1 //===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Dialect/SCF/Transforms/BufferizableOpInterfaceImpl.h"
10 
11 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
12 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
13 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
14 #include "mlir/Dialect/MemRef/IR/MemRef.h"
15 #include "mlir/Dialect/SCF/IR/SCF.h"
16 #include "mlir/Dialect/Tensor/IR/Tensor.h"
17 #include "mlir/IR/Dialect.h"
18 #include "mlir/IR/Operation.h"
19 #include "mlir/IR/PatternMatch.h"
20 
21 using namespace mlir;
22 using namespace mlir::bufferization;
23 using namespace mlir::scf;
24 
25 namespace mlir {
26 namespace scf {
27 namespace {
28 
29 // bufferization.to_memref is not allowed to change the rank.
30 static void ensureToMemrefOpIsValid(Value tensor, Type memrefType) {
31 #ifndef NDEBUG
32   auto rankedTensorType = tensor.getType().dyn_cast<RankedTensorType>();
33   assert((!rankedTensorType || (memrefType.cast<MemRefType>().getRank() ==
34                                 rankedTensorType.getRank())) &&
35          "to_memref would be invalid: mismatching ranks");
36 #endif
37 }
38 
39 /// Bufferization of scf.execute_region. Can be analyzed, but bufferization not
40 /// fully implemented at the moment.
41 struct ExecuteRegionOpInterface
42     : public BufferizableOpInterface::ExternalModel<ExecuteRegionOpInterface,
43                                                     scf::ExecuteRegionOp> {
44   SmallVector<OpOperand *>
45   getAliasingOpOperand(Operation *op, OpResult opResult,
46                        const AnalysisState &state) const {
47     // ExecuteRegionOps do not have tensor OpOperands. The yielded value can be
48     // any SSA value that is in scope. To allow for use-def chain traversal
49     // through ExecuteRegionOps in the analysis, the corresponding yield value
50     // is considered to be aliasing with the result.
51     auto executeRegionOp = cast<scf::ExecuteRegionOp>(op);
52     size_t resultNum = std::distance(op->getOpResults().begin(),
53                                      llvm::find(op->getOpResults(), opResult));
54     // TODO: Support multiple blocks.
55     assert(executeRegionOp.getRegion().getBlocks().size() == 1 &&
56            "expected exactly 1 block");
57     auto yieldOp = dyn_cast<scf::YieldOp>(
58         executeRegionOp.getRegion().front().getTerminator());
59     assert(yieldOp && "expected scf.yield terminator in scf.execute_region");
60     return {&yieldOp->getOpOperand(resultNum)};
61   }
62 
63   // TODO: For better bufferization results, this could return `true` only if
64   // there is a memory write in the region.
65   bool isMemoryWrite(Operation *op, OpResult opResult,
66                      const AnalysisState &state) const {
67     // Similar to scf.if, results of this op are always considered memory writes
68     // in the analysis. This is a useful pattern for all ops that have tensor
69     // OpResults but no tensor OpOperands. By default, `isMemoryWrite` is
70     // implemented in terms of `bufferizesToMemoryWrite`, which does not work on
71     // ops without OpOperands.
72     return true;
73   }
74 
75   LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
76                           const BufferizationOptions &options) const {
77     auto executeRegionOp = cast<scf::ExecuteRegionOp>(op);
78     assert(executeRegionOp.getRegion().getBlocks().size() == 1 &&
79            "only 1 block supported");
80     auto yieldOp =
81         cast<scf::YieldOp>(executeRegionOp.getRegion().front().getTerminator());
82     TypeRange newResultTypes(yieldOp.getResults());
83 
84     // Create new op and move over region.
85     auto newOp =
86         rewriter.create<scf::ExecuteRegionOp>(op->getLoc(), newResultTypes);
87     newOp.getRegion().takeBody(executeRegionOp.getRegion());
88 
89     // Update all uses of the old op.
90     rewriter.setInsertionPointAfter(newOp);
91     SmallVector<Value> newResults;
92     for (const auto &it : llvm::enumerate(executeRegionOp->getResultTypes())) {
93       if (it.value().isa<TensorType>()) {
94         newResults.push_back(rewriter.create<bufferization::ToTensorOp>(
95             executeRegionOp.getLoc(), newOp->getResult(it.index())));
96       } else {
97         newResults.push_back(newOp->getResult(it.index()));
98       }
99     }
100 
101     // Replace old op.
102     rewriter.replaceOp(executeRegionOp, newResults);
103 
104     return success();
105   }
106 
107   BufferRelation bufferRelation(Operation *op, OpResult opResult,
108                                 const AnalysisState &state) const {
109     return BufferRelation::Equivalent;
110   }
111 };
112 
113 /// Bufferization of scf.if. Replace with a new scf.if that yields memrefs.
114 struct IfOpInterface
115     : public BufferizableOpInterface::ExternalModel<IfOpInterface, scf::IfOp> {
116   SmallVector<OpOperand *>
117   getAliasingOpOperand(Operation *op, OpResult opResult,
118                        const AnalysisState &state) const {
119     // IfOps do not have tensor OpOperands. The yielded value can be any SSA
120     // value that is in scope. To allow for use-def chain traversal through
121     // IfOps in the analysis, both corresponding yield values from the then/else
122     // branches are considered to be aliasing with the result.
123     auto ifOp = cast<scf::IfOp>(op);
124     size_t resultNum = std::distance(op->getOpResults().begin(),
125                                      llvm::find(op->getOpResults(), opResult));
126     return {&ifOp.thenYield()->getOpOperand(resultNum),
127             &ifOp.elseYield()->getOpOperand(resultNum)};
128   }
129 
130   // TODO: For better bufferization results, this could return `true` only if
131   // there is a memory write in one (or both) of the branches. Since this is not
132   // allowed at the moment, we should never encounter scf.ifs that yield
133   // unmodified tensors. Such scf.yield ops could just fold away.
134   bool isMemoryWrite(Operation *op, OpResult opResult,
135                      const AnalysisState &state) const {
136     // IfOp results are always considered memory writes in the analysis. This
137     // design decision simplifies the analysis considerably. E.g., consider the
138     // following test case:
139     //
140     // %0 = "some_writing_op" : tensor<?xf32>
141     // %r = scf.if %c -> (tensor<?xf32>) {
142     //   scf.yield %0
143     // } else {
144     //   %1 = "another_writing_op"(%0) : tensor<?xf32>
145     // }
146     // "some_reading_op"(%r)
147     //
148     // "another_writing_op" in the above example should be able to bufferize
149     // inplace in the absence of another read of %0. However, if the scf.if op
150     // would not be considered a "write", the analysis would detect the
151     // following conflict:
152     //
153     // * read = some_reading_op
154     // * lastWrite = %0  (Note: The last write of %r would be a set: {%0, %1}.)
155     // * conflictingWrite = %1
156     //
157     // For more details, check the "scf.IfOp" section of the design document.
