1 //===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/SCF/BufferizableOpInterfaceImpl.h" 10 11 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" 12 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 13 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h" 14 #include "mlir/Dialect/MemRef/IR/MemRef.h" 15 #include "mlir/Dialect/SCF/SCF.h" 16 #include "mlir/Dialect/Tensor/IR/Tensor.h" 17 #include "mlir/IR/Dialect.h" 18 #include "mlir/IR/Operation.h" 19 #include "mlir/IR/PatternMatch.h" 20 21 using namespace mlir; 22 using namespace mlir::bufferization; 23 using namespace mlir::scf; 24 25 namespace mlir { 26 namespace scf { 27 namespace { 28 29 // bufferization.to_memref is not allowed to change the rank. 30 static void ensureToMemrefOpIsValid(Value tensor, Type memrefType) { 31 #ifndef NDEBUG 32 auto rankedTensorType = tensor.getType().dyn_cast<RankedTensorType>(); 33 assert((!rankedTensorType || (memrefType.cast<MemRefType>().getRank() == 34 rankedTensorType.getRank())) && 35 "to_memref would be invalid: mismatching ranks"); 36 #endif 37 } 38 39 /// Bufferization of scf.execute_region. Can be analyzed, but bufferization not 40 /// fully implemented at the moment. 41 struct ExecuteRegionOpInterface 42 : public BufferizableOpInterface::ExternalModel<ExecuteRegionOpInterface, 43 scf::ExecuteRegionOp> { 44 SmallVector<OpOperand *> 45 getAliasingOpOperand(Operation *op, OpResult opResult, 46 const AnalysisState &state) const { 47 // ExecuteRegionOps do not have tensor OpOperands. The yielded value can be 48 // any SSA value that is in scope. To allow for use-def chain traversal 49 // through ExecuteRegionOps in the analysis, the corresponding yield value 50 // is considered to be aliasing with the result. 51 auto executeRegionOp = cast<scf::ExecuteRegionOp>(op); 52 size_t resultNum = std::distance(op->getOpResults().begin(), 53 llvm::find(op->getOpResults(), opResult)); 54 // TODO: Support multiple blocks. 55 assert(executeRegionOp.getRegion().getBlocks().size() == 1 && 56 "expected exactly 1 block"); 57 auto yieldOp = dyn_cast<scf::YieldOp>( 58 executeRegionOp.getRegion().front().getTerminator()); 59 assert(yieldOp && "expected scf.yield terminator in scf.execute_region"); 60 return {&yieldOp->getOpOperand(resultNum)}; 61 } 62 63 // TODO: For better bufferization results, this could return `true` only if 64 // there is a memory write in the region. 65 bool isMemoryWrite(Operation *op, OpResult opResult, 66 const AnalysisState &state) const { 67 // Similar to scf.if, results of this op are always considered memory writes 68 // in the analysis. This is a useful pattern for all ops that have tensor 69 // OpResults but no tensor OpOperands. By default, `isMemoryWrite` is 70 // implemented in terms of `bufferizesToMemoryWrite`, which does not work on 71 // ops without OpOperands. 72 return true; 73 } 74 75 LogicalResult bufferize(Operation *op, RewriterBase &rewriter, 76 BufferizationState &state) const { 77 auto executeRegionOp = cast<scf::ExecuteRegionOp>(op); 78 79 // Compute new result types. 80 SmallVector<Type> newResultTypes; 81 for (Type type : executeRegionOp->getResultTypes()) { 82 if (auto tensorType = type.dyn_cast<TensorType>()) { 83 // TODO: Infer the result type instead of computing it. 84 newResultTypes.push_back(getMemRefType(tensorType, state.getOptions())); 85 } else { 86 newResultTypes.push_back(type); 87 } 88 } 89 90 // Create new op and move over region. 91 auto newOp = 92 rewriter.create<scf::ExecuteRegionOp>(op->getLoc(), newResultTypes); 93 newOp.getRegion().takeBody(executeRegionOp.getRegion()); 94 95 // Update terminator. 96 assert(newOp.getRegion().getBlocks().size() == 1 && 97 "only 1 block supported"); 98 Block *newBlock = &newOp.getRegion().front(); 99 auto yieldOp = cast<scf::YieldOp>(newBlock->getTerminator()); 100 rewriter.setInsertionPoint(yieldOp); 101 SmallVector<Value> newYieldValues; 102 for (const auto &it : llvm::enumerate(yieldOp.getResults())) { 103 Value val = it.value(); 104 if (val.getType().isa<TensorType>()) { 105 newYieldValues.push_back(rewriter.create<bufferization::ToMemrefOp>( 106 yieldOp.getLoc(), newResultTypes[it.index()], val)); 107 } else { 108 newYieldValues.push_back(val); 109 } 110 } 111 rewriter.replaceOpWithNewOp<scf::YieldOp>(yieldOp, newYieldValues); 112 113 // Update all uses of the old op. 114 rewriter.setInsertionPointAfter(newOp); 115 SmallVector<Value> newResults; 116 for (const auto &it : llvm::enumerate(executeRegionOp->getResultTypes())) { 117 if (it.value().isa<TensorType>()) { 118 newResults.push_back(rewriter.create<bufferization::ToTensorOp>( 119 executeRegionOp.getLoc(), newOp->getResult(it.index()))); 120 } else { 121 newResults.push_back(newOp->getResult(it.index())); 122 } 123 } 124 125 // Replace old op. 126 rewriter.replaceOp(executeRegionOp, newResults); 127 128 return success(); 129 } 130 131 BufferRelation bufferRelation(Operation *op, OpResult opResult, 132 const AnalysisState &state) const { 133 return BufferRelation::Equivalent; 134 } 135 }; 136 137 /// Bufferization of scf.if. Replace with a new scf.if that yields memrefs. 138 struct IfOpInterface 139 : public BufferizableOpInterface::ExternalModel<IfOpInterface, scf::IfOp> { 140 SmallVector<OpOperand *> 141 getAliasingOpOperand(Operation *op, OpResult opResult, 142 const AnalysisState &state) const { 143 // IfOps do not have tensor OpOperands. The yielded value can be any SSA 144 // value that is in scope. To allow for use-def chain traversal through 145 // IfOps in the analysis, both corresponding yield values from the then/else 146 // branches are considered to be aliasing with the result. 