1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/MemRef/IR/MemRef.h" 10 #include "mlir/Dialect/MemRef/Utils/MemRefUtils.h" 11 #include "mlir/Dialect/StandardOps/IR/Ops.h" 12 #include "mlir/Dialect/StandardOps/Utils/Utils.h" 13 #include "mlir/Dialect/Tensor/IR/Tensor.h" 14 #include "mlir/Dialect/Utils/StaticValueUtils.h" 15 #include "mlir/IR/AffineMap.h" 16 #include "mlir/IR/Builders.h" 17 #include "mlir/IR/BuiltinTypes.h" 18 #include "mlir/IR/Matchers.h" 19 #include "mlir/IR/PatternMatch.h" 20 #include "mlir/IR/TypeUtilities.h" 21 #include "mlir/Interfaces/InferTypeOpInterface.h" 22 #include "mlir/Interfaces/ViewLikeInterface.h" 23 #include "llvm/ADT/STLExtras.h" 24 25 using namespace mlir; 26 using namespace mlir::memref; 27 28 /// Materialize a single constant operation from a given attribute value with 29 /// the desired resultant type. 30 Operation *MemRefDialect::materializeConstant(OpBuilder &builder, 31 Attribute value, Type type, 32 Location loc) { 33 return builder.create<mlir::ConstantOp>(loc, type, value); 34 } 35 36 //===----------------------------------------------------------------------===// 37 // Common canonicalization pattern support logic 38 //===----------------------------------------------------------------------===// 39 40 /// This is a common class used for patterns of the form 41 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast 42 /// into the root operation directly. 43 static LogicalResult foldMemRefCast(Operation *op, Value inner = nullptr) { 44 bool folded = false; 45 for (OpOperand &operand : op->getOpOperands()) { 46 auto cast = operand.get().getDefiningOp<CastOp>(); 47 if (cast && operand.get() != inner && 48 !cast.getOperand().getType().isa<UnrankedMemRefType>()) { 49 operand.set(cast.getOperand()); 50 folded = true; 51 } 52 } 53 return success(folded); 54 } 55 56 //===----------------------------------------------------------------------===// 57 // Helpers for GlobalOp 58 //===----------------------------------------------------------------------===// 59 60 static Type getTensorTypeFromMemRefType(Type type) { 61 if (auto memref = type.dyn_cast<MemRefType>()) 62 return RankedTensorType::get(memref.getShape(), memref.getElementType()); 63 if (auto memref = type.dyn_cast<UnrankedMemRefType>()) 64 return UnrankedTensorType::get(memref.getElementType()); 65 return NoneType::get(type.getContext()); 66 } 67 68 //===----------------------------------------------------------------------===// 69 // AllocOp / AllocaOp 70 //===----------------------------------------------------------------------===// 71 72 template <typename AllocLikeOp> 73 static LogicalResult verifyAllocLikeOp(AllocLikeOp op) { 74 static_assert(llvm::is_one_of<AllocLikeOp, AllocOp, AllocaOp>::value, 75 "applies to only alloc or alloca"); 76 auto memRefType = op.getResult().getType().template dyn_cast<MemRefType>(); 77 if (!memRefType) 78 return op.emitOpError("result must be a memref"); 79 80 if (static_cast<int64_t>(op.dynamicSizes().size()) != 81 memRefType.getNumDynamicDims()) 82 return op.emitOpError("dimension operand count does not equal memref " 83 "dynamic dimension count"); 84 85 unsigned numSymbols = 0; 86 if (!memRefType.getAffineMaps().empty()) 87 numSymbols = memRefType.getAffineMaps().front().getNumSymbols(); 88 if (op.symbolOperands().size() != numSymbols) 89 return op.emitOpError("symbol operand count does not equal memref symbol " 90 "count: expected ") 91 << numSymbols << ", got " << op.symbolOperands().size(); 92 93 return success(); 94 } 95 96 static LogicalResult verify(AllocOp op) { return verifyAllocLikeOp(op); } 97 98 static LogicalResult verify(AllocaOp op) { 99 // An alloca op needs to have an ancestor with an allocation scope trait. 100 if (!op->getParentWithTrait<OpTrait::AutomaticAllocationScope>()) 101 return op.emitOpError( 102 "requires an ancestor op with AutomaticAllocationScope trait"); 103 104 return verifyAllocLikeOp(op); 105 } 106 107 namespace { 108 /// Fold constant dimensions into an alloc like operation. 109 template <typename AllocLikeOp> 110 struct SimplifyAllocConst : public OpRewritePattern<AllocLikeOp> { 111 using OpRewritePattern<AllocLikeOp>::OpRewritePattern; 112 113 LogicalResult matchAndRewrite(AllocLikeOp alloc, 114 PatternRewriter &rewriter) const override { 115 // Check to see if any dimensions operands are constants. If so, we can 116 // substitute and drop them. 117 if (llvm::none_of(alloc.dynamicSizes(), [](Value operand) { 118 return matchPattern(operand, matchConstantIndex()); 119 })) 120 return failure(); 121 122 auto memrefType = alloc.getType(); 123 124 // Ok, we have one or more constant operands. Collect the non-constant ones 125 // and keep track of the resultant memref type to build. 126 SmallVector<int64_t, 4> newShapeConstants; 127 newShapeConstants.reserve(memrefType.getRank()); 128 SmallVector<Value, 4> dynamicSizes; 129 130 unsigned dynamicDimPos = 0; 131 for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) { 132 int64_t dimSize = memrefType.getDimSize(dim); 133 // If this is already static dimension, keep it. 134 if (dimSize != -1) { 135 newShapeConstants.push_back(dimSize); 136 continue; 137 } 138 auto dynamicSize = alloc.dynamicSizes()[dynamicDimPos]; 139 auto *defOp = dynamicSize.getDefiningOp(); 140 if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) { 141 // Dynamic shape dimension will be folded. 142 newShapeConstants.push_back(constantIndexOp.getValue()); 143 } else { 144 // Dynamic shape dimension not folded; copy dynamicSize from old memref. 145 newShapeConstants.push_back(-1); 146 dynamicSizes.push_back(dynamicSize); 147 } 148 dynamicDimPos++; 149 } 150 151 // Create new memref type (which will have fewer dynamic dimensions). 152 MemRefType newMemRefType = 153 MemRefType::Builder(memrefType).setShape(newShapeConstants); 154 assert(static_cast<int64_t>(dynamicSizes.size()) == 155 newMemRefType.getNumDynamicDims()); 156 157 // Create and insert the alloc op for the new memref. 158 auto newAlloc = rewriter.create<AllocLikeOp>( 159 alloc.getLoc(), newMemRefType, dynamicSizes, alloc.symbolOperands(), 160 alloc.alignmentAttr()); 161 // Insert a cast so we have the same type as the old alloc. 162 auto resultCast = 163 rewriter.create<CastOp>(alloc.getLoc(), newAlloc, alloc.getType()); 164 165 rewriter.replaceOp(alloc, {resultCast}); 166 return success(); 167 } 168 }; 169 170 /// Fold alloc operations with no users or only store and dealloc uses. 171 template <typename T> 172 struct SimplifyDeadAlloc : public OpRewritePattern<T> { 173 using OpRewritePattern<T>::OpRewritePattern; 174 175 LogicalResult matchAndRewrite(T alloc, 176 PatternRewriter &rewriter) const override { 177 if (llvm::any_of(alloc->getUsers(), [&](Operation *op) { 178 if (auto storeOp = dyn_cast<StoreOp>(op)) 179 return storeOp.value() == alloc; 180 return !isa<DeallocOp>(op); 181 })) 182 return failure(); 183 184 for (Operation *user : llvm::make_early_inc_range(alloc->getUsers())) 185 rewriter.eraseOp(user); 186 187 rewriter.eraseOp(alloc); 188 return success(); 189 } 190 }; 191 } // end anonymous namespace. 192 193 void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, 194 MLIRContext *context) { 195 results.add<SimplifyAllocConst<AllocOp>, SimplifyDeadAlloc<AllocOp>>(context); 196 } 197 198 void AllocaOp::getCanonicalizationPatterns(RewritePatternSet &results, 199 MLIRContext *context) { 200 results.add<SimplifyAllocConst<AllocaOp>, SimplifyDeadAlloc<AllocaOp>>( 201 context); 202 } 203 204 //===----------------------------------------------------------------------===// 205 // AllocaScopeOp 206 //===----------------------------------------------------------------------===// 207 208 static void print(OpAsmPrinter &p, AllocaScopeOp &op) { 209 bool printBlockTerminators = false; 210 211 p << " "; 212 if (!op.results().empty()) { 213 p << " -> (" << op.getResultTypes() << ")"; 214 printBlockTerminators = true; 215 } 216 p.printRegion(op.bodyRegion(), 217 /*printEntryBlockArgs=*/false, 218 /*printBlockTerminators=*/printBlockTerminators); 219 p.printOptionalAttrDict(op->getAttrs()); 220 } 221 222 static ParseResult parseAllocaScopeOp(OpAsmParser &parser, 223 OperationState &result) { 224 // Create a region for the body. 225 result.regions.reserve(1); 226 Region *bodyRegion = result.addRegion(); 227 228 // Parse optional results type list. 229 if (parser.parseOptionalArrowTypeList(result.types)) 230 return failure(); 231 232 // Parse the body region. 233 if (parser.parseRegion(*bodyRegion, /*arguments=*/{}, /*argTypes=*/{})) 234 return failure(); 235 AllocaScopeOp::ensureTerminator(*bodyRegion, parser.getBuilder(), 236 result.location); 237 238 // Parse the optional attribute list. 239 if (parser.parseOptionalAttrDict(result.attributes)) 240 return failure(); 241 242 return success(); 243 } 244 245 static LogicalResult verify(AllocaScopeOp op) { 246 if (failed(RegionBranchOpInterface::verifyTypes(op))) 247 return failure(); 248 249 return success(); 250 } 251 252 void AllocaScopeOp::getSuccessorRegions( 253 Optional<unsigned> index, ArrayRef<Attribute> operands, 254 SmallVectorImpl<RegionSuccessor> ®ions) { 255 if (index.hasValue()) { 256 regions.push_back(RegionSuccessor(getResults())); 257 return; 258 } 259 260 regions.push_back(RegionSuccessor(&bodyRegion())); 261 } 262 263 //===----------------------------------------------------------------------===// 264 // AssumeAlignmentOp 265 //===----------------------------------------------------------------------===// 266 267 static LogicalResult verify(AssumeAlignmentOp op) { 268 unsigned alignment = op.alignment(); 269 if (!llvm::isPowerOf2_32(alignment)) 270 return op.emitOpError("alignment must be power of 2"); 271 return success(); 272 } 273 274 //===----------------------------------------------------------------------===// 275 // BufferCastOp 276 //===----------------------------------------------------------------------===// 277 278 OpFoldResult BufferCastOp::fold(ArrayRef<Attribute>) { 279 if (auto tensorLoad = tensor().getDefiningOp<TensorLoadOp>()) 280 if (tensorLoad.memref().getType() == getType()) 281 return tensorLoad.memref(); 282 return {}; 283 } 284 285 namespace { 286 /// Replace tensor_cast + buffer_cast by buffer_cast + memref_cast. 287 struct BufferCast : public OpRewritePattern<BufferCastOp> { 288 using OpRewritePattern<BufferCastOp>::OpRewritePattern; 289 290 LogicalResult matchAndRewrite(BufferCastOp bufferCast, 291 PatternRewriter &rewriter) const final { 292 auto tensorCastOperand = 293 bufferCast.getOperand().getDefiningOp<tensor::CastOp>(); 294 if (!tensorCastOperand) 295 return failure(); 296 auto srcTensorType = 297 tensorCastOperand.getOperand().getType().dyn_cast<RankedTensorType>(); 298 if (!srcTensorType) 299 return failure(); 300 auto memrefType = MemRefType::get(srcTensorType.getShape(), 301 srcTensorType.getElementType()); 302 Value memref = rewriter.create<BufferCastOp>( 303 bufferCast.getLoc(), memrefType, tensorCastOperand.getOperand()); 304 rewriter.replaceOpWithNewOp<CastOp>(bufferCast, bufferCast.getType(), 305 memref); 306 return success(); 307 } 308 }; 309 310 /// Canonicalize memref.tensor_load + memref.buffer_cast to memref.cast when 311 /// type mismatches prevent `BufferCastOp::fold` to kick in. 312 struct TensorLoadToMemRef : public OpRewritePattern<BufferCastOp> { 313 using OpRewritePattern<BufferCastOp>::OpRewritePattern; 314 315 LogicalResult matchAndRewrite(BufferCastOp bufferCast, 316 PatternRewriter &rewriter) const final { 317 auto tensorLoad = bufferCast.tensor().getDefiningOp<TensorLoadOp>(); 318 // Bail unless we have a tensor_load + memref.buffer_cast with different 319 // types. `BufferCastOp::fold` handles the same type case. 320 if (!tensorLoad || tensorLoad.memref().getType() == bufferCast.getType()) 321 return failure(); 322 // If types are definitely not cast-compatible, bail. 323 if (!CastOp::areCastCompatible(tensorLoad.memref().getType(), 324 bufferCast.getType())) 325 return failure(); 326 327 // We already know that the types are potentially cast-compatible. However 328 // in case the affine maps are different, we may need to use a copy if we go 329 // from dynamic to static offset or stride (the canonicalization cannot know 330 // at this point that it is really cast compatible). 