158     return true;
159   }
160 
161   LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
162                           const BufferizationOptions &options) const {
163     OpBuilder::InsertionGuard g(rewriter);
164     auto ifOp = cast<scf::IfOp>(op);
165     auto thenYieldOp = cast<scf::YieldOp>(ifOp.thenBlock()->getTerminator());
166     auto elseYieldOp = cast<scf::YieldOp>(ifOp.elseBlock()->getTerminator());
167 
168     // Reconcile type mismatches between then/else branches by inserting memref
169     // casts.
170     SmallVector<Value> thenResults, elseResults;
171     bool insertedCast = false;
172     for (unsigned i = 0; i < thenYieldOp.getResults().size(); ++i) {
173       Value thenValue = thenYieldOp.getResults()[i];
174       Value elseValue = elseYieldOp.getResults()[i];
175       if (thenValue.getType() == elseValue.getType()) {
176         thenResults.push_back(thenValue);
177         elseResults.push_back(elseValue);
178         continue;
179       }
180 
181       // Type mismatch between then/else yield value. Cast both to a memref type
182       // with a fully dynamic layout map.
183       auto thenMemrefType = thenValue.getType().cast<BaseMemRefType>();
184       auto elseMemrefType = elseValue.getType().cast<BaseMemRefType>();
185       if (thenMemrefType.getMemorySpaceAsInt() !=
186           elseMemrefType.getMemorySpaceAsInt())
187         return op->emitError("inconsistent memory space on then/else branches");
188       rewriter.setInsertionPoint(thenYieldOp);
189       BaseMemRefType memrefType = getMemRefTypeWithFullyDynamicLayout(
190           ifOp.getResultTypes()[i].cast<TensorType>(),
191           thenMemrefType.getMemorySpaceAsInt());
192       thenResults.push_back(rewriter.create<memref::CastOp>(
193           thenYieldOp.getLoc(), memrefType, thenValue));
194       rewriter.setInsertionPoint(elseYieldOp);
195       elseResults.push_back(rewriter.create<memref::CastOp>(
196           elseYieldOp.getLoc(), memrefType, elseValue));
197       insertedCast = true;
198     }
199 
200     if (insertedCast) {
201       rewriter.setInsertionPoint(thenYieldOp);
202       rewriter.replaceOpWithNewOp<scf::YieldOp>(thenYieldOp, thenResults);
203       rewriter.setInsertionPoint(elseYieldOp);
204       rewriter.replaceOpWithNewOp<scf::YieldOp>(elseYieldOp, elseResults);
205     }
206 
207     // Create new op.
208     rewriter.setInsertionPoint(ifOp);
209     ValueRange resultsValueRange(thenResults);
210     TypeRange newTypes(resultsValueRange);
211     auto newIfOp =
212         rewriter.create<scf::IfOp>(ifOp.getLoc(), newTypes, ifOp.getCondition(),
213                                    /*withElseRegion=*/true);
214 
215     // Move over then/else blocks.
216     rewriter.mergeBlocks(ifOp.thenBlock(), newIfOp.thenBlock());
217     rewriter.mergeBlocks(ifOp.elseBlock(), newIfOp.elseBlock());
218 
219     // Replace op results.
220     replaceOpWithBufferizedValues(rewriter, op, newIfOp->getResults());
221 
222     return success();
223   }
224 
225   BufferRelation bufferRelation(Operation *op, OpResult opResult,
226                                 const AnalysisState &state) const {
227     // IfOp results are equivalent to their corresponding yield values if both
228     // yield values are equivalent to each other.
229     auto bufferizableOp = cast<BufferizableOpInterface>(op);
230     SmallVector<OpOperand *> yieldValues =
231         bufferizableOp.getAliasingOpOperand(opResult, state);
232     assert(yieldValues.size() == 2 && "expected 2 yield values");
233     bool equivalentYields = state.areEquivalentBufferizedValues(
234         yieldValues[0]->get(), yieldValues[1]->get());
235     return equivalentYields ? BufferRelation::Equivalent : BufferRelation::None;
236   }
237 };
238 
239 /// Helper function for loop bufferization. Return the indices of all values
240 /// that have a tensor type.
241 static DenseSet<int64_t> getTensorIndices(ValueRange values) {
242   DenseSet<int64_t> result;
243   for (const auto &it : llvm::enumerate(values))
244     if (it.value().getType().isa<TensorType>())
245       result.insert(it.index());
246   return result;
247 }
248 
249 /// Helper function for loop bufferization. Return the indices of all
250 /// bbArg/yielded value pairs who's buffer relation is "Equivalent".
251 DenseSet<int64_t> getEquivalentBuffers(Block::BlockArgListType bbArgs,
252                                        ValueRange yieldedValues,
253                                        const AnalysisState &state) {
254   unsigned int minSize = std::min(bbArgs.size(), yieldedValues.size());
255   DenseSet<int64_t> result;
256   for (unsigned int i = 0; i < minSize; ++i) {
257     if (!bbArgs[i].getType().isa<TensorType>() ||
258         !yieldedValues[i].getType().isa<TensorType>())
259       continue;
260     if (state.areEquivalentBufferizedValues(bbArgs[i], yieldedValues[i]))
261       result.insert(i);
262   }
263   return result;
264 }
265 
266 /// Helper function for loop bufferization. Cast the given buffer to the given
267 /// memref type.
268 static Value castBuffer(OpBuilder &b, Value buffer, Type type) {
269   assert(type.isa<BaseMemRefType>() && "expected BaseMemRefType");
270   assert(buffer.getType().isa<BaseMemRefType>() && "expected BaseMemRefType");
271   // If the buffer already has the correct type, no cast is needed.
272   if (buffer.getType() == type)
273     return buffer;
274   // TODO: In case `type` has a layout map that is not the fully dynamic
275   // one, we may not be able to cast the buffer. In that case, the loop
276   // iter_arg's layout map must be changed (see uses of `castBuffer`).
277   assert(memref::CastOp::areCastCompatible(buffer.getType(), type) &&
278          "scf.while op bufferization: cast incompatible");
279   return b.create<memref::CastOp>(buffer.getLoc(), type, buffer).getResult();
280 }
281 
282 /// Helper function for loop bufferization. Return the bufferized values of the
283 /// given OpOperands. If an operand is not a tensor, return the original value.
284 static SmallVector<Value> getBuffers(RewriterBase &rewriter,
285                                      MutableArrayRef<OpOperand> operands,
286                                      const BufferizationOptions &options) {
287   SmallVector<Value> result;
288   for (OpOperand &opOperand : operands) {
289     if (opOperand.get().getType().isa<TensorType>()) {
290       Value resultBuffer = getBuffer(rewriter, opOperand.get(), options);
291       result.push_back(resultBuffer);
292     } else {
293       result.push_back(opOperand.get());
294     }
295   }
296   return result;
297 }
298 
299 /// Helper function for loop bufferization. Compute the buffer that should be
300 /// yielded from a loop block (loop body or loop condition).