147 auto ifOp = cast<scf::IfOp>(op); 148 size_t resultNum = std::distance(op->getOpResults().begin(), 149 llvm::find(op->getOpResults(), opResult)); 150 return {&ifOp.thenYield()->getOpOperand(resultNum), 151 &ifOp.elseYield()->getOpOperand(resultNum)}; 152 } 153 154 // TODO: For better bufferization results, this could return `true` only if 155 // there is a memory write in one (or both) of the branches. Since this is not 156 // allowed at the moment, we should never encounter scf.ifs that yield 157 // unmodified tensors. Such scf.yield ops could just fold away. 158 bool isMemoryWrite(Operation *op, OpResult opResult, 159 const AnalysisState &state) const { 160 // IfOp results are always considered memory writes in the analysis. This 161 // design decision simplifies the analysis considerably. E.g., consider the 162 // following test case: 163 // 164 // %0 = "some_writing_op" : tensor<?xf32> 165 // %r = scf.if %c -> (tensor<?xf32>) { 166 // scf.yield %0 167 // } else { 168 // %1 = "another_writing_op"(%0) : tensor<?xf32> 169 // } 170 // "some_reading_op"(%r) 171 // 172 // "another_writing_op" in the above example should be able to bufferize 173 // inplace in the absence of another read of %0. However, if the scf.if op 174 // would not be considered a "write", the analysis would detect the 175 // following conflict: 176 // 177 // * read = some_reading_op 178 // * lastWrite = %0 (Note: The last write of %r would be a set: {%0, %1}.) 179 // * conflictingWrite = %1 180 // 181 // For more details, check the "scf.IfOp" section of the design document. 182 return true; 183 } 184 185 LogicalResult bufferize(Operation *op, RewriterBase &rewriter, 186 BufferizationState &state) const { 187 auto ifOp = cast<scf::IfOp>(op); 188 189 // Compute new types of the bufferized scf.if op. 190 SmallVector<Type> newTypes; 191 for (Type returnType : ifOp->getResultTypes()) { 192 if (auto tensorType = returnType.dyn_cast<TensorType>()) { 193 // TODO: Infer the result type instead of computing it. 194 newTypes.push_back(getMemRefType(tensorType, state.getOptions())); 195 } else { 196 newTypes.push_back(returnType); 197 } 198 } 199 200 // Create new op. 201 auto newIfOp = 202 rewriter.create<scf::IfOp>(ifOp.getLoc(), newTypes, ifOp.getCondition(), 203 /*withElseRegion=*/true); 204 205 // Remove terminators. 206 if (!newIfOp.thenBlock()->empty()) { 207 rewriter.eraseOp(newIfOp.thenBlock()->getTerminator()); 208 rewriter.eraseOp(newIfOp.elseBlock()->getTerminator()); 209 } 210 211 // Move over then/else blocks. 212 rewriter.mergeBlocks(ifOp.thenBlock(), newIfOp.thenBlock()); 213 rewriter.mergeBlocks(ifOp.elseBlock(), newIfOp.elseBlock()); 214 215 // Update scf.yield of new then-block. 216 auto thenYieldOp = cast<scf::YieldOp>(newIfOp.thenBlock()->getTerminator()); 217 rewriter.setInsertionPoint(thenYieldOp); 218 SmallVector<Value> thenYieldValues; 219 for (OpOperand &operand : thenYieldOp->getOpOperands()) { 220 if (operand.get().getType().isa<TensorType>()) { 221 ensureToMemrefOpIsValid(operand.get(), 222 newTypes[operand.getOperandNumber()]); 223 Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>( 224 operand.get().getLoc(), newTypes[operand.getOperandNumber()], 225 operand.get()); 226 operand.set(toMemrefOp); 227 } 228 } 229 230 // Update scf.yield of new else-block. 231 auto elseYieldOp = cast<scf::YieldOp>(newIfOp.elseBlock()->getTerminator()); 232 rewriter.setInsertionPoint(elseYieldOp); 233 SmallVector<Value> elseYieldValues; 234 for (OpOperand &operand : elseYieldOp->getOpOperands()) { 235 if (operand.get().getType().isa<TensorType>()) { 236 ensureToMemrefOpIsValid(operand.get(), 237 newTypes[operand.getOperandNumber()]); 238 Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>( 239 operand.get().getLoc(), newTypes[operand.getOperandNumber()], 240 operand.get()); 241 operand.set(toMemrefOp); 242 } 243 } 244 245 // Replace op results. 246 replaceOpWithBufferizedValues(rewriter, op, newIfOp->getResults()); 247 248 return success(); 249 } 250 251 BufferRelation bufferRelation(Operation *op, OpResult opResult, 252 const AnalysisState &state) const { 253 // IfOp results are equivalent to their corresponding yield values if both 254 // yield values are equivalent to each other. 255 auto bufferizableOp = cast<BufferizableOpInterface>(op); 256 SmallVector<OpOperand *> yieldValues = 257 bufferizableOp.getAliasingOpOperand(opResult, state); 258 assert(yieldValues.size() == 2 && "expected 2 yield values"); 259 bool equivalentYields = state.areEquivalentBufferizedValues( 260 yieldValues[0]->get(), yieldValues[1]->get()); 261 return equivalentYields ? BufferRelation::Equivalent : BufferRelation::None; 262 } 263 }; 264 265 /// Helper function for loop bufferization. Return the indices of all values 266 /// that have a tensor type. 267 static DenseSet<int64_t> getTensorIndices(ValueRange values) { 268 DenseSet<int64_t> result; 269 for (const auto &it : llvm::enumerate(values)) 270 if (it.value().getType().isa<TensorType>()) 271 result.insert(it.index()); 272 return result; 273 } 274 275 /// Helper function for loop bufferization. Return the indices of all 276 /// bbArg/yielded value pairs who's buffer relation is "Equivalent". 277 DenseSet<int64_t> getEquivalentBuffers(Block::BlockArgListType bbArgs, 278 ValueRange yieldedValues, 279 const AnalysisState &state) { 280 unsigned int minSize = std::min(bbArgs.size(), yieldedValues.size()); 281 DenseSet<int64_t> result; 282 for (unsigned int i = 0; i < minSize; ++i) { 283 if (!bbArgs[i].getType().isa<TensorType>() || 284 !yieldedValues[i].getType().isa<TensorType>()) 285 continue; 286 if (state.areEquivalentBufferizedValues(bbArgs[i], yieldedValues[i])) 287 result.insert(i); 288 } 289 return result; 290 } 291 292 /// Helper function for loop bufferization. Cast the given buffer to the given 293 /// memref type. 294 static Value castBuffer(OpBuilder &b, Value buffer, Type type) { 295 assert(type.isa<BaseMemRefType>() && "expected BaseMemRefType"); 296 assert(buffer.getType().isa<BaseMemRefType>() && "expected BaseMemRefType"); 297 // If the buffer already has the correct type, no cast is needed. 298 if (buffer.getType() == type) 299 return buffer; 300 // TODO: In case `type` has a layout map that is not the fully dynamic 301 // one, we may not be able to cast the buffer. In that case, the loop 302 // iter_arg's layout map must be changed (see uses of `castBuffer`). 303 assert(memref::CastOp::areCastCompatible(buffer.getType(), type) && 304 "scf.while op bufferization: cast incompatible"); 305 return b.create<memref::CastOp>(buffer.getLoc(), type, buffer).getResult(); 306 } 307 308 /// Helper function for loop bufferization. Return the bufferized values of the 309 /// given OpOperands. If an operand is not a tensor, return the original value. 