331 auto isGuaranteedCastCompatible = [](MemRefType source, MemRefType target) { 332 int64_t sourceOffset, targetOffset; 333 SmallVector<int64_t, 4> sourceStrides, targetStrides; 334 if (failed(getStridesAndOffset(source, sourceStrides, sourceOffset)) || 335 failed(getStridesAndOffset(target, targetStrides, targetOffset))) 336 return false; 337 auto dynamicToStatic = [](int64_t a, int64_t b) { 338 return a == MemRefType::getDynamicStrideOrOffset() && 339 b != MemRefType::getDynamicStrideOrOffset(); 340 }; 341 if (dynamicToStatic(sourceOffset, targetOffset)) 342 return false; 343 for (auto it : zip(sourceStrides, targetStrides)) 344 if (dynamicToStatic(std::get<0>(it), std::get<1>(it))) 345 return false; 346 return true; 347 }; 348 349 auto tensorLoadType = tensorLoad.memref().getType().dyn_cast<MemRefType>(); 350 auto bufferCastType = bufferCast.getType().dyn_cast<MemRefType>(); 351 if (tensorLoadType && bufferCastType && 352 !isGuaranteedCastCompatible(tensorLoadType, bufferCastType)) { 353 MemRefType resultType = bufferCastType; 354 auto loc = bufferCast.getLoc(); 355 SmallVector<Value, 4> dynamicOperands; 356 for (int i = 0; i < resultType.getRank(); ++i) { 357 if (resultType.getShape()[i] != ShapedType::kDynamicSize) 358 continue; 359 auto index = rewriter.createOrFold<ConstantIndexOp>(loc, i); 360 Value size = rewriter.create<tensor::DimOp>(loc, tensorLoad, index); 361 dynamicOperands.push_back(size); 362 } 363 auto copy = 364 rewriter.create<memref::AllocOp>(loc, resultType, dynamicOperands); 365 rewriter.create<CopyOp>(loc, tensorLoad.memref(), copy); 366 rewriter.replaceOp(bufferCast, {copy}); 367 } else 368 rewriter.replaceOpWithNewOp<CastOp>(bufferCast, bufferCast.getType(), 369 tensorLoad.memref()); 370 return success(); 371 } 372 }; 373 374 } // namespace 375 376 void BufferCastOp::getCanonicalizationPatterns(RewritePatternSet &results, 377 MLIRContext *context) { 378 results.add<BufferCast, TensorLoadToMemRef>(context); 379 } 380 381 //===----------------------------------------------------------------------===// 382 // CastOp 383 //===----------------------------------------------------------------------===// 384 385 /// Determines whether MemRef_CastOp casts to a more dynamic version of the 386 /// source memref. This is useful to to fold a memref.cast into a consuming op 387 /// and implement canonicalization patterns for ops in different dialects that 388 /// may consume the results of memref.cast operations. Such foldable memref.cast 389 /// operations are typically inserted as `view` and `subview` ops are 390 /// canonicalized, to preserve the type compatibility of their uses. 391 /// 392 /// Returns true when all conditions are met: 393 /// 1. source and result are ranked memrefs with strided semantics and same 394 /// element type and rank. 395 /// 2. each of the source's size, offset or stride has more static information 396 /// than the corresponding result's size, offset or stride. 397 /// 398 /// Example 1: 399 /// ```mlir 400 /// %1 = memref.cast %0 : memref<8x16xf32> to memref<?x?xf32> 401 /// %2 = consumer %1 ... : memref<?x?xf32> ... 402 /// ``` 403 /// 404 /// may fold into: 405 /// 406 /// ```mlir 407 /// %2 = consumer %0 ... : memref<8x16xf32> ... 408 /// ``` 409 /// 410 /// Example 2: 411 /// ``` 412 /// %1 = memref.cast %0 : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>> 413 /// to memref<?x?xf32> 414 /// consumer %1 : memref<?x?xf32> ... 415 /// ``` 416 /// 417 /// may fold into: 418 /// 419 /// ``` 420 /// consumer %0 ... : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>> 421 /// ``` 422 bool CastOp::canFoldIntoConsumerOp(CastOp castOp) { 423 MemRefType sourceType = castOp.source().getType().dyn_cast<MemRefType>(); 424 MemRefType resultType = castOp.getType().dyn_cast<MemRefType>(); 425 426 // Requires ranked MemRefType. 427 if (!sourceType || !resultType) 428 return false; 429 430 // Requires same elemental type. 431 if (sourceType.getElementType() != resultType.getElementType()) 432 return false; 433 434 // Requires same rank. 435 if (sourceType.getRank() != resultType.getRank()) 436 return false; 437 438 // Only fold casts between strided memref forms. 439 int64_t sourceOffset, resultOffset; 440 SmallVector<int64_t, 4> sourceStrides, resultStrides; 441 if (failed(getStridesAndOffset(sourceType, sourceStrides, sourceOffset)) || 442 failed(getStridesAndOffset(resultType, resultStrides, resultOffset))) 443 return false; 444 445 // If cast is towards more static sizes along any dimension, don't fold. 446 for (auto it : llvm::zip(sourceType.getShape(), resultType.getShape())) { 447 auto ss = std::get<0>(it), st = std::get<1>(it); 448 if (ss != st) 449 if (MemRefType::isDynamic(ss) && !MemRefType::isDynamic(st)) 450 return false; 451 } 452 453 // If cast is towards more static offset along any dimension, don't fold. 454 if (sourceOffset != resultOffset) 455 if (MemRefType::isDynamicStrideOrOffset(sourceOffset) && 456 !MemRefType::isDynamicStrideOrOffset(resultOffset)) 457 return false; 458 459 // If cast is towards more static strides along any dimension, don't fold. 460 for (auto it : llvm::zip(sourceStrides, resultStrides)) { 461 auto ss = std::get<0>(it), st = std::get<1>(it); 462 if (ss != st) 463 if (MemRefType::isDynamicStrideOrOffset(ss) && 464 !MemRefType::isDynamicStrideOrOffset(st)) 465 return false; 466 } 467 468 return true; 469 } 470 471 bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) { 472 if (inputs.size() != 1 || outputs.size() != 1) 473 return false; 474 Type a = inputs.front(), b = outputs.front(); 475 auto aT = a.dyn_cast<MemRefType>(); 476 auto bT = b.dyn_cast<MemRefType>(); 477 478 auto uaT = a.dyn_cast<UnrankedMemRefType>(); 479 auto ubT = b.dyn_cast<UnrankedMemRefType>(); 480 481 if (aT && bT) { 482 if (aT.getElementType() != bT.getElementType()) 483 return false; 484 if (aT.getAffineMaps() != bT.getAffineMaps()) { 485 int64_t aOffset, bOffset; 486 SmallVector<int64_t, 4> aStrides, bStrides; 487 if (failed(getStridesAndOffset(aT, aStrides, aOffset)) || 488 failed(getStridesAndOffset(bT, bStrides, bOffset)) || 489 aStrides.size() != bStrides.size()) 490 return false; 491 492 // Strides along a dimension/offset are compatible if the value in the 493 // source memref is static and the value in the target memref is the 494 // same. They are also compatible if either one is dynamic (see 495 // description of MemRefCastOp for details). 496 auto checkCompatible = [](int64_t a, int64_t b) { 497 return (a == MemRefType::getDynamicStrideOrOffset() || 498 b == MemRefType::getDynamicStrideOrOffset() || a == b); 499 }; 500 if (!checkCompatible(aOffset, bOffset)) 501 return false; 502 for (auto aStride : enumerate(aStrides)) 503 if (!checkCompatible(aStride.value(), bStrides[aStride.index()])) 504 return false; 505 } 506 if (aT.getMemorySpace() != bT.getMemorySpace()) 507 return false; 508 509 // They must have the same rank, and any specified dimensions must match. 510 if (aT.getRank() != bT.getRank()) 511 return false; 512 513 for (unsigned i = 0, e = aT.getRank(); i != e; ++i) { 514 int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i); 515 if (aDim != -1 && bDim != -1 && aDim != bDim) 516 return false; 517 } 518 return true; 519 } else { 520 if (!aT && !uaT) 521 return false; 522 if (!bT && !ubT) 523 return false; 524 // Unranked to unranked casting is unsupported 525 if (uaT && ubT) 526 return false; 527 528 auto aEltType = (aT) ? aT.getElementType() : uaT.getElementType(); 529 auto bEltType = (bT) ? bT.getElementType() : ubT.getElementType(); 530 if (aEltType != bEltType) 531 return false; 532 533 auto aMemSpace = (aT) ? aT.getMemorySpace() : uaT.getMemorySpace(); 534 auto bMemSpace = (bT) ? bT.getMemorySpace() : ubT.getMemorySpace(); 535 if (aMemSpace != bMemSpace) 536 return false; 537 538 return true; 539 } 540 541 return false; 542 } 543 544 OpFoldResult CastOp::fold(ArrayRef<Attribute> operands) { 545 return succeeded(foldMemRefCast(*this)) ? getResult() : Value(); 546 } 547 548 //===----------------------------------------------------------------------===// 549 // CloneOp 550 //===----------------------------------------------------------------------===// 551 552 void CloneOp::getEffects( 553 SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> 554 &effects) { 555 effects.emplace_back(MemoryEffects::Read::get(), input(), 556 SideEffects::DefaultResource::get()); 557 effects.emplace_back(MemoryEffects::Write::get(), output(), 558 SideEffects::DefaultResource::get()); 559 effects.emplace_back(MemoryEffects::Allocate::get(), output(), 560 SideEffects::DefaultResource::get()); 561 } 562 563 namespace { 564 /// Merge the clone and its source (by converting the clone to a cast) when 565 /// possible. 566 struct SimplifyClones : public OpRewritePattern<CloneOp> { 567 using OpRewritePattern<CloneOp>::OpRewritePattern; 568 569 LogicalResult matchAndRewrite(CloneOp cloneOp, 570 PatternRewriter &rewriter) const override { 571 if (cloneOp.use_empty()) { 572 rewriter.eraseOp(cloneOp); 573 return success(); 574 } 575 576 Value source = cloneOp.input(); 577 578 // This only finds dealloc operations for the immediate value. It should 579 // also consider aliases. That would also make the safety check below 580 // redundant. 581 llvm::Optional<Operation *> maybeCloneDeallocOp = 582 findDealloc(cloneOp.output()); 583 // Skip if either of them has > 1 deallocate operations. 584 if (!maybeCloneDeallocOp.hasValue()) 585 return failure(); 586 llvm::Optional<Operation *> maybeSourceDeallocOp = findDealloc(source); 587 if (!maybeSourceDeallocOp.hasValue()) 588 return failure(); 589 Operation *cloneDeallocOp = *maybeCloneDeallocOp; 590 Operation *sourceDeallocOp = *maybeSourceDeallocOp; 591 592 // If both are deallocated in the same block, their in-block lifetimes 593 // might not fully overlap, so we cannot decide which one to drop. 594 if (cloneDeallocOp && sourceDeallocOp && 595 cloneDeallocOp->getBlock() == sourceDeallocOp->getBlock()) 596 return failure(); 597 598 Block *currentBlock = cloneOp->getBlock(); 599 Operation *redundantDealloc = nullptr; 600 if (cloneDeallocOp && cloneDeallocOp->getBlock() == currentBlock) { 601 redundantDealloc = cloneDeallocOp; 602 } else if (sourceDeallocOp && sourceDeallocOp->getBlock() == currentBlock) { 603 redundantDealloc = sourceDeallocOp; 604 } 605 606 if (!redundantDealloc) 607 return failure(); 608 609 // Safety check that there are no other deallocations inbetween 610 // cloneOp and redundantDealloc, as otherwise we might deallocate an alias 611 // of source before the uses of the clone. With alias information, we could 612 // restrict this to only fail of the dealloc's operand is an alias 613 // of the source. 614 for (Operation *pos = cloneOp->getNextNode(); pos != redundantDealloc; 615 pos = pos->getNextNode()) { 616 auto effectInterface = dyn_cast<MemoryEffectOpInterface>(pos); 617 if (!effectInterface) 618 continue; 619 if (effectInterface.hasEffect<MemoryEffects::Free>()) 620 return failure(); 621 } 622 623 rewriter.replaceOpWithNewOp<memref::CastOp>(cloneOp, cloneOp.getType(), 624 source); 625 rewriter.eraseOp(redundantDealloc); 626 return success(); 627 } 628 }; 629 630 } // end anonymous namespace. 631 632 void CloneOp::getCanonicalizationPatterns(OwningRewritePatternList &results, 633 MLIRContext *context) { 634 results.insert<SimplifyClones>(context); 635 } 636 637 OpFoldResult CloneOp::fold(ArrayRef<Attribute> operands) { 638 return succeeded(foldMemRefCast(*this)) ? getResult() : Value(); 639 } 640 641 //===----------------------------------------------------------------------===// 642 // DeallocOp 643 //===----------------------------------------------------------------------===// 644 645 LogicalResult DeallocOp::fold(ArrayRef<Attribute> cstOperands, 646 SmallVectorImpl<OpFoldResult> &results) { 647 /// dealloc(memrefcast) -> dealloc 648 return foldMemRefCast(*this); 649 } 650 651 //===----------------------------------------------------------------------===// 652 // DimOp 653 //===----------------------------------------------------------------------===// 654 655 void DimOp::build(OpBuilder &builder, OperationState &result, Value source, 656 int64_t index) { 657 auto loc = result.location; 658 Value indexValue = builder.create<ConstantIndexOp>(loc, index); 659 build(builder, result, source, indexValue); 660 } 661 662 void DimOp::build(OpBuilder &builder, OperationState &result, Value source, 663 Value index) { 664 auto indexTy = builder.getIndexType(); 665 build(builder, result, indexTy, source, index); 666 } 667 668 Optional<int64_t> DimOp::getConstantIndex() { 669 if (auto constantOp = index().getDefiningOp<ConstantOp>()) 670 return constantOp.getValue().cast<IntegerAttr>().getInt(); 671 return {}; 672 } 673 674 static LogicalResult verify(DimOp op) { 675 // Assume unknown index to be in range. 