1 //===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/SCF/BufferizableOpInterfaceImpl.h" 10 11 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 12 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 13 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" 14 #include "mlir/Dialect/MemRef/IR/MemRef.h" 15 #include "mlir/Dialect/SCF/SCF.h" 16 #include "mlir/IR/Dialect.h" 17 #include "mlir/IR/Operation.h" 18 #include "mlir/IR/PatternMatch.h" 19 20 using namespace mlir; 21 using namespace mlir::bufferization; 22 using namespace mlir::scf; 23 24 namespace mlir { 25 namespace scf { 26 namespace { 27 28 // bufferization.to_memref is not allowed to change the rank. 29 static void ensureToMemrefOpIsValid(Value tensor, Type memrefType) { 30 #ifndef NDEBUG 31 auto rankedTensorType = tensor.getType().dyn_cast<RankedTensorType>(); 32 assert((!rankedTensorType || (memrefType.cast<MemRefType>().getRank() == 33 rankedTensorType.getRank())) && 34 "to_memref would be invalid: mismatching ranks"); 35 #endif 36 } 37 38 /// Bufferization of scf.execute_region. Can be analyzed, but bufferization not 39 /// fully implemented at the moment. 40 struct ExecuteRegionOpInterface 41 : public BufferizableOpInterface::ExternalModel<ExecuteRegionOpInterface, 42 scf::ExecuteRegionOp> { 43 SmallVector<OpOperand *> 44 getAliasingOpOperand(Operation *op, OpResult opResult, 45 const AnalysisState &state) const { 46 // ExecuteRegionOps do not have tensor OpOperands. The yielded value can be 47 // any SSA value that is in scope. To allow for use-def chain traversal 48 // through ExecuteRegionOps in the analysis, the corresponding yield value 49 // is considered to be aliasing with the result. 50 auto executeRegionOp = cast<scf::ExecuteRegionOp>(op); 51 size_t resultNum = std::distance(op->getOpResults().begin(), 52 llvm::find(op->getOpResults(), opResult)); 53 // TODO: Support multiple blocks. 54 assert(executeRegionOp.getRegion().getBlocks().size() == 1 && 55 "expected exactly 1 block"); 56 auto yieldOp = dyn_cast<scf::YieldOp>( 57 executeRegionOp.getRegion().front().getTerminator()); 58 assert(yieldOp && "expected scf.yield terminator in scf.execute_region"); 59 return {&yieldOp->getOpOperand(resultNum)}; 60 } 61 62 // TODO: For better bufferization results, this could return `true` only if 63 // there is a memory write in the region. 64 bool isMemoryWrite(Operation *op, OpResult opResult, 65 const AnalysisState &state) const { 66 // Similar to scf.if, results of this op are always considered memory writes 67 // in the analysis. This is a useful pattern for all ops that have tensor 68 // OpResults but no tensor OpOperands. By default, `isMemoryWrite` is 69 // implemented in terms of `bufferizesToMemoryWrite`, which does not work on 70 // ops without OpOperands. 71 return true; 72 } 73 74 LogicalResult bufferize(Operation *op, RewriterBase &rewriter, 75 BufferizationState &state) const { 76 auto executeRegionOp = cast<scf::ExecuteRegionOp>(op); 77 78 // Compute new result types. 79 SmallVector<Type> newResultTypes; 80 for (Type type : executeRegionOp->getResultTypes()) { 81 if (auto tensorType = type.dyn_cast<TensorType>()) { 82 newResultTypes.push_back(getMemRefType(tensorType, state.getOptions())); 83 } else { 84 newResultTypes.push_back(type); 85 } 86 } 87 88 // Create new op and move over region. 89 auto newOp = 90 rewriter.create<scf::ExecuteRegionOp>(op->getLoc(), newResultTypes); 91 newOp.getRegion().takeBody(executeRegionOp.getRegion()); 92 93 // Update terminator. 