310 static SmallVector<Value> getBuffers(RewriterBase &rewriter, 311 MutableArrayRef<OpOperand> operands, 312 BufferizationState &state) { 313 SmallVector<Value> result; 314 for (OpOperand &opOperand : operands) { 315 if (opOperand.get().getType().isa<TensorType>()) { 316 Value resultBuffer = state.getBuffer(rewriter, opOperand.get()); 317 result.push_back(resultBuffer); 318 } else { 319 result.push_back(opOperand.get()); 320 } 321 } 322 return result; 323 } 324 325 /// Helper function for loop bufferization. Compute the buffer that should be 326 /// yielded from a loop block (loop body or loop condition). 327 static Value getYieldedBuffer(RewriterBase &rewriter, Value tensor, 328 BaseMemRefType type, BufferizationState &state) { 329 assert(tensor.getType().isa<TensorType>() && "expected tensor"); 330 ensureToMemrefOpIsValid(tensor, type); 331 Value yieldedVal = state.getBuffer(rewriter, tensor); 332 return castBuffer(rewriter, yieldedVal, type); 333 } 334 335 /// Helper function for loop bufferization. Given a range of values, apply 336 /// `func` to those marked in `tensorIndices`. Otherwise, store the unmodified 337 /// value in the result vector. 338 static SmallVector<Value> 339 convertTensorValues(ValueRange values, const DenseSet<int64_t> &tensorIndices, 340 llvm::function_ref<Value(Value, int64_t)> func) { 341 SmallVector<Value> result; 342 for (const auto &it : llvm::enumerate(values)) { 343 size_t idx = it.index(); 344 Value val = it.value(); 345 result.push_back(tensorIndices.contains(idx) ? func(val, idx) : val); 346 } 347 return result; 348 } 349 350 /// Helper function for loop bufferization. Given a list of pre-bufferization 351 /// yielded values, compute the list of bufferized yielded values. 352 SmallVector<Value> getYieldedValues(RewriterBase &rewriter, ValueRange values, 353 TypeRange bufferizedTypes, 354 const DenseSet<int64_t> &tensorIndices, 355 BufferizationState &state) { 356 return convertTensorValues( 357 values, tensorIndices, [&](Value val, int64_t index) { 358 return getYieldedBuffer(rewriter, val, 359 bufferizedTypes[index].cast<BaseMemRefType>(), 360 state); 361 }); 362 } 363 364 /// Helper function for loop bufferization. Given a list of bbArgs of the new 365 /// (bufferized) loop op, wrap the bufferized tensor args (now memrefs) into 366 /// ToTensorOps, so that the block body can be moved over to the new op. 367 SmallVector<Value> 368 getBbArgReplacements(RewriterBase &rewriter, Block::BlockArgListType bbArgs, 369 const DenseSet<int64_t> &tensorIndices) { 370 return convertTensorValues( 371 bbArgs, tensorIndices, [&](Value val, int64_t index) { 372 return rewriter.create<bufferization::ToTensorOp>(val.getLoc(), val); 373 }); 374 } 375 376 /// Bufferization of scf.for. Replace with a new scf.for that operates on 377 /// memrefs. 378 struct ForOpInterface 379 : public BufferizableOpInterface::ExternalModel<ForOpInterface, 380 scf::ForOp> { 381 bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, 382 const AnalysisState &state) const { 383 // scf::ForOp alone doesn't bufferize to a memory read, one of the uses of 384 // its matching bbArg may. 385 auto forOp = cast<scf::ForOp>(op); 386 return state.isValueRead(forOp.getRegionIterArgForOpOperand(opOperand)); 387 } 388 389 bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, 390 const AnalysisState &state) const { 391 // Tensor iter_args of scf::ForOps are always considered as a write. 392 return true; 393 } 394 395 SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand, 396 const AnalysisState &state) const { 397 auto forOp = cast<scf::ForOp>(op); 398 return {forOp.getResultForOpOperand(opOperand)}; 399 } 400 401 BufferRelation bufferRelation(Operation *op, OpResult opResult, 402 const AnalysisState &state) const { 403 // ForOp results are equivalent to their corresponding init_args if the 404 // corresponding iter_args and yield values are equivalent. 405 auto forOp = cast<scf::ForOp>(op); 406 OpOperand &forOperand = forOp.getOpOperandForResult(opResult); 407 auto bbArg = forOp.getRegionIterArgForOpOperand(forOperand); 408 auto yieldOp = 409 cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator()); 410 bool equivalentYield = state.areEquivalentBufferizedValues( 411 bbArg, yieldOp->getOperand(opResult.getResultNumber())); 412 return equivalentYield ? BufferRelation::Equivalent : BufferRelation::None; 413 } 414 415 bool isWritable(Operation *op, Value value, 416 const AnalysisState &state) const { 417 // Interestingly, scf::ForOp's bbArg can **always** be viewed 418 // inplace from the perspective of ops nested under: 419 // 1. Either the matching iter operand is not bufferized inplace and an 420 // alloc + optional copy makes the bbArg itself inplaceable. 421 // 2. Or the matching iter operand is bufferized inplace and bbArg just 422 // bufferizes to that too. 423 return true; 424 } 425 426 LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter, 427 const AnalysisState &state) const { 428 auto bufferizableOp = cast<BufferizableOpInterface>(op); 429 if (failed(bufferizableOp.resolveTensorOpOperandConflicts(rewriter, state))) 430 return failure(); 431 432 if (!state.getOptions().enforceAliasingInvariants) 433 return success(); 434 435 // According to the `getAliasing...` implementations, a bufferized OpResult 436 // may alias only with the corresponding bufferized init_arg and with no 437 // other buffers. I.e., the i-th OpResult may alias with the i-th init_arg; 438 // but not with any other OpOperand. If a corresponding OpResult/init_arg 439 // pair bufferizes to equivalent buffers, this aliasing requirement is 440 // satisfied. Otherwise, we cannot be sure and must yield a new buffer copy. 441 // (New buffer copies do not alias with any buffer.) 442 auto forOp = cast<scf::ForOp>(op); 443 auto yieldOp = 444 cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator()); 445 OpBuilder::InsertionGuard g(rewriter); 446 rewriter.setInsertionPoint(yieldOp); 447 448 // Indices of all iter_args that have tensor type. These are the ones that 449 // are bufferized. 450 DenseSet<int64_t> indices = getTensorIndices(forOp.getInitArgs()); 451 // For every yielded value, is the value equivalent to its corresponding 452 // bbArg? 