676 Optional<int64_t> index = op.getConstantIndex(); 677 if (!index.hasValue()) 678 return success(); 679 680 // Check that constant index is not knowingly out of range. 681 auto type = op.source().getType(); 682 if (auto memrefType = type.dyn_cast<MemRefType>()) { 683 if (index.getValue() >= memrefType.getRank()) 684 return op.emitOpError("index is out of range"); 685 } else if (type.isa<UnrankedMemRefType>()) { 686 // Assume index to be in range. 687 } else { 688 llvm_unreachable("expected operand with memref type"); 689 } 690 return success(); 691 } 692 693 OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) { 694 // All forms of folding require a known index. 695 auto index = operands[1].dyn_cast_or_null<IntegerAttr>(); 696 if (!index) 697 return {}; 698 699 // Folding for unranked types (UnrankedMemRefType) is not supported. 700 auto memrefType = source().getType().dyn_cast<MemRefType>(); 701 if (!memrefType) 702 return {}; 703 704 // Fold if the shape extent along the given index is known. 705 if (!memrefType.isDynamicDim(index.getInt())) { 706 Builder builder(getContext()); 707 return builder.getIndexAttr(memrefType.getShape()[index.getInt()]); 708 } 709 710 // The size at the given index is now known to be a dynamic size. 711 unsigned unsignedIndex = index.getValue().getZExtValue(); 712 713 // Fold dim to the size argument for an `AllocOp`, `ViewOp`, or `SubViewOp`. 714 Operation *definingOp = source().getDefiningOp(); 715 716 if (auto alloc = dyn_cast_or_null<AllocOp>(definingOp)) 717 return *(alloc.getDynamicSizes().begin() + 718 memrefType.getDynamicDimIndex(unsignedIndex)); 719 720 if (auto alloca = dyn_cast_or_null<AllocaOp>(definingOp)) 721 return *(alloca.getDynamicSizes().begin() + 722 memrefType.getDynamicDimIndex(unsignedIndex)); 723 724 if (auto view = dyn_cast_or_null<ViewOp>(definingOp)) 725 return *(view.getDynamicSizes().begin() + 726 memrefType.getDynamicDimIndex(unsignedIndex)); 727 728 if (auto sizeInterface = 729 dyn_cast_or_null<OffsetSizeAndStrideOpInterface>(definingOp)) { 730 assert(sizeInterface.isDynamicSize(unsignedIndex) && 731 "Expected dynamic subview size"); 732 return sizeInterface.getDynamicSize(unsignedIndex); 733 } 734 735 // dim(memrefcast) -> dim 736 if (succeeded(foldMemRefCast(*this))) 737 return getResult(); 738 739 return {}; 740 } 741 742 namespace { 743 /// Fold dim of a memref reshape operation to a load into the reshape's shape 744 /// operand. 745 struct DimOfMemRefReshape : public OpRewritePattern<DimOp> { 746 using OpRewritePattern<DimOp>::OpRewritePattern; 747 748 LogicalResult matchAndRewrite(DimOp dim, 749 PatternRewriter &rewriter) const override { 750 auto reshape = dim.source().getDefiningOp<ReshapeOp>(); 751 752 if (!reshape) 753 return failure(); 754 755 // Place the load directly after the reshape to ensure that the shape memref 756 // was not mutated. 757 rewriter.setInsertionPointAfter(reshape); 758 Location loc = dim.getLoc(); 759 Value load = rewriter.create<LoadOp>(loc, reshape.shape(), dim.index()); 760 if (load.getType() != dim.getType()) 761 load = rewriter.create<IndexCastOp>(loc, dim.getType(), load); 762 rewriter.replaceOp(dim, load); 763 return success(); 764 } 765 }; 766 767 /// Fold dim of a cast into the dim of the source of the memref cast. 768 struct DimOfCastOp : public OpRewritePattern<DimOp> { 769 using OpRewritePattern<DimOp>::OpRewritePattern; 770 771 LogicalResult matchAndRewrite(DimOp dimOp, 772 PatternRewriter &rewriter) const override { 773 auto castOp = dimOp.source().getDefiningOp<BufferCastOp>(); 774 if (!castOp) 775 return failure(); 776 Value newSource = castOp.getOperand(); 777 rewriter.replaceOpWithNewOp<tensor::DimOp>(dimOp, newSource, dimOp.index()); 778 return success(); 779 } 780 }; 781 } // end anonymous namespace. 782 783 void DimOp::getCanonicalizationPatterns(RewritePatternSet &results, 784 MLIRContext *context) { 785 results.add<DimOfMemRefReshape, DimOfCastOp>(context); 786 } 787 788 // --------------------------------------------------------------------------- 789 // DmaStartOp 790 // --------------------------------------------------------------------------- 791 792 void DmaStartOp::build(OpBuilder &builder, OperationState &result, 793 Value srcMemRef, ValueRange srcIndices, Value destMemRef, 794 ValueRange destIndices, Value numElements, 795 Value tagMemRef, ValueRange tagIndices, Value stride, 796 Value elementsPerStride) { 797 result.addOperands(srcMemRef); 798 result.addOperands(srcIndices); 799 result.addOperands(destMemRef); 800 result.addOperands(destIndices); 801 result.addOperands({numElements, tagMemRef}); 802 result.addOperands(tagIndices); 803 if (stride) 804 result.addOperands({stride, elementsPerStride}); 805 } 806 807 void DmaStartOp::print(OpAsmPrinter &p) { 808 p << " " << getSrcMemRef() << '[' << getSrcIndices() << "], " 809 << getDstMemRef() << '[' << getDstIndices() << "], " << getNumElements() 810 << ", " << getTagMemRef() << '[' << getTagIndices() << ']'; 811 if (isStrided()) 812 p << ", " << getStride() << ", " << getNumElementsPerStride(); 813 814 p.printOptionalAttrDict((*this)->getAttrs()); 815 p << " : " << getSrcMemRef().getType() << ", " << getDstMemRef().getType() 816 << ", " << getTagMemRef().getType(); 817 } 818 819 // Parse DmaStartOp. 820 // Ex: 821 // %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size, 822 // %tag[%index], %stride, %num_elt_per_stride : 823 // : memref<3076 x f32, 0>, 824 // memref<1024 x f32, 2>, 825 // memref<1 x i32> 826 // 827 ParseResult DmaStartOp::parse(OpAsmParser &parser, OperationState &result) { 828 OpAsmParser::OperandType srcMemRefInfo; 829 SmallVector<OpAsmParser::OperandType, 4> srcIndexInfos; 830 OpAsmParser::OperandType dstMemRefInfo; 831 SmallVector<OpAsmParser::OperandType, 4> dstIndexInfos; 832 OpAsmParser::OperandType numElementsInfo; 833 OpAsmParser::OperandType tagMemrefInfo; 834 SmallVector<OpAsmParser::OperandType, 4> tagIndexInfos; 835 SmallVector<OpAsmParser::OperandType, 2> strideInfo; 836 837 SmallVector<Type, 3> types; 838 auto indexType = parser.getBuilder().getIndexType(); 839 840 // Parse and resolve the following list of operands: 841 // *) source memref followed by its indices (in square brackets). 842 // *) destination memref followed by its indices (in square brackets). 843 // *) dma size in KiB. 844 if (parser.parseOperand(srcMemRefInfo) || 845 parser.parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) || 846 parser.parseComma() || parser.parseOperand(dstMemRefInfo) || 847 parser.parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) || 848 parser.parseComma() || parser.parseOperand(numElementsInfo) || 849 parser.parseComma() || parser.parseOperand(tagMemrefInfo) || 850 parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square)) 851 return failure(); 852 853 // Parse optional stride and elements per stride. 854 if (parser.parseTrailingOperandList(strideInfo)) 855 return failure(); 856 857 bool isStrided = strideInfo.size() == 2; 858 if (!strideInfo.empty() && !isStrided) { 859 return parser.emitError(parser.getNameLoc(), 860 "expected two stride related operands"); 861 } 862 863 if (parser.parseColonTypeList(types)) 864 return failure(); 865 if (types.size() != 3) 866 return parser.emitError(parser.getNameLoc(), "fewer/more types expected"); 867 868 if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) || 869 parser.resolveOperands(srcIndexInfos, indexType, result.operands) || 870 parser.resolveOperand(dstMemRefInfo, types[1], result.operands) || 871 parser.resolveOperands(dstIndexInfos, indexType, result.operands) || 872 // size should be an index. 873 parser.resolveOperand(numElementsInfo, indexType, result.operands) || 874 parser.resolveOperand(tagMemrefInfo, types[2], result.operands) || 875 // tag indices should be index. 876 parser.resolveOperands(tagIndexInfos, indexType, result.operands)) 877 return failure(); 878 879 if (isStrided) { 880 if (parser.resolveOperands(strideInfo, indexType, result.operands)) 881 return failure(); 882 } 883 884 return success(); 885 } 886 887 LogicalResult DmaStartOp::verify() { 888 unsigned numOperands = getNumOperands(); 889 890 // Mandatory non-variadic operands are: src memref, dst memref, tag memref and 891 // the number of elements. 892 if (numOperands < 4) 893 return emitOpError("expected at least 4 operands"); 894 895 // Check types of operands. The order of these calls is important: the later 896 // calls rely on some type properties to compute the operand position. 897 // 1. Source memref. 898 if (!getSrcMemRef().getType().isa<MemRefType>()) 899 return emitOpError("expected source to be of memref type"); 900 if (numOperands < getSrcMemRefRank() + 4) 901 return emitOpError() << "expected at least " << getSrcMemRefRank() + 4 902 << " operands"; 903 if (!getSrcIndices().empty() && 904 !llvm::all_of(getSrcIndices().getTypes(), 905 [](Type t) { return t.isIndex(); })) 906 return emitOpError("expected source indices to be of index type"); 907 908 // 2. Destination memref. 909 if (!getDstMemRef().getType().isa<MemRefType>()) 910 return emitOpError("expected destination to be of memref type"); 911 unsigned numExpectedOperands = getSrcMemRefRank() + getDstMemRefRank() + 4; 912 if (numOperands < numExpectedOperands) 913 return emitOpError() << "expected at least " << numExpectedOperands 914 << " operands"; 915 if (!getDstIndices().empty() && 916 !llvm::all_of(getDstIndices().getTypes(), 917 [](Type t) { return t.isIndex(); })) 918 return emitOpError("expected destination indices to be of index type"); 919 920 // 3. Number of elements. 921 if (!getNumElements().getType().isIndex()) 922 return emitOpError("expected num elements to be of index type"); 923 924 // 4. Tag memref. 925 if (!getTagMemRef().getType().isa<MemRefType>()) 926 return emitOpError("expected tag to be of memref type"); 927 numExpectedOperands += getTagMemRefRank(); 928 if (numOperands < numExpectedOperands) 929 return emitOpError() << "expected at least " << numExpectedOperands 930 << " operands"; 931 if (!getTagIndices().empty() && 932 !llvm::all_of(getTagIndices().getTypes(), 933 [](Type t) { return t.isIndex(); })) 934 return emitOpError("expected tag indices to be of index type"); 935 936 // Optional stride-related operands must be either both present or both 937 // absent. 938 if (numOperands != numExpectedOperands && 939 numOperands != numExpectedOperands + 2) 940 return emitOpError("incorrect number of operands"); 941 942 // 5. Strides. 943 if (isStrided()) { 944 if (!getStride().getType().isIndex() || 945 !getNumElementsPerStride().getType().isIndex()) 946 return emitOpError( 947 "expected stride and num elements per stride to be of type index"); 948 } 949 950 return success(); 951 } 952 953 LogicalResult DmaStartOp::fold(ArrayRef<Attribute> cstOperands, 954 SmallVectorImpl<OpFoldResult> &results) { 955 /// dma_start(memrefcast) -> dma_start 956 return foldMemRefCast(*this); 957 } 958 959 // --------------------------------------------------------------------------- 960 // DmaWaitOp 961 // --------------------------------------------------------------------------- 962 963 void DmaWaitOp::build(OpBuilder &builder, OperationState &result, 964 Value tagMemRef, ValueRange tagIndices, 965 Value numElements) { 966 result.addOperands(tagMemRef); 967 result.addOperands(tagIndices); 968 result.addOperands(numElements); 969 } 970 971 void DmaWaitOp::print(OpAsmPrinter &p) { 972 p << " " << getTagMemRef() << '[' << getTagIndices() << "], " 973 << getNumElements(); 974 p.printOptionalAttrDict((*this)->getAttrs()); 975 p << " : " << getTagMemRef().getType(); 976 } 977 978 // Parse DmaWaitOp. 