301 static Value getYieldedBuffer(RewriterBase &rewriter, Value tensor,
302                               BaseMemRefType type,
303                               const BufferizationOptions &options) {
304   assert(tensor.getType().isa<TensorType>() && "expected tensor");
305   ensureToMemrefOpIsValid(tensor, type);
306   Value yieldedVal = getBuffer(rewriter, tensor, options);
307   return castBuffer(rewriter, yieldedVal, type);
308 }
309 
310 /// Helper function for loop bufferization. Given a range of values, apply
311 /// `func` to those marked in `tensorIndices`. Otherwise, store the unmodified
312 /// value in the result vector.
313 static SmallVector<Value>
314 convertTensorValues(ValueRange values, const DenseSet<int64_t> &tensorIndices,
315                     llvm::function_ref<Value(Value, int64_t)> func) {
316   SmallVector<Value> result;
317   for (const auto &it : llvm::enumerate(values)) {
318     size_t idx = it.index();
319     Value val = it.value();
320     result.push_back(tensorIndices.contains(idx) ? func(val, idx) : val);
321   }
322   return result;
323 }
324 
325 /// Helper function for loop bufferization. Given a list of pre-bufferization
326 /// yielded values, compute the list of bufferized yielded values.
327 SmallVector<Value> getYieldedValues(RewriterBase &rewriter, ValueRange values,
328                                     TypeRange bufferizedTypes,
329                                     const DenseSet<int64_t> &tensorIndices,
330                                     const BufferizationOptions &options) {
331   return convertTensorValues(
332       values, tensorIndices, [&](Value val, int64_t index) {
333         return getYieldedBuffer(rewriter, val,
334                                 bufferizedTypes[index].cast<BaseMemRefType>(),
335                                 options);
336       });
337 }
338 
339 /// Helper function for loop bufferization. Given a list of bbArgs of the new
340 /// (bufferized) loop op, wrap the bufferized tensor args (now memrefs) into
341 /// ToTensorOps, so that the block body can be moved over to the new op.
342 SmallVector<Value>
343 getBbArgReplacements(RewriterBase &rewriter, Block::BlockArgListType bbArgs,
344                      const DenseSet<int64_t> &tensorIndices) {
345   return convertTensorValues(
346       bbArgs, tensorIndices, [&](Value val, int64_t index) {
347         return rewriter.create<bufferization::ToTensorOp>(val.getLoc(), val);
348       });
349 }
350 
351 /// Bufferization of scf.for. Replace with a new scf.for that operates on
352 /// memrefs.
353 struct ForOpInterface
354     : public BufferizableOpInterface::ExternalModel<ForOpInterface,
355                                                     scf::ForOp> {
356   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
357                               const AnalysisState &state) const {
358     // scf::ForOp alone doesn't bufferize to a memory read, one of the uses of
359     // its matching bbArg may.
360     auto forOp = cast<scf::ForOp>(op);
361     return state.isValueRead(forOp.getRegionIterArgForOpOperand(opOperand));
362   }
363 
364   bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
365                                const AnalysisState &state) const {
366     // Tensor iter_args of scf::ForOps are always considered as a write.
367     return true;
368   }
369 
370   SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
371                                             const AnalysisState &state) const {
372     auto forOp = cast<scf::ForOp>(op);
373     return {forOp.getResultForOpOperand(opOperand)};
374   }
375 
376   BufferRelation bufferRelation(Operation *op, OpResult opResult,
377                                 const AnalysisState &state) const {
378     // ForOp results are equivalent to their corresponding init_args if the
379     // corresponding iter_args and yield values are equivalent.
380     auto forOp = cast<scf::ForOp>(op);
381     OpOperand &forOperand = forOp.getOpOperandForResult(opResult);
382     auto bbArg = forOp.getRegionIterArgForOpOperand(forOperand);
383     auto yieldOp =
384         cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator());
385     bool equivalentYield = state.areEquivalentBufferizedValues(
386         bbArg, yieldOp->getOperand(opResult.getResultNumber()));
387     return equivalentYield ? BufferRelation::Equivalent : BufferRelation::None;
388   }
389 
390   bool isWritable(Operation *op, Value value,
391                   const AnalysisState &state) const {
392     // Interestingly, scf::ForOp's bbArg can **always** be viewed
393     // inplace from the perspective of ops nested under:
394     //   1. Either the matching iter operand is not bufferized inplace and an
395     //      alloc + optional copy makes the bbArg itself inplaceable.
396     //   2. Or the matching iter operand is bufferized inplace and bbArg just
397     //      bufferizes to that too.
398     return true;
399   }
400 
401   LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter,
402                                  const AnalysisState &state) const {
403     auto bufferizableOp = cast<BufferizableOpInterface>(op);
404     if (failed(bufferizableOp.resolveTensorOpOperandConflicts(rewriter, state)))
405       return failure();
406 
407     if (!state.getOptions().enforceAliasingInvariants)
408       return success();
409 
410     // According to the `getAliasing...` implementations, a bufferized OpResult
411     // may alias only with the corresponding bufferized init_arg and with no
412     // other buffers. I.e., the i-th OpResult may alias with the i-th init_arg;
413     // but not with any other OpOperand. If a corresponding OpResult/init_arg
414     // pair bufferizes to equivalent buffers, this aliasing requirement is
415     // satisfied. Otherwise, we cannot be sure and must yield a new buffer copy.
416     // (New buffer copies do not alias with any buffer.)
417     auto forOp = cast<scf::ForOp>(op);
418     auto yieldOp =
419         cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator());
420     OpBuilder::InsertionGuard g(rewriter);
421     rewriter.setInsertionPoint(yieldOp);
422 
423     // Indices of all iter_args that have tensor type. These are the ones that
424     // are bufferized.
425     DenseSet<int64_t> indices = getTensorIndices(forOp.getInitArgs());
426     // For every yielded value, is the value equivalent to its corresponding
427     // bbArg?
428     DenseSet<int64_t> equivalentYields = getEquivalentBuffers(
429         forOp.getRegionIterArgs(), yieldOp.getResults(), state);
430     SmallVector<Value> yieldValues;
431     for (int64_t idx = 0;
432          idx < static_cast<int64_t>(yieldOp.getResults().size()); ++idx) {
433       Value value = yieldOp.getResults()[idx];
434       if (!indices.contains(idx) || equivalentYields.contains(idx)) {
435         yieldValues.push_back(value);
436         continue;
437       }
438       Value alloc = allocateTensorForShapedValue(rewriter, yieldOp.getLoc(),
439                                                  value, /*escape=*/true);
440       yieldValues.push_back(alloc);
441     }
442 
443     rewriter.updateRootInPlace(
444         yieldOp, [&]() { yieldOp.getResultsMutable().assign(yieldValues); });
445     return success();
446   }
447 
448   LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
449                           const BufferizationOptions &options) const {
450     auto forOp = cast<scf::ForOp>(op);
451     Block *oldLoopBody = &forOp.getLoopBody().front();
452 
453     // Indices of all iter_args that have tensor type. These are the ones that
454     // are bufferized.