453 DenseSet<int64_t> equivalentYields = getEquivalentBuffers( 454 forOp.getRegionIterArgs(), yieldOp.getResults(), state); 455 SmallVector<Value> yieldValues; 456 for (int64_t idx = 0; 457 idx < static_cast<int64_t>(yieldOp.getResults().size()); ++idx) { 458 Value value = yieldOp.getResults()[idx]; 459 if (!indices.contains(idx) || equivalentYields.contains(idx)) { 460 yieldValues.push_back(value); 461 continue; 462 } 463 Value alloc = rewriter.create<bufferization::AllocTensorOp>( 464 yieldOp.getLoc(), value.getType().cast<RankedTensorType>(), 465 /*dynamicSizes=*/ValueRange(), value, /*escape=*/true); 466 yieldValues.push_back(alloc); 467 } 468 469 rewriter.updateRootInPlace( 470 yieldOp, [&]() { yieldOp.getResultsMutable().assign(yieldValues); }); 471 return success(); 472 } 473 474 LogicalResult bufferize(Operation *op, RewriterBase &rewriter, 475 BufferizationState &state) const { 476 auto forOp = cast<scf::ForOp>(op); 477 Block *oldLoopBody = &forOp.getLoopBody().front(); 478 479 // Indices of all iter_args that have tensor type. These are the ones that 480 // are bufferized. 481 DenseSet<int64_t> indices = getTensorIndices(forOp.getInitArgs()); 482 483 // The new memref init_args of the loop. 484 SmallVector<Value> initArgs = 485 getBuffers(rewriter, forOp.getIterOpOperands(), state); 486 487 // Construct a new scf.for op with memref instead of tensor values. 488 auto newForOp = rewriter.create<scf::ForOp>( 489 forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(), 490 forOp.getStep(), initArgs); 491 newForOp->setAttrs(forOp->getAttrs()); 492 ValueRange initArgsRange(initArgs); 493 TypeRange initArgsTypes(initArgsRange); 494 Block *loopBody = &newForOp.getLoopBody().front(); 495 496 // Set up new iter_args. The loop body uses tensors, so wrap the (memref) 497 // iter_args of the new loop in ToTensorOps. 498 rewriter.setInsertionPointToStart(loopBody); 499 SmallVector<Value> iterArgs = 500 getBbArgReplacements(rewriter, newForOp.getRegionIterArgs(), indices); 501 iterArgs.insert(iterArgs.begin(), newForOp.getInductionVar()); 502 503 // Erase terminator if present. 504 if (iterArgs.size() == 1) 505 rewriter.eraseOp(loopBody->getTerminator()); 506 507 // Move loop body to new loop. 508 rewriter.mergeBlocks(oldLoopBody, loopBody, iterArgs); 509 510 // Update scf.yield of new loop. 511 auto yieldOp = cast<scf::YieldOp>(loopBody->getTerminator()); 512 rewriter.setInsertionPoint(yieldOp); 513 SmallVector<Value> yieldValues = getYieldedValues( 514 rewriter, yieldOp.getResults(), initArgsTypes, indices, state); 515 yieldOp.getResultsMutable().assign(yieldValues); 516 517 // Replace loop results. 518 replaceOpWithBufferizedValues(rewriter, op, newForOp->getResults()); 519 520 return success(); 521 } 522 523 /// Assert that yielded values of an scf.for op are equivalent to their 524 /// corresponding bbArgs. In that case, the buffer relations of the 525 /// corresponding OpResults are "Equivalent". 526 /// 527 /// If this is not the case, an allocs+copies are inserted and yielded from 528 /// the loop. This could be a performance problem, so it must be explicitly 529 /// activated with `alloc-return-allocs`. 530 LogicalResult verifyAnalysis(Operation *op, 531 const AnalysisState &state) const { 532 const auto &options = 533 static_cast<const OneShotBufferizationOptions &>(state.getOptions()); 534 if (options.allowReturnAllocs) 535 return success(); 536 537 auto forOp = cast<scf::ForOp>(op); 538 auto yieldOp = 539 cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator()); 540 for (OpResult opResult : op->getOpResults()) { 541 if (!opResult.getType().isa<TensorType>()) 542 continue; 543 544 // Note: This is overly strict. We should check for aliasing bufferized 545 // values. But we don't have a "must-alias" analysis yet. 546 if (bufferRelation(op, opResult, state) != BufferRelation::Equivalent) 547 return yieldOp->emitError() 548 << "Yield operand #" << opResult.getResultNumber() 549 << " is not equivalent to the corresponding iter bbArg"; 550 } 551 552 return success(); 553 } 554 }; 555 556 /// Bufferization of scf.while. Replace with a new scf.while that operates on 557 /// memrefs. 558 struct WhileOpInterface 559 : public BufferizableOpInterface::ExternalModel<WhileOpInterface, 560 scf::WhileOp> { 561 bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, 562 const AnalysisState &state) const { 563 // Tensor iter_args of scf::WhileOps are always considered as a read. 564 return true; 565 } 566 567 bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, 568 const AnalysisState &state) const { 569 // Tensor iter_args of scf::WhileOps are always considered as a write. 570 return true; 571 } 572 573 SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand, 574 const AnalysisState &state) const { 575 auto whileOp = cast<scf::WhileOp>(op); 576 unsigned int idx = opOperand.getOperandNumber(); 577 578 // The OpResults and OpOperands may not match. They may not even have the 579 // same type. The number of OpResults and OpOperands can also differ. 580 if (idx >= op->getNumResults() || 581 opOperand.get().getType() != op->getResult(idx).getType()) 582 return {}; 583 584 // The only aliasing OpResult may be the one at the same index. 585 return {whileOp->getResult(idx)}; 586 } 587 588 BufferRelation bufferRelation(Operation *op, OpResult opResult, 589 const AnalysisState &state) const { 590 // WhileOp results are equivalent to their corresponding init_args if the 591 // corresponding iter_args and yield values are equivalent (for both the 592 // "before" and the "after" block). 593 unsigned int resultNumber = opResult.getResultNumber(); 594 auto whileOp = cast<scf::WhileOp>(op); 595 596 // The "before" region bbArgs and the OpResults may not match. 