94 assert(newOp.getRegion().getBlocks().size() == 1 && 95 "only 1 block supported"); 96 Block *newBlock = &newOp.getRegion().front(); 97 auto yieldOp = cast<scf::YieldOp>(newBlock->getTerminator()); 98 rewriter.setInsertionPoint(yieldOp); 99 SmallVector<Value> newYieldValues; 100 for (const auto &it : llvm::enumerate(yieldOp.getResults())) { 101 Value val = it.value(); 102 if (val.getType().isa<TensorType>()) { 103 newYieldValues.push_back(rewriter.create<bufferization::ToMemrefOp>( 104 yieldOp.getLoc(), newResultTypes[it.index()], val)); 105 } else { 106 newYieldValues.push_back(val); 107 } 108 } 109 rewriter.replaceOpWithNewOp<scf::YieldOp>(yieldOp, newYieldValues); 110 111 // Update all uses of the old op. 112 rewriter.setInsertionPointAfter(newOp); 113 SmallVector<Value> newResults; 114 for (const auto &it : llvm::enumerate(executeRegionOp->getResultTypes())) { 115 if (it.value().isa<TensorType>()) { 116 newResults.push_back(rewriter.create<bufferization::ToTensorOp>( 117 executeRegionOp.getLoc(), newOp->getResult(it.index()))); 118 } else { 119 newResults.push_back(newOp->getResult(it.index())); 120 } 121 } 122 123 // Replace old op. 124 rewriter.replaceOp(executeRegionOp, newResults); 125 126 return success(); 127 } 128 129 BufferRelation bufferRelation(Operation *op, OpResult opResult, 130 const AnalysisState &state) const { 131 return BufferRelation::Equivalent; 132 } 133 }; 134 135 /// Bufferization of scf.if. Replace with a new scf.if that yields memrefs. 136 struct IfOpInterface 137 : public BufferizableOpInterface::ExternalModel<IfOpInterface, scf::IfOp> { 138 SmallVector<OpOperand *> 139 getAliasingOpOperand(Operation *op, OpResult opResult, 140 const AnalysisState &state) const { 141 // IfOps do not have tensor OpOperands. The yielded value can be any SSA 142 // value that is in scope. To allow for use-def chain traversal through 143 // IfOps in the analysis, both corresponding yield values from the then/else 144 // branches are considered to be aliasing with the result. 145 auto ifOp = cast<scf::IfOp>(op); 146 size_t resultNum = std::distance(op->getOpResults().begin(), 147 llvm::find(op->getOpResults(), opResult)); 148 return {&ifOp.thenYield()->getOpOperand(resultNum), 149 &ifOp.elseYield()->getOpOperand(resultNum)}; 150 } 151 152 // TODO: For better bufferization results, this could return `true` only if 153 // there is a memory write in one (or both) of the branches. Since this is not 154 // allowed at the moment, we should never encounter scf.ifs that yield 155 // unmodified tensors. Such scf.yield ops could just fold away. 156 bool isMemoryWrite(Operation *op, OpResult opResult, 157 const AnalysisState &state) const { 158 // IfOp results are always considered memory writes in the analysis. This 159 // design decision simplifies the analysis considerably. E.g., consider the 160 // following test case: 161 // 162 // %0 = "some_writing_op" : tensor<?xf32> 163 // %r = scf.if %c -> (tensor<?xf32>) { 164 // scf.yield %0 165 // } else { 166 // %1 = "another_writing_op"(%0) : tensor<?xf32> 167 // } 168 // "some_reading_op"(%r) 169 // 170 // "another_writing_op" in the above example should be able to bufferize 171 // inplace in the absence of another read of %0. However, if the scf.if op 172 // would not be considered a "write", the analysis would detect the 173 // following conflict: 174 // 175 // * read = some_reading_op 176 // * lastWrite = %0 (Note: The last write of %r would be a set: {%0, %1}.) 177 // * conflictingWrite = %1 178 // 179 // For more details, check the "scf.IfOp" section of the design document. 