979 // Eg: 980 // dma_wait %tag[%index], %num_elements : memref<1 x i32, (d0) -> (d0), 4> 981 // 982 ParseResult DmaWaitOp::parse(OpAsmParser &parser, OperationState &result) { 983 OpAsmParser::OperandType tagMemrefInfo; 984 SmallVector<OpAsmParser::OperandType, 2> tagIndexInfos; 985 Type type; 986 auto indexType = parser.getBuilder().getIndexType(); 987 OpAsmParser::OperandType numElementsInfo; 988 989 // Parse tag memref, its indices, and dma size. 990 if (parser.parseOperand(tagMemrefInfo) || 991 parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square) || 992 parser.parseComma() || parser.parseOperand(numElementsInfo) || 993 parser.parseColonType(type) || 994 parser.resolveOperand(tagMemrefInfo, type, result.operands) || 995 parser.resolveOperands(tagIndexInfos, indexType, result.operands) || 996 parser.resolveOperand(numElementsInfo, indexType, result.operands)) 997 return failure(); 998 999 return success(); 1000 } 1001 1002 LogicalResult DmaWaitOp::fold(ArrayRef<Attribute> cstOperands, 1003 SmallVectorImpl<OpFoldResult> &results) { 1004 /// dma_wait(memrefcast) -> dma_wait 1005 return foldMemRefCast(*this); 1006 } 1007 1008 LogicalResult DmaWaitOp::verify() { 1009 // Mandatory non-variadic operands are tag and the number of elements. 1010 if (getNumOperands() < 2) 1011 return emitOpError() << "expected at least 2 operands"; 1012 1013 // Check types of operands. The order of these calls is important: the later 1014 // calls rely on some type properties to compute the operand position. 1015 if (!getTagMemRef().getType().isa<MemRefType>()) 1016 return emitOpError() << "expected tag to be of memref type"; 1017 1018 if (getNumOperands() != 2 + getTagMemRefRank()) 1019 return emitOpError() << "expected " << 2 + getTagMemRefRank() 1020 << " operands"; 1021 1022 if (!getTagIndices().empty() && 1023 !llvm::all_of(getTagIndices().getTypes(), 1024 [](Type t) { return t.isIndex(); })) 1025 return emitOpError() << "expected tag indices to be of index type"; 1026 1027 if (!getNumElements().getType().isIndex()) 1028 return emitOpError() 1029 << "expected the number of elements to be of index type"; 1030 1031 return success(); 1032 } 1033 1034 //===----------------------------------------------------------------------===// 1035 // GlobalOp 1036 //===----------------------------------------------------------------------===// 1037 1038 static void printGlobalMemrefOpTypeAndInitialValue(OpAsmPrinter &p, GlobalOp op, 1039 TypeAttr type, 1040 Attribute initialValue) { 1041 p << type; 1042 if (!op.isExternal()) { 1043 p << " = "; 1044 if (op.isUninitialized()) 1045 p << "uninitialized"; 1046 else 1047 p.printAttributeWithoutType(initialValue); 1048 } 1049 } 1050 1051 static ParseResult 1052 parseGlobalMemrefOpTypeAndInitialValue(OpAsmParser &parser, TypeAttr &typeAttr, 1053 Attribute &initialValue) { 1054 Type type; 1055 if (parser.parseType(type)) 1056 return failure(); 1057 1058 auto memrefType = type.dyn_cast<MemRefType>(); 1059 if (!memrefType || !memrefType.hasStaticShape()) 1060 return parser.emitError(parser.getNameLoc()) 1061 << "type should be static shaped memref, but got " << type; 1062 typeAttr = TypeAttr::get(type); 1063 1064 if (parser.parseOptionalEqual()) 1065 return success(); 1066 1067 if (succeeded(parser.parseOptionalKeyword("uninitialized"))) { 1068 initialValue = UnitAttr::get(parser.getBuilder().getContext()); 1069 return success(); 1070 } 1071 1072 Type tensorType = getTensorTypeFromMemRefType(memrefType); 1073 if (parser.parseAttribute(initialValue, tensorType)) 1074 return failure(); 1075 if (!initialValue.isa<ElementsAttr>()) 1076 return parser.emitError(parser.getNameLoc()) 1077 << "initial value should be a unit or elements attribute"; 1078 return success(); 1079 } 1080 1081 static LogicalResult verify(GlobalOp op) { 1082 auto memrefType = op.type().dyn_cast<MemRefType>(); 1083 if (!memrefType || !memrefType.hasStaticShape()) 1084 return op.emitOpError("type should be static shaped memref, but got ") 1085 << op.type(); 1086 1087 // Verify that the initial value, if present, is either a unit attribute or 1088 // an elements attribute. 1089 if (op.initial_value().hasValue()) { 1090 Attribute initValue = op.initial_value().getValue(); 1091 if (!initValue.isa<UnitAttr>() && !initValue.isa<ElementsAttr>()) 1092 return op.emitOpError("initial value should be a unit or elements " 1093 "attribute, but got ") 1094 << initValue; 1095 1096 // Check that the type of the initial value is compatible with the type of 1097 // the global variable. 1098 if (initValue.isa<ElementsAttr>()) { 1099 Type initType = initValue.getType(); 1100 Type tensorType = getTensorTypeFromMemRefType(memrefType); 1101 if (initType != tensorType) 1102 return op.emitOpError("initial value expected to be of type ") 1103 << tensorType << ", but was of type " << initType; 1104 } 1105 } 1106 1107 // TODO: verify visibility for declarations. 1108 return success(); 1109 } 1110 1111 //===----------------------------------------------------------------------===// 1112 // GetGlobalOp 1113 //===----------------------------------------------------------------------===// 1114 1115 LogicalResult 1116 GetGlobalOp::verifySymbolUses(SymbolTableCollection &symbolTable) { 1117 // Verify that the result type is same as the type of the referenced 1118 // memref.global op. 1119 auto global = 1120 symbolTable.lookupNearestSymbolFrom<GlobalOp>(*this, nameAttr()); 1121 if (!global) 1122 return emitOpError("'") 1123 << name() << "' does not reference a valid global memref"; 1124 1125 Type resultType = result().getType(); 1126 if (global.type() != resultType) 1127 return emitOpError("result type ") 1128 << resultType << " does not match type " << global.type() 1129 << " of the global memref @" << name(); 1130 return success(); 1131 } 1132 1133 //===----------------------------------------------------------------------===// 1134 // LoadOp 1135 //===----------------------------------------------------------------------===// 1136 1137 static LogicalResult verify(LoadOp op) { 1138 if (op.getNumOperands() != 1 + op.getMemRefType().getRank()) 1139 return op.emitOpError("incorrect number of indices for load"); 1140 return success(); 1141 } 1142 1143 OpFoldResult LoadOp::fold(ArrayRef<Attribute> cstOperands) { 1144 /// load(memrefcast) -> load 1145 if (succeeded(foldMemRefCast(*this))) 1146 return getResult(); 1147 return OpFoldResult(); 1148 } 1149 1150 namespace { 1151 /// Fold a load on a buffer_cast operation into an tensor.extract on the 1152 /// corresponding tensor. 1153 struct LoadOfBufferCast : public OpRewritePattern<LoadOp> { 1154 using OpRewritePattern<LoadOp>::OpRewritePattern; 1155 1156 LogicalResult matchAndRewrite(LoadOp load, 1157 PatternRewriter &rewriter) const override { 1158 auto buffercast = load.memref().getDefiningOp<BufferCastOp>(); 1159 if (!buffercast) 1160 return failure(); 1161 1162 rewriter.replaceOpWithNewOp<tensor::ExtractOp>(load, buffercast.tensor(), 1163 load.indices()); 1164 return success(); 1165 } 1166 }; 1167 } // end anonymous namespace. 1168 1169 void LoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 1170 MLIRContext *context) { 1171 results.add<LoadOfBufferCast>(context); 1172 } 1173 1174 //===----------------------------------------------------------------------===// 1175 // PrefetchOp 1176 //===----------------------------------------------------------------------===// 1177 1178 static void print(OpAsmPrinter &p, PrefetchOp op) { 1179 p << " " << op.memref() << '['; 1180 p.printOperands(op.indices()); 1181 p << ']' << ", " << (op.isWrite() ? "write" : "read"); 1182 p << ", locality<" << op.localityHint(); 1183 p << ">, " << (op.isDataCache() ? "data" : "instr"); 1184 p.printOptionalAttrDict( 1185 op->getAttrs(), 1186 /*elidedAttrs=*/{"localityHint", "isWrite", "isDataCache"}); 1187 p << " : " << op.getMemRefType(); 1188 } 1189 1190 static ParseResult parsePrefetchOp(OpAsmParser &parser, 1191 OperationState &result) { 1192 OpAsmParser::OperandType memrefInfo; 1193 SmallVector<OpAsmParser::OperandType, 4> indexInfo; 1194 IntegerAttr localityHint; 1195 MemRefType type; 1196 StringRef readOrWrite, cacheType; 1197 1198 auto indexTy = parser.getBuilder().getIndexType(); 1199 auto i32Type = parser.getBuilder().getIntegerType(32); 1200 if (parser.parseOperand(memrefInfo) || 1201 parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || 1202 parser.parseComma() || parser.parseKeyword(&readOrWrite) || 1203 parser.parseComma() || parser.parseKeyword("locality") || 1204 parser.parseLess() || 1205 parser.parseAttribute(localityHint, i32Type, "localityHint", 1206 result.attributes) || 1207 parser.parseGreater() || parser.parseComma() || 1208 parser.parseKeyword(&cacheType) || parser.parseColonType(type) || 1209 parser.resolveOperand(memrefInfo, type, result.operands) || 1210 parser.resolveOperands(indexInfo, indexTy, result.operands)) 1211 return failure(); 1212 1213 if (!readOrWrite.equals("read") && !readOrWrite.equals("write")) 1214 return parser.emitError(parser.getNameLoc(), 1215 "rw specifier has to be 'read' or 'write'"); 1216 result.addAttribute( 1217 PrefetchOp::getIsWriteAttrName(), 1218 parser.getBuilder().getBoolAttr(readOrWrite.equals("write"))); 1219 1220 if (!cacheType.equals("data") && !cacheType.equals("instr")) 1221 return parser.emitError(parser.getNameLoc(), 1222 "cache type has to be 'data' or 'instr'"); 1223 1224 result.addAttribute( 1225 PrefetchOp::getIsDataCacheAttrName(), 1226 parser.getBuilder().getBoolAttr(cacheType.equals("data"))); 1227 1228 return success(); 1229 } 1230 1231 static LogicalResult verify(PrefetchOp op) { 1232 if (op.getNumOperands() != 1 + op.getMemRefType().getRank()) 1233 return op.emitOpError("too few indices"); 1234 1235 return success(); 1236 } 1237 1238 LogicalResult PrefetchOp::fold(ArrayRef<Attribute> cstOperands, 1239 SmallVectorImpl<OpFoldResult> &results) { 1240 // prefetch(memrefcast) -> prefetch 1241 return foldMemRefCast(*this); 1242 } 1243 1244 //===----------------------------------------------------------------------===// 1245 // ReinterpretCastOp 1246 //===----------------------------------------------------------------------===// 1247 1248 /// Build a ReinterpretCastOp with all dynamic entries: `staticOffsets`, 1249 /// `staticSizes` and `staticStrides` are automatically filled with 1250 /// source-memref-rank sentinel values that encode dynamic entries. 1251 void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, 1252 MemRefType resultType, Value source, 1253 OpFoldResult offset, ArrayRef<OpFoldResult> sizes, 1254 ArrayRef<OpFoldResult> strides, 1255 ArrayRef<NamedAttribute> attrs) { 1256 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1257 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1258 dispatchIndexOpFoldResults(offset, dynamicOffsets, staticOffsets, 1259 ShapedType::kDynamicStrideOrOffset); 1260 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1261 ShapedType::kDynamicSize); 1262 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1263 ShapedType::kDynamicStrideOrOffset); 1264 build(b, result, resultType, source, dynamicOffsets, dynamicSizes, 1265 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1266 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1267 result.addAttributes(attrs); 1268 } 1269 1270 void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, 1271 MemRefType resultType, Value source, 1272 int64_t offset, ArrayRef<int64_t> sizes, 1273 ArrayRef<int64_t> strides, 1274 ArrayRef<NamedAttribute> attrs) { 1275 SmallVector<OpFoldResult> sizeValues = 1276 llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { 1277 return b.getI64IntegerAttr(v); 1278 })); 1279 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1280 llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { 1281 return b.getI64IntegerAttr(v); 1282 })); 1283 build(b, result, resultType, source, b.getI64IntegerAttr(offset), sizeValues, 1284 strideValues, attrs); 1285 } 1286 1287 void ReinterpretCastOp::build(OpBuilder &b, OperationState &result, 1288 MemRefType resultType, Value source, Value offset, 1289 ValueRange sizes, ValueRange strides, 1290 ArrayRef<NamedAttribute> attrs) { 1291 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1292 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1293 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1294 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1295 build(b, result, resultType, source, offset, sizeValues, strideValues, attrs); 1296 } 1297 1298 // TODO: ponder whether we want to allow missing trailing sizes/strides that are 1299 // completed automatically, like we have for subview and extract_slice. 