597 if (resultNumber >= whileOp.getBeforeArguments().size()) 598 return BufferRelation::None; 599 if (opResult.getType() != 600 whileOp.getBeforeArguments()[resultNumber].getType()) 601 return BufferRelation::None; 602 603 auto conditionOp = whileOp.getConditionOp(); 604 BlockArgument conditionBbArg = whileOp.getBeforeArguments()[resultNumber]; 605 Value conditionOperand = conditionOp.getArgs()[resultNumber]; 606 bool equivCondition = 607 state.areEquivalentBufferizedValues(conditionBbArg, conditionOperand); 608 609 auto yieldOp = whileOp.getYieldOp(); 610 BlockArgument bodyBbArg = whileOp.getAfterArguments()[resultNumber]; 611 Value yieldOperand = yieldOp.getOperand(resultNumber); 612 bool equivYield = 613 state.areEquivalentBufferizedValues(bodyBbArg, yieldOperand); 614 615 return equivCondition && equivYield ? BufferRelation::Equivalent 616 : BufferRelation::None; 617 } 618 619 bool isWritable(Operation *op, Value value, 620 const AnalysisState &state) const { 621 // Interestingly, scf::WhileOp's bbArg can **always** be viewed 622 // inplace from the perspective of ops nested under: 623 // 1. Either the matching iter operand is not bufferized inplace and an 624 // alloc + optional copy makes the bbArg itself inplaceable. 625 // 2. Or the matching iter operand is bufferized inplace and bbArg just 626 // bufferizes to that too. 627 return true; 628 } 629 630 LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter, 631 const AnalysisState &state) const { 632 auto bufferizableOp = cast<BufferizableOpInterface>(op); 633 if (failed(bufferizableOp.resolveTensorOpOperandConflicts(rewriter, state))) 634 return failure(); 635 636 if (!state.getOptions().enforceAliasingInvariants) 637 return success(); 638 639 // According to the `getAliasing...` implementations, a bufferized OpResult 640 // may alias only with the corresponding bufferized init_arg and with no 641 // other buffers. I.e., the i-th OpResult may alias with the i-th init_arg; 642 // but not with any other OpOperand. If a corresponding OpResult/init_arg 643 // pair bufferizes to equivalent buffers, this aliasing requirement is 644 // satisfied. Otherwise, we cannot be sure and must yield a new buffer copy. 645 // (New buffer copies do not alias with any buffer.) 646 OpBuilder::InsertionGuard g(rewriter); 647 auto whileOp = cast<scf::WhileOp>(op); 648 auto conditionOp = whileOp.getConditionOp(); 649 auto yieldOp = whileOp.getYieldOp(); 650 651 // Indices of all bbArgs that have tensor type. These are the ones that 652 // are bufferized. The "before" and "after" regions may have different args. 653 DenseSet<int64_t> indicesBefore = getTensorIndices(whileOp.getInits()); 654 DenseSet<int64_t> indicesAfter = 655 getTensorIndices(whileOp.getAfterArguments()); 656 657 // For every yielded value, is the value equivalent to its corresponding 658 // bbArg? 659 DenseSet<int64_t> equivalentYieldsBefore = getEquivalentBuffers( 660 whileOp.getBeforeArguments(), conditionOp.getArgs(), state); 661 DenseSet<int64_t> equivalentYieldsAfter = getEquivalentBuffers( 662 whileOp.getAfterArguments(), whileOp.getYieldOp().getResults(), state); 663 664 // Update "before" region. 665 rewriter.setInsertionPoint(conditionOp); 666 SmallVector<Value> beforeYieldValues; 667 for (int64_t idx = 0; 668 idx < static_cast<int64_t>(conditionOp.getArgs().size()); ++idx) { 669 Value value = conditionOp.getArgs()[idx]; 670 if (!indicesBefore.contains(idx) || 671 equivalentYieldsBefore.contains(idx)) { 672 beforeYieldValues.push_back(value); 673 continue; 674 } 675 Value alloc = rewriter.create<bufferization::AllocTensorOp>( 676 conditionOp.getLoc(), value.getType().cast<RankedTensorType>(), 677 /*dynamicSizes=*/ValueRange(), value, /*escape=*/true); 678 beforeYieldValues.push_back(alloc); 679 } 680 rewriter.updateRootInPlace(conditionOp, [&]() { 681 conditionOp.getArgsMutable().assign(beforeYieldValues); 682 }); 683 684 // Update "after" region. 685 rewriter.setInsertionPoint(yieldOp); 686 SmallVector<Value> afterYieldValues; 687 for (int64_t idx = 0; 688 idx < static_cast<int64_t>(yieldOp.getResults().size()); ++idx) { 689 Value value = yieldOp.getResults()[idx]; 690 if (!indicesAfter.contains(idx) || equivalentYieldsAfter.contains(idx)) { 691 afterYieldValues.push_back(value); 692 continue; 693 } 694 Value alloc = rewriter.create<bufferization::AllocTensorOp>( 695 yieldOp.getLoc(), value.getType().cast<RankedTensorType>(), 696 /*dynamicSizes=*/ValueRange(), value, /*escape=*/true); 697 afterYieldValues.push_back(alloc); 698 } 699 rewriter.updateRootInPlace(yieldOp, [&]() { 700 yieldOp.getResultsMutable().assign(afterYieldValues); 701 }); 702 703 return success(); 704 } 705 706 LogicalResult bufferize(Operation *op, RewriterBase &rewriter, 707 BufferizationState &state) const { 708 auto whileOp = cast<scf::WhileOp>(op); 709 710 assert(whileOp.getBefore().getBlocks().size() == 1 && 711 "regions with multiple blocks not supported"); 712 Block *beforeBody = &whileOp.getBefore().front(); 713 assert(whileOp.getAfter().getBlocks().size() == 1 && 714 "regions with multiple blocks not supported"); 715 Block *afterBody = &whileOp.getAfter().front(); 716 717 // Indices of all bbArgs that have tensor type. These are the ones that 718 // are bufferized. The "before" and "after" regions may have different args. 719 DenseSet<int64_t> indicesBefore = getTensorIndices(whileOp.getInits()); 720 DenseSet<int64_t> indicesAfter = 721 getTensorIndices(whileOp.getAfterArguments()); 722 723 // The new memref init_args of the loop. 724 SmallVector<Value> initArgs = 725 getBuffers(rewriter, whileOp->getOpOperands(), state); 726 727 // The result types of a WhileOp are the same as the "after" bbArg types. 728 SmallVector<Type> argsTypesAfter = llvm::to_vector( 729 llvm::map_range(whileOp.getAfterArguments(), [&](BlockArgument bbArg) { 730 return state.getBufferType(bbArg).cast<Type>(); 731 })); 732 733 // Construct a new scf.while op with memref instead of tensor values. 734 ValueRange argsRangeBefore(initArgs); 735 TypeRange argsTypesBefore(argsRangeBefore); 736 auto newWhileOp = rewriter.create<scf::WhileOp>(whileOp.getLoc(), 737 argsTypesAfter, initArgs); 738 739 // Add before/after regions to the new op. 740 SmallVector<Location> bbArgLocsBefore(initArgs.size(), whileOp.getLoc()); 741 SmallVector<Location> bbArgLocsAfter(argsTypesAfter.size(), 742 whileOp.getLoc()); 743 Block *newBeforeBody = &newWhileOp.getBefore().emplaceBlock(); 744 newWhileOp.getBefore().addArguments(argsTypesBefore, bbArgLocsBefore); 745 Block *newAfterBody = &newWhileOp.getAfter().emplaceBlock(); 746 newWhileOp.getAfter().addArguments(argsTypesAfter, bbArgLocsAfter); 747 748 // Set up new iter_args and move the loop condition block to the new op. 749 // The old block uses tensors, so wrap the (memref) bbArgs of the new block 750 // in ToTensorOps. 