455     DenseSet<int64_t> indices = getTensorIndices(forOp.getInitArgs());
456 
457     // The new memref init_args of the loop.
458     SmallVector<Value> initArgs =
459         getBuffers(rewriter, forOp.getIterOpOperands(), options);
460 
461     // Construct a new scf.for op with memref instead of tensor values.
462     auto newForOp = rewriter.create<scf::ForOp>(
463         forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
464         forOp.getStep(), initArgs);
465     newForOp->setAttrs(forOp->getAttrs());
466     ValueRange initArgsRange(initArgs);
467     TypeRange initArgsTypes(initArgsRange);
468     Block *loopBody = &newForOp.getLoopBody().front();
469 
470     // Set up new iter_args. The loop body uses tensors, so wrap the (memref)
471     // iter_args of the new loop in ToTensorOps.
472     rewriter.setInsertionPointToStart(loopBody);
473     SmallVector<Value> iterArgs =
474         getBbArgReplacements(rewriter, newForOp.getRegionIterArgs(), indices);
475     iterArgs.insert(iterArgs.begin(), newForOp.getInductionVar());
476 
477     // Erase terminator if present.
478     if (iterArgs.size() == 1)
479       rewriter.eraseOp(loopBody->getTerminator());
480 
481     // Move loop body to new loop.
482     rewriter.mergeBlocks(oldLoopBody, loopBody, iterArgs);
483 
484     // Update scf.yield of new loop.
485     auto yieldOp = cast<scf::YieldOp>(loopBody->getTerminator());
486     rewriter.setInsertionPoint(yieldOp);
487     SmallVector<Value> yieldValues = getYieldedValues(
488         rewriter, yieldOp.getResults(), initArgsTypes, indices, options);
489     yieldOp.getResultsMutable().assign(yieldValues);
490 
491     // Replace loop results.
492     replaceOpWithBufferizedValues(rewriter, op, newForOp->getResults());
493 
494     return success();
495   }
496 
497   /// Assert that yielded values of an scf.for op are equivalent to their
498   /// corresponding bbArgs. In that case, the buffer relations of the
499   /// corresponding OpResults are "Equivalent".
500   ///
501   /// If this is not the case, an allocs+copies are inserted and yielded from
502   /// the loop. This could be a performance problem, so it must be explicitly
503   /// activated with `alloc-return-allocs`.
504   LogicalResult verifyAnalysis(Operation *op,
505                                const AnalysisState &state) const {
506     const auto &options =
507         static_cast<const OneShotBufferizationOptions &>(state.getOptions());
508     if (options.allowReturnAllocs)
509       return success();
510 
511     auto forOp = cast<scf::ForOp>(op);
512     auto yieldOp =
513         cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator());
514     for (OpResult opResult : op->getOpResults()) {
515       if (!opResult.getType().isa<TensorType>())
516         continue;
517 
518       // Note: This is overly strict. We should check for aliasing bufferized
519       // values. But we don't have a "must-alias" analysis yet.
520       if (bufferRelation(op, opResult, state) != BufferRelation::Equivalent)
521         return yieldOp->emitError()
522                << "Yield operand #" << opResult.getResultNumber()
523                << " is not equivalent to the corresponding iter bbArg";
524     }
525 
526     return success();
527   }
528 };
529 
530 /// Bufferization of scf.while. Replace with a new scf.while that operates on
531 /// memrefs.
532 struct WhileOpInterface
533     : public BufferizableOpInterface::ExternalModel<WhileOpInterface,
534                                                     scf::WhileOp> {
535   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
536                               const AnalysisState &state) const {
537     // Tensor iter_args of scf::WhileOps are always considered as a read.
538     return true;
539   }
540 
541   bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
542                                const AnalysisState &state) const {
543     // Tensor iter_args of scf::WhileOps are always considered as a write.
544     return true;
545   }
546 
547   SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
548                                             const AnalysisState &state) const {
549     auto whileOp = cast<scf::WhileOp>(op);
550     unsigned int idx = opOperand.getOperandNumber();
551 
552     // The OpResults and OpOperands may not match. They may not even have the
553     // same type. The number of OpResults and OpOperands can also differ.
554     if (idx >= op->getNumResults() ||
555         opOperand.get().getType() != op->getResult(idx).getType())
556       return {};
557 
558     // The only aliasing OpResult may be the one at the same index.
559     return {whileOp->getResult(idx)};
560   }
561 
562   BufferRelation bufferRelation(Operation *op, OpResult opResult,
563                                 const AnalysisState &state) const {
564     // WhileOp results are equivalent to their corresponding init_args if the
565     // corresponding iter_args and yield values are equivalent (for both the
566     // "before" and the "after" block).
567     unsigned int resultNumber = opResult.getResultNumber();
568     auto whileOp = cast<scf::WhileOp>(op);
569 
570     // The "before" region bbArgs and the OpResults may not match.
571     if (resultNumber >= whileOp.getBeforeArguments().size())
572       return BufferRelation::None;
573     if (opResult.getType() !=
574         whileOp.getBeforeArguments()[resultNumber].getType())
575       return BufferRelation::None;
576 
577     auto conditionOp = whileOp.getConditionOp();
578     BlockArgument conditionBbArg = whileOp.getBeforeArguments()[resultNumber];
579     Value conditionOperand = conditionOp.getArgs()[resultNumber];
580     bool equivCondition =
581         state.areEquivalentBufferizedValues(conditionBbArg, conditionOperand);
582 
583     auto yieldOp = whileOp.getYieldOp();
584     BlockArgument bodyBbArg = whileOp.getAfterArguments()[resultNumber];
585     Value yieldOperand = yieldOp.getOperand(resultNumber);
586     bool equivYield =
587         state.areEquivalentBufferizedValues(bodyBbArg, yieldOperand);
588 
589     return equivCondition && equivYield ? BufferRelation::Equivalent
590                                         : BufferRelation::None;
591   }
592 
593   bool isWritable(Operation *op, Value value,
594                   const AnalysisState &state) const {
595     // Interestingly, scf::WhileOp's bbArg can **always** be viewed
596     // inplace from the perspective of ops nested under:
597     //   1. Either the matching iter operand is not bufferized inplace and an
598     //      alloc + optional copy makes the bbArg itself inplaceable.
599     //   2. Or the matching iter operand is bufferized inplace and bbArg just
600     //      bufferizes to that too.