1300 static LogicalResult verify(ReinterpretCastOp op) { 1301 // The source and result memrefs should be in the same memory space. 1302 auto srcType = op.source().getType().cast<BaseMemRefType>(); 1303 auto resultType = op.getType().cast<MemRefType>(); 1304 if (srcType.getMemorySpace() != resultType.getMemorySpace()) 1305 return op.emitError("different memory spaces specified for source type ") 1306 << srcType << " and result memref type " << resultType; 1307 if (srcType.getElementType() != resultType.getElementType()) 1308 return op.emitError("different element types specified for source type ") 1309 << srcType << " and result memref type " << resultType; 1310 1311 // Match sizes in result memref type and in static_sizes attribute. 1312 for (auto &en : 1313 llvm::enumerate(llvm::zip(resultType.getShape(), 1314 extractFromI64ArrayAttr(op.static_sizes())))) { 1315 int64_t resultSize = std::get<0>(en.value()); 1316 int64_t expectedSize = std::get<1>(en.value()); 1317 if (resultSize != expectedSize) 1318 return op.emitError("expected result type with size = ") 1319 << expectedSize << " instead of " << resultSize 1320 << " in dim = " << en.index(); 1321 } 1322 1323 // Match offset and strides in static_offset and static_strides attributes if 1324 // result memref type has an affine map specified. 1325 if (!resultType.getAffineMaps().empty()) { 1326 int64_t resultOffset; 1327 SmallVector<int64_t, 4> resultStrides; 1328 if (failed(getStridesAndOffset(resultType, resultStrides, resultOffset))) 1329 return failure(); 1330 1331 // Match offset in result memref type and in static_offsets attribute. 1332 int64_t expectedOffset = 1333 extractFromI64ArrayAttr(op.static_offsets()).front(); 1334 if (resultOffset != expectedOffset) 1335 return op.emitError("expected result type with offset = ") 1336 << resultOffset << " instead of " << expectedOffset; 1337 1338 // Match strides in result memref type and in static_strides attribute. 1339 for (auto &en : llvm::enumerate(llvm::zip( 1340 resultStrides, extractFromI64ArrayAttr(op.static_strides())))) { 1341 int64_t resultStride = std::get<0>(en.value()); 1342 int64_t expectedStride = std::get<1>(en.value()); 1343 if (resultStride != expectedStride) 1344 return op.emitError("expected result type with stride = ") 1345 << expectedStride << " instead of " << resultStride 1346 << " in dim = " << en.index(); 1347 } 1348 } 1349 return success(); 1350 } 1351 1352 //===----------------------------------------------------------------------===// 1353 // Reassociative reshape ops 1354 //===----------------------------------------------------------------------===// 1355 1356 SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() { 1357 return getSymbolLessAffineMaps(getReassociationExprs()); 1358 } 1359 SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() { 1360 return convertReassociationIndicesToExprs(getContext(), 1361 getReassociationIndices()); 1362 } 1363 1364 SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() { 1365 return getSymbolLessAffineMaps(getReassociationExprs()); 1366 } 1367 SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() { 1368 return convertReassociationIndicesToExprs(getContext(), 1369 getReassociationIndices()); 1370 } 1371 1372 static void print(OpAsmPrinter &p, ExpandShapeOp op) { 1373 ::mlir::printReshapeOp<ExpandShapeOp>(p, op); 1374 } 1375 1376 static void print(OpAsmPrinter &p, CollapseShapeOp op) { 1377 ::mlir::printReshapeOp<CollapseShapeOp>(p, op); 1378 } 1379 1380 /// Detect whether memref dims [dim, dim + extent) can be reshaped without 1381 /// copies. 1382 static bool isReshapableDimBand(unsigned dim, unsigned extent, 1383 ArrayRef<int64_t> sizes, 1384 ArrayRef<AffineExpr> strides) { 1385 assert(sizes.size() == strides.size() && "mismatched ranks"); 1386 // off by 1 indexing to avoid out of bounds 1387 // V 1388 for (auto idx = dim, e = dim + extent; idx + 1 < e; ++idx) { 1389 // Only bands of static shapes are reshapable. This is due to the fact that 1390 // there is no relation between dynamic sizes and dynamic strides: we do not 1391 // have enough information to know whether a "-1" size corresponds to the 1392 // proper symbol in the AffineExpr of a stride. 1393 if (ShapedType::isDynamic(sizes[dim + 1])) 1394 return false; 1395 // TODO: Refine this by passing the proper nDims and nSymbols so we can 1396 // simplify on the fly and catch more reshapable cases. 1397 if (strides[idx] != strides[idx + 1] * sizes[idx + 1]) 1398 return false; 1399 } 1400 return true; 1401 } 1402 1403 /// Compute the MemRefType obtained by applying the `reassociation` (which is 1404 /// expected to be valid) to `type`. 1405 /// If `type` is Contiguous MemRefType, this always produce a contiguous 1406 /// MemRefType. 1407 static MemRefType 1408 computeReshapeCollapsedType(MemRefType type, 1409 ArrayRef<AffineMap> reassociation) { 1410 auto sizes = type.getShape(); 1411 AffineExpr offset; 1412 SmallVector<AffineExpr, 4> strides; 1413 auto status = getStridesAndOffset(type, strides, offset); 1414 (void)status; 1415 assert(succeeded(status) && "expected strided memref"); 1416 1417 SmallVector<int64_t, 4> newSizes; 1418 newSizes.reserve(reassociation.size()); 1419 SmallVector<AffineExpr, 4> newStrides; 1420 newStrides.reserve(reassociation.size()); 1421 1422 // Use the fact that reassociation is valid to simplify the logic: only use 1423 // each map's rank. 1424 assert(isReassociationValid(reassociation) && "invalid reassociation"); 1425 unsigned currentDim = 0; 1426 for (AffineMap m : reassociation) { 1427 unsigned dim = m.getNumResults(); 1428 int64_t size = 1; 1429 AffineExpr stride = strides[currentDim + dim - 1]; 1430 if (!isReshapableDimBand(currentDim, dim, sizes, strides)) { 1431 size = ShapedType::kDynamicSize; 1432 stride = AffineExpr(); 1433 } else { 1434 for (unsigned d = 0; d < dim; ++d) 1435 size *= sizes[currentDim + d]; 1436 } 1437 newSizes.push_back(size); 1438 newStrides.push_back(stride); 1439 currentDim += dim; 1440 } 1441 1442 // Early-exit: if `type` is contiguous, the result must be contiguous. 1443 if (canonicalizeStridedLayout(type).getAffineMaps().empty()) 1444 return MemRefType::Builder(type).setShape(newSizes).setAffineMaps({}); 1445 1446 // Convert back to int64_t because we don't have enough information to create 1447 // new strided layouts from AffineExpr only. This corresponds to a case where 1448 // copies may be necessary. 1449 int64_t intOffset = ShapedType::kDynamicStrideOrOffset; 1450 if (auto o = offset.dyn_cast<AffineConstantExpr>()) 1451 intOffset = o.getValue(); 1452 SmallVector<int64_t, 4> intStrides; 1453 intStrides.reserve(strides.size()); 1454 for (auto stride : newStrides) { 1455 if (auto cst = stride.dyn_cast_or_null<AffineConstantExpr>()) 1456 intStrides.push_back(cst.getValue()); 1457 else 1458 intStrides.push_back(ShapedType::kDynamicStrideOrOffset); 1459 } 1460 auto layout = 1461 makeStridedLinearLayoutMap(intStrides, intOffset, type.getContext()); 1462 return canonicalizeStridedLayout( 1463 MemRefType::Builder(type).setShape(newSizes).setAffineMaps({layout})); 1464 } 1465 1466 void ExpandShapeOp::build(OpBuilder &b, OperationState &result, Value src, 1467 ArrayRef<ReassociationIndices> reassociation, 1468 ArrayRef<NamedAttribute> attrs) { 1469 auto memRefType = src.getType().cast<MemRefType>(); 1470 auto resultType = computeReshapeCollapsedType( 1471 memRefType, getSymbolLessAffineMaps(convertReassociationIndicesToExprs( 1472 b.getContext(), reassociation))); 1473 build(b, result, resultType, src, attrs); 1474 result.addAttribute(getReassociationAttrName(), 1475 getReassociationIndicesAttribute(b, reassociation)); 1476 } 1477 1478 void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src, 1479 ArrayRef<ReassociationIndices> reassociation, 1480 ArrayRef<NamedAttribute> attrs) { 1481 auto memRefType = src.getType().cast<MemRefType>(); 1482 auto resultType = computeReshapeCollapsedType( 1483 memRefType, getSymbolLessAffineMaps(convertReassociationIndicesToExprs( 1484 b.getContext(), reassociation))); 1485 build(b, result, resultType, src, attrs); 1486 result.addAttribute(getReassociationAttrName(), 1487 getReassociationIndicesAttribute(b, reassociation)); 1488 } 1489 1490 template <typename ReshapeOp, 1491 bool isExpansion = std::is_same<ReshapeOp, ExpandShapeOp>::value> 1492 static LogicalResult verifyReshapeOp(ReshapeOp op, MemRefType expandedType, 1493 MemRefType collapsedType) { 1494 if (failed( 1495 verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion))) 1496 return failure(); 1497 auto maps = op.getReassociationMaps(); 1498 MemRefType expectedType = computeReshapeCollapsedType(expandedType, maps); 1499 if (collapsedType != expectedType) 1500 return op.emitOpError("expected collapsed type to be ") 1501 << expectedType << ", but got " << collapsedType; 1502 return success(); 1503 } 1504 1505 static LogicalResult verify(ExpandShapeOp op) { 1506 return verifyReshapeOp(op, op.getResultType(), op.getSrcType()); 1507 } 1508 1509 void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 1510 MLIRContext *context) { 1511 results.add<CollapseReshapeOps<ExpandShapeOp>, 1512 CollapseMixedReshapeOps<ExpandShapeOp, CollapseShapeOp>>(context); 1513 } 1514 1515 static LogicalResult verify(CollapseShapeOp op) { 1516 return verifyReshapeOp(op, op.getSrcType(), op.getResultType()); 1517 } 1518 1519 struct CollapseShapeOpMemRefCastFolder 1520 : public OpRewritePattern<CollapseShapeOp> { 1521 public: 1522 using OpRewritePattern<CollapseShapeOp>::OpRewritePattern; 1523 1524 LogicalResult matchAndRewrite(CollapseShapeOp op, 1525 PatternRewriter &rewriter) const override { 1526 auto cast = op.getOperand().getDefiningOp<CastOp>(); 1527 if (!cast) 1528 return failure(); 1529 1530 if (!CastOp::canFoldIntoConsumerOp(cast)) 1531 return failure(); 1532 1533 Type newResultType = computeReshapeCollapsedType( 1534 cast.getOperand().getType().cast<MemRefType>(), 1535 op.getReassociationMaps()); 1536 1537 if (newResultType == op.getResultType()) { 1538 rewriter.updateRootInPlace( 1539 op, [&]() { op.srcMutable().assign(cast.source()); }); 1540 } else { 1541 Value newOp = rewriter.create<CollapseShapeOp>( 1542 op->getLoc(), cast.source(), op.getReassociationIndices()); 1543 rewriter.replaceOpWithNewOp<CastOp>(op, op.getType(), newOp); 1544 } 1545 return success(); 1546 } 1547 }; 1548 1549 void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results, 1550 MLIRContext *context) { 1551 results.add<CollapseReshapeOps<CollapseShapeOp>, 1552 CollapseMixedReshapeOps<CollapseShapeOp, ExpandShapeOp>, 1553 CollapseShapeOpMemRefCastFolder>(context); 1554 } 1555 OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) { 1556 if (succeeded(foldMemRefCast(*this))) 1557 return getResult(); 1558 return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands); 1559 } 1560 OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) { 1561 return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands); 1562 } 1563 1564 //===----------------------------------------------------------------------===// 1565 // ReshapeOp 1566 //===----------------------------------------------------------------------===// 1567 1568 static LogicalResult verify(ReshapeOp op) { 1569 Type operandType = op.source().getType(); 1570 Type resultType = op.result().getType(); 1571 1572 Type operandElementType = operandType.cast<ShapedType>().getElementType(); 1573 Type resultElementType = resultType.cast<ShapedType>().getElementType(); 1574 if (operandElementType != resultElementType) 1575 return op.emitOpError("element types of source and destination memref " 1576 "types should be the same"); 1577 1578 if (auto operandMemRefType = operandType.dyn_cast<MemRefType>()) 1579 if (!operandMemRefType.getAffineMaps().empty()) 1580 return op.emitOpError( 1581 "source memref type should have identity affine map"); 1582 1583 int64_t shapeSize = op.shape().getType().cast<MemRefType>().getDimSize(0); 1584 auto resultMemRefType = resultType.dyn_cast<MemRefType>(); 1585 if (resultMemRefType) { 1586 if (!resultMemRefType.getAffineMaps().empty()) 1587 return op.emitOpError( 1588 "result memref type should have identity affine map"); 1589 if (shapeSize == ShapedType::kDynamicSize) 1590 return op.emitOpError("cannot use shape operand with dynamic length to " 1591 "reshape to statically-ranked memref type"); 1592 if (shapeSize != resultMemRefType.getRank()) 1593 return op.emitOpError( 1594 "length of shape operand differs from the result's memref rank"); 1595 } 1596 return success(); 1597 } 1598 1599 //===----------------------------------------------------------------------===// 1600 // StoreOp 1601 //===----------------------------------------------------------------------===// 1602 1603 static LogicalResult verify(StoreOp op) { 1604 if (op.getNumOperands() != 2 + op.getMemRefType().getRank()) 1605 return op.emitOpError("store index operand count not equal to memref rank"); 1606 1607 return success(); 1608 } 1609 1610 LogicalResult StoreOp::fold(ArrayRef<Attribute> cstOperands, 1611 SmallVectorImpl<OpFoldResult> &results) { 1612 /// store(memrefcast) -> store 1613 return foldMemRefCast(*this, getValueToStore()); 1614 } 1615 1616 //===----------------------------------------------------------------------===// 1617 // SubViewOp 1618 //===----------------------------------------------------------------------===// 1619 1620 namespace { 1621 /// Helpers to write more idiomatic operations. 