751 rewriter.setInsertionPointToStart(newBeforeBody); 752 SmallVector<Value> newBeforeArgs = getBbArgReplacements( 753 rewriter, newWhileOp.getBeforeArguments(), indicesBefore); 754 rewriter.mergeBlocks(beforeBody, newBeforeBody, newBeforeArgs); 755 756 // Update scf.condition of new loop. 757 auto newConditionOp = newWhileOp.getConditionOp(); 758 rewriter.setInsertionPoint(newConditionOp); 759 // Only equivalent buffers or new buffer allocations may be yielded to the 760 // "after" region. 761 // TODO: This could be relaxed for better bufferization results. 762 SmallVector<Value> newConditionArgs = 763 getYieldedValues(rewriter, newConditionOp.getArgs(), argsTypesAfter, 764 indicesAfter, state); 765 newConditionOp.getArgsMutable().assign(newConditionArgs); 766 767 // Set up new iter_args and move the loop body block to the new op. 768 // The old block uses tensors, so wrap the (memref) bbArgs of the new block 769 // in ToTensorOps. 770 rewriter.setInsertionPointToStart(newAfterBody); 771 SmallVector<Value> newAfterArgs = getBbArgReplacements( 772 rewriter, newWhileOp.getAfterArguments(), indicesAfter); 773 rewriter.mergeBlocks(afterBody, newAfterBody, newAfterArgs); 774 775 // Update scf.yield of the new loop. 776 auto newYieldOp = newWhileOp.getYieldOp(); 777 rewriter.setInsertionPoint(newYieldOp); 778 // Only equivalent buffers or new buffer allocations may be yielded to the 779 // "before" region. 780 // TODO: This could be relaxed for better bufferization results. 781 SmallVector<Value> newYieldValues = 782 getYieldedValues(rewriter, newYieldOp.getResults(), argsTypesBefore, 783 indicesBefore, state); 784 newYieldOp.getResultsMutable().assign(newYieldValues); 785 786 // Replace loop results. 787 replaceOpWithBufferizedValues(rewriter, op, newWhileOp->getResults()); 788 789 return success(); 790 } 791 792 /// Assert that yielded values of an scf.while op are equivalent to their 793 /// corresponding bbArgs. In that case, the buffer relations of the 794 /// corresponding OpResults are "Equivalent". 795 /// 796 /// If this is not the case, allocs+copies are inserted and yielded from 797 /// the loop. This could be a performance problem, so it must be explicitly 798 /// activated with `alloc-return-allocs`. 799 /// 800 /// Not: In contrast to scf::ForOp, scf::WhileOp has two regions and the 801 /// equivalence condition must be checked for both. 802 LogicalResult verifyAnalysis(Operation *op, 803 const AnalysisState &state) const { 804 auto whileOp = cast<scf::WhileOp>(op); 805 const auto &options = 806 static_cast<const OneShotBufferizationOptions &>(state.getOptions()); 807 if (options.allowReturnAllocs) 808 return success(); 809 810 auto conditionOp = whileOp.getConditionOp(); 811 for (const auto &it : llvm::enumerate(conditionOp.getArgs())) { 812 if (!it.value().getType().isa<TensorType>()) 813 continue; 814 if (!state.areEquivalentBufferizedValues( 815 it.value(), conditionOp->getBlock()->getArgument(it.index()))) 816 return conditionOp->emitError() 817 << "Condition arg #" << it.index() 818 << " is not equivalent to the corresponding iter bbArg"; 819 } 820 821 auto yieldOp = whileOp.getYieldOp(); 822 for (const auto &it : llvm::enumerate(yieldOp.getResults())) { 823 if (!it.value().getType().isa<TensorType>()) 824 continue; 825 if (!state.areEquivalentBufferizedValues( 826 it.value(), yieldOp->getBlock()->getArgument(it.index()))) 827 return yieldOp->emitError() 828 << "Yield operand #" << it.index() 829 << " is not equivalent to the corresponding iter bbArg"; 830 } 831 832 return success(); 833 } 834 }; 835 836 /// Bufferization of scf.yield. Bufferized as part of their enclosing ops, so 837 /// this is for analysis only. 838 struct YieldOpInterface 839 : public BufferizableOpInterface::ExternalModel<YieldOpInterface, 840 scf::YieldOp> { 841 bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, 842 const AnalysisState &state) const { 843 return true; 844 } 845 846 bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, 847 const AnalysisState &state) const { 848 return false; 849 } 850 851 SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand, 852 const AnalysisState &state) const { 853 if (isa<scf::IfOp>(op->getParentOp())) 854 return {op->getParentOp()->getResult(opOperand.getOperandNumber())}; 855 if (isa<scf::ExecuteRegionOp>(op->getParentOp())) 856 return {op->getParentOp()->getResult(opOperand.getOperandNumber())}; 857 return {}; 858 } 859 860 bool mustBufferizeInPlace(Operation *op, OpOperand &opOperand, 861 const AnalysisState &state) const { 862 // Yield operands always bufferize inplace. Otherwise, an alloc + copy 863 // may be generated inside the block. We should not return/yield allocations 864 // when possible. 865 return true; 866 } 867 868 LogicalResult bufferize(Operation *op, RewriterBase &rewriter, 869 BufferizationState &state) const { 870 auto yieldOp = cast<scf::YieldOp>(op); 871 if (!isa<scf::ExecuteRegionOp, scf::IfOp, scf::ForOp, scf::WhileOp>( 872 yieldOp->getParentOp())) 873 return yieldOp->emitError("unsupported scf::YieldOp parent"); 874 return success(); 875 } 876 }; 877 878 using tensor::ExtractSliceOp; 879 880 /// Return the destinations that an ForeachThreadOp is inserting into. One per 881 /// ParallelInsertSliceOp. 882 static SmallVector<OpOperand *> 883 getInsertionDest(ForeachThreadOp foreachThreadOp) { 884 PerformConcurrentlyOp terminator = foreachThreadOp.getTerminator(); 885 SmallVector<OpOperand *> result; 886 terminator.walk([&](ParallelInsertSliceOp insertOp) { 887 result.push_back(&insertOp->getOpOperand(1) /*dest*/); 888 }); 889 return result; 890 } 891 892 /// Bufferization of ForeachThreadOp. This also bufferizes the terminator of the 893 /// region. There are op interfaces for the terminators (PerformConcurrentlyOp 894 /// and ParallelInsertSliceOp), but these are only used during analysis. Not 895 /// for bufferization. 896 struct ForeachThreadOpInterface 897 : public BufferizableOpInterface::ExternalModel<ForeachThreadOpInterface, 898 ForeachThreadOp> { 899 SmallVector<OpOperand *> 900 getAliasingOpOperand(Operation *op, OpResult opResult, 901 const AnalysisState &state) const { 902 // Get OpOperand (dest) from corresponding ParallelInsertSliceOp. 