601     return true;
602   }
603 
604   LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter,
605                                  const AnalysisState &state) const {
606     auto bufferizableOp = cast<BufferizableOpInterface>(op);
607     if (failed(bufferizableOp.resolveTensorOpOperandConflicts(rewriter, state)))
608       return failure();
609 
610     if (!state.getOptions().enforceAliasingInvariants)
611       return success();
612 
613     // According to the `getAliasing...` implementations, a bufferized OpResult
614     // may alias only with the corresponding bufferized init_arg and with no
615     // other buffers. I.e., the i-th OpResult may alias with the i-th init_arg;
616     // but not with any other OpOperand. If a corresponding OpResult/init_arg
617     // pair bufferizes to equivalent buffers, this aliasing requirement is
618     // satisfied. Otherwise, we cannot be sure and must yield a new buffer copy.
619     // (New buffer copies do not alias with any buffer.)
620     OpBuilder::InsertionGuard g(rewriter);
621     auto whileOp = cast<scf::WhileOp>(op);
622     auto conditionOp = whileOp.getConditionOp();
623     auto yieldOp = whileOp.getYieldOp();
624 
625     // Indices of all bbArgs that have tensor type. These are the ones that
626     // are bufferized. The "before" and "after" regions may have different args.
627     DenseSet<int64_t> indicesBefore = getTensorIndices(whileOp.getInits());
628     DenseSet<int64_t> indicesAfter =
629         getTensorIndices(whileOp.getAfterArguments());
630 
631     // For every yielded value, is the value equivalent to its corresponding
632     // bbArg?
633     DenseSet<int64_t> equivalentYieldsBefore = getEquivalentBuffers(
634         whileOp.getBeforeArguments(), conditionOp.getArgs(), state);
635     DenseSet<int64_t> equivalentYieldsAfter = getEquivalentBuffers(
636         whileOp.getAfterArguments(), whileOp.getYieldOp().getResults(), state);
637 
638     // Update "before" region.
639     rewriter.setInsertionPoint(conditionOp);
640     SmallVector<Value> beforeYieldValues;
641     for (int64_t idx = 0;
642          idx < static_cast<int64_t>(conditionOp.getArgs().size()); ++idx) {
643       Value value = conditionOp.getArgs()[idx];
644       if (!indicesBefore.contains(idx) ||
645           equivalentYieldsBefore.contains(idx)) {
646         beforeYieldValues.push_back(value);
647         continue;
648       }
649       Value alloc = allocateTensorForShapedValue(rewriter, conditionOp.getLoc(),
650                                                  value, /*escape=*/true);
651       beforeYieldValues.push_back(alloc);
652     }
653     rewriter.updateRootInPlace(conditionOp, [&]() {
654       conditionOp.getArgsMutable().assign(beforeYieldValues);
655     });
656 
657     // Update "after" region.
658     rewriter.setInsertionPoint(yieldOp);
659     SmallVector<Value> afterYieldValues;
660     for (int64_t idx = 0;
661          idx < static_cast<int64_t>(yieldOp.getResults().size()); ++idx) {
662       Value value = yieldOp.getResults()[idx];
663       if (!indicesAfter.contains(idx) || equivalentYieldsAfter.contains(idx)) {
664         afterYieldValues.push_back(value);
665         continue;
666       }
667       Value alloc = allocateTensorForShapedValue(rewriter, yieldOp.getLoc(),
668                                                  value, /*escape=*/true);
669       afterYieldValues.push_back(alloc);
670     }
671     rewriter.updateRootInPlace(yieldOp, [&]() {
672       yieldOp.getResultsMutable().assign(afterYieldValues);
673     });
674 
675     return success();
676   }
677 
678   LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
679                           const BufferizationOptions &options) const {
680     auto whileOp = cast<scf::WhileOp>(op);
681 
682     assert(whileOp.getBefore().getBlocks().size() == 1 &&
683            "regions with multiple blocks not supported");
684     Block *beforeBody = &whileOp.getBefore().front();
685     assert(whileOp.getAfter().getBlocks().size() == 1 &&
686            "regions with multiple blocks not supported");
687     Block *afterBody = &whileOp.getAfter().front();
688 
689     // Indices of all bbArgs that have tensor type. These are the ones that
690     // are bufferized. The "before" and "after" regions may have different args.
691     DenseSet<int64_t> indicesBefore = getTensorIndices(whileOp.getInits());
692     DenseSet<int64_t> indicesAfter =
693         getTensorIndices(whileOp.getAfterArguments());
694 
695     // The new memref init_args of the loop.
696     SmallVector<Value> initArgs =
697         getBuffers(rewriter, whileOp->getOpOperands(), options);
698 
699     // The result types of a WhileOp are the same as the "after" bbArg types.
700     SmallVector<Type> argsTypesAfter = llvm::to_vector(
701         llvm::map_range(whileOp.getAfterArguments(), [&](BlockArgument bbArg) {
702           return bufferization::getBufferType(bbArg, options).cast<Type>();
703         }));
704 
705     // Construct a new scf.while op with memref instead of tensor values.
706     ValueRange argsRangeBefore(initArgs);
707     TypeRange argsTypesBefore(argsRangeBefore);
708     auto newWhileOp = rewriter.create<scf::WhileOp>(whileOp.getLoc(),
709                                                     argsTypesAfter, initArgs);
710 
711     // Add before/after regions to the new op.
712     SmallVector<Location> bbArgLocsBefore(initArgs.size(), whileOp.getLoc());
713     SmallVector<Location> bbArgLocsAfter(argsTypesAfter.size(),
714                                          whileOp.getLoc());
715     Block *newBeforeBody = &newWhileOp.getBefore().emplaceBlock();
716     newWhileOp.getBefore().addArguments(argsTypesBefore, bbArgLocsBefore);
717     Block *newAfterBody = &newWhileOp.getAfter().emplaceBlock();
718     newWhileOp.getAfter().addArguments(argsTypesAfter, bbArgLocsAfter);
719 
720     // Set up new iter_args and move the loop condition block to the new op.
721     // The old block uses tensors, so wrap the (memref) bbArgs of the new block
722     // in ToTensorOps.
723     rewriter.setInsertionPointToStart(newBeforeBody);
724     SmallVector<Value> newBeforeArgs = getBbArgReplacements(
725         rewriter, newWhileOp.getBeforeArguments(), indicesBefore);
726     rewriter.mergeBlocks(beforeBody, newBeforeBody, newBeforeArgs);
727 
728     // Update scf.condition of new loop.
729     auto newConditionOp = newWhileOp.getConditionOp();
730     rewriter.setInsertionPoint(newConditionOp);
731     // Only equivalent buffers or new buffer allocations may be yielded to the
732     // "after" region.
733     // TODO: This could be relaxed for better bufferization results.
734     SmallVector<Value> newConditionArgs =
735         getYieldedValues(rewriter, newConditionOp.getArgs(), argsTypesAfter,
736                          indicesAfter, options);
737     newConditionOp.getArgsMutable().assign(newConditionArgs);
738 
739     // Set up new iter_args and move the loop body block to the new op.
740     // The old block uses tensors, so wrap the (memref) bbArgs of the new block
741     // in ToTensorOps.