180 return true; 181 } 182 183 LogicalResult bufferize(Operation *op, RewriterBase &rewriter, 184 BufferizationState &state) const { 185 auto ifOp = cast<scf::IfOp>(op); 186 187 // Compute new types of the bufferized scf.if op. 188 SmallVector<Type> newTypes; 189 for (Type returnType : ifOp->getResultTypes()) { 190 if (auto tensorType = returnType.dyn_cast<TensorType>()) { 191 newTypes.push_back(getMemRefType(tensorType, state.getOptions())); 192 } else { 193 newTypes.push_back(returnType); 194 } 195 } 196 197 // Create new op. 198 auto newIfOp = 199 rewriter.create<scf::IfOp>(ifOp.getLoc(), newTypes, ifOp.getCondition(), 200 /*withElseRegion=*/true); 201 202 // Remove terminators. 203 if (!newIfOp.thenBlock()->empty()) { 204 rewriter.eraseOp(newIfOp.thenBlock()->getTerminator()); 205 rewriter.eraseOp(newIfOp.elseBlock()->getTerminator()); 206 } 207 208 // Move over then/else blocks. 209 rewriter.mergeBlocks(ifOp.thenBlock(), newIfOp.thenBlock()); 210 rewriter.mergeBlocks(ifOp.elseBlock(), newIfOp.elseBlock()); 211 212 // Update scf.yield of new then-block. 213 auto thenYieldOp = cast<scf::YieldOp>(newIfOp.thenBlock()->getTerminator()); 214 rewriter.setInsertionPoint(thenYieldOp); 215 SmallVector<Value> thenYieldValues; 216 for (OpOperand &operand : thenYieldOp->getOpOperands()) { 217 if (operand.get().getType().isa<TensorType>()) { 218 ensureToMemrefOpIsValid(operand.get(), 219 newTypes[operand.getOperandNumber()]); 220 Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>( 221 operand.get().getLoc(), newTypes[operand.getOperandNumber()], 222 operand.get()); 223 operand.set(toMemrefOp); 224 } 225 } 226 227 // Update scf.yield of new else-block. 228 auto elseYieldOp = cast<scf::YieldOp>(newIfOp.elseBlock()->getTerminator()); 229 rewriter.setInsertionPoint(elseYieldOp); 230 SmallVector<Value> elseYieldValues; 231 for (OpOperand &operand : elseYieldOp->getOpOperands()) { 232 if (operand.get().getType().isa<TensorType>()) { 233 ensureToMemrefOpIsValid(operand.get(), 234 newTypes[operand.getOperandNumber()]); 235 Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>( 236 operand.get().getLoc(), newTypes[operand.getOperandNumber()], 237 operand.get()); 238 operand.set(toMemrefOp); 239 } 240 } 241 242 // Replace op results. 243 replaceOpWithBufferizedValues(rewriter, op, newIfOp->getResults()); 244 245 return success(); 246 } 247 248 BufferRelation bufferRelation(Operation *op, OpResult opResult, 249 const AnalysisState &state) const { 250 // IfOp results are equivalent to their corresponding yield values if both 251 // yield values are equivalent to each other. 252 auto bufferizableOp = cast<BufferizableOpInterface>(op); 253 SmallVector<OpOperand *> yieldValues = 254 bufferizableOp.getAliasingOpOperand(opResult, state); 255 assert(yieldValues.size() == 2 && "expected 2 yield values"); 256 bool equivalentYields = state.areEquivalentBufferizedValues( 257 yieldValues[0]->get(), yieldValues[1]->get()); 258 return equivalentYields ? BufferRelation::Equivalent : BufferRelation::None; 259 } 260 }; 261 262 /// Bufferization of scf.for. Replace with a new scf.for that operates on 263 /// memrefs. 264 struct ForOpInterface 265 : public BufferizableOpInterface::ExternalModel<ForOpInterface, 266 scf::ForOp> { 267 bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, 268 const AnalysisState &state) const { 269 // scf::ForOp alone doesn't bufferize to a memory read, one of the uses of 270 // its matching bbArg may. 271 auto forOp = cast<scf::ForOp>(op); 272 return state.isValueRead(forOp.getRegionIterArgForOpOperand(opOperand)); 273 } 274 275 bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, 276 const AnalysisState &state) const { 277 // Tensor iter_args of scf::ForOps are always considered as a write. 