903 auto foreachThreadOp = cast<ForeachThreadOp>(op); 904 return {getInsertionDest(foreachThreadOp)[opResult.getResultNumber()]}; 905 } 906 907 bool isMemoryWrite(Operation *op, OpResult opResult, 908 const AnalysisState &state) const { 909 // This op is a memory write. Stop lookup here to avoid finding false 910 // conflicts involving this op and one of the ops in the region. This is 911 // similar to how scf.if ops are analyzed. 912 return true; 913 } 914 915 BufferRelation bufferRelation(Operation *op, OpResult opResult, 916 const AnalysisState &state) const { 917 return BufferRelation::Equivalent; 918 } 919 920 LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter, 921 const AnalysisState &state) const { 922 auto bufferizableOp = cast<BufferizableOpInterface>(op); 923 if (failed(bufferizableOp.resolveTensorOpOperandConflicts(rewriter, state))) 924 return failure(); 925 926 OpBuilder::InsertionGuard g(rewriter); 927 auto foreachThreadOp = cast<ForeachThreadOp>(op); 928 for (OpResult opResult : foreachThreadOp->getOpResults()) { 929 SmallVector<OpOperand *> destOperands = 930 state.getAliasingOpOperand(opResult); 931 assert(destOperands.size() == 1 && 932 "expected exactly one aliasing OpOperand"); 933 assert(isa<ParallelInsertSliceOp>(destOperands.front()->getOwner()) && 934 "expected ParallelInsertSliceOp"); 935 936 // Nothing to do if there is no conflict. 937 if (state.isInPlace(*destOperands.front())) 938 continue; 939 940 // Create AllocTensorOp. 941 bool isYielded = state.isTensorYielded(opResult); 942 auto resultType = opResult.getType().cast<RankedTensorType>(); 943 Value alloc = rewriter.create<bufferization::AllocTensorOp>( 944 op->getLoc(), resultType, /*dynamicDims=*/ValueRange(), 945 /*copy=*/destOperands.front()->get(), 946 /*escape=*/isYielded); 947 948 // Update terminator operand. 949 rewriter.updateRootInPlace(destOperands.front()->getOwner(), 950 [&]() { destOperands.front()->set(alloc); }); 951 } 952 953 return success(); 954 } 955 956 LogicalResult bufferize(Operation *op, RewriterBase &b, 957 BufferizationState &state) const { 958 OpBuilder::InsertionGuard g(b); 959 auto foreachThreadOp = cast<ForeachThreadOp>(op); 960 961 // Gather new results of the ForeachThreadOp. 962 SmallVector<Value> newResults; 963 for (OpResult opResult : foreachThreadOp->getOpResults()) { 964 OpOperand *insertDest = 965 getInsertionDest(foreachThreadOp)[opResult.getResultNumber()]; 966 // Insert copies right before the PerformConcurrentlyOp terminator. They 967 // should not be inside terminator (which would be the default insertion 968 // point). 969 Value buffer = state.getBuffer(b, insertDest->get()); 970 newResults.push_back(buffer); 971 } 972 973 // Create new ForeachThreadOp without any results and drop the automatically 974 // introduced terminator. 975 TypeRange newResultTypes; 976 auto newForeachThreadOp = 977 b.create<ForeachThreadOp>(foreachThreadOp.getLoc(), newResultTypes, 978 foreachThreadOp.getNumThreads()); 979 newForeachThreadOp.getBody()->getTerminator()->erase(); 980 981 // Move over block contents of the old op. 982 b.mergeBlocks(foreachThreadOp.getBody(), newForeachThreadOp.getBody(), 983 {newForeachThreadOp.getBody()->getArguments()}); 984 985 // Bufferize terminator. 986 auto performConcurrentlyOp = cast<PerformConcurrentlyOp>( 987 newForeachThreadOp.getBody()->getTerminator()); 988 b.setInsertionPoint(performConcurrentlyOp); 989 unsigned resultCounter = 0; 990 WalkResult walkResult = 991 performConcurrentlyOp.walk([&](ParallelInsertSliceOp insertOp) { 992 Location loc = insertOp.getLoc(); 993 Type srcType = getMemRefType( 994 insertOp.getSource().getType().cast<RankedTensorType>(), 995 state.getOptions()); 996 // ParallelInsertSliceOp bufferizes to a copy. 997 auto srcMemref = b.create<bufferization::ToMemrefOp>( 998 loc, srcType, insertOp.getSource()); 999 Value destMemref = newResults[resultCounter++]; 1000 Value subview = b.create<memref::SubViewOp>( 1001 loc, destMemref, insertOp.getMixedOffsets(), 1002 insertOp.getMixedSizes(), insertOp.getMixedStrides()); 1003 // This memcpy will fold away if everything bufferizes in-place. 1004 if (failed(state.getOptions().createMemCpy(b, insertOp.getLoc(), 1005 srcMemref, subview))) 1006 return WalkResult::interrupt(); 1007 b.eraseOp(insertOp); 1008 return WalkResult::advance(); 1009 }); 1010 if (walkResult.wasInterrupted()) 1011 return failure(); 1012 1013 // Replace the op. 1014 replaceOpWithBufferizedValues(b, op, newResults); 1015 1016 return success(); 1017 } 1018 }; 1019 1020 /// Nothing to do for PerformConcurrentlyOp. 1021 struct PerformConcurrentlyOpInterface 1022 : public BufferizableOpInterface::ExternalModel< 1023 PerformConcurrentlyOpInterface, PerformConcurrentlyOp> { 1024 LogicalResult bufferize(Operation *op, RewriterBase &b, 1025 BufferizationState &state) const { 1026 llvm_unreachable("op does not have any tensor OpOperands / OpResults"); 1027 return failure(); 1028 } 1029 }; 1030 1031 /// Return true if the (ExtractSliceOp, ParallelInsertSliceOp) pair match (i.e. 1032 /// equivalent operand / result and same offset/sizes/strides specification). 1033 static bool areEquivalentExtractSliceOps(const AnalysisState &state, 1034 ExtractSliceOp st, 1035 ParallelInsertSliceOp sti) { 1036 if (!st || !sti) 1037 return false; 1038 if (st != sti && 1039 !state.areEquivalentBufferizedValues(st.source(), sti.getDest())) 1040 return false; 1041 if (!sameOffsetsSizesAndStrides(st, sti, isEqualConstantIntOrValue)) 1042 return false; 1043 return true; 1044 } 1045 1046 /// Return true if `value` is originating from an ExtractSliceOp that matches 1047 /// the given InsertSliceOp. 1048 static bool hasMatchingExtractSliceOp(const AnalysisState &state, Value value, 1049 ParallelInsertSliceOp insertOp) { 1050 auto condition = [&](Value val) { 1051 if (auto extractOp = val.getDefiningOp<ExtractSliceOp>()) 1052 if (areEquivalentExtractSliceOps(state, extractOp, insertOp)) 1053 return true; 1054 return false; 1055 }; 1056 1057 return llvm::all_of(state.findValueInReverseUseDefChain(value, condition), 1058 condition); 1059 } 1060 1061 /// Analysis of ParallelInsertSliceOp. 