1622 namespace saturated_arith { 1623 struct Wrapper { 1624 explicit Wrapper(int64_t v) : v(v) {} 1625 operator int64_t() { return v; } 1626 int64_t v; 1627 }; 1628 Wrapper operator+(Wrapper a, int64_t b) { 1629 if (ShapedType::isDynamicStrideOrOffset(a) || 1630 ShapedType::isDynamicStrideOrOffset(b)) 1631 return Wrapper(ShapedType::kDynamicStrideOrOffset); 1632 return Wrapper(a.v + b); 1633 } 1634 Wrapper operator*(Wrapper a, int64_t b) { 1635 if (ShapedType::isDynamicStrideOrOffset(a) || 1636 ShapedType::isDynamicStrideOrOffset(b)) 1637 return Wrapper(ShapedType::kDynamicStrideOrOffset); 1638 return Wrapper(a.v * b); 1639 } 1640 } // end namespace saturated_arith 1641 } // end namespace 1642 1643 /// A subview result type can be fully inferred from the source type and the 1644 /// static representation of offsets, sizes and strides. Special sentinels 1645 /// encode the dynamic case. 1646 Type SubViewOp::inferResultType(MemRefType sourceMemRefType, 1647 ArrayRef<int64_t> leadingStaticOffsets, 1648 ArrayRef<int64_t> leadingStaticSizes, 1649 ArrayRef<int64_t> leadingStaticStrides) { 1650 // A subview may specify only a leading subset of offset/sizes/strides in 1651 // which case we complete with offset=0, sizes from memref type and strides=1. 1652 unsigned rank = sourceMemRefType.getRank(); 1653 assert(leadingStaticOffsets.size() <= rank && 1654 "unexpected leadingStaticOffsets overflow"); 1655 assert(leadingStaticSizes.size() <= rank && 1656 "unexpected leadingStaticSizes overflow"); 1657 assert(leadingStaticStrides.size() <= rank && 1658 "unexpected leadingStaticStrides overflow"); 1659 auto staticOffsets = llvm::to_vector<4>(leadingStaticOffsets); 1660 auto staticSizes = llvm::to_vector<4>(leadingStaticSizes); 1661 auto staticStrides = llvm::to_vector<4>(leadingStaticStrides); 1662 unsigned numTrailingOffsets = rank - staticOffsets.size(); 1663 unsigned numTrailingSizes = rank - staticSizes.size(); 1664 unsigned numTrailingStrides = rank - staticStrides.size(); 1665 staticOffsets.append(numTrailingOffsets, 0); 1666 llvm::append_range(staticSizes, 1667 sourceMemRefType.getShape().take_back(numTrailingSizes)); 1668 staticStrides.append(numTrailingStrides, 1); 1669 1670 // Extract source offset and strides. 1671 int64_t sourceOffset; 1672 SmallVector<int64_t, 4> sourceStrides; 1673 auto res = getStridesAndOffset(sourceMemRefType, sourceStrides, sourceOffset); 1674 assert(succeeded(res) && "SubViewOp expected strided memref type"); 1675 (void)res; 1676 1677 // Compute target offset whose value is: 1678 // `sourceOffset + sum_i(staticOffset_i * sourceStrides_i)`. 1679 int64_t targetOffset = sourceOffset; 1680 for (auto it : llvm::zip(staticOffsets, sourceStrides)) { 1681 auto staticOffset = std::get<0>(it), targetStride = std::get<1>(it); 1682 using namespace saturated_arith; 1683 targetOffset = Wrapper(targetOffset) + Wrapper(staticOffset) * targetStride; 1684 } 1685 1686 // Compute target stride whose value is: 1687 // `sourceStrides_i * staticStrides_i`. 1688 SmallVector<int64_t, 4> targetStrides; 1689 targetStrides.reserve(staticOffsets.size()); 1690 for (auto it : llvm::zip(sourceStrides, staticStrides)) { 1691 auto sourceStride = std::get<0>(it), staticStride = std::get<1>(it); 1692 using namespace saturated_arith; 1693 targetStrides.push_back(Wrapper(sourceStride) * staticStride); 1694 } 1695 1696 // The type is now known. 1697 return MemRefType::get( 1698 staticSizes, sourceMemRefType.getElementType(), 1699 makeStridedLinearLayoutMap(targetStrides, targetOffset, 1700 sourceMemRefType.getContext()), 1701 sourceMemRefType.getMemorySpace()); 1702 } 1703 1704 Type SubViewOp::inferResultType(MemRefType sourceMemRefType, 1705 ArrayRef<OpFoldResult> leadingStaticOffsets, 1706 ArrayRef<OpFoldResult> leadingStaticSizes, 1707 ArrayRef<OpFoldResult> leadingStaticStrides) { 1708 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1709 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1710 dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets, 1711 staticOffsets, ShapedType::kDynamicStrideOrOffset); 1712 dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes, 1713 ShapedType::kDynamicSize); 1714 dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides, 1715 staticStrides, ShapedType::kDynamicStrideOrOffset); 1716 return SubViewOp::inferResultType(sourceMemRefType, staticOffsets, 1717 staticSizes, staticStrides) 1718 .cast<MemRefType>(); 1719 } 1720 1721 Type SubViewOp::inferRankReducedResultType( 1722 unsigned resultRank, MemRefType sourceRankedTensorType, 1723 ArrayRef<int64_t> leadingStaticOffsets, 1724 ArrayRef<int64_t> leadingStaticSizes, 1725 ArrayRef<int64_t> leadingStaticStrides) { 1726 auto inferredType = 1727 inferResultType(sourceRankedTensorType, leadingStaticOffsets, 1728 leadingStaticSizes, leadingStaticStrides) 1729 .cast<MemRefType>(); 1730 assert(inferredType.getRank() >= resultRank && "expected "); 1731 int rankDiff = inferredType.getRank() - resultRank; 1732 if (rankDiff > 0) { 1733 auto shape = inferredType.getShape(); 1734 llvm::SmallDenseSet<unsigned> dimsToProject; 1735 mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject); 1736 SmallVector<int64_t> projectedShape; 1737 for (unsigned pos = 0, e = shape.size(); pos < e; ++pos) 1738 if (!dimsToProject.contains(pos)) 1739 projectedShape.push_back(shape[pos]); 1740 1741 AffineMap map; 1742 auto maps = inferredType.getAffineMaps(); 1743 if (!maps.empty() && maps.front()) 1744 map = getProjectedMap(maps.front(), dimsToProject); 1745 inferredType = 1746 MemRefType::get(projectedShape, inferredType.getElementType(), map, 1747 inferredType.getMemorySpace()); 1748 } 1749 return inferredType; 1750 } 1751 1752 Type SubViewOp::inferRankReducedResultType( 1753 unsigned resultRank, MemRefType sourceRankedTensorType, 1754 ArrayRef<OpFoldResult> leadingStaticOffsets, 1755 ArrayRef<OpFoldResult> leadingStaticSizes, 1756 ArrayRef<OpFoldResult> leadingStaticStrides) { 1757 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1758 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1759 dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets, 1760 staticOffsets, ShapedType::kDynamicStrideOrOffset); 1761 dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes, 1762 ShapedType::kDynamicSize); 1763 dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides, 1764 staticStrides, ShapedType::kDynamicStrideOrOffset); 1765 return SubViewOp::inferRankReducedResultType( 1766 resultRank, sourceRankedTensorType, staticOffsets, staticSizes, 1767 staticStrides); 1768 } 1769 // Build a SubViewOp with mixed static and dynamic entries and custom result 1770 // type. If the type passed is nullptr, it is inferred. 1771 void SubViewOp::build(OpBuilder &b, OperationState &result, 1772 MemRefType resultType, Value source, 1773 ArrayRef<OpFoldResult> offsets, 1774 ArrayRef<OpFoldResult> sizes, 1775 ArrayRef<OpFoldResult> strides, 1776 ArrayRef<NamedAttribute> attrs) { 1777 SmallVector<int64_t> staticOffsets, staticSizes, staticStrides; 1778 SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides; 1779 dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets, 1780 ShapedType::kDynamicStrideOrOffset); 1781 dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes, 1782 ShapedType::kDynamicSize); 1783 dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides, 1784 ShapedType::kDynamicStrideOrOffset); 1785 auto sourceMemRefType = source.getType().cast<MemRefType>(); 1786 // Structuring implementation this way avoids duplication between builders. 1787 if (!resultType) { 1788 resultType = SubViewOp::inferResultType(sourceMemRefType, staticOffsets, 1789 staticSizes, staticStrides) 1790 .cast<MemRefType>(); 1791 } 1792 build(b, result, resultType, source, dynamicOffsets, dynamicSizes, 1793 dynamicStrides, b.getI64ArrayAttr(staticOffsets), 1794 b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides)); 1795 result.addAttributes(attrs); 1796 } 1797 1798 // Build a SubViewOp with mixed static and dynamic entries and inferred result 1799 // type. 1800 void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, 1801 ArrayRef<OpFoldResult> offsets, 1802 ArrayRef<OpFoldResult> sizes, 1803 ArrayRef<OpFoldResult> strides, 1804 ArrayRef<NamedAttribute> attrs) { 1805 build(b, result, MemRefType(), source, offsets, sizes, strides, attrs); 1806 } 1807 1808 // Build a SubViewOp with static entries and inferred result type. 1809 void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, 1810 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, 1811 ArrayRef<int64_t> strides, 1812 ArrayRef<NamedAttribute> attrs) { 1813 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1814 llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult { 1815 return b.getI64IntegerAttr(v); 1816 })); 1817 SmallVector<OpFoldResult> sizeValues = 1818 llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { 1819 return b.getI64IntegerAttr(v); 1820 })); 1821 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1822 llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { 1823 return b.getI64IntegerAttr(v); 1824 })); 1825 build(b, result, source, offsetValues, sizeValues, strideValues, attrs); 1826 } 1827 1828 // Build a SubViewOp with dynamic entries and custom result type. If the 1829 // type passed is nullptr, it is inferred. 1830 void SubViewOp::build(OpBuilder &b, OperationState &result, 1831 MemRefType resultType, Value source, 1832 ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes, 1833 ArrayRef<int64_t> strides, 1834 ArrayRef<NamedAttribute> attrs) { 1835 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1836 llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult { 1837 return b.getI64IntegerAttr(v); 1838 })); 1839 SmallVector<OpFoldResult> sizeValues = 1840 llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult { 1841 return b.getI64IntegerAttr(v); 1842 })); 1843 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1844 llvm::map_range(strides, [&](int64_t v) -> OpFoldResult { 1845 return b.getI64IntegerAttr(v); 1846 })); 1847 build(b, result, resultType, source, offsetValues, sizeValues, strideValues, 1848 attrs); 1849 } 1850 1851 // Build a SubViewOp with dynamic entries and custom result type. If the type 1852 // passed is nullptr, it is inferred. 