just assume that this always
407           // succeeds.
408           assert(yieldedAlloc.hasValue() && "could not create alloc");
409           LogicalResult copyStatus =
410               bufferization::createMemCpy(rewriter, val.getLoc(), yieldedVal,
411                                           *yieldedAlloc, state.getOptions());
412           (void)copyStatus;
413           assert(succeeded(copyStatus) && "could not create memcpy");
414 
415           if (yieldedVal.getType() == yieldedAlloc->getType())
416             return *yieldedAlloc;
417 
418           // The iter_arg memref type has a layout map. Cast the new buffer to
419           // the same type.
420           // TODO: In case the iter_arg has a layout map that is not the fully
421           // dynamic one, we cannot cast the new buffer. In that case, the
422           // iter_arg must be changed to the fully dynamic layout map. (And then
423           // the new buffer can be casted.)
424           assert(memref::CastOp::areCastCompatible(yieldedAlloc->getType(),
425                                                    yieldedVal.getType()) &&
426                  "scf.for op bufferization: cast incompatible");
427           Value casted = rewriter.create<memref::CastOp>(
428               val.getLoc(), yieldedVal.getType(), *yieldedAlloc);
429           return casted;
430         });
431     yieldOp.getResultsMutable().assign(yieldValues);
432 
433     // Replace loop results.
434     replaceOpWithBufferizedValues(rewriter, op, newForOp->getResults());
435 
436     return success();
437   }
438 
439   /// Assert that yielded values of an scf.for op are equivalent to their
440   /// corresponding bbArgs. Otherwise, an alloc+copy are inserted and yielded
441   /// from the loop. This could be a performance problem, so it must be
442   /// explicitly activated with `alloc-return-allocs`.
443   LogicalResult verifyAnalysis(Operation *op,
444                                const AnalysisState &state) const {
445     const auto &options =
446         static_cast<const OneShotBufferizationOptions &>(state.getOptions());
447     if (options.allowReturnAllocs)
448       return success();
449 
450     auto forOp = cast<scf::ForOp>(op);
451     auto yieldOp =
452         cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator());
453     for (OpOperand &operand : yieldOp->getOpOperands()) {
454       auto tensorType = operand.get().getType().dyn_cast<TensorType>();
455       if (!tensorType)
456         continue;
457 
458       OpOperand &forOperand = forOp.getOpOperandForResult(
459           forOp->getResult(operand.getOperandNumber()));
460       auto bbArg = forOp.getRegionIterArgForOpOperand(forOperand);
461       // Note: This is overly strict. We should check for aliasing bufferized
462       // values. But we don't have a "must-alias" analysis yet.
463       if (!state.areEquivalentBufferizedValues(operand.get(), bbArg))
464         return yieldOp->emitError()
465                << "Yield operand #" << operand.getOperandNumber()
466                << " does not bufferize to a buffer that is aliasing the "
467                   "matching enclosing scf::for operand";
468     }
469     return success();
470   }
471 };
472 
473 /// Bufferization of scf.yield. Bufferized as part of their enclosing ops, so
474 /// this is for analysis only.
475 struct YieldOpInterface
476     : public BufferizableOpInterface::ExternalModel<YieldOpInterface,
477                                                     scf::YieldOp> {
478   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
479                               const AnalysisState &state) const {
480     return true;
481   }
482 
483   bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
484                                const AnalysisState &state) const {
485     return false;
486   }
487 
488   SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
489                                             const AnalysisState &state) const {
490     if (isa<scf::IfOp>(op->getParentOp()))
491       return {op->getParentOp()->getResult(opOperand.getOperandNumber())};
492     if (isa<scf::ExecuteRegionOp>(op->getParentOp()))
493       return {op->getParentOp()->getResult(opOperand.getOperandNumber())};
494     return {};
495   }
496 
497   bool mustBufferizeInPlace(Operation *op, OpOperand &opOperand,
498                             const AnalysisState &state) const {
499     // Yield operands always bufferize inplace. Otherwise, an alloc + copy
500     // may be generated inside the block. We should not return/yield allocations
501     // when possible.
502     return true;
503   }
504 
505   LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
506                           BufferizationState &state) const {
507     auto yieldOp = cast<scf::YieldOp>(op);
508     if (!isa<scf::ExecuteRegionOp, scf::IfOp, scf::ForOp>(
509             yieldOp->getParentOp()))
510       return yieldOp->emitError("unsupported scf::YieldOp parent");
511     return success();
512   }
513 };
514 
515 } // namespace
516 } // namespace scf
517 } // namespace mlir
518 
519 void mlir::scf::registerBufferizableOpInterfaceExternalModels(
520     DialectRegistry &registry) {
521   registry.addExtension(+[](MLIRContext *ctx, scf::SCFDialect *dialect) {
522     ExecuteRegionOp::attachInterface<ExecuteRegionOpInterface>(*ctx);
523     ForOp::attachInterface<ForOpInterface>(*ctx);
524     IfOp::attachInterface<IfOpInterface>(*ctx);
525     YieldOp::attachInterface<YieldOpInterface>(*ctx);
526   });
527 }
528