742     rewriter.setInsertionPointToStart(newAfterBody);
743     SmallVector<Value> newAfterArgs = getBbArgReplacements(
744         rewriter, newWhileOp.getAfterArguments(), indicesAfter);
745     rewriter.mergeBlocks(afterBody, newAfterBody, newAfterArgs);
746 
747     // Update scf.yield of the new loop.
748     auto newYieldOp = newWhileOp.getYieldOp();
749     rewriter.setInsertionPoint(newYieldOp);
750     // Only equivalent buffers or new buffer allocations may be yielded to the
751     // "before" region.
752     // TODO: This could be relaxed for better bufferization results.
753     SmallVector<Value> newYieldValues =
754         getYieldedValues(rewriter, newYieldOp.getResults(), argsTypesBefore,
755                          indicesBefore, options);
756     newYieldOp.getResultsMutable().assign(newYieldValues);
757 
758     // Replace loop results.
759     replaceOpWithBufferizedValues(rewriter, op, newWhileOp->getResults());
760 
761     return success();
762   }
763 
764   /// Assert that yielded values of an scf.while op are equivalent to their
765   /// corresponding bbArgs. In that case, the buffer relations of the
766   /// corresponding OpResults are "Equivalent".
767   ///
768   /// If this is not the case, allocs+copies are inserted and yielded from
769   /// the loop. This could be a performance problem, so it must be explicitly
770   /// activated with `alloc-return-allocs`.
771   ///
772   /// Not: In contrast to scf::ForOp, scf::WhileOp has two regions and the
773   /// equivalence condition must be checked for both.
774   LogicalResult verifyAnalysis(Operation *op,
775                                const AnalysisState &state) const {
776     auto whileOp = cast<scf::WhileOp>(op);
777     const auto &options =
778         static_cast<const OneShotBufferizationOptions &>(state.getOptions());
779     if (options.allowReturnAllocs)
780       return success();
781 
782     auto conditionOp = whileOp.getConditionOp();
783     for (const auto &it : llvm::enumerate(conditionOp.getArgs())) {
784       if (!it.value().getType().isa<TensorType>())
785         continue;
786       if (!state.areEquivalentBufferizedValues(
787               it.value(), conditionOp->getBlock()->getArgument(it.index())))
788         return conditionOp->emitError()
789                << "Condition arg #" << it.index()
790                << " is not equivalent to the corresponding iter bbArg";
791     }
792 
793     auto yieldOp = whileOp.getYieldOp();
794     for (const auto &it : llvm::enumerate(yieldOp.getResults())) {
795       if (!it.value().getType().isa<TensorType>())
796         continue;
797       if (!state.areEquivalentBufferizedValues(
798               it.value(), yieldOp->getBlock()->getArgument(it.index())))
799         return yieldOp->emitError()
800                << "Yield operand #" << it.index()
801                << " is not equivalent to the corresponding iter bbArg";
802     }
803 
804     return success();
805   }
806 };
807 
808 /// Bufferization of scf.yield. Bufferized as part of their enclosing ops, so
809 /// this is for analysis only.
810 struct YieldOpInterface
811     : public BufferizableOpInterface::ExternalModel<YieldOpInterface,
812                                                     scf::YieldOp> {
813   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
814                               const AnalysisState &state) const {
815     return true;
816   }
817 
818   bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
819                                const AnalysisState &state) const {
820     return false;
821   }
822 
823   SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
824                                             const AnalysisState &state) const {
825     if (isa<scf::IfOp>(op->getParentOp()))
826       return {op->getParentOp()->getResult(opOperand.getOperandNumber())};
827     if (isa<scf::ExecuteRegionOp>(op->getParentOp()))
828       return {op->getParentOp()->getResult(opOperand.getOperandNumber())};
829     return {};
830   }
831 
832   bool mustBufferizeInPlace(Operation *op, OpOperand &opOperand,
833                             const AnalysisState &state) const {
834     // Yield operands always bufferize inplace. Otherwise, an alloc + copy
835     // may be generated inside the block. We should not return/yield allocations
836     // when possible.
837     return true;
838   }
839 
840   LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
841                           const BufferizationOptions &options) const {
842     auto yieldOp = cast<scf::YieldOp>(op);
843     if (!isa<scf::ExecuteRegionOp, scf::IfOp, scf::ForOp, scf::WhileOp>(
844             yieldOp->getParentOp()))
845       return yieldOp->emitError("unsupported scf::YieldOp parent");
846 
847     // TODO: Bufferize scf.yield inside scf.while/scf.for here.
848     // (Currently bufferized together with scf.while/scf.for.)
849     if (isa<scf::ForOp, scf::WhileOp>(yieldOp->getParentOp()))
850       return success();
851 
852     SmallVector<Value> newResults;
853     for (const auto &it : llvm::enumerate(yieldOp.getResults())) {
854       Value value = it.value();
855       if (value.getType().isa<TensorType>()) {
856         Value buffer = getBuffer(rewriter, value, options);
857         newResults.push_back(buffer);
858       } else {
859         newResults.push_back(value);
860       }
861     }
862 
863     replaceOpWithNewBufferizedOp<scf::YieldOp>(rewriter, op, newResults);
864     return success();
865   }
866 };
867 
868 using tensor::ExtractSliceOp;
869 
870 /// Return the destinations that an ForeachThreadOp is inserting into. One per
871 /// ParallelInsertSliceOp.
872 static SmallVector<OpOperand *>
873 getInsertionDest(ForeachThreadOp foreachThreadOp) {
874   PerformConcurrentlyOp terminator = foreachThreadOp.getTerminator();
875   SmallVector<OpOperand *> result;
876   terminator.walk([&](ParallelInsertSliceOp insertOp) {
877     result.push_back(&insertOp->getOpOperand(1) /*dest*/);
878   });
879   return result;
880 }
881 
882 /// Bufferization of ForeachThreadOp. This also bufferizes the terminator of the
883 /// region. There are op interfaces for the terminators (PerformConcurrentlyOp
884 /// and ParallelInsertSliceOp), but these are only used during analysis. Not
885 /// for bufferization.
886 struct ForeachThreadOpInterface
887     : public BufferizableOpInterface::ExternalModel<ForeachThreadOpInterface,
888                                                     ForeachThreadOp> {
889   SmallVector<OpOperand *>
890   getAliasingOpOperand(Operation *op, OpResult opResult,
891                        const AnalysisState &state) const {
892     // Get OpOperand (dest) from corresponding ParallelInsertSliceOp.
893     auto foreachThreadOp = cast<ForeachThreadOp>(op);
894     return {getInsertionDest(foreachThreadOp)[opResult.getResultNumber()]};
895   }
896 
897   bool isMemoryWrite(Operation *op, OpResult opResult,
898                      const AnalysisState &state) const {
899     // This op is a memory write. Stop lookup here to avoid finding false
900     // conflicts involving this op and one of the ops in the region. This is
901     // similar to how scf.if ops are analyzed.