1853 void SubViewOp::build(OpBuilder &b, OperationState &result, 1854 MemRefType resultType, Value source, ValueRange offsets, 1855 ValueRange sizes, ValueRange strides, 1856 ArrayRef<NamedAttribute> attrs) { 1857 SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>( 1858 llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; })); 1859 SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>( 1860 llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; })); 1861 SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>( 1862 llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; })); 1863 build(b, result, resultType, source, offsetValues, sizeValues, strideValues); 1864 } 1865 1866 // Build a SubViewOp with dynamic entries and inferred result type. 1867 void SubViewOp::build(OpBuilder &b, OperationState &result, Value source, 1868 ValueRange offsets, ValueRange sizes, ValueRange strides, 1869 ArrayRef<NamedAttribute> attrs) { 1870 build(b, result, MemRefType(), source, offsets, sizes, strides, attrs); 1871 } 1872 1873 /// For ViewLikeOpInterface. 1874 Value SubViewOp::getViewSource() { return source(); } 1875 1876 enum SubViewVerificationResult { 1877 Success, 1878 RankTooLarge, 1879 SizeMismatch, 1880 ElemTypeMismatch, 1881 MemSpaceMismatch, 1882 AffineMapMismatch 1883 }; 1884 1885 /// Checks if `original` Type type can be rank reduced to `reduced` type. 1886 /// This function is slight variant of `is subsequence` algorithm where 1887 /// not matching dimension must be 1. 1888 static SubViewVerificationResult 1889 isRankReducedType(Type originalType, Type candidateReducedType, 1890 std::string *errMsg = nullptr) { 1891 if (originalType == candidateReducedType) 1892 return SubViewVerificationResult::Success; 1893 if (!originalType.isa<MemRefType>()) 1894 return SubViewVerificationResult::Success; 1895 if (originalType.isa<MemRefType>() && !candidateReducedType.isa<MemRefType>()) 1896 return SubViewVerificationResult::Success; 1897 1898 ShapedType originalShapedType = originalType.cast<ShapedType>(); 1899 ShapedType candidateReducedShapedType = 1900 candidateReducedType.cast<ShapedType>(); 1901 1902 // Rank and size logic is valid for all ShapedTypes. 1903 ArrayRef<int64_t> originalShape = originalShapedType.getShape(); 1904 ArrayRef<int64_t> candidateReducedShape = 1905 candidateReducedShapedType.getShape(); 1906 unsigned originalRank = originalShape.size(), 1907 candidateReducedRank = candidateReducedShape.size(); 1908 if (candidateReducedRank > originalRank) 1909 return SubViewVerificationResult::RankTooLarge; 1910 1911 auto optionalUnusedDimsMask = 1912 computeRankReductionMask(originalShape, candidateReducedShape); 1913 1914 // Sizes cannot be matched in case empty vector is returned. 1915 if (!optionalUnusedDimsMask.hasValue()) 1916 return SubViewVerificationResult::SizeMismatch; 1917 1918 if (originalShapedType.getElementType() != 1919 candidateReducedShapedType.getElementType()) 1920 return SubViewVerificationResult::ElemTypeMismatch; 1921 1922 // Strided layout logic is relevant for MemRefType only. 1923 MemRefType original = originalType.cast<MemRefType>(); 1924 MemRefType candidateReduced = candidateReducedType.cast<MemRefType>(); 1925 if (original.getMemorySpace() != candidateReduced.getMemorySpace()) 1926 return SubViewVerificationResult::MemSpaceMismatch; 1927 1928 llvm::SmallDenseSet<unsigned> unusedDims = optionalUnusedDimsMask.getValue(); 1929 auto inferredType = 1930 getProjectedMap(getStridedLinearLayoutMap(original), unusedDims); 1931 AffineMap candidateLayout; 1932 if (candidateReduced.getAffineMaps().empty()) 1933 candidateLayout = getStridedLinearLayoutMap(candidateReduced); 1934 else 1935 candidateLayout = candidateReduced.getAffineMaps().front(); 1936 assert(inferredType.getNumResults() == 1 && 1937 candidateLayout.getNumResults() == 1); 1938 if (inferredType.getNumSymbols() != candidateLayout.getNumSymbols() || 1939 inferredType.getNumDims() != candidateLayout.getNumDims()) { 1940 if (errMsg) { 1941 llvm::raw_string_ostream os(*errMsg); 1942 os << "inferred type: " << inferredType; 1943 } 1944 return SubViewVerificationResult::AffineMapMismatch; 1945 } 1946 // Check that the difference of the affine maps simplifies to 0. 1947 AffineExpr diffExpr = 1948 inferredType.getResult(0) - candidateLayout.getResult(0); 1949 diffExpr = simplifyAffineExpr(diffExpr, inferredType.getNumDims(), 1950 inferredType.getNumSymbols()); 1951 auto cst = diffExpr.dyn_cast<AffineConstantExpr>(); 1952 if (!(cst && cst.getValue() == 0)) { 1953 if (errMsg) { 1954 llvm::raw_string_ostream os(*errMsg); 1955 os << "inferred type: " << inferredType; 1956 } 1957 return SubViewVerificationResult::AffineMapMismatch; 1958 } 1959 return SubViewVerificationResult::Success; 1960 } 1961 1962 template <typename OpTy> 1963 static LogicalResult produceSubViewErrorMsg(SubViewVerificationResult result, 1964 OpTy op, Type expectedType, 1965 StringRef errMsg = "") { 1966 auto memrefType = expectedType.cast<ShapedType>(); 1967 switch (result) { 1968 case SubViewVerificationResult::Success: 1969 return success(); 1970 case SubViewVerificationResult::RankTooLarge: 1971 return op.emitError("expected result rank to be smaller or equal to ") 1972 << "the source rank. " << errMsg; 1973 case SubViewVerificationResult::SizeMismatch: 1974 return op.emitError("expected result type to be ") 1975 << expectedType 1976 << " or a rank-reduced version. (mismatch of result sizes) " 1977 << errMsg; 1978 case SubViewVerificationResult::ElemTypeMismatch: 1979 return op.emitError("expected result element type to be ") 1980 << memrefType.getElementType() << errMsg; 1981 case SubViewVerificationResult::MemSpaceMismatch: 1982 return op.emitError("expected result and source memory spaces to match.") 1983 << errMsg; 1984 case SubViewVerificationResult::AffineMapMismatch: 1985 return op.emitError("expected result type to be ") 1986 << expectedType 1987 << " or a rank-reduced version. (mismatch of result affine map) " 1988 << errMsg; 1989 } 1990 llvm_unreachable("unexpected subview verification result"); 1991 } 1992 1993 /// Verifier for SubViewOp. 1994 static LogicalResult verify(SubViewOp op) { 1995 MemRefType baseType = op.getSourceType(); 1996 MemRefType subViewType = op.getType(); 1997 1998 // The base memref and the view memref should be in the same memory space. 1999 if (baseType.getMemorySpace() != subViewType.getMemorySpace()) 2000 return op.emitError("different memory spaces specified for base memref " 2001 "type ") 2002 << baseType << " and subview memref type " << subViewType; 2003 2004 // Verify that the base memref type has a strided layout map. 2005 if (!isStrided(baseType)) 2006 return op.emitError("base type ") << baseType << " is not strided"; 2007 2008 // Verify result type against inferred type. 2009 auto expectedType = SubViewOp::inferResultType( 2010 baseType, extractFromI64ArrayAttr(op.static_offsets()), 2011 extractFromI64ArrayAttr(op.static_sizes()), 2012 extractFromI64ArrayAttr(op.static_strides())); 2013 2014 std::string errMsg; 2015 auto result = isRankReducedType(expectedType, subViewType, &errMsg); 2016 return produceSubViewErrorMsg(result, op, expectedType, errMsg); 2017 } 2018 2019 raw_ostream &mlir::operator<<(raw_ostream &os, Range &range) { 2020 return os << "range " << range.offset << ":" << range.size << ":" 2021 << range.stride; 2022 } 2023 2024 /// Return the list of Range (i.e. offset, size, stride). Each Range 2025 /// entry contains either the dynamic value or a ConstantIndexOp constructed 2026 /// with `b` at location `loc`. 2027 SmallVector<Range, 8> mlir::getOrCreateRanges(OffsetSizeAndStrideOpInterface op, 2028 OpBuilder &b, Location loc) { 2029 std::array<unsigned, 3> ranks = op.getArrayAttrMaxRanks(); 2030 assert(ranks[0] == ranks[1] && "expected offset and sizes of equal ranks"); 2031 assert(ranks[1] == ranks[2] && "expected sizes and strides of equal ranks"); 2032 SmallVector<Range, 8> res; 2033 unsigned rank = ranks[0]; 2034 res.reserve(rank); 2035 for (unsigned idx = 0; idx < rank; ++idx) { 2036 Value offset = 2037 op.isDynamicOffset(idx) 2038 ? op.getDynamicOffset(idx) 2039 : b.create<ConstantIndexOp>(loc, op.getStaticOffset(idx)); 2040 Value size = op.isDynamicSize(idx) 2041 ? op.getDynamicSize(idx) 2042 : b.create<ConstantIndexOp>(loc, op.getStaticSize(idx)); 2043 Value stride = 2044 op.isDynamicStride(idx) 2045 ? op.getDynamicStride(idx) 2046 : b.create<ConstantIndexOp>(loc, op.getStaticStride(idx)); 2047 res.emplace_back(Range{offset, size, stride}); 2048 } 2049 return res; 2050 } 2051 2052 /// Infer the canonical type of the result of a subview operation. Returns a 2053 /// type with rank `resultRank` that is either the rank of the rank-reduced 2054 /// type, or the non-rank-reduced type. 2055 static MemRefType 2056 getCanonicalSubViewResultType(unsigned resultRank, MemRefType sourceType, 2057 ArrayRef<OpFoldResult> mixedOffsets, 2058 ArrayRef<OpFoldResult> mixedSizes, 2059 ArrayRef<OpFoldResult> mixedStrides) { 2060 auto resultType = 2061 SubViewOp::inferRankReducedResultType( 2062 resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides) 2063 .cast<MemRefType>(); 2064 if (resultType.getRank() != resultRank) { 2065 resultType = SubViewOp::inferResultType(sourceType, mixedOffsets, 2066 mixedSizes, mixedStrides) 2067 .cast<MemRefType>(); 2068 } 2069 return resultType; 2070 } 2071 2072 namespace { 2073 /// Pattern to rewrite a subview op with MemRefCast arguments. 2074 /// This essentially pushes memref.cast past its consuming subview when 2075 /// `canFoldIntoConsumerOp` is true. 2076 /// 2077 /// Example: 2078 /// ``` 2079 /// %0 = memref.cast %V : memref<16x16xf32> to memref<?x?xf32> 2080 /// %1 = memref.subview %0[0, 0][3, 4][1, 1] : 2081 /// memref<?x?xf32> to memref<3x4xf32, offset:?, strides:[?, 1]> 2082 /// ``` 2083 /// is rewritten into: 2084 /// ``` 2085 /// %0 = memref.subview %V: memref<16x16xf32> to memref<3x4xf32, #[[map0]]> 2086 /// %1 = memref.cast %0: memref<3x4xf32, offset:0, strides:[16, 1]> to 2087 /// memref<3x4xf32, offset:?, strides:[?, 1]> 2088 /// ``` 2089 class SubViewOpMemRefCastFolder final : public OpRewritePattern<SubViewOp> { 2090 public: 2091 using OpRewritePattern<SubViewOp>::OpRewritePattern; 2092 2093 LogicalResult matchAndRewrite(SubViewOp subViewOp, 2094 PatternRewriter &rewriter) const override { 2095 // Any constant operand, just return to let SubViewOpConstantFolder kick in. 2096 if (llvm::any_of(subViewOp.getOperands(), [](Value operand) { 2097 return matchPattern(operand, matchConstantIndex()); 2098 })) 2099 return failure(); 2100 2101 auto castOp = subViewOp.source().getDefiningOp<CastOp>(); 2102 if (!castOp) 2103 return failure(); 2104 2105 if (!CastOp::canFoldIntoConsumerOp(castOp)) 2106 return failure(); 2107 2108 /// Deduce the resultType of the SubViewOp using `inferSubViewResultType` on 2109 /// the cast source operand type and the SubViewOp static information. This 2110 /// is the resulting type if the MemRefCastOp were folded. 2111 auto resultType = getCanonicalSubViewResultType( 2112 subViewOp.getType().getRank(), 2113 castOp.source().getType().cast<MemRefType>(), 2114 subViewOp.getMixedOffsets(), subViewOp.getMixedSizes(), 2115 subViewOp.getMixedStrides()); 2116 Value newSubView = rewriter.create<SubViewOp>( 2117 subViewOp.getLoc(), resultType, castOp.source(), subViewOp.offsets(), 2118 subViewOp.sizes(), subViewOp.strides(), subViewOp.static_offsets(), 2119 subViewOp.static_sizes(), subViewOp.static_strides()); 2120 rewriter.replaceOpWithNewOp<CastOp>(subViewOp, subViewOp.getType(), 2121 newSubView); 2122 return success(); 2123 } 2124 }; 2125 } // namespace 2126 2127 /// Return the canonical type of the result of a subview. 2128 struct SubViewReturnTypeCanonicalizer { 2129 MemRefType operator()(SubViewOp op, ArrayRef<OpFoldResult> mixedOffsets, 2130 ArrayRef<OpFoldResult> mixedSizes, 2131 ArrayRef<OpFoldResult> mixedStrides) { 2132 return getCanonicalSubViewResultType(op.getType().getRank(), 2133 op.getSourceType(), mixedOffsets, 2134 mixedSizes, mixedStrides); 2135 } 2136 }; 2137 2138 /// A canonicalizer wrapper to replace SubViewOps. 