1062 struct ParallelInsertSliceOpInterface 1063 : public BufferizableOpInterface::ExternalModel< 1064 ParallelInsertSliceOpInterface, ParallelInsertSliceOp> { 1065 SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand, 1066 const AnalysisState &state) const { 1067 if (&opOperand != &op->getOpOperand(1) /*dest*/) 1068 return {}; 1069 1070 // ParallelInsertSliceOp itself has no results. Tensors are returned via 1071 // the parent op. 1072 auto foreachThreadOp = op->getParentOfType<ForeachThreadOp>(); 1073 assert(foreachThreadOp && 1074 "could not find valid owner of parallel_insert_slice"); 1075 1076 // The i-th ParallelInsertSliceOp result is returned via the i-th OpResult 1077 // of the parent ForeachThreadOp. 1078 Block *block = op->getBlock(); 1079 unsigned int opIdx = 0; 1080 for (ParallelInsertSliceOp insertOp : 1081 block->getOps<ParallelInsertSliceOp>()) { 1082 if (insertOp.getOperation() == op) 1083 break; 1084 ++opIdx; 1085 } 1086 assert(opIdx < foreachThreadOp->getNumResults() && 1087 "could not find op inside terminator op"); 1088 1089 return {foreachThreadOp->getResult(opIdx)}; 1090 } 1091 1092 bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, 1093 const AnalysisState &state) const { 1094 return true; 1095 } 1096 1097 bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, 1098 const AnalysisState &state) const { 1099 return &opOperand == &op->getOpOperand(1) /*dest*/; 1100 } 1101 1102 BufferRelation bufferRelation(Operation *op, OpResult opResult, 1103 const AnalysisState &state) const { 1104 return BufferRelation::Equivalent; 1105 } 1106 1107 LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter, 1108 const AnalysisState &state) const { 1109 return success(); 1110 } 1111 1112 LogicalResult bufferize(Operation *op, RewriterBase &b, 1113 BufferizationState &state) const { 1114 // Will be bufferized as part of ForeachThreadOp. 1115 return failure(); 1116 } 1117 1118 // TODO: This is copied from TensorInterfaceImpl.cpp. Find a way to share 1119 // the code. 1120 bool isNotConflicting(Operation *op, OpOperand *uRead, 1121 OpOperand *uConflictingWrite, 1122 const AnalysisState &state) const { 1123 Operation *readingOp = uRead->getOwner(); 1124 Operation *conflictingWritingOp = uConflictingWrite->getOwner(); 1125 1126 // Special rules for matching ExtractSliceOp/InsertSliceOp pairs. If 1127 // uRead is an InsertSliceOp... 1128 if (auto insertSliceOp = dyn_cast<ParallelInsertSliceOp>(readingOp)) { 1129 // As an example, consider the following IR. 1130 // 1131 // %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] } 1132 // %1 = linalg.fill %cst, %0 {inplace= [true] } 1133 // %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1] 1134 // {inplace= [true] } 1135 1136 // TODO: Use insertSliceOp.getDestOpOperand etc. when available. 1137 if (uRead == &insertSliceOp->getOpOperand(1) /*dest*/ && 1138 hasMatchingExtractSliceOp(state, uConflictingWrite->get(), 1139 insertSliceOp)) 1140 // Case 1: The main insight is that InsertSliceOp reads only part of 1141 // the destination tensor. The overwritten area is not read. If 1142 // uConflictingWrite writes into exactly the memory location that is 1143 // being read by uRead, this is not a conflict. 1144 // 1145 // In the above example: 1146 // uRead = OpOperand 1 (%t) of tensor.insert_slice 1147 // uConflictingWrite = OpOperand 1 (%0) of linalg.fill 1148 // 1149 // The read of %t does not conflict with the write of the FillOp 1150 // (same aliases!) because the area that the FillOp operates on is 1151 // exactly the one that is *not* read via %t. 1152 return true; 1153 1154 if (uRead == &insertSliceOp->getOpOperand(0) /*source*/ && 1155 uConflictingWrite == &insertSliceOp->getOpOperand(1) /*dest*/ && 1156 hasMatchingExtractSliceOp(state, uRead->get(), insertSliceOp)) 1157 // Case 2: The read of the source tensor and the write to the dest 1158 // tensor via an InsertSliceOp is not a conflict if the read is 1159 // reading exactly that part of an equivalent tensor that the 1160 // InsertSliceOp is writing. 1161 // 1162 // In the above example: 1163 // uRead = OpOperand 0 (%1) of tensor.insert_slice 1164 // uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice 1165 return true; 1166 } 1167 1168 // If uConflictingWrite is an InsertSliceOp... 1169 if (auto insertSliceOp = 1170 dyn_cast<ParallelInsertSliceOp>(conflictingWritingOp)) 1171 // As an example, consider the following IR. 1172 // 1173 // %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] } 1174 // %1 = linalg.fill %cst, %0 {inplace= [true] } 1175 // %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1] 1176 // {inplace= [true] } 1177 // %3 = vector.transfer_read %1, %cst 1178 // 1179 // In the above example: 1180 // uRead = OpOperand 0 (%1) of vector.transfer_read 1181 // uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice 1182 // lastWrite = %1 1183 // 1184 // This is not a conflict because the InsertSliceOp overwrites the 1185 // memory segment of %1 with the exact same data. (Effectively, there 1186 // is no memory write here.) 1187 if (uConflictingWrite == &insertSliceOp->getOpOperand(1) /*dest*/ && 1188 state.areEquivalentBufferizedValues(uRead->get(), 1189 insertSliceOp.getSource()) && 1190 hasMatchingExtractSliceOp(state, insertSliceOp.getSource(), 1191 insertSliceOp)) 1192 return true; 1193 1194 return false; 1195 } 1196 }; 1197 1198 } // namespace 1199 } // namespace scf 1200 } // namespace mlir 1201 1202 void mlir::scf::registerBufferizableOpInterfaceExternalModels( 1203 DialectRegistry ®istry) { 1204 registry.addExtension(+[](MLIRContext *ctx, scf::SCFDialect *dialect) { 1205 ExecuteRegionOp::attachInterface<ExecuteRegionOpInterface>(*ctx); 1206 ForOp::attachInterface<ForOpInterface>(*ctx); 1207 IfOp::attachInterface<IfOpInterface>(*ctx); 1208 ForeachThreadOp::attachInterface<ForeachThreadOpInterface>(*ctx); 1209 ParallelInsertSliceOp::attachInterface<ParallelInsertSliceOpInterface>( 1210 *ctx); 1211 PerformConcurrentlyOp::attachInterface<PerformConcurrentlyOpInterface>( 1212 *ctx); 1213 WhileOp::attachInterface<WhileOpInterface>(*ctx); 1214 YieldOp::attachInterface<YieldOpInterface>(*ctx); 1215 }); 1216 } 1217