278 return true; 279 } 280 281 SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand, 282 const AnalysisState &state) const { 283 auto forOp = cast<scf::ForOp>(op); 284 return {forOp.getResultForOpOperand(opOperand)}; 285 } 286 287 BufferRelation bufferRelation(Operation *op, OpResult opResult, 288 const AnalysisState &state) const { 289 // ForOp results are equivalent to their corresponding init_args if the 290 // corresponding iter_args and yield values are equivalent. 291 auto forOp = cast<scf::ForOp>(op); 292 OpOperand &forOperand = forOp.getOpOperandForResult(opResult); 293 auto bbArg = forOp.getRegionIterArgForOpOperand(forOperand); 294 auto yieldOp = 295 cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator()); 296 bool equivalentYield = state.areEquivalentBufferizedValues( 297 bbArg, yieldOp->getOperand(opResult.getResultNumber())); 298 return equivalentYield ? BufferRelation::Equivalent : BufferRelation::None; 299 } 300 301 bool isWritable(Operation *op, Value value, 302 const AnalysisState &state) const { 303 // Interestingly, scf::ForOp's bbArg can **always** be viewed 304 // inplace from the perspective of ops nested under: 305 // 1. Either the matching iter operand is not bufferized inplace and an 306 // alloc + optional copy makes the bbArg itself inplaceable. 307 // 2. Or the matching iter operand is bufferized inplace and bbArg just 308 // bufferizes to that too. 309 return true; 310 } 311 312 LogicalResult bufferize(Operation *op, RewriterBase &rewriter, 313 BufferizationState &state) const { 314 auto forOp = cast<scf::ForOp>(op); 315 auto bufferizableOp = cast<BufferizableOpInterface>(op); 316 Block *oldLoopBody = &forOp.getLoopBody().front(); 317 318 // Helper function for casting MemRef buffers. 319 auto castBuffer = [&](Value buffer, Type type) { 320 assert(type.isa<BaseMemRefType>() && "expected BaseMemRefType"); 321 assert(buffer.getType().isa<BaseMemRefType>() && 322 "expected BaseMemRefType"); 323 // If the buffer already has the correct type, no cast is needed. 324 if (buffer.getType() == type) 325 return buffer; 326 // TODO: In case `type` has a layout map that is not the fully dynamic 327 // one, we may not be able to cast the buffer. In that case, the loop 328 // iter_arg's layout map must be changed (see uses of `castBuffer`). 329 assert(memref::CastOp::areCastCompatible(buffer.getType(), type) && 330 "scf.for op bufferization: cast incompatible"); 331 return rewriter.create<memref::CastOp>(buffer.getLoc(), type, buffer) 332 .getResult(); 333 }; 334 335 // Indices of all iter_args that have tensor type. These are the ones that 336 // are bufferized. 337 DenseSet<int64_t> indices; 338 // For every yielded value, is the value equivalent to its corresponding 339 // bbArg? 340 SmallVector<bool> equivalentYields; 341 for (const auto &it : llvm::enumerate(forOp.getInitArgs())) { 342 if (it.value().getType().isa<TensorType>()) { 343 indices.insert(it.index()); 344 BufferRelation relation = bufferizableOp.bufferRelation( 345 forOp->getResult(it.index()), state.getAnalysisState()); 346 equivalentYields.push_back(relation == BufferRelation::Equivalent); 347 } else { 348 equivalentYields.push_back(false); 349 } 350 } 351 352 // Given a range of values, apply `func` to those marked in `indices`. 353 // Otherwise, store the unmodified value in the result vector. 