902     return true;
903   }
904 
905   BufferRelation bufferRelation(Operation *op, OpResult opResult,
906                                 const AnalysisState &state) const {
907     return BufferRelation::Equivalent;
908   }
909 
910   LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter,
911                                  const AnalysisState &state) const {
912     auto bufferizableOp = cast<BufferizableOpInterface>(op);
913     if (failed(bufferizableOp.resolveTensorOpOperandConflicts(rewriter, state)))
914       return failure();
915 
916     OpBuilder::InsertionGuard g(rewriter);
917     auto foreachThreadOp = cast<ForeachThreadOp>(op);
918     for (OpResult opResult : foreachThreadOp->getOpResults()) {
919       SmallVector<OpOperand *> destOperands =
920           state.getAliasingOpOperand(opResult);
921       assert(destOperands.size() == 1 &&
922              "expected exactly one aliasing OpOperand");
923       assert(isa<ParallelInsertSliceOp>(destOperands.front()->getOwner()) &&
924              "expected ParallelInsertSliceOp");
925 
926       // Nothing to do if there is no conflict.
927       if (state.isInPlace(*destOperands.front()))
928         continue;
929 
930       // Insert tensor allocation.
931       bool isYielded = state.isTensorYielded(opResult);
932       Value alloc = allocateTensorForShapedValue(rewriter, op->getLoc(),
933                                                  destOperands.front()->get(),
934                                                  /*escape=*/isYielded);
935 
936       // Update terminator operand.
937       rewriter.updateRootInPlace(destOperands.front()->getOwner(),
938                                  [&]() { destOperands.front()->set(alloc); });
939     }
940 
941     return success();
942   }
943 
944   LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
945                           const BufferizationOptions &options) const {
946     auto foreachThreadOp = cast<ForeachThreadOp>(op);
947 
948 #ifndef NDEBUG
949     // ParallelInsertSliceOpInterface replaces all uses.
950     for (OpResult opResult : foreachThreadOp->getOpResults())
951       assert(opResult.getUses().empty() &&
952              "expected that all uses were already replaced");
953 #endif // NDEBUG
954 
955     // Create new ForeachThreadOp without any results and drop the automatically
956     // introduced terminator.
957     TypeRange newResultTypes;
958     auto newForeachThreadOp = rewriter.create<ForeachThreadOp>(
959         foreachThreadOp.getLoc(), newResultTypes,
960         foreachThreadOp.getNumThreads());
961     newForeachThreadOp.getBody()->getTerminator()->erase();
962 
963     // Move over block contents of the old op.
964     rewriter.mergeBlocks(foreachThreadOp.getBody(),
965                          newForeachThreadOp.getBody(),
966                          {newForeachThreadOp.getBody()->getArguments()});
967 
968     // Remove the old op.
969     rewriter.eraseOp(op);
970 
971     return success();
972   }
973 };
974 
975 /// Nothing to do for PerformConcurrentlyOp.
976 struct PerformConcurrentlyOpInterface
977     : public BufferizableOpInterface::ExternalModel<
978           PerformConcurrentlyOpInterface, PerformConcurrentlyOp> {
979   LogicalResult bufferize(Operation *op, RewriterBase &b,
980                           const BufferizationOptions &options) const {
981     llvm_unreachable("op does not have any tensor OpOperands / OpResults");
982     return failure();
983   }
984 };
985 
986 /// Return true if the (ExtractSliceOp, ParallelInsertSliceOp) pair match (i.e.
987 /// equivalent operand / result and same offset/sizes/strides specification).
988 static bool areEquivalentExtractSliceOps(const AnalysisState &state,
989                                          ExtractSliceOp st,
990                                          ParallelInsertSliceOp sti) {
991   if (!st || !sti)
992     return false;
993   if (st != sti &&
994       !state.areEquivalentBufferizedValues(st.getSource(), sti.getDest()))
995     return false;
996   if (!sameOffsetsSizesAndStrides(st, sti, isEqualConstantIntOrValue))
997     return false;
998   return true;
999 }
1000 
1001 /// Return true if `value` is originating from an ExtractSliceOp that matches
1002 /// the given InsertSliceOp.
1003 static bool hasMatchingExtractSliceOp(const AnalysisState &state, Value value,
1004                                       ParallelInsertSliceOp insertOp) {
1005   auto condition = [&](Value val) {
1006     if (auto extractOp = val.getDefiningOp<ExtractSliceOp>())
1007       if (areEquivalentExtractSliceOps(state, extractOp, insertOp))
1008         return true;
1009     return false;
1010   };
1011 
1012   return llvm::all_of(state.findValueInReverseUseDefChain(value, condition),
1013                       condition);
1014 }
1015 
1016 /// Analysis of ParallelInsertSliceOp.
1017 struct ParallelInsertSliceOpInterface
1018     : public BufferizableOpInterface::ExternalModel<
1019           ParallelInsertSliceOpInterface, ParallelInsertSliceOp> {
1020   SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
1021                                             const AnalysisState &state) const {
1022     if (&opOperand != &op->getOpOperand(1) /*dest*/)
1023       return {};
1024 
1025     // ParallelInsertSliceOp itself has no results. Tensors are returned via
1026     // the parent op.
1027     auto foreachThreadOp = op->getParentOfType<ForeachThreadOp>();
1028     assert(foreachThreadOp &&
1029            "could not find valid owner of parallel_insert_slice");
1030 
1031     // The i-th ParallelInsertSliceOp result is returned via the i-th OpResult
1032     // of the parent ForeachThreadOp.
1033     Block *block = op->getBlock();
1034     unsigned int opIdx = 0;
1035     for (ParallelInsertSliceOp insertOp :
1036          block->getOps<ParallelInsertSliceOp>()) {
1037       if (insertOp.getOperation() == op)
1038         break;
1039       ++opIdx;
1040     }
1041     assert(opIdx < foreachThreadOp->getNumResults() &&
1042            "could not find op inside terminator op");
1043 
1044     return {foreachThreadOp->getResult(opIdx)};
1045   }
1046 
1047   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
1048                               const AnalysisState &state) const {
1049     return true;
1050   }
1051 
1052   bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
1053                                const AnalysisState &state) const {
1054     return &opOperand == &op->getOpOperand(1) /*dest*/;
1055   }
1056 
1057   BufferRelation bufferRelation(Operation *op, OpResult opResult,
1058                                 const AnalysisState &state) const {
1059     return BufferRelation::Equivalent;
1060   }
1061 
1062   LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter,
1063                                  const AnalysisState &state) const {
1064     return success();
1065   }
1066 
1067   LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
1068                           const BufferizationOptions &options) const {
1069     OpBuilder::InsertionGuard g(rewriter);
1070     auto insertOp = cast<ParallelInsertSliceOp>(op);
1071     auto performConcurrentlyOp = cast<PerformConcurrentlyOp>(op->getParentOp());
1072     auto foreachThreadOp =
1073         cast<ForeachThreadOp>(performConcurrentlyOp->getParentOp());
1074 
1075     // If the op bufferizes out-of-place, allocate the copy before the
1076     // ForeachThreadOp.