2139 struct SubViewCanonicalizer { 2140 void operator()(PatternRewriter &rewriter, SubViewOp op, SubViewOp newOp) { 2141 rewriter.replaceOpWithNewOp<CastOp>(op, newOp, op.getType()); 2142 } 2143 }; 2144 2145 void SubViewOp::getCanonicalizationPatterns(RewritePatternSet &results, 2146 MLIRContext *context) { 2147 results 2148 .add<OpWithOffsetSizesAndStridesConstantArgumentFolder< 2149 SubViewOp, SubViewReturnTypeCanonicalizer, SubViewCanonicalizer>, 2150 SubViewOpMemRefCastFolder>(context); 2151 } 2152 2153 OpFoldResult SubViewOp::fold(ArrayRef<Attribute> operands) { 2154 auto resultShapedType = getResult().getType().cast<ShapedType>(); 2155 auto sourceShapedType = source().getType().cast<ShapedType>(); 2156 2157 if (resultShapedType.hasStaticShape() && 2158 resultShapedType == sourceShapedType) { 2159 return getViewSource(); 2160 } 2161 2162 return {}; 2163 } 2164 2165 //===----------------------------------------------------------------------===// 2166 // TensorLoadOp 2167 //===----------------------------------------------------------------------===// 2168 2169 OpFoldResult TensorLoadOp::fold(ArrayRef<Attribute>) { 2170 if (auto bufferCast = memref().getDefiningOp<BufferCastOp>()) 2171 // Approximate alias analysis by conservatively folding only when no there 2172 // is no interleaved operation. 2173 if (bufferCast->getBlock() == this->getOperation()->getBlock() && 2174 bufferCast->getNextNode() == this->getOperation()) 2175 return bufferCast.tensor(); 2176 return {}; 2177 } 2178 2179 namespace { 2180 struct DimOfTensorLoadFolder : public OpRewritePattern<tensor::DimOp> { 2181 using OpRewritePattern<tensor::DimOp>::OpRewritePattern; 2182 2183 LogicalResult matchAndRewrite(tensor::DimOp dimOp, 2184 PatternRewriter &rewriter) const override { 2185 auto tensorLoadOp = dimOp.source().getDefiningOp<TensorLoadOp>(); 2186 if (!tensorLoadOp) 2187 return failure(); 2188 2189 rewriter.replaceOpWithNewOp<DimOp>(dimOp, tensorLoadOp.memref(), 2190 dimOp.index()); 2191 return success(); 2192 } 2193 }; 2194 } // namespace 2195 2196 void TensorLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, 2197 MLIRContext *context) { 2198 results.add<DimOfTensorLoadFolder>(context); 2199 } 2200 2201 //===----------------------------------------------------------------------===// 2202 // TransposeOp 2203 //===----------------------------------------------------------------------===// 2204 2205 /// Build a strided memref type by applying `permutationMap` tp `memRefType`. 2206 static MemRefType inferTransposeResultType(MemRefType memRefType, 2207 AffineMap permutationMap) { 2208 auto rank = memRefType.getRank(); 2209 auto originalSizes = memRefType.getShape(); 2210 // Compute permuted sizes. 2211 SmallVector<int64_t, 4> sizes(rank, 0); 2212 for (auto en : llvm::enumerate(permutationMap.getResults())) 2213 sizes[en.index()] = 2214 originalSizes[en.value().cast<AffineDimExpr>().getPosition()]; 2215 2216 // Compute permuted strides. 2217 int64_t offset; 2218 SmallVector<int64_t, 4> strides; 2219 auto res = getStridesAndOffset(memRefType, strides, offset); 2220 assert(succeeded(res) && strides.size() == static_cast<unsigned>(rank)); 2221 (void)res; 2222 auto map = 2223 makeStridedLinearLayoutMap(strides, offset, memRefType.getContext()); 2224 map = permutationMap ? map.compose(permutationMap) : map; 2225 return MemRefType::Builder(memRefType).setShape(sizes).setAffineMaps(map); 2226 } 2227 2228 void TransposeOp::build(OpBuilder &b, OperationState &result, Value in, 2229 AffineMapAttr permutation, 2230 ArrayRef<NamedAttribute> attrs) { 2231 auto permutationMap = permutation.getValue(); 2232 assert(permutationMap); 2233 2234 auto memRefType = in.getType().cast<MemRefType>(); 2235 // Compute result type. 2236 MemRefType resultType = inferTransposeResultType(memRefType, permutationMap); 2237 2238 build(b, result, resultType, in, attrs); 2239 result.addAttribute(TransposeOp::getPermutationAttrName(), permutation); 2240 } 2241 2242 // transpose $in $permutation attr-dict : type($in) `to` type(results) 2243 static void print(OpAsmPrinter &p, TransposeOp op) { 2244 p << " " << op.in() << " " << op.permutation(); 2245 p.printOptionalAttrDict(op->getAttrs(), 2246 {TransposeOp::getPermutationAttrName()}); 2247 p << " : " << op.in().getType() << " to " << op.getType(); 2248 } 2249 2250 static ParseResult parseTransposeOp(OpAsmParser &parser, 2251 OperationState &result) { 2252 OpAsmParser::OperandType in; 2253 AffineMap permutation; 2254 MemRefType srcType, dstType; 2255 if (parser.parseOperand(in) || parser.parseAffineMap(permutation) || 2256 parser.parseOptionalAttrDict(result.attributes) || 2257 parser.parseColonType(srcType) || 2258 parser.resolveOperand(in, srcType, result.operands) || 2259 parser.parseKeywordType("to", dstType) || 2260 parser.addTypeToList(dstType, result.types)) 2261 return failure(); 2262 2263 result.addAttribute(TransposeOp::getPermutationAttrName(), 2264 AffineMapAttr::get(permutation)); 2265 return success(); 2266 } 2267 2268 static LogicalResult verify(TransposeOp op) { 2269 if (!op.permutation().isPermutation()) 2270 return op.emitOpError("expected a permutation map"); 2271 if (op.permutation().getNumDims() != op.getShapedType().getRank()) 2272 return op.emitOpError( 2273 "expected a permutation map of same rank as the input"); 2274 2275 auto srcType = op.in().getType().cast<MemRefType>(); 2276 auto dstType = op.getType().cast<MemRefType>(); 2277 auto transposedType = inferTransposeResultType(srcType, op.permutation()); 2278 if (dstType != transposedType) 2279 return op.emitOpError("output type ") 2280 << dstType << " does not match transposed input type " << srcType 2281 << ", " << transposedType; 2282 return success(); 2283 } 2284 2285 OpFoldResult TransposeOp::fold(ArrayRef<Attribute>) { 2286 if (succeeded(foldMemRefCast(*this))) 2287 return getResult(); 2288 return {}; 2289 } 2290 2291 //===----------------------------------------------------------------------===// 2292 // ViewOp 2293 //===----------------------------------------------------------------------===// 2294 2295 static ParseResult parseViewOp(OpAsmParser &parser, OperationState &result) { 2296 OpAsmParser::OperandType srcInfo; 2297 SmallVector<OpAsmParser::OperandType, 1> offsetInfo; 2298 SmallVector<OpAsmParser::OperandType, 4> sizesInfo; 2299 auto indexType = parser.getBuilder().getIndexType(); 2300 Type srcType, dstType; 2301 llvm::SMLoc offsetLoc; 2302 if (parser.parseOperand(srcInfo) || parser.getCurrentLocation(&offsetLoc) || 2303 parser.parseOperandList(offsetInfo, OpAsmParser::Delimiter::Square)) 2304 return failure(); 2305 2306 if (offsetInfo.size() != 1) 2307 return parser.emitError(offsetLoc) << "expects 1 offset operand"; 2308 2309 return failure( 2310 parser.parseOperandList(sizesInfo, OpAsmParser::Delimiter::Square) || 2311 parser.parseOptionalAttrDict(result.attributes) || 2312 parser.parseColonType(srcType) || 2313 parser.resolveOperand(srcInfo, srcType, result.operands) || 2314 parser.resolveOperands(offsetInfo, indexType, result.operands) || 2315 parser.resolveOperands(sizesInfo, indexType, result.operands) || 2316 parser.parseKeywordType("to", dstType) || 2317 parser.addTypeToList(dstType, result.types)); 2318 } 2319 2320 static void print(OpAsmPrinter &p, ViewOp op) { 2321 p << ' ' << op.getOperand(0) << '['; 2322 p.printOperand(op.byte_shift()); 2323 p << "][" << op.sizes() << ']'; 2324 p.printOptionalAttrDict(op->getAttrs()); 2325 p << " : " << op.getOperand(0).getType() << " to " << op.getType(); 2326 } 2327 2328 static LogicalResult verify(ViewOp op) { 2329 auto baseType = op.getOperand(0).getType().cast<MemRefType>(); 2330 auto viewType = op.getType(); 2331 2332 // The base memref should have identity layout map (or none). 2333 if (baseType.getAffineMaps().size() > 1 || 2334 (baseType.getAffineMaps().size() == 1 && 2335 !baseType.getAffineMaps()[0].isIdentity())) 2336 return op.emitError("unsupported map for base memref type ") << baseType; 2337 2338 // The result memref should have identity layout map (or none). 2339 if (viewType.getAffineMaps().size() > 1 || 2340 (viewType.getAffineMaps().size() == 1 && 2341 !viewType.getAffineMaps()[0].isIdentity())) 2342 return op.emitError("unsupported map for result memref type ") << viewType; 2343 2344 // The base memref and the view memref should be in the same memory space. 2345 if (baseType.getMemorySpace() != viewType.getMemorySpace()) 2346 return op.emitError("different memory spaces specified for base memref " 2347 "type ") 2348 << baseType << " and view memref type " << viewType; 2349 2350 // Verify that we have the correct number of sizes for the result type. 2351 unsigned numDynamicDims = viewType.getNumDynamicDims(); 2352 if (op.sizes().size() != numDynamicDims) 2353 return op.emitError("incorrect number of size operands for type ") 2354 << viewType; 2355 2356 return success(); 2357 } 2358 2359 Value ViewOp::getViewSource() { return source(); } 2360 2361 namespace { 2362 2363 struct ViewOpShapeFolder : public OpRewritePattern<ViewOp> { 2364 using OpRewritePattern<ViewOp>::OpRewritePattern; 2365 2366 LogicalResult matchAndRewrite(ViewOp viewOp, 2367 PatternRewriter &rewriter) const override { 2368 // Return if none of the operands are constants. 2369 if (llvm::none_of(viewOp.getOperands(), [](Value operand) { 2370 return matchPattern(operand, matchConstantIndex()); 2371 })) 2372 return failure(); 2373 2374 // Get result memref type. 2375 auto memrefType = viewOp.getType(); 2376 2377 // Get offset from old memref view type 'memRefType'. 2378 int64_t oldOffset; 2379 SmallVector<int64_t, 4> oldStrides; 2380 if (failed(getStridesAndOffset(memrefType, oldStrides, oldOffset))) 2381 return failure(); 2382 assert(oldOffset == 0 && "Expected 0 offset"); 2383 2384 SmallVector<Value, 4> newOperands; 2385 2386 // Offset cannot be folded into result type. 2387 2388 // Fold any dynamic dim operands which are produced by a constant. 2389 SmallVector<int64_t, 4> newShapeConstants; 2390 newShapeConstants.reserve(memrefType.getRank()); 2391 2392 unsigned dynamicDimPos = 0; 2393 unsigned rank = memrefType.getRank(); 2394 for (unsigned dim = 0, e = rank; dim < e; ++dim) { 2395 int64_t dimSize = memrefType.getDimSize(dim); 2396 // If this is already static dimension, keep it. 2397 if (!ShapedType::isDynamic(dimSize)) { 2398 newShapeConstants.push_back(dimSize); 2399 continue; 2400 } 2401 auto *defOp = viewOp.sizes()[dynamicDimPos].getDefiningOp(); 2402 if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) { 2403 // Dynamic shape dimension will be folded. 2404 newShapeConstants.push_back(constantIndexOp.getValue()); 2405 } else { 2406 // Dynamic shape dimension not folded; copy operand from old memref. 2407 newShapeConstants.push_back(dimSize); 2408 newOperands.push_back(viewOp.sizes()[dynamicDimPos]); 2409 } 2410 dynamicDimPos++; 2411 } 2412 2413 // Create new memref type with constant folded dims. 2414 MemRefType newMemRefType = 2415 MemRefType::Builder(memrefType).setShape(newShapeConstants); 2416 // Nothing new, don't fold. 2417 if (newMemRefType == memrefType) 2418 return failure(); 2419 2420 // Create new ViewOp. 2421 auto newViewOp = rewriter.create<ViewOp>(viewOp.getLoc(), newMemRefType, 2422 viewOp.getOperand(0), 2423 viewOp.byte_shift(), newOperands); 2424 // Insert a cast so we have the same type as the old memref type. 2425 rewriter.replaceOpWithNewOp<CastOp>(viewOp, newViewOp, viewOp.getType()); 2426 return success(); 2427 } 2428 }; 2429 2430 struct ViewOpMemrefCastFolder : public OpRewritePattern<ViewOp> { 2431 using OpRewritePattern<ViewOp>::OpRewritePattern; 2432 2433 LogicalResult matchAndRewrite(ViewOp viewOp, 2434 PatternRewriter &rewriter) const override { 2435 Value memrefOperand = viewOp.getOperand(0); 2436 CastOp memrefCastOp = memrefOperand.getDefiningOp<CastOp>(); 2437 if (!memrefCastOp) 2438 return failure(); 2439 Value allocOperand = memrefCastOp.getOperand(); 2440 AllocOp allocOp = allocOperand.getDefiningOp<AllocOp>(); 2441 if (!allocOp) 2442 return failure(); 2443 rewriter.replaceOpWithNewOp<ViewOp>(viewOp, viewOp.getType(), allocOperand, 2444 viewOp.byte_shift(), viewOp.sizes()); 2445 return success(); 2446 } 2447 }; 2448 2449 } // end anonymous namespace 2450 2451 void ViewOp::getCanonicalizationPatterns(RewritePatternSet &results, 2452 MLIRContext *context) { 2453 results.add<ViewOpShapeFolder, ViewOpMemrefCastFolder>(context); 2454 } 2455 2456 //===----------------------------------------------------------------------===// 2457 // TableGen'd op method definitions 2458 //===----------------------------------------------------------------------===// 2459 2460 #define GET_OP_CLASSES 2461 #include "mlir/Dialect/MemRef/IR/MemRefOps.cpp.inc" 2462