354 auto convert = [&](ValueRange values, 355 llvm::function_ref<Value(Value, int64_t)> func) { 356 SmallVector<Value> result; 357 for (const auto &it : llvm::enumerate(values)) { 358 size_t idx = it.index(); 359 Value val = it.value(); 360 result.push_back(indices.contains(idx) ? func(val, idx) : val); 361 } 362 return result; 363 }; 364 365 // Construct a new scf.for op with memref instead of tensor values. 366 SmallVector<Value> initArgs; 367 for (OpOperand &opOperand : forOp.getIterOpOperands()) { 368 if (opOperand.get().getType().isa<TensorType>()) { 369 FailureOr<Value> resultBuffer = state.getBuffer(rewriter, opOperand); 370 if (failed(resultBuffer)) 371 return failure(); 372 initArgs.push_back(*resultBuffer); 373 } else { 374 initArgs.push_back(opOperand.get()); 375 } 376 } 377 auto newForOp = rewriter.create<scf::ForOp>( 378 forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(), 379 forOp.getStep(), initArgs); 380 Block *loopBody = &newForOp.getLoopBody().front(); 381 382 // Set up new iter_args. The loop body uses tensors, so wrap the (memref) 383 // iter_args of the new loop in ToTensorOps. 384 rewriter.setInsertionPointToStart(loopBody); 385 SmallVector<Value> iterArgs = 386 convert(newForOp.getRegionIterArgs(), [&](Value val, int64_t index) { 387 return rewriter.create<bufferization::ToTensorOp>(val.getLoc(), val); 388 }); 389 iterArgs.insert(iterArgs.begin(), newForOp.getInductionVar()); 390 391 // Erase terminator if present. 392 if (iterArgs.size() == 1) 393 rewriter.eraseOp(loopBody->getTerminator()); 394 395 // Move loop body to new loop. 396 rewriter.mergeBlocks(oldLoopBody, loopBody, iterArgs); 397 398 // Update scf.yield of new loop. 399 auto yieldOp = cast<scf::YieldOp>(loopBody->getTerminator()); 400 rewriter.setInsertionPoint(yieldOp); 401 SmallVector<Value> yieldValues = 402 convert(yieldOp.getResults(), [&](Value val, int64_t index) { 403 Type initArgType = initArgs[index].getType(); 404 ensureToMemrefOpIsValid(val, initArgType); 405 Value yieldedVal = 406 bufferization::lookupBuffer(rewriter, val, state.getOptions()); 407 408 if (equivalentYields[index]) 409 // Yielded value is equivalent to the corresponding iter_arg bbArg. 410 // Yield the value directly. Most IR should be like that. Everything 411 // else must be resolved with copies and is potentially inefficient. 412 // By default, such problematic IR would already have been rejected 413 // during `verifyAnalysis`, unless `allow-return-allocs`. 414 return castBuffer(yieldedVal, initArgType); 415 416 // It is not certain that the yielded value and the iter_arg bbArg 417 // have the same buffer. Allocate a new buffer and copy. The yielded 418 // buffer will get deallocated by `deallocateBuffers`. 419 420 // TODO: There are cases in which it is not neccessary to return a new 421 // buffer allocation. E.g., when equivalent values are yielded in a 422 // different order. This could be resolved with copies. 423 Optional<Value> yieldedAlloc = state.createAlloc( 424 rewriter, val.getLoc(), yieldedVal, /*deallocMemref=*/false); 425 // TODO: We should rollback, but for now just assume that this always 426 // succeeds. 427 assert(yieldedAlloc.hasValue() && "could not create alloc"); 428 LogicalResult copyStatus = 429 bufferization::createMemCpy(rewriter, val.getLoc(), yieldedVal, 430 *yieldedAlloc, state.getOptions()); 431 (void)copyStatus; 432 assert(succeeded(copyStatus) && "could not create memcpy"); 433 434 // The iter_arg memref type may have a layout map. Cast the new buffer 435 // to the same type if needed. 436 return castBuffer(*yieldedAlloc, initArgType); 437 }); 438 yieldOp.getResultsMutable().assign(yieldValues); 439 440 // Replace loop results. 