1077     rewriter.setInsertionPoint(foreachThreadOp);
1078     Value destBuffer = getBuffer(rewriter, insertOp.getDest(), options);
1079 
1080     // Bufferize the ParallelInsertSliceOp outside of the PerformConcurrentlyOp.
1081     rewriter.setInsertionPoint(performConcurrentlyOp);
1082     Value srcBuffer = getBuffer(rewriter, insertOp.getSource(), options);
1083     Value subview = rewriter.create<memref::SubViewOp>(
1084         insertOp.getLoc(), destBuffer, insertOp.getMixedOffsets(),
1085         insertOp.getMixedSizes(), insertOp.getMixedStrides());
1086     // This memcpy will fold away if everything bufferizes in-place.
1087     if (failed(options.createMemCpy(rewriter, insertOp.getLoc(), srcBuffer,
1088                                     subview)))
1089       return failure();
1090     rewriter.eraseOp(op);
1091 
1092     // Replace all uses of ForeachThreadOp (just the corresponding result).
1093     rewriter.setInsertionPointAfter(foreachThreadOp);
1094     Value toTensorOp =
1095         rewriter.create<ToTensorOp>(foreachThreadOp.getLoc(), destBuffer);
1096     unsigned resultNum = 0;
1097     for (Operation &nextOp : performConcurrentlyOp.yieldingOps()) {
1098       if (&nextOp == op)
1099         break;
1100       resultNum++;
1101     }
1102     assert(resultNum < foreachThreadOp->getNumResults() &&
1103            "ParallelInsertSliceOp not found in PerformConcurrentlyOp");
1104     SmallVector<OpOperand *> resultUses = llvm::to_vector(
1105         llvm::map_range(foreachThreadOp->getResult(resultNum).getUses(),
1106                         [](OpOperand &use) { return &use; }));
1107     for (OpOperand *use : resultUses) {
1108       rewriter.updateRootInPlace(use->getOwner(),
1109                                  [&]() { use->set(toTensorOp); });
1110     }
1111     return success();
1112   }
1113 
1114   // TODO: This is copied from TensorInterfaceImpl.cpp. Find a way to share
1115   // the code.
1116   bool isNotConflicting(Operation *op, OpOperand *uRead,
1117                         OpOperand *uConflictingWrite,
1118                         const AnalysisState &state) const {
1119     Operation *readingOp = uRead->getOwner();
1120     Operation *conflictingWritingOp = uConflictingWrite->getOwner();
1121 
1122     // Special rules for matching ExtractSliceOp/InsertSliceOp pairs. If
1123     // uRead is an InsertSliceOp...
1124     if (auto insertSliceOp = dyn_cast<ParallelInsertSliceOp>(readingOp)) {
1125       // As an example, consider the following IR.
1126       //
1127       // %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] }
1128       // %1 = linalg.fill %cst, %0 {inplace= [true] }
1129       // %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1]
1130       //     {inplace= [true] }
1131 
1132       // TODO: Use insertSliceOp.getDestOpOperand etc. when available.
1133       if (uRead == &insertSliceOp->getOpOperand(1) /*dest*/ &&
1134           hasMatchingExtractSliceOp(state, uConflictingWrite->get(),
1135                                     insertSliceOp))
1136         // Case 1: The main insight is that InsertSliceOp reads only part of
1137         // the destination tensor. The overwritten area is not read. If
1138         // uConflictingWrite writes into exactly the memory location that is
1139         // being read by uRead, this is not a conflict.
1140         //
1141         // In the above example:
1142         // uRead             = OpOperand 1 (%t) of tensor.insert_slice
1143         // uConflictingWrite = OpOperand 1 (%0) of linalg.fill
1144         //
1145         // The read of %t does not conflict with the write of the FillOp
1146         // (same aliases!) because the area that the FillOp operates on is
1147         // exactly the one that is *not* read via %t.
1148         return true;
1149 
1150       if (uRead == &insertSliceOp->getOpOperand(0) /*source*/ &&
1151           uConflictingWrite == &insertSliceOp->getOpOperand(1) /*dest*/ &&
1152           hasMatchingExtractSliceOp(state, uRead->get(), insertSliceOp))
1153         // Case 2: The read of the source tensor and the write to the dest
1154         // tensor via an InsertSliceOp is not a conflict if the read is
1155         // reading exactly that part of an equivalent tensor that the
1156         // InsertSliceOp is writing.
1157         //
1158         // In the above example:
1159         // uRead             = OpOperand 0 (%1) of tensor.insert_slice
1160         // uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice
1161         return true;
1162     }
1163 
1164     // If uConflictingWrite is an InsertSliceOp...
1165     if (auto insertSliceOp =
1166             dyn_cast<ParallelInsertSliceOp>(conflictingWritingOp))
1167       // As an example, consider the following IR.
1168       //
1169       // %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] }
1170       // %1 = linalg.fill %cst, %0 {inplace= [true] }
1171       // %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1]
1172       //     {inplace= [true] }
1173       // %3 = vector.transfer_read %1, %cst
1174       //
1175       // In the above example:
1176       // uRead             = OpOperand 0 (%1) of vector.transfer_read
1177       // uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice
1178       // lastWrite         = %1
1179       //
1180       // This is not a conflict because the InsertSliceOp overwrites the
1181       // memory segment of %1 with the exact same data. (Effectively, there
1182       // is no memory write here.)
1183       if (uConflictingWrite == &insertSliceOp->getOpOperand(1) /*dest*/ &&
1184           state.areEquivalentBufferizedValues(uRead->get(),
1185                                               insertSliceOp.getSource()) &&
1186           hasMatchingExtractSliceOp(state, insertSliceOp.getSource(),
1187                                     insertSliceOp))
1188         return true;
1189 
1190     return false;
1191   }
1192 };
1193 
1194 } // namespace
1195 } // namespace scf
1196 } // namespace mlir
1197 
1198 void mlir::scf::registerBufferizableOpInterfaceExternalModels(
1199     DialectRegistry &registry) {
1200   registry.addExtension(+[](MLIRContext *ctx, scf::SCFDialect *dialect) {
1201     ExecuteRegionOp::attachInterface<ExecuteRegionOpInterface>(*ctx);
1202     ForOp::attachInterface<ForOpInterface>(*ctx);
1203     IfOp::attachInterface<IfOpInterface>(*ctx);
1204     ForeachThreadOp::attachInterface<ForeachThreadOpInterface>(*ctx);
1205     ParallelInsertSliceOp::attachInterface<ParallelInsertSliceOpInterface>(
1206         *ctx);
1207     PerformConcurrentlyOp::attachInterface<PerformConcurrentlyOpInterface>(
1208         *ctx);
1209     WhileOp::attachInterface<WhileOpInterface>(*ctx);
1210     YieldOp::attachInterface<YieldOpInterface>(*ctx);
1211   });
1212 }
1213