1 //===- StdExpandDivs.cpp - Code to prepare Std for lowering Divs to LLVM -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file Std transformations to expand Divs operation to help for the 10 // lowering to LLVM. Currently implemented transformations are Ceil and Floor 11 // for Signed Integers. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PassDetail.h" 16 17 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 18 #include "mlir/Dialect/Arithmetic/Transforms/Passes.h" 19 #include "mlir/Dialect/MemRef/IR/MemRef.h" 20 #include "mlir/Dialect/MemRef/Transforms/Passes.h" 21 #include "mlir/IR/TypeUtilities.h" 22 #include "mlir/Transforms/DialectConversion.h" 23 24 using namespace mlir; 25 26 namespace { 27 28 /// Converts `atomic_rmw` that cannot be lowered to a simple atomic op with 29 /// AtomicRMWOpLowering pattern, e.g. with "minf" or "maxf" attributes, to 30 /// `memref.generic_atomic_rmw` with the expanded code. 31 /// 32 /// %x = atomic_rmw "maxf" %fval, %F[%i] : (f32, memref<10xf32>) -> f32 33 /// 34 /// will be lowered to 35 /// 36 /// %x = memref.generic_atomic_rmw %F[%i] : memref<10xf32> { 37 /// ^bb0(%current: f32): 38 /// %cmp = arith.cmpf "ogt", %current, %fval : f32 39 /// %new_value = select %cmp, %current, %fval : f32 40 /// memref.atomic_yield %new_value : f32 41 /// } 42 struct AtomicRMWOpConverter : public OpRewritePattern<memref::AtomicRMWOp> { 43 public: 44 using OpRewritePattern::OpRewritePattern; 45 46 LogicalResult matchAndRewrite(memref::AtomicRMWOp op, 47 PatternRewriter &rewriter) const final { 48 arith::CmpFPredicate predicate; 49 switch (op.kind()) { 50 case arith::AtomicRMWKind::maxf: 51 predicate = arith::CmpFPredicate::OGT; 52 break; 53 case arith::AtomicRMWKind::minf: 54 predicate = arith::CmpFPredicate::OLT; 55 break; 56 default: 57 return failure(); 58 } 59 60 auto loc = op.getLoc(); 61 auto genericOp = rewriter.create<memref::GenericAtomicRMWOp>( 62 loc, op.memref(), op.indices()); 63 OpBuilder bodyBuilder = 64 OpBuilder::atBlockEnd(genericOp.getBody(), rewriter.getListener()); 65 66 Value lhs = genericOp.getCurrentValue(); 67 Value rhs = op.value(); 68 Value cmp = bodyBuilder.create<arith::CmpFOp>(loc, predicate, lhs, rhs); 69 Value select = bodyBuilder.create<arith::SelectOp>(loc, cmp, lhs, rhs); 70 bodyBuilder.create<memref::AtomicYieldOp>(loc, select); 71 72 rewriter.replaceOp(op, genericOp.getResult()); 73 return success(); 74 } 75 }; 76 77 /// Converts `memref.reshape` that has a target shape of a statically-known 78 /// size to `memref.reinterpret_cast`. 79 struct MemRefReshapeOpConverter : public OpRewritePattern<memref::ReshapeOp> { 80 public: 81 using OpRewritePattern::OpRewritePattern; 82 83 LogicalResult matchAndRewrite(memref::ReshapeOp op, 84 PatternRewriter &rewriter) const final { 85 auto shapeType = op.shape().getType().cast<MemRefType>(); 86 if (!shapeType.hasStaticShape()) 87 return failure(); 88 89 int64_t rank = shapeType.cast<MemRefType>().getDimSize(0); 90 SmallVector<OpFoldResult, 4> sizes, strides; 91 sizes.resize(rank); 92 strides.resize(rank); 93 94 Location loc = op.getLoc(); 95 Value stride = rewriter.create<arith::ConstantIndexOp>(loc, 1); 96 for (int i = rank - 1; i >= 0; --i) { 97 Value size; 98 // Load dynamic sizes from the shape input, use constants for static dims. 99 if (op.getType().isDynamicDim(i)) { 100 Value index = rewriter.create<arith::ConstantIndexOp>(loc, i); 101 size = rewriter.create<memref::LoadOp>(loc, op.shape(), index); 102 if (!size.getType().isa<IndexType>()) 103 size = rewriter.create<arith::IndexCastOp>( 104 loc, rewriter.getIndexType(), size); 105 sizes[i] = size; 106 } else { 107 sizes[i] = rewriter.getIndexAttr(op.getType().getDimSize(i)); 108 size = 109 rewriter.create<arith::ConstantOp>(loc, sizes[i].get<Attribute>()); 110 } 111 strides[i] = stride; 112 if (i > 0) 113 stride = rewriter.create<arith::MulIOp>(loc, stride, size); 114 } 115 rewriter.replaceOpWithNewOp<memref::ReinterpretCastOp>( 116 op, op.getType(), op.source(), /*offset=*/rewriter.getIndexAttr(0), 117 sizes, strides); 118 return success(); 119 } 120 }; 121 122 struct ExpandOpsPass : public ExpandOpsBase<ExpandOpsPass> { 123 void runOnOperation() override { 124 MLIRContext &ctx = getContext(); 125 126 RewritePatternSet patterns(&ctx); 127 memref::populateExpandOpsPatterns(patterns); 128 ConversionTarget target(ctx); 129 130 target.addLegalDialect<arith::ArithmeticDialect, memref::MemRefDialect>(); 131 target.addDynamicallyLegalOp<memref::AtomicRMWOp>( 132 [](memref::AtomicRMWOp op) { 133 return op.kind() != arith::AtomicRMWKind::maxf && 134 op.kind() != arith::AtomicRMWKind::minf; 135 }); 136 target.addDynamicallyLegalOp<memref::ReshapeOp>([](memref::ReshapeOp op) { 137 return !op.shape().getType().cast<MemRefType>().hasStaticShape(); 138 }); 139 if (failed(applyPartialConversion(getOperation(), target, 140 std::move(patterns)))) 141 signalPassFailure(); 142 } 143 }; 144 145 } // namespace 146 147 void mlir::memref::populateExpandOpsPatterns(RewritePatternSet &patterns) { 148 patterns.add<AtomicRMWOpConverter, MemRefReshapeOpConverter>( 149 patterns.getContext()); 150 } 151 152 std::unique_ptr<Pass> mlir::memref::createExpandOpsPass() { 153 return std::make_unique<ExpandOpsPass>(); 154 } 155