441 replaceOpWithBufferizedValues(rewriter, op, newForOp->getResults()); 442 443 return success(); 444 } 445 446 /// Assert that yielded values of an scf.for op are equivalent to their 447 /// corresponding bbArgs. Otherwise, an alloc+copy are inserted and yielded 448 /// from the loop. This could be a performance problem, so it must be 449 /// explicitly activated with `alloc-return-allocs`. 450 LogicalResult verifyAnalysis(Operation *op, 451 const AnalysisState &state) const { 452 const auto &options = 453 static_cast<const OneShotBufferizationOptions &>(state.getOptions()); 454 if (options.allowReturnAllocs) 455 return success(); 456 457 auto forOp = cast<scf::ForOp>(op); 458 auto yieldOp = 459 cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator()); 460 for (OpOperand &operand : yieldOp->getOpOperands()) { 461 auto tensorType = operand.get().getType().dyn_cast<TensorType>(); 462 if (!tensorType) 463 continue; 464 465 OpOperand &forOperand = forOp.getOpOperandForResult( 466 forOp->getResult(operand.getOperandNumber())); 467 auto bbArg = forOp.getRegionIterArgForOpOperand(forOperand); 468 // Note: This is overly strict. We should check for aliasing bufferized 469 // values. But we don't have a "must-alias" analysis yet. 470 if (!state.areEquivalentBufferizedValues(operand.get(), bbArg)) 471 return yieldOp->emitError() 472 << "Yield operand #" << operand.getOperandNumber() 473 << " does not bufferize to a buffer that is aliasing the " 474 "matching enclosing scf::for operand"; 475 } 476 return success(); 477 } 478 }; 479 480 /// Bufferization of scf.yield. Bufferized as part of their enclosing ops, so 481 /// this is for analysis only. 482 struct YieldOpInterface 483 : public BufferizableOpInterface::ExternalModel<YieldOpInterface, 484 scf::YieldOp> { 485 bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, 486 const AnalysisState &state) const { 487 return true; 488 } 489 490 bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, 491 const AnalysisState &state) const { 492 return false; 493 } 494 495 SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand, 496 const AnalysisState &state) const { 497 if (isa<scf::IfOp>(op->getParentOp())) 498 return {op->getParentOp()->getResult(opOperand.getOperandNumber())}; 499 if (isa<scf::ExecuteRegionOp>(op->getParentOp())) 500 return {op->getParentOp()->getResult(opOperand.getOperandNumber())}; 501 return {}; 502 } 503 504 bool mustBufferizeInPlace(Operation *op, OpOperand &opOperand, 505 const AnalysisState &state) const { 506 // Yield operands always bufferize inplace. Otherwise, an alloc + copy 507 // may be generated inside the block. We should not return/yield allocations 508 // when possible. 509 return true; 510 } 511 512 LogicalResult bufferize(Operation *op, RewriterBase &rewriter, 513 BufferizationState &state) const { 514 auto yieldOp = cast<scf::YieldOp>(op); 515 if (!isa<scf::ExecuteRegionOp, scf::IfOp, scf::ForOp>( 516 yieldOp->getParentOp())) 517 return yieldOp->emitError("unsupported scf::YieldOp parent"); 518 return success(); 519 } 520 }; 521 522 } // namespace 523 } // namespace scf 524 } // namespace mlir 525 526 void mlir::scf::registerBufferizableOpInterfaceExternalModels( 527 DialectRegistry ®istry) { 528 registry.addExtension(+[](MLIRContext *ctx, scf::SCFDialect *dialect) { 529 ExecuteRegionOp::attachInterface<ExecuteRegionOpInterface>(*ctx); 530 ForOp::attachInterface<ForOpInterface>(*ctx); 531 IfOp::attachInterface<IfOpInterface>(*ctx); 532 YieldOp::attachInterface<YieldOpInterface>(*ctx); 533 }); 534 } 535